
#

[contents]

Accessible Rich Internet Applications (WAI-ARIA)
1.0

W3C Recommendation 20 March 2014

This version:
http://www.w3.org/TR/2014/REC-wai-aria-20140320/

Latest version:
http://www.w3.org/TR/wai-aria/

Previous version:
http://www.w3.org/TR/2014/PR-wai-aria-20140206/

Editors:
James Craig, Apple Inc.
Michael Cooper, W3C

Previous Editors:
Lisa Pappas, Society for Technical Communication
Rich Schwerdtfeger, IBM
Lisa Seeman, UB Access

Please check the errata for any errors or issues reported since publication.

This document is also available as multiple pages, with separate pages for each section.

See also translations.

Copyright © 2008-2014 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C liability, trademark
and document use rules apply.

Abstract

Accessibility of web content requires semantic information about widgets, structures, and
behaviors, in order to allow assistive technologies to convey appropriate information to
persons with disabilities. This specification provides an ontology of roles, states, and
properties that define accessible user interface elements and can be used to improve the
accessibility and interoperability of web content and applications. These semantics are
designed to allow an author to properly convey user interface behaviors and structural
information to assistive technologies in document-level markup. This document is part of
the WAI-ARIA suite described in the WAI-ARIA Overview.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

1 of 167 05/07/2020, 11:38

#

#

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This is the WAI-ARIA 1.0 W3C Recommendation from the Protocols & Formats Working
Group of the Web Accessibility Initiative. The Working Group created an implementation
report that shows the exit criteria have been met. The Director approved transition to
Recommendation after reviewing this report and after Advisory Committee vote which
unanimously supported publication. Some editorial changes have been made since the
Proposed Recommendation: removing suggestions of "RDF ID reference", changing the
spelling of "programming" to "programing", correcting the spelling of "assistive", and
updating some references to latest versions.

This document has been reviewed by W3C Members, by software developers, and by
other W3C groups and interested parties, and is endorsed by the Director as a W3C
Recommendation. It is a stable document and may be used as reference material or cited
from another document. W3C's role in making the Recommendation is to draw attention
to the specification and to promote its widespread deployment. This enhances the
functionality and interoperability of the Web.

To comment on this document, send email to public-pfwg-comments@w3.org (comment
archive). Comments received on the WAI-ARIA 1.0 Recommendation cannot result in
changes to this version of the specification, but may be addressed in errata or future
versions of WAI-ARIA. The Working Group may not make formal responses to comments
but future work undertaken by the Working Group may address comments received on
this document.

This document was produced by a group operating under the 5 February 2004 W3C
Patent Policy. W3C maintains a public list of any patent disclosures made in connection
with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes
contains Essential Claim(s) must disclose the information in accordance with section 6 of
the W3C Patent Policy.

The disclosure obligations of the Participants of this group are described in the charter.

Table of Contents

Abstract
Status of This Document
1. Introduction

1.1. Rich Internet Application Accessibility
1.2. Target Audience
1.3. User Agent Support
1.4. Co-Evolution of WAI-ARIA and Host Languages
1.5. Authoring Practices

1.5.1. Authoring Tools

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

2 of 167 05/07/2020, 11:38

1.5.2. Testing Practices and Tools
1.6. Assistive Technologies

2. Using WAI-ARIA
2.1. WAI-ARIA Roles
2.2. WAI-ARIA States and Properties
2.3. Managing Focus

3. Normative Requirements for WAI-ARIA
4. Important Terms
5. The Roles Model

5.1. Relationships Between Concepts
5.1.1. Superclass Role
5.1.2. Subclass Roles
5.1.3. Related Concepts
5.1.4. Base Concept

5.2. Characteristics of Roles
5.2.1. Abstract Roles
5.2.2. Required States and Properties
5.2.3. Supported States and Properties
5.2.4. Inherited States and Properties
5.2.5. Required Owned Elements
5.2.6. Required Context Role
5.2.7. Accessible Name Calculation
5.2.8. Presentational Children
5.2.9. Implicit Value for Role

5.3. Categorization of Roles
5.3.1. Abstract Roles
5.3.2. Widget Roles
5.3.3. Document Structure
5.3.4. Landmark Roles

5.4. Definition of Roles
6. Supported States and Properties

6.1. Clarification of States versus Properties
6.2. Characteristics of States and Properties

6.2.1. Related Concepts
6.2.2. Used in Roles
6.2.3. Inherits into Roles
6.2.4. Value

6.3. Values for States and Properties
6.4. Global States and Properties
6.5. Taxonomy of WAI-ARIA States and Properties

6.5.1. Widget Attributes
6.5.2. Live Region Attributes
6.5.3. Drag-and-Drop Attributes
6.5.4. Relationship Attributes

6.6. Definitions of States and Properties (all aria-* attributes)
7. Implementation in Host Languages

7.1. Role Attribute
7.2. State and Property Attributes
7.3. Focus Navigation
7.4. Implicit WAI-ARIA Semantics

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

3 of 167 05/07/2020, 11:38

#

7.5. Conflicts with Host Language Semantics
7.6. State and Property Attribute Processing

8. Conformance
8.1. Non-interference with the Host Language
8.2. All WAI-ARIA in DOM
8.3. Assistive Technology Notifications Communicated to Web Applications
8.4. Conformance Checkers

9. References
9.1. Normative References
9.2. Informative References

10. Appendices
10.1. Schemata

10.1.1. Roles Implementation
10.1.2. WAI-ARIA Attributes Module
10.1.3. XHTML plus WAI-ARIA DTD
10.1.4. SGML Open Catalog Entry for XHTML+ARIA
10.1.5. WAI-ARIA Attributes XML Schema Module
10.1.6. HTML 4.01 plus WAI-ARIA DTD

10.2. Mapping WAI-ARIA Value types to languages
10.3. WAI-ARIA Role, State, and Property Quick Reference
10.4. Acknowledgments

10.4.1. Participants active in the PFWG at the time of publication
10.4.2. Other ARIA contributors, commenters, and previously active
PFWG participants
10.4.3. Enabling funders

1. Introduction

This section is informative.

The goals of this specification include:

expanding the accessibility information that may be supplied by the author;
requiring that supporting host languages provide full keyboard support that may be
implemented in a device-independent way, for example, by telephones, handheld
devices, e-book readers, and televisions;
improving the accessibility of dynamic content generated by scripts; and
providing for interoperability with assistive technologies.

WAI-ARIA is a technical specification that provides a framework to improve the
accessibility and interoperability of web content and applications. This document is
primarily for developers creating custom widgets and other web application components.
Please see the WAI-ARIA Overview for links to related documents for other audiences,
such as the WAI-ARIA Primer that introduces developers to the accessibility problems
that WAI-ARIA is intended to solve, the fundamental concepts, and the technical
approach of WAI-ARIA.

This draft currently handles two aspects of roles: user interface functionality and
structural relationships. For more information and use cases, see the WAI-ARIA Primer
[ARIA-PRIMER] for the use of roles in making interactive content accessible.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

4 of 167 05/07/2020, 11:38

#

The role taxonomy is designed in part to support the common roles found in platform
accessibility APIs. Reference to roles found in this taxonomy by dynamic web content
may be used to support interoperability with assistive technologies.

The schema to support this standard has been designed to be extensible so that custom
roles can be created by extending base roles. This allows user agents to support at least
the base role, and user agents that support the custom role can provide enhanced
access. Note that much of this could be formalized in XML Schema [XSD]. However,
being able to define similarities between roles, such as baseConcepts and more
descriptive definitions, would not be available in XSD.

WAI-ARIA Primer [ARIA-PRIMER], a W3C Working Group Note, introduces
developers to the accessibility problems that WAI-ARIA is intended to solve, the
fundamental concepts, and the technical approach of WAI-ARIA.
WAI-ARIA Authoring Practices [ARIA-PRACTICES], a planned W3C Working
Group Note, describes how web content developers can develop accessible rich
internet applications using WAI-ARIA. It provides detailed advice and examples
directed primarily to web application developers, yet also useful to user agent and
developers of assistive technologies.
WAI-ARIA User Agent Implementation Guide [ARIA-IMPLEMENTATION], a planned
W3C Working Group Note, describes how browsers and other user agents should
support WAI-ARIA; specifically, how to expose WAI-ARIA features to platform
accessibility APIs.
WAI-ARIA Roadmap [ARIA-ROADMAP], planned a W3C Working Group Note,
defines the path to make rich web content accessible, including steps already
taken, remaining future steps, and a time line.

1.1. Rich Internet Application Accessibility

The domain of web accessibility defines how to make web content usable by persons
with disabilities. Persons with certain types of disabilities use assistive technologies (AT)
to interact with content. Assistive technologies can transform the presentation of content
into a format more suitable to the user, and can allow the user to interact in different
ways. For example, the user may need to, or choose to, interact with a slider widget via
arrow keys, instead of dragging and dropping with a mouse. In order to accomplish this
effectively, the software needs to understand the semantics of the content. Semantics is
the science of meaning; in this case, used to assign roles, states, and properties that
apply to user interface and content elements as a human would understand. For
instance, if a paragraph is semantically identified as such, assistive technologies can
interact with it as a unit separable from the rest of the content, knowing the exact
boundaries of that paragraph. An adjustable range slider or collapsible list (a.k.a. a tree
widget) are more complex examples, in which various parts of the widget have semantics
that need to be properly identified for assistive technologies to support effective
interaction.

New technologies often overlook semantics required for accessibility, and new authoring
practices often misuse the intended semantics of those technologies. Elements that have
one defined meaning in the language are used with a different meaning intended to be
understood by the user.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

5 of 167 05/07/2020, 11:38

For example, web application developers create collapsible tree widgets in HTML using
CSS and JavaScript even though HTML has no semantic tree element. To a non-
disabled user, it may look and act like a collapsible tree widget, but without appropriate
semantics, the tree widget may not be perceivable to, or operable by, a person with a
disability because assistive technologies may not recognize the role.

The incorporation of WAI-ARIA is a way for an author to provide proper semantics for
custom widgets to make these widgets accessible, usable, and interoperable with
assistive technologies. This specification identifies the types of widgets and structures
that are commonly recognized by accessibility products, by providing an ontology of
corresponding roles that can be attached to content. This allows elements with a given
role to be understood as a particular widget or structural type regardless of any semantic
inherited from the implementing host language. Roles are a common property of platform
accessibility APIs which assistive technologies use to provide the user with effective
presentation and interaction.

This role taxonomy includes interaction widgets and elements denoting document
structure. The role taxonomy describes inheritance and details the attributes each role
supports. Information about mapping of roles to accessibility APIs is provided by the WAI-
ARIA User Agent Implementation Guide [ARIA-IMPLEMENTATION].

Roles are element types and will not change with time or user actions. Role information is
used by assistive technologies, through interaction with the user agent, to provide normal
processing of the specified element type.

States and properties are used to declare important attributes of an element that affect
and describe interaction. They enable the user agent and operating system to properly
handle the element even when the attributes are dynamically changed by client-side
scripts. For example, alternative input and output technology, such as screen readers and
speech dictation software, need to be able to recognize and effectively manipulated and
communicate various interaction states (e.g., disabled, checked) to the user.

While it is possible for assistive technologies to access these properties directly through
the Document Object Model [DOM], the preferred mechanism is for the user agent to
map the states and properties to the accessibility API of the operating system. See the
WAI-ARIA User Agent Implementation Guide [ARIA-IMPLEMENTATION] for details.

Figure 1.0 illustrates the relationship between user agents (e.g., browsers), accessibility
APIs, and assistive technologies. It describes the "contract" provided by the user agent to
assistive technologies, which includes typical accessibility information found in the
accessibility API for many of our accessible platforms for GUIs (role, state, selection,
event notification, relationship information, and descriptions). The DOM, usually HTML,
acts as the data model and view in a typical model-view-controller relationship, and
JavaScript acts as the controller by manipulating the style and content of the displayed
data. The user agent conveys relevant information to the operating system's accessibility
API, which can be used by any assistive technologies, such as screen readers.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

6 of 167 05/07/2020, 11:38

Figure 1: The contract model with accessibility APIs

For more information see the WAI-ARIA Primer [ARIA-PRIMER] for the use of roles in
making interactive content accessible.

In addition to the prose documentation, the role taxonomy is provided in Web Ontology
Language (OWL) [OWL], which is expressed in Resource Description Framework (RDF)
[RDF]. Tools can use these to validate the implementation of roles in a given content
document. For example, instances of some roles are expected to be children of a specific
parent role. Also, some roles may support a specific state or property that another role
does not support.

Note: The use of RDF/OWL as a formal representation of roles may be used to
support future extensibility. Standard RDF/OWL mechanisms can be used to
define new roles that inherit from the roles defined in this specification. The
mechanism to define and use role extensions in an interoperable manner,
however, is not defined by this specification. A future version of WAI-ARIA is
expected to define how to extend roles.

Users of alternate input devices need keyboard accessible content. The new semantics,
when combined with the recommended keyboard interactions provided in WAI-ARIA
Authoring Practices [ARIA-PRACTICES], will allow alternate input solutions to facilitate
command and control via an alternate input solution.

WAI-ARIA introduces navigational landmarks through its taxonomy and the XHTML role
landmarks, which can help persons with dexterity and vision impairments by providing for
improved keyboard navigation. WAI-ARIA may also be used to assist persons with

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

7 of 167 05/07/2020, 11:38

#

#

cognitive learning disabilities. The additional semantics allow authors to restructure and
substitute alternative content as needed.

Assistive technologies need the ability to support alternative inputs by getting and setting
the current value of widget states and properties. Assistive technologies also need to
determine what objects are selected and manage widgets that allow multiple selections,
such as list boxes and grids.

Speech-based command and control systems can benefit from WAI-ARIA semantics like
the role attribute to assist in conveying audio information to the user. For example, by
determining that an element has a role of menu and that it contains three elements with
the role menuitem each containing text content representing a different flavor, a speech
system might state to the user that, "Select one of three choices: chocolate, strawberry,
or vanilla."

WAI-ARIA is intended to be used as a supplement for native language semantics, not a
replacement. When the host language provides a feature that provides equivalent
accessibility to the WAI-ARIA feature, use the host language feature. WAI-ARIA should
only be used in cases where the host language lacks the needed role, state, and property
indicators. Use a host language feature that is as similar as possible to the WAI-ARIA
feature, then refine the meaning by adding WAI-ARIA. For instance, a multi-selectable
grid could be implemented as a table, and then WAI-ARIA used to clarify that it is an
interactive grid, not just a static data table. This allows for the best possible fallback for
user agents that do not support WAI-ARIA and preserves the integrity of the host
language semantics.

1.2. Target Audience

This specification defines the basic model for WAI-ARIA, including roles, states,
properties, and values. It impacts several audiences:

User agents that process content containing WAI-ARIA features;
Assistive technologies that present content in special ways to user with disabilities;
Authors who create content;
Authoring tools that help authors create conforming content; and
Conformance checkers that verify appropriate use of WAI-ARIA.

Each conformance requirement indicates the audience to which it applies.

Although this specification is applicable to the above audiences, it is not specifically
targeted to, nor is it intended to be the sole source of information for, any of these
audiences. The following documents provide important supporting information:

WAI-ARIA Authoring Practices addresses authoring recommendations, and is also
of interest to developers of authoring tools and conformance checkers.
WAI-ARIA User Agent Implementation Guide addresses developers of user agents
and assistive technologies.

1.3. User Agent Support

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

8 of 167 05/07/2020, 11:38

#

WAI-ARIA relies on user agent support for its features in two ways:

Mainstream user agents use WAI-ARIA to alter how host language features are
exposed to accessibility APIs in order to improve accessibility. The mechanism for
this is defined in the WAI-ARIA User Agent Implementation Guide [ARIA-
IMPLEMENTATION].
Assistive technologies use the enhanced information available in an accessibility
API, or uses the WAI-ARIA markup directly via the DOM, to convey semantic and
interaction information to the user.

Aside from using WAI-ARIA markup to improve what is exposed to accessibility APIs,
user agents behave as they would natively. Assistive technologies react to the extra
information in the accessibility API as they already do for the same information on non-
web content. User agents that are not assistive technologies, however, need do nothing
beyond providing appropriate updates to the accessibility API.

The WAI-ARIA specification neither requires or forbids user agents from enhancing native
presentation and interaction behaviors on the basis of WAI-ARIA markup. Mainstream
user agents might expose WAI-ARIA navigational landmarks (for example, as a dialog
box or through a keyboard command) with the intention to facilitate navigation for all
users. User agents are encouraged to maximize their usefulness to users, including
users without disabilities.

WAI-ARIA is intended to provide missing semantics so that the intent of the author may
be conveyed to assistive technologies. Generally, authors using WAI-ARIA will provide
the appropriate presentation and interaction features. Over time, host languages may add
WAI-ARIA equivalents, such as new form controls, that are implemented as standard
accessible user interface controls by the user agent. This allows authors to use them
instead of custom WAI-ARIA enabled user interface components. In this case the user
agent would support the native host language feature. Developers of host languages that
implement WAI-ARIA are advised to continue supporting WAI-ARIA semantics when they
do not adversely conflict with implicit host language semantics, as WAI-ARIA semantics
more clearly reflect the intent of the author if the host language features are inadequate
to meet the author's needs.

1.4. Co-Evolution of WAI-ARIA and Host Languages

WAI-ARIA is intended to augment semantics in supporting languages like HTML and
SVG, or to be used as an accessibility enhancement technology in other markup-based
languages that do not explicitly include support for ARIA. It clarifies semantics to assistive
technologies when authors create new types of objects, via style and script, that are not
yet directly supported by the language of the page, because the invention of new types of
objects is faster than standardized support for them appears in web languages.

It is not appropriate to create objects with style and script when the host language
provides a semantic element for that type of objects. While WAI-ARIA can improve the
accessibility of these objects, accessibility is best provided by allowing the user agent to
handle the object natively. For example, it's better to use an h1 element in HTML than to
use the heading role on a div element.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

9 of 167 05/07/2020, 11:38

#

#

It is expected that, over time, host languages will evolve to provide semantics for objects
that currently can only be declared with WAI-ARIA. This is natural and desirable, as one
goal of WAI-ARIA is to help stimulate the emergence of more semantic and accessible
markup. When native semantics for a given feature become available, it is appropriate for
authors to use the native feature and stop using WAI-ARIA for that feature. Legacy
content may continue to use WAI-ARIA, however, so the need for user agents to support
WAI-ARIA remains.

While specific features of WAI-ARIA may lose importance over time, the general
possibility of WAI-ARIA to add semantics to web pages is expected to be a persistent
need. Host languages may not implement all the semantics WAI-ARIA provides, and
various host languages may implement different subsets of the features. New types of
objects are continually being developed, and one goal of WAI-ARIA is to provide a way to
make such objects accessible, because web authoring practices often advance faster
than host language standards. In this way, WAI-ARIA and host languages both evolve
together but at different rates.

Some host languages exist to create semantics for features other than the user interface.
For example, SVG expresses the semantics behind production of graphical objects, not
of user interface components that those objects may represent; XForms provides
semantics for form controls and does not provide wider user interface features. Host
languages such as these might, by design, not provide native semantics that map to WAI-
ARIA features. In these cases, WAI-ARIA could be adopted as a long-term approach to
add semantic information to user interface components.

1.5. Authoring Practices

1.5.1. Authoring Tools

Many of the requirements in the definitions of WAI-ARIA roles, states, and properties can
be checked automatically during the development process, similar to other quality control
processes used for validating code. To assist authors who are creating custom widgets,
authoring tools may compare widget roles, states, and properties to those supported in
WAI-ARIA as well as those supported in related and cross-referenced roles, states, and
properties. Authoring tools may notify authors of errors in widget design patterns, and
may also prompt developers for information that cannot be determined from context
alone. For example, a scripting library can determine the labels for the tree items in a tree
view, but would need to prompt the author to label the entire tree. To help authors
visualize a logical accessibility structure, an authoring environment might provide an
outline view of a web resource based on the WAI-ARIA markup.

In HTML, tabindex is an important way browsers support keyboard focus navigation for
implementations of WAI-ARIA; authoring and debugging tools may check to make sure
tabindex values are properly set. For example, error conditions may include cases
where more than one treeitem in a tree has a tabindex value greater than or equal to 0,
where tabindex is not set on any treeitem, or where aria-activedescendant is not
defined when the element with the role tree has a tabindex value of greater than or
equal to 0.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

10 of 167 05/07/2020, 11:38

#

#

#

1.5.2. Testing Practices and Tools

The accessibility of interactive content cannot be confirmed by static checks alone.
Developers of interactive content should test for device-independent access to widgets
and applications, and should verify accessibility API access to all content and changes
during user interaction.

1.6. Assistive Technologies

Programmatic access to accessibility semantics is essential for assistive technologies.
Most assistive technologies interact with user agents, like other applications, through a
recognized accessibility API. Perceivable objects in the user interface are exposed to
assistive technologies as accessible objects, defined by the accessibility API interfaces.
To do this properly, accessibility information – role, states, properties as well as
contextual information – needs to be accurately conveyed to the assistive technologies
through the accessibility API. When a state change occurs, the user agent provides the
appropriate event notification to the accessibility API. Contextual information, in many
host languages like HTML, can be determined from the DOM itself as it provides a
contextual tree hierarchy.

While some assistive technologies interact with these accessibility APIs, others may
access the content directly from the DOM. These technologies can restructure, simplify,
style, or reflow the content to help a different set of users. Common use cases for these
types of adaptations may be the aging population, persons with cognitive impairments, or
persons in environments that interfere with use of their tools. For example, the availability
of regional navigational landmarks may allow for a mobile device adaptation that shows
only portions of the content at any one time based on its semantics. This could reduce
the amount of information the user needed to process at any one time. In other situations
it may be appropriate to replace a custom user interface control with something that is
easier to navigate with a keyboard, or touch screen device.

These requirements for semantic programmatic access parallel User Agent Accessibility
Guidelines: Programmatic operation of user agent user interface and Programmatic
notification of changes ([UAAG]) except that it applies to content, not just to the user
agent.

2. Using WAI-ARIA

This section is informative.

Complex web applications become inaccessible when assistive technologies cannot
determine the semantics behind portions of a document or when the user is unable to
effectively navigate to all parts of it in a usable way (see the WAI-ARIA Primer [ARIA-
PRIMER]). WAI-ARIA divides the semantics into roles (the type defining a user interface
element) and states and properties supported by the roles.

Authors need to associate elements in the document to a WAI-ARIA role and the
appropriate states and properties (aria-* attributes) during its life-cycle, unless the
elements already have the appropriate implicit WAI-ARIA semantics for states and
properties. In these instances the equivalent host language states and properties take

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

11 of 167 05/07/2020, 11:38

#

#

precedence to avoid a conflict while the role attribute will take precedence over the
implicit role of the host language element.

2.1. WAI-ARIA Roles

A WAI-ARIA role is set on an element using a role attribute, similar to the role attribute
defined in the Role Attribute [ROLE].

<li role="menuitem">Open file…

The roles defined in this specification include a collection of document landmarks and the
WAI-ARIA role taxonomy.

The roles in this taxonomy and their expected behaviors are modeled using RDF/OWL
[OWL]. Features of the role taxonomy provide the following information for each role:

an informative description of the role;
hierarchical information about related roles (e.g., a directory is a type of list);
context of the role (e.g., a listitem is contained inside a list);
references to related concepts in other specifications;
use of OWL to provide a type hierarchy allowing for semantic inheritance (similar to
a class hierarchy); and
supported states and properties for each role (e.g., a checkbox supports being
checked via aria-checked (state)).

Attaching a role gives assistive technologies information about how to handle each
element.

2.2. WAI-ARIA States and Properties

WAI-ARIA provides a collection of accessibility states and properties which are used to
support platform accessibility APIs on various operating system platforms. Assistive
technologies may access this information through an exposed user agent DOM or
through a mapping to the platform accessibility API. When combined with roles, the user
agent can supply the assistive technologies with user interface information to convey to
the user at any time. Changes in states or properties will result in a notification to
assistive technologies, which could alert the user that a change has occurred.

In the following example, a list item (html:li) has been used to create a checkable
menu item, and JavaScript events will capture mouse and keyboard events to toggle
value of aria-checked. A role is used to make the behavior of this simple widget known
to the user agent. Attributes that change with user actions (such as aria-checked) are
defined in the states and properties section.

<li role="menuitemcheckbox" aria-checked="true">Sort by Last Modified

Some accessibility states, called managed states, are controlled by the user agent.
Examples of managed state include keyboard focus and selection. Managed states often
have corresponding CSS pseudo-classes (such as :focus and ::selection) to define

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

12 of 167 05/07/2020, 11:38

#

style changes. In contrast, the states in this specification are typically controlled by the
author and are called unmanaged states. Some states are managed by the user agent,
such as aria-posinset and aria-setsize, but the author can override them if the DOM
is incomplete and would cause the user agent calculation to be incorrect. User agents
map both managed and unmanaged states to the platform accessibility APIs.

Most modern user agents support CSS attribute selectors ([CSS]), and can allow the
author to create UI changes based on WAI-ARIA attribute information, reducing the
amount of scripts necessary to achieve equivalent functionality. In the following example,
a CSS selector is used to determine whether or not the text is bold and an image of a
check mark is shown, based on the value of the aria-checked attribute.

[aria-checked="true"] { font-weight: bold; }
[aria-checked="true"]:before { background-image: url(checked.gif); }

If CSS is not used to toggle the visual representation of the check mark, the author could
include additional markup and scripts to manage an image that represents whether or not
the menuitemcheckbox is checked.

<li role="menuitemcheckbox" aria-checked="true">

<!-- note: additional scripts required to toggle image source -->

 Sort by Last Modified

2.3. Managing Focus

An application should always have an element with focus when in use, as applications
require users to have a place to provide user input. Authors are advised to not destroy
the element with focus or scroll it off-screen unless through user intervention. All
interactive objects should be focusable. All parts of composite interactive controls need to
be focusable or have a documented alternative method to achieve their function, such as
a keyboard shortcut. Authors are advised to maintain an obvious, discoverable way,
either through tabbing or other standard navigation techniques, for keyboard users to
move the focus to any interactive element. See User Agent Accessibility Guidelines,
Guideline 9 ([UAAG], Guideline 9).

When using standard HTML and basic WAI-ARIA widgets, application developers can
simply manipulate the tab order or use a script to create keyboard shortcuts to elements
in the document. Use of more complex widgets requires the author to manage focus
within them. SVG Tiny provides a similar navigation "ring" mechanism that by default
follows document order and which should be implemented using system dependent input
facilities (the TAB key on most desktop computers). SVG authors may place elements in
the navigation order by manipulating the focusable attribute and they may dynamically
specify the navigation order by modifying elements navigation attributes.

WAI-ARIA includes a number of "managing container" widgets, also known as
"composite" widgets. When appropriate, the container is responsible for tracking the last
descendant which was active (the default is usually the first item in the container). It is
essential that a container maintain a usable and consistent strategy when focus leaves a

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

13 of 167 05/07/2020, 11:38

#

container and is then later refocused. While there may be exceptions, it is recommended
that when a previously focused container is refocused, the active descendant be the
same element as the active descendant when the container was last focused. Exceptions
include cases where the contents of a container widget have changed, and widgets like a
menubar where the user expects to always return to the first item when focus leaves the
menu bar. For example, if the second item of a tree group was the active descendant
when the user tabbed out of the tree group, then the second item of the tree group
remains the active descendant when the tree group gets focus again. The user may also
activate the container by clicking on one of the descendants within it.

When the container or its active descendant has focus, the user may navigate through
the container by pressing additional keys, such as the arrow keys, to change the currently
active descendant. Any additional press of the main navigation key (generally the TAB
key) will move out of the container to the next widget.

For example, a grid may be used as a spreadsheet with thousands of gridcell
elements, all of which may not be present in the document at one time. This requires
focus to be managed by the container using the aria-activedescendant attribute on
the managing container element, or by the container managing the tabindex of its child
elements and setting focus on the appropriate child. For more information, see Providing
Keyboard Focus in WAI-ARIA Authoring Practices ([ARIA-PRACTICES]).

Content authors are required to manage focus on the following container roles:

combobox
grid
listbox
menu
menubar
radiogroup
tree
treegrid
tablist

More information on managing focus can be found in the Using Tabindex to Manage
Focus Among Widgets section of the WAI-ARIA Authoring Practices [ARIA-PRACTICES].

3. Normative Requirements for WAI-ARIA

This section is normative.

This specification indicates whether a section is normative or informative. Classifying a
section as normative or informative applies to the entire section. A statement "This
section is normative" or "This section is informative" applies to all sub-sections of that
section.

Normative sections provide requirements that authors, user agents, and assistive
technologies MUST follow for an implementation to conform to this specification. The
keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

14 of 167 05/07/2020, 11:38

#

described in Keywords for use in RFCs to indicate requirement levels [RFC2119].
RFC-2119 keywords are formatted in uppercase and contained in a strong element with
class="rfc2119". When the keywords shown above are used, but do not share this
format, they do not convey formal information in the RFC 2119 sense, and are merely
explanatory, i.e., informative. As much as possible, such usages are avoided in this
specification.

Informative sections provide information useful to understanding the specification. Such
sections may contain examples of recommended practice, but it is not required to follow
such recommendations in order to conform to this specification.

4. Important Terms

This section is informative.

While some terms are defined in place, the following definitions are used throughout this
document.

Accessibility API

Operating systems and other platforms provide a set of interfaces that expose
information about objects and events to assistive technologies. Assistive
technologies use these interfaces to get information about and interact with those
widgets. Examples of accessibility APIs are the Microsoft Active Accessibility
[MSAA], the Microsoft User Interface Automation [UIA-ARIA], the Mac OS X
Accessibility Protocol [AXAPI], the Linux/Unix Accessibility Toolkit [ATK] and
Assistive Technology Service Provider Interface [AT-SPI], and IAccessible2 [IA2].

Accessible Name

The accessible name is the name of a user interface element. Each platform
accessibility API provides the accessible name property. The value of the
accessible name may be derived from a visible (e.g., the visible text on a button) or
invisible (e.g., the text alternative that describes an icon) property of the user
interface element.

A simple use for the accessible name property may be illustrated by an "OK"
button. The text "OK" is the accessible name. When the button receives focus,
assistive technologies may concatenate the platform's role description with the
accessible name. For example, a screen reader may speak "push-button OK" or
"OK button". The order of concatenation and specifics of the role description (e.g.
"button", "push-button", "clickable button") are determined by platform accessibility
APIs or assistive technologies.

Assistive Technologies

Hardware and/or software that:

relies on services provided by a user agent to retrieve and render Web
content
works with a user agent or web content itself through the use of APIs, and

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

15 of 167 05/07/2020, 11:38

provides services beyond those offered by the user agent to facilitate user
interaction with web content by people with disabilities

This definition may differ from that used in other documents.

Examples of assistive technologies that are important in the context of this
document include the following:

screen magnifiers, which are used to enlarge and improve the visual
readability of rendered text and images;
screen readers, which are most-often used to convey information through
synthesized speech or a refreshable Braille display;
text-to-speech software, which is used to convert text into synthetic speech;
speech recognition software, which is used to allow spoken control and
dictation;
alternate input technologies (including head pointers, on-screen keyboards,
single switches, and sip/puff devices), which are used to simulate the
keyboard;
alternate pointing devices, which are used to simulate mouse pointing and
clicking.

Attribute

In this specification, attribute is used as it is in markup languages. Attributes are
structural features added to elements to provide information about the states and
properties of the object represented by the element.

Class

A set of instance objects that share similar characteristics.

Element

In this specification, element is used as it is in markup languages. Elements are the
structural elements in markup language that contains the data profile for objects.

Event

A programmatic message used to communicate discrete changes in the state of an
object to other objects in a computational system. User input to a web page is
commonly mediated through abstract events that describe the interaction and can
provide notice of changes to the state of a document object. In some programming
languages, events are more commonly known as notifications.

Hidden

Indicates that the element is not visible or perceivable to any user. An element is
only considered hidden in the DOM if it or one of its ancestor elements has the
aria-hidden attribute set to true.

Note: Authors are reminded that visibility:hidden and display:none apply to

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

16 of 167 05/07/2020, 11:38

all CSS media types; therefore, use of either will hide the content from
assistive technologies that access the DOM through a rendering engine.
However, in order to support assistive technologies that access the DOM
directly, or other authoring techniques to visibly hide content (for example,
opacity or off-screen positioning), authors need to ensure the aria-
hidden attribute is always updated accordingly when an element is shown
or hidden, unless the intent of using off-screen positioning is to make the
content visible only to screen reader users and not others.

Informative

Content provided for information purposes and not required for conformance.
Content required for conformance is referred to as normative.

Keyboard Accessible

Accessible to the user using a keyboard or assistive technologies that mimic
keyboard input, such as a sip and puff tube. References in this document relate to
WCAG 2 Guideline 2.1; "Make all functionality available from a keyboard"
[WCAG20].

Landmark

A type of region on a page to which the user may want quick access. Content in
such a region is different from that of other regions on the page and relevant to a
specific user purpose, such as navigating, searching, perusing the primary content,
etc.

Live Region

Live regions are perceivable regions of a web page that are typically updated as a
result of an external event when user focus may be elsewhere. These regions are
not always updated as result of a user interaction. This practice has become
commonplace with the growing use of Ajax. Examples of live regions include a chat
log, stock ticker, or a sport scoring section that updates periodically to reflect game
statistics. Since these asynchronous areas are expected to update outside the
user's area of focus, assistive technologies such as screen readers have either
been unaware of their existence or unable to process them for the user. WAI-ARIA
has provided a collection of properties that allow the author to identify these live
regions and how to process them: aria-live, aria-relevant, aria-atomic, and aria-
busy. Pre-defined live region roles are listed in the Choosing Between Special Case
Live Regions ([ARIA-PRACTICES], Section 5.3).

Primary Content Element

An implementing host language's primary content element, such as the body
element in HTML.

Managed State

Accessibility API state that is controlled by the user agent, such as focus and

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

17 of 167 05/07/2020, 11:38

selection. These are contrasted with "unmanaged states" that are typically
controlled by the author. Nevertheless, authors can override some managed states,
such as aria-posinset and aria-setsize. Many managed states have corresponding
CSS pseudo-classes, such as :focus, and pseudo-elements, such as ::selection,
that are also updated by the user agent.

Normative

Required for conformance. By contrast, content identified as informative or "non-
normative" is not required for conformance.

Object

In the context of user interfaces, an item in the perceptual user experience,
represented in markup languages by one or more elements, and rendered by user
agents.

In the context of programming, the instantiation of one or more classes and
interfaces which define the general characteristics of similar objects. An object in an
accessibility API may represent one or more DOM objects. Accessibility APIs have
defined interfaces that are distinct from DOM interfaces.

Ontology

A description of the characteristics of classes and how they relate to each other.

Operable

Usable by users in ways they can control. References in this document relate to
WCAG 2 Principle 2; content must be operable [WCAG20]. See Keyboard
Accessible.

Owned Element

An 'owned element' is any DOM descendant of the element, any element specified
as a child via aria-owns, or any DOM descendant of the owned child.

Perceivable

Presentable to users in ways they can sense. References in this document relate to
WCAG 2 Principle 1; content must be perceivable [WCAG20].

Property

Attributes that are essential to the nature of a given object, or that represent a data
value associated with the object. A change of a property may significantly impact
the meaning or presentation of an object. Certain properties (for example, aria-
multiline) are less likely to change than states, but note that the frequency of
change difference is not a rule. A few properties, such as aria-activedescendant,
aria-valuenow, and aria-valuetext are expected to change often. See
clarification of states versus properties.

Relationship

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

18 of 167 05/07/2020, 11:38

A connection between two distinct things. Relationships may be of various types to
indicate which object labels another, controls another, etc.

Role

Main indicator of type. This semantic association allows tools to present and
support interaction with the object in a manner that is consistent with user
expectations about other objects of that type.

Semantics

The meaning of something as understood by a human, defined in a way that
computers can process a representation of an object, such as elements and
attributes, and reliably represent the object in a way that various humans will
achieve a mutually consistent understanding of the object.

State

A state is a dynamic property expressing characteristics of an object that may
change in response to user action or automated processes. States do not affect the
essential nature of the object, but represent data associated with the object or user
interaction possibilities. See clarification of states versus properties.

Taxonomy

A hierarchical definition of how the characteristics of various classes relate to each
other, in which classes inherit the properties of superclasses in the hierarchy. A
taxonomy can comprise part of the formal definition of an ontology.

Understandable

Presentable to users in ways they can construct an appropriate meaning.
References in this document relate to WCAG 2 Principle 3; Information and the
operation of user interface must be understandable [WCAG20].

User Agent

Any software that retrieves, renders and facilitates end user interaction with Web
content. This definition may differ from that used in other documents.

Value

A literal that solidifies the information expressed by a state, property, role, or text
content.

acrWidget

Discrete user interface object with which the user can interact. Widgets range from
simple objects that have one value or operation (e.g., check boxes and menu
items), to complex objects that contain many managed sub-objects (e.g., trees and
grids).

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

19 of 167 05/07/2020, 11:38

#

#

#

#

5. The Roles Model

This section is normative.

This section defines the WAI-ARIA role taxonomy and describes the characteristics and
properties of all roles. A formal RDF/OWL representation of all the information presented
here is available in Schemata Appendix.

The roles, their characteristics, the states and properties they support, and specification
of how they may be used in markup, shall be considered normative. The RDF/OWL
representation used to model the taxonomy shall be considered informative. The
RDF/OWL taxonomy may be used as a vehicle to extend WAI-ARIA in the future or by
tool manufacturers to validate states and properties applicable to roles per this
specification.

Roles are element types and authors MUST NOT change role values over time or with
user actions. Authors wishing to change a role MUST do so by deleting the associated
element and its children and replacing it with a new element with the appropriate role.
Typically, platform accessibility APIs do not provide a vehicle to notify assistive
technologies of a role value change, and consequently, assistive technologies may not
update their cache with the new role attribute value.

In order to reflect the content in the DOM, user agents SHOULD map the role attribute to
the appropriate value in the implemented accessibility API, and user agents SHOULD
update the mapping when the role attribute changes.

5.1. Relationships Between Concepts

The role taxonomy uses the following relationships to relate WAI-ARIA roles to each
other and to concepts from other specifications, such as HTML and XForms.

5.1.1. Superclass Role

Inheritance is expressed in RDF using the RDF Schema 1.1subClassOf ([RDFS])
property.

RDF Property
rdfs:subClassOf

The role that the current subclassed role extends in the taxonomy. This extension causes
all the properties and constraints of the superclass role to propagate to the subclass role.
Other than well known stable specifications, inheritance may be restricted to items
defined inside this specification, so that external items cannot be changed and affect
inherited classes.

5.1.2. Subclass Roles

RDF Property
<none>

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

20 of 167 05/07/2020, 11:38

#

#

#

#

Informative list of roles for which this role is the superclass. This is provided to facilitate
reading of the specification but adds no new information.

5.1.3. Related Concepts

RDF Property
role:relatedConcept

Informative data about a similar or related idea from other specifications. Concepts that
are related are not necessarily identical. Related concepts do not inherit properties from
each other. Hence if the definition of one concept changes, the properties, behavior, and
definition of its related concept is not affected.

For example, a progress bar is like a status indicator. Therefore, the progressbar widget
has a role:relatedConcept value which includes status. However, if the definition of
status is modified, the definition of a progressbar is not affected.

5.1.4. Base Concept

RDF Property
role:baseConcept

Informative data about objects that are considered prototypes for the role. Base concept
is similar to type, but without inheritance of limitations and properties. Base concepts are
designed as a substitute for inheritance for external concepts. A base concept is like a
related concept except that the base concept is almost identical to the role definition.

For example, the checkbox defined in this document has similar functionality and
anticipated behavior to a checkbox defined in HTML. Therefore, a checkbox has an
HTML checkbox as a baseConcept. However, if the original HTML checkbox
baseConcept definition is modified, the definition of a checkbox in this document will not
be affected, because there is no actual inheritance of the respective type.

5.2. Characteristics of Roles

Roles are defined and described by their characteristics. Characteristics define the
structural function of a role, such as what a role is, concepts behind it, and what
instances the role can or must contain. In the case of widgets this also includes how it
interacts with the user agent based on mapping to HTML forms and XForms. States and
properties from WAI-ARIA that are supported by the role are also indicated.

The roles taxonomy defines the following characteristics. These characteristics are
implemented in RDF as properties of the OWL classes that describe the roles.

5.2.1. Abstract Roles

RDF Property
N/A

Values

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

21 of 167 05/07/2020, 11:38

#

#

#

Boolean

Abstract roles are the foundation upon which all other WAI-ARIA roles are built. Content
authors MUST NOT use abstract roles because they are not implemented in the API
binding. User agents MUST NOT map abstract roles to the standard role mechanism of
the accessibility API. Abstract roles are provided to help with the following:

1. Organize the role taxonomy and provide roles with a meaning in the context of
known concepts.

2. Streamline the addition of roles that include necessary features.

5.2.2. Required States and Properties

RDF Property
role:requiredState

Values
Any valid RDF object reference, such as a URI.

States and properties specifically required for the role and subclass roles. Content
authors MUST provide values for required states and properties.

When an object inherits from multiple ancestors and one ancestor indicates that property
is supported while another ancestor indicates that it is required, the property is required in
the inheriting object.

Note: An host language attribute with the appropriate implicit WAI-ARIA
semantic fulfills this requirement.

5.2.3. Supported States and Properties

RDF Property
role:supportedState

Values
Any valid RDF object reference, such as a URI.

States and properties specifically applicable to the role and child roles. User agents
MUST map all supported states and properties for the role to an accessibility API.
Content authors MAY provide values for supported states and properties, but need not in
some cases where default values are sufficient.

Note: A host language attribute with the appropriate implicit WAI-ARIA semantic
fulfills this requirement.

5.2.4. Inherited States and Properties

Informative list of properties that are inherited onto a role from superclass roles. States
and properties are inherited from superclass roles in the role taxonomy, not from

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

22 of 167 05/07/2020, 11:38

#

ancestor elements in the DOM tree. These properties are not explicitly defined on the
role, as the inheritance of properties is automatic. This information is provided to facilitate
reading of the specification. The set of supported states and properties combined with
inherited states and properties forms the full set of states and properties supported by the
role.

5.2.5. Required Owned Elements

RDF Property
role:mustContain

Values
Any valid RDF object reference, such as a URI.

Any element that will be owned by the element with this role. For example, an element
with the role list will own at least one element with the role group or listitem.

When multiple roles are specified as required owned elements for a role, at least one
instance of one required owned element is expected. This specification does not require
an instance of each of the listed owned roles. For example, a menu should have at least
one instance of a menuitem, menuitemcheckbox, or menuitemradio. The menu role does
not require one instance of each.

There may be times that required owned elements are missing, for example, while editing
or while loading a data set. When a widget is missing required owned elements due to
script execution or loading, authors MUST mark a containing element with aria-busy
equal to true. For example, until a page is fully initialized and complete, an author could
mark the document element as busy.

Note: A role that has 'required owned elements' does not imply the reverse
relationship. While processing of a role may be incomplete without elements of
given roles present as descendants, elements with roles in this list do not
always have to be found within elements of the given role. See required context
role for requirements about the context where elements of a given role will be
contained.

Note: An element with a subclass role of the 'required owned element' does not
fulfill this requirement. For example, the list role requires ownership of an
element using either the listitem or group role. Although the group role is the
superclass of row, adding a owned element with a role of row will not fulfill the
requirement that list must own a listitem or a group.

Note: An element with the appropriate implicit WAI-ARIA semantic fulfills this
requirement.

5.2.6. Required Context Role

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

23 of 167 05/07/2020, 11:38

#

#

#

RDF Property
role:scope

Values
Any valid RDF object reference, such as a URI.

The required context role defines the owning container where this role is allowed. If a role
has a required context, authors MUST ensure that an element with the role is contained
inside (or owned by) an element with the required context role. For example, an element
with role listitem is only meaningful when contained inside (or owned by) an element
with role list.

Note: A role that has 'required context role' does not imply the reverse
relationship. While an element with the given role needs to appear within an
element of the listed role(s) in order to be meaningful, elements of the listed
roles do not always need descendant elements of the given role in order to be
meaningful. See required owned elements for requirements about elements that
require presence of a given descendant to be processed properly.

Note: An element with the appropriate implicit WAI-ARIA semantic fulfills this
requirement.

5.2.7. Accessible Name Calculation

RDF Property
role:nameFrom

Values
One of the following values:

1. author: name comes from values provided by the author in explicit markup
features such as the aria-label attribute, aria-labelledby attribute, or the
host language labeling mechanism, such as the alt or title attributes in
HTML, with HTML title attribute having the lowest precedence for specifying
a text alternative.

2. contents: name comes from the text value of the element node. Although this
may be allowed in addition to "author" in some roles, this is used in content
only if higher priority "author" features are not provided. Note: Priority is
defined by the text alternative computation algorithm.

5.2.7.1. Name Computation

An accessible name is computed using a number of methods, outlined below in the
section titled Text Alternative Computation.

5.2.7.2. Description Computation

An accessible description may be computed by concatenating the text alternatives for

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

24 of 167 05/07/2020, 11:38

#

nodes referenced by an aria-describedby attribute on the current node. The text
alternatives for the referenced nodes are computed using a number of methods, outlined
below in the section titled Text Alternative Computation.

5.2.7.3. Text Alternative Computation

The text equivalent computation outlined below is a description of how user agents
acquire a name or description that they then publish through the accessibility API.
Authors can use the current section as a guide for creating names and descriptions in
their markup. Accessibility checker tools can implement a name and/or description
generator based on this algorithm such that authors can use the generated text
equivalent to confirm that names and descriptions are as the author intended.

The text alternative is reused in both the name and description computation, as described
above. There are different rules provided for several different types of nodes and
combinations of markup. Text alternatives are built up, when appropriate, from all the
relevant content contained within an element. This is accomplished via rule 2C (which is
recursive), using the full set of rules to retrieve text from its own children.

The text alternative for a given node is computed as follows:

1. Skip hidden elements unless the author specifies to use them via an aria-
labelledby or aria-describedby being used in the current computation. By
default, users of assistive technologies won't receive the hidden information, but an
author will be able to explicitly override that and include the hidden text alternative
as part of the label string sent to the accessibility API.

2. For any non-skipped elements:
A. Authors MAY specify an element's text alternative in content attributes, used

in this order of preference:
The aria-labelledby attribute takes precedence as the element's text
alternative unless this computation is already occurring as the result of a
recursive aria-labelledby declaration (in other words, aria-
labelledby is not recursive when referenced from another element, so
it will not cause loops). However, the element's aria-labelledby
attribute can reference the element's own IDREF in order to
concatentate a string provided by the element's aria-label attribute or
another feature lower in this preference list. The text alternatives for all
the elements referenced will be computed using this same set of rules.
User agents will then trim whitespace and join the substrings using a
single space character. Substrings will be joined in the order specified
by the author (IDREF order in the aria-labelledby attribute).
If aria-labelledby is empty or undefined, the aria-label attribute,
which defines an explicit text string, is used. However, if this
computation is already occurring as the result of a recursive text
alternative computation and the current element is an embedded control
as defined in rule 2B, ignore the aria-label attribute and skip directly
to rule 2B.
If aria-labelledby and aria-label are both empty or undefined, and
if the element is not marked as presentational (role="presentation"),

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

25 of 167 05/07/2020, 11:38

check for the presence of an equivalent host language attribute or
element for associating a label, and use those mechanisms to determine
a text alternative. For example, in HTML, the img element's alt attribute
defines a label string and the label element references the form
element it labels. See How to Specify Alternate Text ([HTML], section
13.8) and HTML 5 Requirements for providing text to act as an
alternative for images ([HTML5], section 4.8.1.1).

Editorial Note: We've asked the HTML5 WG to remove or reduce this
section, so we may remove the reference to it from ARIA.

B. Authors sometimes embed a control within the label of another widget, where
the user can adjust the embedded control's value. For example, consider a
check box label that contains a text input field: "Flash the screen [input]
times". If the user has entered "5" for the embedded text input, the complete
label is "Flash the screen 5 times". For such cases, include the value of the
embedded control as part of the text alternative in the following manner:

If the embedded control is a text field, use its value.
If the embedded control is a menu, use the text alternative of the chosen
menu item.
If the embedded control is a select or combobox, use the chosen option.
If the embedded control is a range (e.g., a spinbutton or slider), use
the value of the aria-valuetext attribute if available, or otherwise the
value of the aria-valuenow attribute.

C. Otherwise, if the attributes checked in rules A and B didn't provide results, text
is collected from descendant content if the current element's role allows
"Name From: contents." The text alternatives for child nodes will be
concatenated, using this same set of rules. This same rule may apply to a
child, which means the computation becomes recursive and can result in text
being collected in all the nodes in this subtree, no matter how deep they are.
However, any given descendant subtree may instead collect their part of the
text alternative from the preferred markup described in A and B above. These
author-specified attributes are assumed to provide the correct text alternative
for the entire subtree. All in all, the node rules are applied consistently as text
alternatives are collected from descendants, and each containing element in
those descendants may or may not allow their contents to be used. Each
node in the subtree is consulted only once. If text has been collected from a
child node, and is referenced by another IDREF in some descendant node,
then that second, or subsequent, reference is not followed. This is done to
avoid infinite loops.

D. The last resort is to use text from a tooltip attribute (such as the title
attribute in HTML). This is used only if nothing else, including subtree content,
has provided results.

3. Text nodes are often visited because they are children of an element that uses rule
2C to collect text from its children. However, because it is possible to specify or
alter textual content using CSS rules, it is necessary for user agents to combine
such content, as appropriate, with the text referenced by the text nodes to produce
a complete text alternative. An example is the use of CSS :before and :after
pseudo-elements, where the user agent combines the textual content specified in

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

26 of 167 05/07/2020, 11:38

#

#

the style sheet with that given in the DOM.
When an image replaces text, then the UA should use the original text, since
that text is presumably the equivalent.
When text replaces an image, then the UA should provide that text.
When new text replaces old, then the UA should include the new text, since
that is what is rendered on screen.

Note: Though the user agent may make efforts to compute a text alternative
from CSS-generated text in the absence of text content determinable from the
DOM, authors should not provide text through a style sheet, as the user agent
may incorrectly determine the text alternative.

The purpose of the flat text alternative string is to create a perceivable label in alternative
presentations. At each step of the algorithm, an implementation will trim the existing text
equivalent string and the string to be added, then join those two strings with a single
space. For example, a space character may be inserted between the text of two elements
used one after the other in a description.

5.2.7.4. Text Alternative Computation Example #1

aria-labelledby (Rule 2A): The label of the first menuitem in the menubar example
markup above is "File" based on rule 2A. The element has an aria-labelledby
attribute that picks out the span element with id="fileLabel" The span contains
the label text.
Namefrom: contents (Rule 2C): The label of the first item in the file menu is "New"
based on rule 2C. Since menuitem elements can acquire their label by the
"Namefrom: content" technique, the textual content of the menuitem element itself is
sufficient. Note that this element has no attributes such as aria-labelledby,
aria-label, or alt, from which to acquire a label.

<ul role="menubar">

<!-- Rule 2A: "File" label via aria-labelledby -->
<li role="menuitem" aria-haspopup="true" aria-labelledby="fileLabel"><span id="fileLabel"
<ul role="menu">

<!-- Rule 2C: "New" label via Namefrom:contents -->
<li role="menuitem">New
<li role="menuitem">Open…

 …

 …

5.2.7.5. Text Alternative Computation Example #2

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

27 of 167 05/07/2020, 11:38

#

#

#

native label element (Rule 2A): Use of a native element is illustrated by the first
checkbox where its label is defined by the HTML label element.
embedded input (Rule 2C): The third checkbox illustrates an embedded control
adding to a larger label (Rule 2B). Here the label is "Flash the screen 3 times",
where "3" is taken from the value of the embedded text input.
aria-label (Rule 2A): Rule 2A, using aria-label, is shown for this embedded text
input. The rationale is to give a label to this element, but in a way that does not
interfere with the enclosing label of the checkbox. The label is needed by a screen
reader when focus is on the text input.

<fieldset>
<legend>Meeting alarms</legend>

<!-- Rule 2A: "Beep" label given by native HTML label element -->
<input type="checkbox" id="beep"> <label for="beep">Beep</label>

<input type="checkbox" id="mtgTitle"> <label for="mtgTitle">Display the meeting title</label>

<!-- Rule 2B: Full label of checkbox includes value ("3") of embedded text input, "Flash the screen 3 ti
<input type="checkbox" id="flash">
<label for="flash">

 Flash the screen

<!-- Rule 2A: label of text input given by aria-label, "Number of times to flash screen" -->
<input type="text" value="3" size="2" id="numTimes" aria-label="Number of times to flash screen"

 times
</label>

</fieldset>

5.2.8. Presentational Children

RDF Property
role:childrenArePresentational

Values

Boolean (true | false)

The DOM descendants are presentational. User agents SHOULD NOT expose
descendants of this element through the platform accessibility API. If user agents do not
hide the descendant nodes, some information may be read twice.

5.2.9. Implicit Value for Role

Many states and properties have default values. Occasionally, the default value when
used on a given role should be different from the usual default. Roles that require a state
or property to have a non-standard default value indicate this in the "Implicit Value for
Role". This is expressed in the form "state or property name is new default value".
Roles that define this have the new default value for the state or property if the author
does not provide an explicit value.

5.3. Categorization of Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

28 of 167 05/07/2020, 11:38

#

To support the current user scenario, this specification categorizes roles that define user
interface widgets (sliders, tree controls, etc.) and those that define page structure
(sections, navigation, etc.). Note that some assistive technologies provide special modes
of interaction for regions marked with role application or document.

Class diagram of the relationships described in the role data model.

SVG class diagram | PNG class diagram | Class diagram description

Roles are categorized as follows:

1. Abstract Roles
2. Widget Roles
3. Document Structure Roles
4. Landmark Roles

5.3.1. Abstract Roles

The following roles are used to support the WAI-ARIA role taxonomy for the purpose of
defining general role concepts.

Abstract roles are used for the ontology. Authors MUST NOT use abstract roles in
content.

command (abstract role)
composite (abstract role)
input (abstract role)
landmark (abstract role)
range (abstract role)
roletype (abstract role)
section (abstract role)
sectionhead (abstract role)
select (abstract role)
structure (abstract role)
widget (abstract role)
window (abstract role)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

29 of 167 05/07/2020, 11:38

#

#

5.3.2. Widget Roles

The following roles act as standalone user interface widgets or as part of larger,
composite widgets.

alert
alertdialog
button
checkbox
dialog
gridcell
link
log
marquee
menuitem
menuitemcheckbox
menuitemradio
option
progressbar
radio
scrollbar
slider
spinbutton
status
tab
tabpanel
textbox
timer
tooltip
treeitem

The following roles act as composite user interface widgets. These roles typically act as
containers that manage other, contained widgets.

combobox
grid
listbox
menu
menubar
radiogroup
tablist
tree
treegrid

5.3.3. Document Structure

The following roles describe structures that organize content in a page. Document
structures are not usually interactive.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

30 of 167 05/07/2020, 11:38

#

#

article
columnheader
definition
directory
document
group
heading
img
list
listitem
math
note
presentation
region
row
rowgroup
rowheader
separator
toolbar

5.3.4. Landmark Roles

The following roles are regions of the page intended as navigational landmarks. All of
these roles inherit from the landmark base type and, with the exception of application,
all are imported from the Role Attribute [ROLE]. The roles are included here in order to
make them clearly part of the WAI-ARIA Role taxonomy.

application
banner
complementary
contentinfo
form
main
navigation
search

5.4. Definition of Roles

Below is an alphabetical list of WAI-ARIA roles to be used by rich internet application
authors.

Abstract roles are used for the ontology. Authors MUST NOT use abstract roles in
content.

alert
A message with important, and usually time-sensitive, information. See related
alertdialog and status.

alertdialog

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

31 of 167 05/07/2020, 11:38

A type of dialog that contains an alert message, where initial focus goes to an
element within the dialog. See related alert and dialog.

application
A region declared as a web application, as opposed to a web document.

article
A section of a page that consists of a composition that forms an independent part of
a document, page, or site.

banner
A region that contains mostly site-oriented content, rather than page-specific
content.

button
An input that allows for user-triggered actions when clicked or pressed. See related
link.

checkbox
A checkable input that has three possible values: true, false, or mixed.

columnheader
A cell containing header information for a column.

combobox
A presentation of a select; usually similar to a textbox where users can type ahead
to select an option, or type to enter arbitrary text as a new item in the list. See
related listbox.

command (abstract role)
A form of widget that performs an action but does not receive input data.

complementary
A supporting section of the document, designed to be complementary to the main
content at a similar level in the DOM hierarchy, but remains meaningful when
separated from the main content.

composite (abstract role)
A widget that may contain navigable descendants or owned children.

contentinfo
A large perceivable region that contains information about the parent document.

definition
A definition of a term or concept.

dialog
A dialog is an application window that is designed to interrupt the current
processing of an application in order to prompt the user to enter information or
require a response. See related alertdialog.

directory
A list of references to members of a group, such as a static table of contents.

document
A region containing related information that is declared as document content, as
opposed to a web application.

form
A landmark region that contains a collection of items and objects that, as a whole,
combine to create a form. See related search.

grid
A grid is an interactive control which contains cells of tabular data arranged in rows
and columns, like a table.

gridcell

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

32 of 167 05/07/2020, 11:38

A cell in a grid or treegrid.
group

A set of user interface objects which are not intended to be included in a page
summary or table of contents by assistive technologies.

heading
A heading for a section of the page.

img
A container for a collection of elements that form an image.

input (abstract role)
A generic type of widget that allows user input.

landmark (abstract role)
A region of the page intended as a navigational landmark.

link
An interactive reference to an internal or external resource that, when activated,
causes the user agent to navigate to that resource. See related button.

list
A group of non-interactive list items. See related listbox.

listbox
A widget that allows the user to select one or more items from a list of choices. See
related combobox and list.

listitem
A single item in a list or directory.

log
A type of live region where new information is added in meaningful order and old
information may disappear. See related marquee.

main
The main content of a document.

marquee
A type of live region where non-essential information changes frequently. See
related log.

math
Content that represents a mathematical expression.

menu
A type of widget that offers a list of choices to the user.

menubar
A presentation of menu that usually remains visible and is usually presented
horizontally.

menuitem
An option in a set of choices contained by a menu or menubar.

menuitemcheckbox
A menuitem with a checkable state whose possible values are true, false, or mixed.

menuitemradio
A checkable menuitem in a set of elements with role menuitemradio, only one of
which can be checked at a time.

navigation
A collection of navigational elements (usually links) for navigating the document or
related documents.

note
A section whose content is parenthetic or ancillary to the main content of the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

33 of 167 05/07/2020, 11:38

resource.
option

A selectable item in a select list.
presentation

An element whose implicit native role semantics will not be mapped to the
accessibility API.

progressbar
An element that displays the progress status for tasks that take a long time.

radio
A checkable input in a group of radio roles, only one of which can be checked at a
time.

radiogroup
A group of radio buttons.

range (abstract role)
An input representing a range of values that can be set by the user.

region
A large perceivable section of a web page or document, that is important enough to
be included in a page summary or table of contents, for example, an area of the
page containing live sporting event statistics.

roletype (abstract role)
The base role from which all other roles in this taxonomy inherit.

row
A row of cells in a grid.

rowgroup
A group containing one or more row elements in a grid.

rowheader
A cell containing header information for a row in a grid.

scrollbar
A graphical object that controls the scrolling of content within a viewing area,
regardless of whether the content is fully displayed within the viewing area.

search
A landmark region that contains a collection of items and objects that, as a whole,
combine to create a search facility. See related form.

section (abstract role)
A renderable structural containment unit in a document or application.

sectionhead (abstract role)
A structure that labels or summarizes the topic of its related section.

select (abstract role)
A form widget that allows the user to make selections from a set of choices.

separator
A divider that separates and distinguishes sections of content or groups of
menuitems.

slider
A user input where the user selects a value from within a given range.

spinbutton
A form of range that expects the user to select from among discrete choices.

status
A container whose content is advisory information for the user but is not important
enough to justify an alert, often but not necessarily presented as a status bar. See

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

34 of 167 05/07/2020, 11:38

#

related alert.
structure (abstract role)

A document structural element.
tab

A grouping label providing a mechanism for selecting the tab content that is to be
rendered to the user.

tablist
A list of tab elements, which are references to tabpanel elements.

tabpanel
A container for the resources associated with a tab, where each tab is contained in
a tablist.

textbox
Input that allows free-form text as its value.

timer
A type of live region containing a numerical counter which indicates an amount of
elapsed time from a start point, or the time remaining until an end point.

toolbar
A collection of commonly used function buttons or controls represented in compact
visual form.

tooltip
A contextual popup that displays a description for an element.

tree
A type of list that may contain sub-level nested groups that can be collapsed and
expanded.

treegrid
A grid whose rows can be expanded and collapsed in the same manner as for a
tree.

treeitem
An option item of a tree. This is an element within a tree that may be expanded or
collapsed if it contains a sub-level group of treeitem elements.

widget (abstract role)
An interactive component of a graphical user interface (GUI).

window (abstract role)
A browser or application window.

alert (role)

A message with important, and usually time-sensitive, information. See related
alertdialog and status.

Alerts are used to convey messages to alert the user. In the case of audio warnings
this is an accessible alternative for a hearing-impaired user. The alert role goes on
the node containing the alert message. Alerts are specialized forms of the status
role, which will be processed as an atomic live region.

Alerts are assertive live regions and will be processed as such by assistive
technologies. Neither authors nor user agents are required to set or manage focus to
them in order for them to be processed. Since alerts are not required to receive

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

35 of 167 05/07/2020, 11:38

#

focus, content authors SHOULD NOT require users to close an alert. If the operating
system allows, the user agent SHOULD fire a system alert event through the
accessibility API when the WAI-ARIA alert is created. If an alert requires focus to
close the alert, then content authors SHOULD use alertdialog instead.

Note: Elements with the role alert have an implicit aria-live value of
assertive, and an implicit aria-atomic value of true.

Characteristics of alert

Characteristic Value

Superclass Role: region

Subclass Roles: alertdialog

Related Concepts: XForms alert

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Implicit Value for Role: Default for aria-live is assertive.
Default for aria-atomic is true.

alertdialog (role)

A type of dialog that contains an alert message, where initial focus goes to an
element within the dialog. See related alert and dialog.

Alert dialogs are used to convey messages to alert the user. The alertdialog role
goes on the node containing both the alert message and the rest of the dialog.
Content authors SHOULD make alert dialogs modal by ensuring that, while the
alertdialog is shown, keyboard and mouse interactions only operate within the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

36 of 167 05/07/2020, 11:38

#

dialog.

Unlike alert, alertdialog can receive a response from the user. For example, to
confirm that the user understands the alert being generated. When the alert dialog is
displayed, authors SHOULD set focus to an active element within the alert dialog,
such as a form edit field or an OK button. The user agent SHOULD fire a system
alert event through the accessibility API when the alert is created, provided one is
specified by the intended accessibility API.

Authors SHOULD use aria-describedby on an alertdialog to point to the alert
message element in the dialog. If they do not, assistive technologies will resort to
their internal recovery mechanism to determine the contents of an alert message.

Characteristics of alertdialog

Characteristic Value

Superclass Role: alert
dialog

Related Concepts: XForms alert

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

application (role)

A region declared as a web application, as opposed to a web document.

When the user navigates an element assigned the role of application, assistive
technologies that typically intercept standard keyboard events SHOULD switch to an
application browsing mode, and pass keyboard events through to the web

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

37 of 167 05/07/2020, 11:38

application. The intent is to hint to certain assistive technologies to switch from
normal browsing mode into a mode more appropriate for interacting with a web
application; some user agents have a browse navigation mode where keys, such as
up and down arrows, are used to browse the document, and this native behavior
prevents the use of these keys by a web application.

Note: Where appropriate, assistive technologies that typically intercept
other standard device input events, such as touch screen input, could
switch to an application browsing mode that passes some or all of those
events through to the web application.

Authors SHOULD set the role of application on the element that encompasses the
entire application. If the application role applies to the entire web page, authors
SHOULD set the role of application on the root node for content, such as the body
element in HTML or svg element in SVG.

For example, an email application has a document and an application in it. The
author would want to use typical application navigation mode to cycle through the list
of emails, and much of this navigation would be defined by the application author.
However, when reading an email message the content will appear in a region with a
document role in order to use browsing navigation.

For all instances of non-decorative static text or image content inside an application,
authors SHOULD either associate the text with a form widget or group (via aria-
label, aria-labelledby, or aria-describedby) or separate the text into an
element with role of document or article.

Authors SHOULD provide a title or label for applications. Authors SHOULD use label
text that is suitable for use as a navigation preview or table-of-contents entry for the
page section. Content authors SHOULD provide the label through one of the
following methods:

If the application includes the entire contents of the web page, use the host
language feature for title or label, such as the title element in both HTML and
SVG. This has the effect of labeling the entire application.
Otherwise, provide a visible label referenced by the application using aria-
labelledby.

User agents SHOULD treat elements with the role of application as navigational
landmarks.

Authors MAY use the application role on the primary content element of the host
language (such as the body element in HTML) to define an entire page as an
application. However, if the primary content element is defined as having a role of
application, user agents MUST NOT use the element as a navigational landmark.
If assistive technologies use an interaction mode that intercepts standard keyboard
events, when encountering the application role, those assistive technologies
SHOULD switch to an interaction mode that passes keyboard events through to the
web application.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

38 of 167 05/07/2020, 11:38

#

Characteristics of application

Characteristic Value

Superclass Role: landmark

Related Concepts: Device Independence Delivery Unit

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

article (role)

A section of a page that consists of a composition that forms an independent part of
a document, page, or site.

An article is not a navigational landmark, but may be nested to form a discussion
where assistive technologies could pay attention to article nesting to assist the user
in following the discussion. An article could be a forum post, a magazine or
newspaper article, a web log entry, a user-submitted comment, or any other
independent item of content. It is independent in that its contents could stand alone,
for example in syndication. However, the element is still associated with its
ancestors; for instance, contact information that applies to a parent body element still
covers the article as well. When nesting articles, the child articles represent content
that is related to the content of the parent article. For instance, a web log entry on a
site that accepts user-submitted comments could represent the comments as articles
nested within the article for the web log entry. Author, heading, date, or other
information associated with an article does not apply to nested articles.

When the user navigates an element assigned the role of article, assistive
technologies that typically intercept standard keyboard events SHOULD switch to
document browsing mode, as opposed to passing keyboard events through to the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

39 of 167 05/07/2020, 11:38

#

web application. Assistive technologies MAY provide a feature allowing the user to
navigate the hierarchy of any nested article elements.

Characteristics of article

Characteristic Value

Superclass Role: document
region

Related Concepts: HTML 5 article

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

banner (role)

A region that contains mostly site-oriented content, rather than page-specific content.

Site-oriented content typically includes things such as the logo or identity of the site
sponsor, and site-specific search tool. A banner usually appears at the top of the
page and typically spans the full width.

User agents SHOULD treat elements with the role of banner as navigational
landmarks.

Within any document or application, the author SHOULD mark no more than one
element with the banner role.

Note: Because document and application elements can be nested in the
DOM, they may have multiple banner elements as DOM descendants,

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

40 of 167 05/07/2020, 11:38

#

assuming each of those is associated with different document nodes, either
by a DOM nesting (e.g., document within document) or by use of the aria-
owns attribute.

Characteristics of banner

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

button (role)

An input that allows for user-triggered actions when clicked or pressed. See related
link.

Buttons are mostly used for discrete actions. Standardizing the appearance of
buttons enhances the user's recognition of the widgets as buttons and allows for a
more compact display in toolbars.

Buttons support the optional attribute aria-pressed. Buttons with a non-empty
aria-pressed attribute are toggle buttons. When aria-pressed is true the button
is in a "pressed" state, when aria-pressed is false it is not pressed. If the attribute
is not present, the button is a simple command button.

Characteristics of button

Characteristic Value

Superclass Role: command

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

41 of 167 05/07/2020, 11:38

#

Characteristic Value

Base Concept: HTML button

Related Concepts: link
XForms trigger

Supported States and Properties: aria-expanded (state)
aria-pressed (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

Children Presentational: True

checkbox (role)

A checkable input that has three possible values: true, false, or mixed.

The aria-checked attribute of a checkbox indicates whether the input is checked
(true), unchecked (false), or represents a group of elements that have a mixture of
checked and unchecked values (mixed). Many checkboxes do not use the mixed
value, and thus are effectively boolean checkboxes.

Characteristics of checkbox

Characteristic Value

Superclass Role: input

Subclass Roles: menuitemcheckbox
radio

Related Concepts: HTML input[type="checkbox"]
option

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

42 of 167 05/07/2020, 11:38

#

Characteristic Value

Required States and Properties: aria-checked (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

Implicit Value for Role: Default for aria-checked (state) is false

columnheader (role)

A cell containing header information for a column.

columnheader can be used as a column header in a table or grid. It could also be
used in a pie chart to show a similar relationship in the data.

The columnheader establishes a relationship between it and all cells in the
corresponding column. It is the structural equivalent to an HTML th element with a
column scope.

Authors MUST ensure elements with role columnheader are contained in, or owned
by, an element with the role row.

Note: Because cells are organized into rows, there is not a single container
element for the column. The column is the set of gridcell elements in a
particular position within their respective row containers.

Characteristics of columnheader

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

43 of 167 05/07/2020, 11:38

#

Characteristic Value

Superclass Role: gridcell
sectionhead
widget

Base Concept: HTML th[scope="col"]

Required Context Role: row

Supported States and Properties: aria-sort

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-readonly
aria-relevant
aria-required
aria-selected (state)

Name From: contents
author

Accessible Name Required: True

combobox (role)

A presentation of a select; usually similar to a textbox where users can type ahead
to select an option, or type to enter arbitrary text as a new item in the list. See related
listbox.

combobox is the combined presentation of a single line textfield with a listbox popup.
The combobox may be editable. Typically editable combo boxes are used for
autocomplete behavior, and authors SHOULD set aria-autocomplete attribute on
the textfield.

If an author sets a combobox's value of aria-autocomplete to 'none' (default),
authors MUST manage and set focus on the associated listbox, so assistive
technologies can follow the currently selected value.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

44 of 167 05/07/2020, 11:38

If an author sets a combobox's value of aria-autocomplete to 'inline' or 'both',
authors MUST update the value of the focused textfield, so assistive
technologies can announce the currently selected value.
If an author sets a combobox's value of aria-autocomplete to 'list', user agents
MUST expose changes to the aria-activedescendant attribute on the combobox
while the combobox remains focused. If a change to the aria-activedescendant
attribute occurs while the combobox is focused, assistive technologies
SHOULD alert the user of that change, for example, by speaking the text
alternative of the new active descendant element. Authors SHOULD associate
the combobox textfield with its listbox using aria-owns. For example:

<input type="text" aria-label="Tag" role="combobox" aria-expanded="true"
aria-autocomplete="list" aria-owns="owned_listbox" aria-activedescendant="selected_option"

<ul role="listbox" id="owned_listbox">
<li role="option">Zebra
<li role="option" id="selected_option">Zoom

Note: In XForms [XFORMS] the same select can have one of 3
appearances: combo-box, drop-down box, or group of radio-buttons. Many
browsers allow users to type ahead to existing choices in a drop-down
select widget. This specification does not constrain the presentation of the
combo box.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Note: Elements with the role combobox have an implicit aria-haspopup
value of true.

Characteristics of combobox

Characteristic Value

Superclass Role: select

Related Concepts: HTML select
XForms select

Required Owned Elements: listbox
textbox

Required States and Properties: aria-expanded (state)

Supported States and Properties: aria-autocomplete
aria-required

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

45 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-haspopup is true. Default
for aria-expanded (state) is false.

command (abstract role)

A form of widget that performs an action but does not receive input data.

Note: command is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of command

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: button
link
menuitem

Related Concepts: HTML 5 command

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

46 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

complementary (role)

A supporting section of the document, designed to be complementary to the main
content at a similar level in the DOM hierarchy, but remains meaningful when
separated from the main content.

There are various types of content that would appropriately have this role. For
example, in the case of a portal, this may include but not be limited to show times,
current weather, related articles, or stocks to watch. The complementary role
indicates that contained content is relevant to the main content. If the complementary
content is completely separable main content, it may be appropriate to use a more
general role.

User agents SHOULD treat elements with the role of complementary as navigational
landmarks.

Characteristics of complementary

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

47 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-owns
aria-relevant

Name From: author

composite (abstract role)

A widget that may contain navigable descendants or owned children.

Authors SHOULD ensure that a composite widget exist as a single navigation stop
within the larger navigation system of the web page. Once the composite widget has
focus, authors SHOULD provide a separate navigation mechanism for users to
navigate to elements that are descendants or owned children of the composite
element.

Note: composite is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of composite

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: grid
select
tablist

Supported States and Properties: aria-activedescendant

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

48 of 167 05/07/2020, 11:38

#

Characteristic Value

Name From: author

contentinfo (role)

A large perceivable region that contains information about the parent document.

Examples of information included in this region of the page are copyrights and links
to privacy statements.

User agents SHOULD treat elements with the role of contentinfo as navigational
landmarks.

Within any document or application, the author SHOULD mark no more than one
element with the contentinfo role.

Note: Because document and application elements can be nested in the
DOM, they may have multiple contentinfo elements as DOM
descendants, assuming each of those is associated with different document
nodes, either by a DOM nesting (e.g., document within document) or by use
of the aria-owns attribute.

Characteristics of contentinfo

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

49 of 167 05/07/2020, 11:38

#

#

definition (role)

A definition of a term or concept.

The WAI-ARIA specification does not provide a role to specify the definition term, but
host languages may provide such an element. If a host language has an appropriate
element for the term (e.g., dfn or dt in HTML), authors SHOULD include the term in
that element. Authors SHOULD identify the definition term by using an aria-
labelledby attribute on each element with a role of definition.

Characteristics of definition

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

dialog (role)

A dialog is an application window that is designed to interrupt the current processing
of an application in order to prompt the user to enter information or require a
response. See related alertdialog.

Authors SHOULD provide a dialog label. Labels may be provided with the aria-
label or aria-labelledby attribute if other mechanisms are not available. Authors
SHOULD ensure each active dialog has a focused descendant element that has
keyboard focus.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

50 of 167 05/07/2020, 11:38

#

Characteristics of dialog

Characteristic Value

Superclass Role: window

Subclass Roles: alertdialog

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

directory (role)

A list of references to members of a group, such as a static table of contents.

Authors SHOULD use this role for a static table of contents, whether linked or
unlinked. This includes tables of contents built with lists, including nested lists.
Dynamic tables of contents, however, might use a tree role instead.

Characteristics of directory

Characteristic Value

Superclass Role: list

Subclass Roles: tablist

Related Concepts: DAISY Guide

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

51 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

document (role)

A region containing related information that is declared as document content, as
opposed to a web application.

When the user navigates an element assigned the role of document, assistive
technologies that typically intercept standard keyboard events SHOULD switch to
document browsing mode, as opposed to passing keyboard events through to the
web application. The document role informs user agents of the need to augment
browser keyboard support in order to allow users to visit and read any content within
the document region. In contrast, additional commands are not necessary for screen
reader users to read text within a region with the application role, where if coded
in an accessible manner, all text will be semantically associated with focusable
elements. An important trait of documents is that they have text which is not
associated with widgets or groups thereof.

Authors SHOULD set the role of document on the element that encompasses the
entire document. If the document role applies to the entire web page, authors
SHOULD set the role of document on the root node for content, such as the body
element in HTML or svg element in SVG.

For example, an email application has a document and an application in it. The
author would want to use typical application navigation mode to cycle through the list
of emails, and much of this navigation would be defined by the application author.
However, when reading an email message, the content will appear in a region with a
document role in order to use browsing navigation.

Authors SHOULD provide a title or label for documents. Authors SHOULD use label
text that suitable for use as a navigation preview or table-of-contents entry for the
page section. Content authors SHOULD provide the label through one of the
following methods:

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

52 of 167 05/07/2020, 11:38

#

If the document includes the entire contents of the web page, use the host
language feature for title or label, such as the title element in both HTML and
SVG. This has the effect of labeling the entire document.
Otherwise, provide a visible label referenced by the document using aria-
labelledby.

Characteristics of document

Characteristic Value

Superclass Role: structure

Subclass Roles: article

Related Concepts: Device Independence Delivery Unit

Supported States and Properties: aria-expanded (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

form (role)

A landmark region that contains a collection of items and objects that, as a whole,
combine to create a form. See related search.

A form may be a mix of host language form controls, scripted controls, and
hyperlinks. Authors are reminded to use native host language semantics to create
form controls, whenever possible. For search facilities, authors SHOULD use the
search role and not the generic form role. Authors SHOULD provide a visible label
for the form referenced with aria-labelledby. If an author uses a script to submit a
form based on a user action that would otherwise not trigger an onsubmit event (for
example, a form submission triggered by the user changing a form element's value),
the author SHOULD provide the user with advance notification of the behavior.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

53 of 167 05/07/2020, 11:38

#

Authors are reminded to use native host language semantics to create form controls,
whenever possible.

User agents SHOULD treat elements with the role of form as navigational
landmarks.

Characteristics of form

Characteristic Value

Superclass Role: landmark

Base Concept: HTML form

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

grid (role)

A grid is an interactive control which contains cells of tabular data arranged in rows
and columns, like a table.

Grids do not necessarily imply presentation. The grid construct describes
relationships between data such that it may be used for different presentations. Grids
allow the user to move focus between cells using two dimensional navigation. For
example, grid might be used as the invisible data model (hidden with CSS but still
operable by assistive technologies) for a presentational chart.

Authors MUST ensure that elements with role gridcell are owned by elements with
role row, which in turn are owned by an element with role rowgroup, grid or
treegrid. If the author applies any non-global WAI-ARIA states or properties to a
native markup element that is acting as a row (such as the tr element in HTML), the
author MUST also apply the role of row, as stated in the section on Implementation
in Host Languages. Authors MAY make cells focusable. Authors MAY provide row

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

54 of 167 05/07/2020, 11:38

and column headers for grids, by using rowheader and columnheader roles.

Since WAI-ARIA can augment an element in the host language, grids can reuse
existing functionality of native table grids. When WAI-ARIA grid or gridcell roles
overlay host language table elements they reuse the host language semantics for
that table. For instance, WAI-ARIA does not specify general attributes for gridcell
elements that span multiple rows or columns. When the author needs a gridcell to
span multiple rows or columns, use the host language markup, such as the colspan
and rowspan attributes in HTML.

Authors MAY determine the contents of a gridcell through calculation of a
mathematical formula. Authors MAY make a cell's formula editable by the user. In a
spreadsheet application for example, the text alternative of a cell may be the
calculated value of a formula. However, when the cell is being edited, the text
alternative may be the formula itself.

gridcell elements with the aria-selected attribute set can be selected for user
interaction, and if the aria-multiselectable attribute of the grid is set to true,
multiple cells in the grid may be selected. Grids may be used for spreadsheets like
those in desktop spreadsheet applications.

A grid is considered editable unless otherwise specified. To make a grid read-only,
set the aria-readonly attribute of the grid to true. The value of the grid
element's aria-readonly attribute is implicitly propagated to all of its owned
gridcell elements, and will be exposed through the accessibility API. An author
may override an individual gridcell element's propagated aria-readonly value by
setting the aria-readonly attribute on the gridcell.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Characteristics of grid

Characteristic Value

Superclass Role: composite
region

Subclass Roles: treegrid

Base Concept: HTML table

Required Owned Elements: row
rowgroup → row

Supported States and Properties: aria-level
aria-multiselectable
aria-readonly

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

55 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

gridcell (role)

A cell in a grid or treegrid.

Cells may be active, editable, and selectable. Cells may have relationships such as
aria-controls to address the application of functional relationships.

If relevant headers cannot be determined from the DOM structure, authors SHOULD
explicitly indicate which header cells are relevant to the cell by referencing elements
with role rowheader or columnheader using the aria-describedby attribute.

In a treegrid, authors MAY define cells as expandable by using the aria-expanded
attribute. If the aria-expanded attribute is provided, it applies only to the individual
cell. It is not a proxy for the container row, which also can be expanded. The main
use case for providing this attribute on a cell is pivot table behavior.

Authors MUST ensure elements with role gridcell are contained in, or owned by,
an element with the role row.

Characteristics of gridcell

Characteristic Value

Superclass Role: section
widget

Subclass Roles: columnheader
rowheader

Base Concept: HTML td

Required Context Role: row

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

56 of 167 05/07/2020, 11:38

#

Characteristic Value

Supported States and Properties: aria-readonly
aria-required
aria-selected (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

group (role)

A set of user interface objects which are not intended to be included in a page
summary or table of contents by assistive technologies.

Contrast with region which is a grouping of user interface objects that will be
included in a page summary or table of contents.

Authors SHOULD use a group to form logical collection of items in a widget such as
children in a tree widget forming a collection of siblings in a hierarchy, or a collection
of items having the same container in a directory. However, when a group is used in
the context of list, authors MUST limit its children to listitem elements. Therefore,
proper handling of group by authors and assistive technologies is determined by the
context in which it is provided.

Authors MAY nest group elements. If a section is significant enough to warrant
inclusion in the web page's table of contents, the author SHOULD assign the section
a role of region or a standard landmark role.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

57 of 167 05/07/2020, 11:38

#

Characteristics of group

Characteristic Value

Superclass Role: section

Subclass Roles: row
rowgroup
select
toolbar

Related Concepts: HTML fieldset

Supported States and Properties: aria-activedescendant

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

heading (role)

A heading for a section of the page.

Often, heading elements will be referenced with the aria-labelledby attribute of
the section for which they serve as a heading. If headings are organized into a
logical outline, the aria-level attribute can be used to indicate the nesting level.

Characteristics of heading

Characteristic Value

Superclass Role: sectionhead

Related Concepts: HTML h1
HTML h2
HTML h3
HTML h4

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

58 of 167 05/07/2020, 11:38

#

Characteristic Value
HTML h5
HTML h6
DTD levelhd

Supported States and Properties: aria-level

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

img (role)

A container for a collection of elements that form an image.

An img can contain captions and descriptive text, as well as multiple image files that
when viewed together give the impression of a single image. An img represents a
single graphic within a document, whether or not it is formed by a collection of
drawing objects. In order for elements with a role of img be perceivable, authors
MUST provide alternative text or a label determined by the accessible name
calculation.

Characteristics of img

Characteristic Value

Superclass Role: section

Related Concepts: DTB imggroup
HTML img

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

59 of 167 05/07/2020, 11:38

#

Characteristic Value

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

Children Presentational: True

input (abstract role)

A generic type of widget that allows user input.

Characteristics of input

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: checkbox
option
select
scrollbar
slider
spinbutton
textbox

Related Concepts: XForms input

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

60 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

landmark (abstract role)

A region of the page intended as a navigational landmark.

Assistive technologies SHOULD allow the user to quickly navigate to landmark
regions. Mainstream user agents MAY allow the user to quickly navigate to landmark
regions.

Note: landmark is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of landmark

Characteristic Value

Is Abstract: True

Superclass Role: region

Subclass Roles: application
banner
complementary
contentinfo
form
main
navigation
search

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

61 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: False

link (role)

An interactive reference to an internal or external resource that, when activated,
causes the user agent to navigate to that resource. See related button.

If this is a native link in the host language (such as an HTML anchor with an href
value), activating the link causes the user agent to navigate to that resource. If this is
a simulated link, the web application author is responsible for managing navigation.

Note: If pressing the link triggers an action but does not change browser
focus or page location, authors are advised to consider using the button
role instead of the link role.

Characteristics of link

Characteristic Value

Superclass Role: command

Related Concepts: HTML link

Supported States and Properties: aria-expanded (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

62 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

list (role)

A group of non-interactive list items. See related listbox.

Lists contain children whose role is listitem, or elements whose role is group
which in turn contains children whose role is listitem.

Characteristics of list

Characteristic Value

Superclass Role: region

Subclass Roles: directory
listbox
menu

Base Concept: HTML ul
HTML ol

Required Owned Elements: group → listitem
listitem

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

63 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-owns
aria-relevant

Name From: author

listbox (role)

A widget that allows the user to select one or more items from a list of choices. See
related combobox and list.

Items within the list are static and, unlike standard HTML select elements, may
contain images. List boxes contain children whose role is option.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Characteristics of listbox

Characteristic Value

Superclass Role: list
select

Related Concepts: HTML select
XForms select

Required Owned Elements: option

Supported States and Properties: aria-multiselectable
aria-required

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

64 of 167 05/07/2020, 11:38

#

Characteristic Value

Accessible Name Required: True

listitem (role)

A single item in a list or directory.

Authors MUST ensure elements with role listitem are contained in, or owned by,
an element with the role list or group.

Characteristics of listitem

Characteristic Value

Superclass Role: section

Subclass Roles: treeitem

Base Concept: HTML li

Related Concepts: XForms item

Required Context Role: group
list

Supported States and Properties: aria-level
aria-posinset
aria-setsize

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

65 of 167 05/07/2020, 11:38

#

#

log (role)

A type of live region where new information is added in meaningful order and old
information may disappear. See related marquee.

Examples include chat logs, messaging history, game log, or an error log. In contrast
to other live regions, in this role there is a relationship between the arrival of new
items in the log and the reading order. The log contains a meaningful sequence and
new information is added only to the end of the log, not at arbitrary points.

Note: Elements with the role log have an implicit aria-live value of
polite.

Characteristics of log

Characteristic Value

Superclass Role: region

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-live is polite.

main (role)

The main content of a document.

This marks the content that is directly related to or expands upon the central topic of
the document. The main role is a non-obtrusive alternative for "skip to main content"

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

66 of 167 05/07/2020, 11:38

#

links, where the navigation option to go to the main content (or other landmarks) is
provided by the user agent through a dialog or by assistive technologies.

User agents SHOULD treat elements with the role of main as navigational
landmarks.

Within any document or application, the author SHOULD mark no more than one
element with the main role.

Note: Because document and application elements can be nested in the
DOM, they may have multiple main elements as DOM descendants,
assuming each of those is associated with different document nodes, either
by a DOM nesting (e.g., document within document) or by use of the aria-
owns attribute.

Characteristics of main

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

marquee (role)

A type of live region where non-essential information changes frequently. See related
log.

Common usages of marquee include stock tickers and ad banners. The primary
difference between a marquee and a log is that logs usually have a meaningful order

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

67 of 167 05/07/2020, 11:38

#

or sequence of important content changes.

Note: Elements with the role marquee maintain the default aria-live value
of off.

Characteristics of marquee

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

math (role)

Content that represents a mathematical expression.

Content with the role math is intended to be marked up in an accessible format such
as MathML [MATHML], or with another type of textual representation such as TeX or
LaTeX, which can be readily converted to an accessible format by assistive
technologies.

This role provides a hook whereby a plug-in mechanism can provide multi-modal
access to compliant MathML, as well as enabling support for MathML in
"mainstream" user agents.

While it is inappropriate to use an image of a mathematical expression in the math
role, there exists a significant amount of legacy content where images are used to
represent mathematical expressions. For purposes of repair, if an image has been

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

68 of 167 05/07/2020, 11:38

used to represent a mathematical expression, the text equivalent defined for that
image SHOULD be valid MathML or TeX. Such images SHOULD also be labeled by
text that describes the mathematical expression as it might be spoken, using the
aria-describedby attribute.

MathML example:

<div role="math" aria-label="6 divided by 4 equals 1.5">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mfrac>

<mn>6</mn>
<mn>4</mn>

</mfrac>
<mo>=</mo>
<mn>1.5</mn>

</math>
</div>

TeX example:

<div role="math" aria-label="6 divided by 4 equals 1.5">
 \frac{6}{4}=1.5
</div>

Characteristics of math

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Children Presentational: True

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

69 of 167 05/07/2020, 11:38

#menu (role)

A type of widget that offers a list of choices to the user.

A menu is often a list of common actions or functions that the user can invoke. The
menu role is appropriate when a list of menu items is presented in a manner similar to
a menu on a desktop application.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Characteristics of menu

Characteristic Value

Superclass Role: list
select

Subclass Roles: menubar

Related Concepts: DTB sidebar
XForms select
JAPI MENU

Required Owned Elements: group → menuitemradio
menuitem
menuitemcheckbox
menuitemradio

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

70 of 167 05/07/2020, 11:38

#

#

menubar (role)

A presentation of menu that usually remains visible and is usually presented
horizontally.

The menubar role is used to create a menu bar similar to those found in Windows,
Mac, and Gnome desktop applications. A menu bar is used to create a consistent set
of frequently used commands. Authors SHOULD ensure that menubar interaction is
similar to the typical menu bar interaction in a desktop graphical user interface.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Characteristics of menubar

Characteristic Value

Superclass Role: menu

Related Concepts: toolbar

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

menuitem (role)

An option in a set of choices contained by a menu or menubar.

Authors MAY disable a menu item with the aria-disabled attribute. If the menu
item has its aria-haspopup attribute set to true, it indicates that the menu item may
be used to launch a sub-level menu, and authors SHOULD display a new sub-level
menu when the menu item is activated.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

71 of 167 05/07/2020, 11:38

#

Authors MUST ensure that menu items are owned by an element with role menu or
menubar in order to identify that they are related widgets. Authors MAY separate
menu items into sets by use of a separator or an element with an equivalent role
from the native markup language.

Characteristics of menuitem

Characteristic Value

Superclass Role: command

Subclass Roles: menuitemcheckbox

Related Concepts: JAPI MENU_ITEM
listitem
option

Required Context Role: group
menu
menubar

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

menuitemcheckbox (role)

A menuitem with a checkable state whose possible values are true, false, or
mixed.

The aria-checked attribute of a menuitemcheckbox indicates whether the menu
item is checked (true), unchecked (false), or represents a sub-level menu of other
menu items that have a mixture of checked and unchecked values (mixed).

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

72 of 167 05/07/2020, 11:38

#

Authors MUST ensure that menu item checkboxes are owned by an element with
role menu or menubar in order to identify that they are related widgets. Authors MAY
separate menu items into sets by use of a separator or an element with an
equivalent role from the native markup language.

Characteristics of menuitemcheckbox

Characteristic Value

Superclass Role: checkbox
menuitem

Subclass Roles: menuitemradio

Related Concepts: menuitem

Required Context Role: menu
menubar

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-checked (state) (required)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

Implicit Value for Role: Default for aria-checked (state) is false

menuitemradio (role)

A checkable menuitem in a set of elements with role menuitemradio, only one of
which can be checked at a time.

Authors SHOULD enforce that only one menuitemradio in a group can be checked
at the same time. When one item in the group is checked, the previously checked
item becomes unchecked (its aria-checked attribute becomes false).

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

73 of 167 05/07/2020, 11:38

Authors MUST ensure that menu item radios are owned by an element with role
group, menu, or menubar in order to identify that they are related widgets. Authors
MAY separate menu items into sets by use of a separator or an element with an
equivalent role from the native markup language.

If a menu or menubar contains more than one group of menuitemradio elements, or if
the menu contains one group and other, unrelated menu items, authors SHOULD
nest each set of related menuitemradio elements in an element using the group
role, and authors SHOULD delimit the group from other menu items with an element
using the separator role.

Characteristics of menuitemradio

Characteristic Value

Superclass Role: menuitemcheckbox (see structure)
radio

Related Concepts: menuitem

Required Context Role: group
menu
menubar

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-checked (state) (required)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-posinset
aria-relevant
aria-selected (state)
aria-setsize

Name From: contents
author

Accessible Name Required: True

Implicit Value for Role: Default for aria-checked (state) is false

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

74 of 167 05/07/2020, 11:38

#

#

navigation (role)

A collection of navigational elements (usually links) for navigating the document or
related documents.

User agents SHOULD treat elements with the role of navigation as navigational
landmarks.

Characteristics of navigation

Characteristic Value

Superclass Role: landmark

Related Concepts: nav element

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

note (role)

A section whose content is parenthetic or ancillary to the main content of the
resource.

Characteristics of note

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

75 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

option (role)

A selectable item in a select list.

Authors MUST ensure elements with role option are contained in, or owned by, an
element with the role listbox. Options not associated with a listbox might not be
correctly mapped to an accessibility API.

Characteristics of option

Characteristic Value

Superclass Role: input

Subclass Roles: radio
treeitem

Base Concept: HTML option

Related Concepts: listitem
XForms item

Required Context Role: listbox

Supported States and Properties: aria-checked (state)
aria-posinset
aria-selected (state)
aria-setsize

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

76 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

presentation (role)

An element whose implicit native role semantics will not be mapped to the
accessibility API.

The intended use is when an element is used to change the look of the page but
does not have all the functional, interactive, or structural relevance implied by the
element type, or may be used to provide for an accessible fallback in older browsers
that do not support WAI-ARIA.

Example use cases:

An element whose content is completely presentational (like a spacer image,
decorative graphic, or clearing element);
An image that is in a container with the img role and where the full text
alternative is available and is marked up with aria-labelledby and (if
needed) aria-describedby;
An element used as an additional markup "hook" for CSS; or
A layout table and/or any of its associated rows, cells, etc.

For any element with a role of presentation and which is not focusable, the user
agent MUST NOT expose the implicit native semantics of the element (the role and
its states and properties) to accessibility APIs. However, the user agent MUST
expose content and descendant elements that do not have an explicit or inherited
role of presentation. Thus, the presentation role causes a given element to be
treated as having no role or to be removed from the accessibility tree, but does not
cause the content contained within the element to be removed from the accessibility
tree.

For example, according to an accessibility API, the following markup elements would
appear to have identical role semantics (no role) and identical content.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

77 of 167 05/07/2020, 11:38

<!-- 1. [role="presentation"] negates the implicit 'heading' role semantics but does not affect the co
<h1 role="presentation"> Sample Content </h1>

<!-- 2. There is no implicit role for span, so only the contents are exposed. -->
 Sample Content

<!-- 3. This role declaration is redundant. -->
 Sample Content

<!-- 4. In all cases, the element contents are exposed to accessibility APIs without any implied role
<!-- <> --> Sample Content <!-- </> -->

The presentation role is used on an element that has implicit native semantics,
meaning that there is a default accessibility API role for the element. Some elements
are only complete when additional descendant elements are provided. For example,
in HTML, table elements (matching the grid role) require tr descendants (the row
role), which in turn require th or td children (the gridcell, columnheader,
rowheader roles). Similarly, lists require list item children. The descendant elements
that complete the semantics of an element are described in WAI-ARIA as required
owned elements.

When an explicit or inherited role of presentation is applied to an element with the
implicit semantic of a WAI-ARIA role that has required owned elements, in addition to
the element with the explicit role of presentation, the user agent MUST apply an
inherited role of presentation to any owned elements that do not have an explicit role
defined. Also, when an explicit or inherited role of presentation is applied to a host
language element which has required children as defined by the host language
specification, in addition to the element with the explicit role of presentation, the user
agent MUST apply an inherited role of presentation to any required children that do
not have an explicit role defined. For any element with an explicit or inherited role of
presentation and which is not focusable, user agents MUST ignore role-specific WAI-
ARIA states and properties for that element. For example, in HTML, a ul or ol
element with a role of presentation will have the implicit native semantics of its li
elements removed because the list role to which the ul or ol corresponds has a
required owned element of listitem. Likewise, although an HTML table element
does not have an implicit native semantic role corresponding directly to a WAI-ARIA
role, the implicit native semantics of its thead/tbody/tfoot/tr/th/td descendants
will also be removed, because the HTML specification indicates that these are
required structural descendants of the table element. Explicit roles on a descendant
or owned element override the inherited role of presentation, and cause the owned
element to behave as any other element with an explicit role. If the action of
exposing the implicit role causes the accessibility tree to be malformed, the expected
results are undefined and the user agent MAY resort to an internal recovery
mechanism to repair the accessibility tree.

Note: Only the implicit native semantics of elements that correspond to
WAI-ARIA required owned elements are removed. All other content remains
intact, including nested tables or lists, unless those elements also have a

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

78 of 167 05/07/2020, 11:38

explicit role of presentation applied.

For example, according to an accessibility API, the following markup elements would
appear to have identical role semantics (no roles) and identical content.

<!-- 1. [role="presentation"] negates the implicit 'list' and 'listitem' role semantics but does not a
<ul role="presentation">

 Sample Content
 More Sample Content

<!-- 2. There is no implicit role for span, so only the contents are exposed. -->

 Sample Content
 More Sample Content

Note: There are other WAI-ARIA roles with required children for which this
situation is applicable (e.g., radiogroups and listboxes), but tables and lists
are the most common real-world cases in which the presentation
inheritance is likely to apply.

For any element with an explicit or inherited role of presentation, user agents
MUST apply an inherited role of presentation to all host-language-specific labeling
elements for the presentational element. For example, a table element with a role of
presentation will have the implicit native semantics of its caption element
removed, because the caption is merely a label for the presentational table.

For any element with an explicit or inherited role of presentation, user agents MUST
ignore any non-global, role-specific WAI-ARIA states and properties. However, the
user agent MUST always expose global WAI-ARIA states and properties to
accessibility APIs, even if an element has an explicit or inherited role of
presentation.

For example, aria-hidden is a global attribute and would always be applied; aria-
level is not a global attribute and would therefore only apply if the element was not
in a presentational state.

<!-- 1. [role="presentation"] negates the implicit 'heading' role semantics but does not affect the gl
<h1 role="presentation" aria-hidden="true"> Sample Content </h1>

<!-- 1. [role="presentation"] negates the both the implicit 'heading' and the non-global level. -->
<h1 role="presentation" aria-level="2"> Sample Content </h1>

If an element with a role of presentation is focusable, user agents MUST ignore the
normal effect of the role and expose the element with implicit native semantics, in
order to ensure that the element is both understandable and operable. Authors
SHOULD NOT provide meaningful alternative text (for example, use alt="" in

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

79 of 167 05/07/2020, 11:38

#

HTML4) when the presentation role is applied to an image.

In the following code sample, the containing div element has a WAI-ARIA role of img
and is appropriately labeled by the caption paragraph. In this example the img
element can be marked as presentation because the role and the text alternatives
are provided by the containing element.

<div role="img" aria-labelledby="caption">

<p id="caption">A visible text caption labeling the image.</p>

</div>

In the following code sample, because the anchor (HTML a element) is acting as the
treeitem, the list item (HTML li element) is assigned an explicit WAI-ARIA role of
presentation to override the user agent's implicit native semantics for list items.

<ul role="tree">
<li role="presentation">
An expanded tree node

 …

Characteristics of presentation

Characteristic Value

Superclass Role: structure

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author (if role discarded by error conditions)

progressbar (role)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

80 of 167 05/07/2020, 11:38

An element that displays the progress status for tasks that take a long time.

A progressbar indicates that the user's request has been received and the
application is making progress toward completing the requested action. The author
SHOULD supply values for aria-valuenow, aria-valuemin, and aria-valuemax,
unless the value is indeterminate, in which case the author SHOULD omit the aria-
valuenow attribute. Authors SHOULD update these values when the visual progress
indicator is updated. If the progressbar is describing the loading progress of a
particular region of a page, the author SHOULD use aria-describedby to point to
the status, and set the aria-busy attribute to true on the region until it is finished
loading. It is not possible for the user to alter the value of a progressbar because it
is always readonly.

Note: Assistive technologies generally will render the value of aria-
valuenow as a percent of the range between the value of aria-valuemin
and aria-valuemax, unless aria-valuetext is specified. It is best to set
the values for aria-valuemin, aria-valuemax, and aria-valuenow in a manner
that is appropriate for this calculation.

Note: Elements with the role progressbar have an implicit aria-readonly
value of true.

Characteristics of progressbar

Characteristic Value

Superclass Role: range

Related Concepts: status

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant
aria-valuemax
aria-valuemin

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

81 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-valuenow
aria-valuetext

Name From: author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-readonly is true.

radio (role)

A checkable input in a group of radio roles, only one of which can be checked at a
time.

Authors SHOULD ensure that elements with role radio are explicitly grouped in
order to indicate which ones affect the same value. This is achieved by enclosing the
radio elements in an element with role radiogroup. If it is not possible to make the
radio buttons DOM children of the radiogroup, authors SHOULD use the aria-
owns attribute on the radiogroup element to indicate the relationship to its children.

Characteristics of radio

Characteristic Value

Superclass Role: checkbox
option

Subclass Roles: menuitemradio

Related Concepts: HTML input[type="radio"]

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-checked (state) (required)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-posinset
aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

82 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-selected (state)
aria-setsize

Name From: contents
author

Accessible Name Required: True

Implicit Value for Role: Default for aria-checked (state) is false

radiogroup (role)

A group of radio buttons.

A radiogroup is a type of select list that can only have a single entry checked at
any one time. Authors SHOULD enforce that only one radio button in a group can be
checked at the same time. When one item in the group is checked, the previously
checked item becomes unchecked (its aria-checked attribute becomes false).

Characteristics of radiogroup

Characteristic Value

Superclass Role: select

Related Concepts: list

Required Owned Elements: radio

Supported States and Properties: aria-required

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

83 of 167 05/07/2020, 11:38

#

#

range (abstract role)

An input representing a range of values that can be set by the user.

Note: range is an abstract role used for the ontology. Authors are instructed
not to use this role in content.

Characteristics of range

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: progressbar
scrollbar
slider
spinbutton

Supported States and Properties: aria-valuemax
aria-valuemin
aria-valuenow
aria-valuetext

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

region (role)

A large perceivable section of a web page or document, that is important enough to
be included in a page summary or table of contents, for example, an area of the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

84 of 167 05/07/2020, 11:38

page containing live sporting event statistics.

The 'page summary' referenced above is a structure created dynamically from the
page after it is loaded as a means of quickly describing its overall organization. It
may be created by the author using a script, or by assistive technologies.

Authors SHOULD ensure that a region has a heading referenced by aria-
labelledby. This heading is provided by an instance of the standard host language
heading element or an instance of an element with role heading that contains the
heading text.

When defining regions of a web page, authors are advised to consider using
standard document landmark roles. If the definitions of these regions are
inadequate, authors can use the region role and provide the appropriate accessible
name.

Characteristics of region

Characteristic Value

Superclass Role: section

Subclass Roles: alert
article
grid
landmark
list
log
status
tabpanel

Related Concepts: HTML Frame
Device Independence Glossary perceivable
unit
section

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

85 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-relevant

Name From: author

roletype (abstract role)

The base role from which all other roles in this taxonomy inherit.

Properties of this role describe the structural and functional purpose of objects that
are assigned this role (known in RDF terms as "instances"). A role is a concept that
can be used to understand and operate instances.

Note: roletype is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of roletype

Characteristic Value

Is Abstract: True

Subclass Roles: structure
widget
window

Related Concepts: XHTML role
HTML link (rel & rev)
Dublin Core type

Supported States and Properties: Placeholder for global properties

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: n/a

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

86 of 167 05/07/2020, 11:38

#row (role)

A row of cells in a grid.

Rows contain gridcell elements, and thus serve to organize the grid.

In a treegrid, authors MAY mark rows as expandable, using the aria-expanded
attribute to indicate the present status. This is not the case for an ordinary grid, in
which the aria-expanded attribute is not present.

Authors MUST ensure elements with role row are contained in, or owned by, an
element with the role grid, rowgroup, treegrid.

Characteristics of row

Characteristic Value

Superclass Role: group
widget

Base Concept: HTML tr

Required Context Role: grid
rowgroup
treegrid

Required Owned Elements: columnheader
gridcell
rowheader

Supported States and Properties: aria-level
aria-selected (state)

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

87 of 167 05/07/2020, 11:38

#

Characteristic Value

Name From: contents
author

rowgroup (role)

A group containing one or more row elements in a grid.

The rowgroup role establishes a relationship between owned row elements. It is a
structural equivalent to the thead, tfoot, and tbody elements in an HTML table
element.

Authors MUST ensure elements with role rowgroup are contained in, or owned by,
an element with the role grid.

Note: The rowgroup role exists, in part, to support role symmetry in HTML,
and allows for the propagation of presentation inheritance on HTML table
elements with an explicit presentation role applied.

Note: This role does not differentiate between types of row groups (e.g.,
thead vs. tbody), but an issue has been raised for WAI-ARIA 2.0.

Characteristics of rowgroup

Characteristic Value

Superclass Role: group

Base Concept: HTML thead, tfoot, and tbody

Required Context Role: grid

Required Owned Elements: row

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

88 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

rowheader (role)

A cell containing header information for a row in a grid.

Rowheader can be used as a row header in a table or grid. The rowheader
establishes a relationship between it and all cells in the corresponding row. It is a
structural equivalent to setting scope="row" on an HTML th element.

Authors MUST ensure elements with role rowheader are contained in, or owned by,
an element with the role row.

Characteristics of rowheader

Characteristic Value

Superclass Role: gridcell
sectionhead
widget

Base Concept: HTML th[scope="row"]

Required Context Role: row

Supported States and Properties: aria-sort

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

89 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-readonly
aria-relevant
aria-required
aria-selected (state)

Name From: contents
author

Accessible Name Required: True

search (role)

A landmark region that contains a collection of items and objects that, as a whole,
combine to create a search facility. See related form.

A search region may be a mix of host language form controls, scripted controls, and
hyperlinks.

User agents SHOULD treat elements with the role of search as navigational
landmarks.

Characteristics of search

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

90 of 167 05/07/2020, 11:38

#section (abstract role)

A renderable structural containment unit in a document or application.

Note: section is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of section

Characteristic Value

Is Abstract: True

Superclass Role: structure

Subclass Roles: definition
gridcell
group
img
listitem
marquee
math
note
region
tooltip

Related Concepts: DTB frontmatter
DTB level
SMIL par

Supported States and Properties: aria-expanded (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

91 of 167 05/07/2020, 11:38

#

#

sectionhead (abstract role)

A structure that labels or summarizes the topic of its related section.

Note: sectionhead is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of sectionhead

Characteristic Value

Is Abstract: True

Superclass Role: structure

Subclass Roles: columnheader
heading
rowheader
tab

Supported States and Properties: aria-expanded (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

select (abstract role)

A form widget that allows the user to make selections from a set of choices.

Note: select is an abstract role used for the ontology. Authors are

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

92 of 167 05/07/2020, 11:38

#

instructed not to use this role in content.

Characteristics of select

Characteristic Value

Is Abstract: True

Superclass Role: composite
group
input

Subclass Roles: combobox
listbox
menu
radiogroup
tree

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

separator (role)

A divider that separates and distinguishes sections of content or groups of
menuitems.

This is a visual separator between sections of content. For example, separators are
found between groups of menu items in a menu or as the moveable separator
between two regions in a split pane.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

93 of 167 05/07/2020, 11:38

#

Characteristics of separator

Characteristic Value

Superclass Role: structure

Related Concepts: HTML hr

Supported States and Properties: aria-expanded (state)
aria-orientation

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Children Presentational: True

scrollbar (role)

A graphical object that controls the scrolling of content within a viewing area,
regardless of whether the content is fully displayed within the viewing area.

A scrollbar represents the current value and range of possible values via the size of
the scrollbar and position of the thumb with respect to the visible range of the
orientation (horizontal or vertical) it controls. Its orientation represents the orientation
of the scrollbar and the scrolling effect on the viewing area controlled by the
scrollbar. It is typically possible to add or subtract to the current value by using
directional keys such as arrow keys.

Authors MUST set the aria-controls attribute on the scrollbar element to reference
the scrollable area it controls.

Note: Elements with the role scrollbar have an implicit aria-
orientation value of vertical.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

94 of 167 05/07/2020, 11:38

#

Note: Assistive technologies generally will render the value of aria-
valuenow as a percent of the range between the value of aria-valuemin
and aria-valuemax, unless aria-valuetext is specified. It is best to set
the values for aria-valuemin, aria-valuemax, and aria-valuenow in a manner
that is appropriate for this calculation.

Characteristics of scrollbar

Characteristic Value

Superclass Role: input
range

Required States and Properties: aria-controls
aria-orientation
aria-valuemax
aria-valuemin
aria-valuenow

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant
aria-valuetext

Name From: author

Accessible Name Required: False

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is vertical

slider (role)

A user input where the user selects a value from within a given range.

A slider represents the current value and range of possible values via the size of the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

95 of 167 05/07/2020, 11:38

#

slider and position of the thumb. It is typically possible to add or subtract to the value
by using directional keys such as arrow keys.

Characteristics of slider

Characteristic Value

Superclass Role: input
range

Required States and Properties: aria-valuemax
aria-valuemin
aria-valuenow

Supported States and Properties: aria-orientation

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant
aria-valuetext

Name From: author

Accessible Name Required: True

Children Presentational: True

spinbutton (role)

A form of range that expects the user to select from among discrete choices.

A spinbutton typically allows the user to select from the given range through the
use of an up and down button on the keyboard. Visibly, the current value is
incremented or decremented until a maximum or minimum value is reached. Authors
SHOULD ensure this functionality is accomplished programmatically through the use
of up and down arrows on the keyboard.

Although a spinbutton is similar in appearance to many presentations of select, it
is advisable to use spinbutton when working with known ranges (especially in the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

96 of 167 05/07/2020, 11:38

#

case of large ranges) as opposed to distinct options. For example, a spinbutton
representing a range from 1 to 1,000,000 would provide much better performance
than a select widget representing the same values.

Characteristics of spinbutton

Characteristic Value

Superclass Role: input
range

Required States and Properties: aria-valuemax
aria-valuemin
aria-valuenow

Supported States and Properties: aria-required

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant
aria-valuetext

Name From: author

Accessible Name Required: True

status (role)

A container whose content is advisory information for the user but is not important
enough to justify an alert, often but not necessarily presented as a status bar. See
related alert.

Authors MUST provide status information content within an element with role
status. Authors SHOULD ensure this object does not receive focus.

Status is a form of live region. If another part of the page controls what appears in
the status, authors SHOULD make the relationship explicit with the aria-controls
attribute.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

97 of 167 05/07/2020, 11:38

#

Assistive technologies MAY reserve some cells of a Braille display to render the
status.

Note: Elements with the role status have an implicit aria-live value of
polite, and an implicit aria-atomic value of true.

Characteristics of status

Characteristic Value

Superclass Role: region

Subclass Roles: timer

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Implicit Value for Role: Default for aria-live is polite.
Default for aria-atomic is true.

structure (abstract role)

A document structural element.

Roles for document structure support the accessibility of dynamic web content by
helping assistive technologies determine active content versus static document
content. Structural roles by themselves do not all map to accessibility APIs, but are
used to create widget roles or assist content adaptation for assistive technologies.

Note: structure is an abstract role used for the ontology. Authors are

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

98 of 167 05/07/2020, 11:38

#

instructed not to use this role in content.

Characteristics of structure

Characteristic Value

Is Abstract: True

Superclass Role: roletype

Subclass Roles: document
presentation
section
sectionhead
separator

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: n/a

tab (role)

A grouping label providing a mechanism for selecting the tab content that is to be
rendered to the user.

If a tabpanel or item in a tabpanel has focus, the associated tab is the currently
active tab in the tablist, as defined in Managing Focus. tablist elements, which
contain a set of associated tab elements, are typically placed near a series of
tabpanel elements, usually preceding it. See the WAI-ARIA Authoring Practices
Guide [ARIA-PRACTICES] for details on implementing a tab set design pattern.

Authors MUST ensure elements with role tab are contained in, or owned by, an
element with the role tablist.

Authors SHOULD ensure the tabpanel associated with the currently active tab is

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

99 of 167 05/07/2020, 11:38

#

perceivable to the user.

For a single-selectable tablist, authors SHOULD hide other tabpanel elements
from the user until the user selects the tab associated with that tabpanel. For a multi-
selectable tablist, authors SHOULD ensure each visible tabpanel has its aria-
expanded attribute set to true, and that the remaining hidden tabpanel elements
have their aria-expanded attributes set to false.

In either case, authors SHOULD ensure that a selected tab has its aria-selected
attribute set to true, that inactive tab elements have their aria-selected attribute
set to false, and that the currently selected tab provides a visual indication that it is
selected. In the absence of an aria-selected attribute on the current tab, user
agents SHOULD indicate to assistive technologies through the platform accessibility
API that the currently focused tab is selected.

Characteristics of tab

Characteristic Value

Superclass Role: sectionhead
widget

Required Context Role: tablist

Supported States and Properties: aria-selected (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

tablist (role)

A list of tab elements, which are references to tabpanel elements.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

100 of 167 05/07/2020, 11:38

#

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

For a single-selectable tablist, authors SHOULD hide other tabpanel elements
from the user until the user selects the tab associated with that tabpanel. For a multi-
selectable tablist, authors SHOULD ensure each visible tabpanel has its aria-
expanded attribute set to true, and that the remaining hidden tabpanel elements
have their aria-expanded attributes set to false.

tablist elements are typically placed near, usually preceding, a series of tabpanel
elements. See the WAI-ARIA Authoring Practices Guide [ARIA-PRACTICES] for
details on implementing a tab set design pattern.

Characteristics of tablist

Characteristic Value

Superclass Role: composite
directory

Related Concepts: DAISY Guide

Required Owned Elements: tab

Supported States and Properties: aria-level
aria-multiselectable

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

tabpanel (role)

A container for the resources associated with a tab, where each tab is contained in

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

101 of 167 05/07/2020, 11:38

#

a tablist.

Authors SHOULD associate a tabpanel element with its tab, either by using the
aria-controls attribute on the tab to reference the tab panel, or by using the aria-
labelledby attribute on the tab panel to reference the tab.

tablist elements are typically placed near, usually preceding, a series of tabpanel
elements. See the WAI-ARIA Authoring Practices Guide [ARIA-PRACTICES] for
details on implementing a tab set design pattern.

Characteristics of tabpanel

Characteristic Value

Superclass Role: region

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

textbox (role)

Input that allows free-form text as its value.

If the aria-multiline attribute is true, the widget accepts line breaks within the
input, as in an HTML textarea. Otherwise, this is a simple text box. The intended use
is for languages that do not have a text input element, or cases in which an element
with different semantics is repurposed as a text field.

Note: In most user agent implementations, the default behavior of the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

102 of 167 05/07/2020, 11:38

#

ENTER or RETURN key is different between the single-line and multi-line text
fields in HTML. When user has focus in a single-line <input
type="text"> element, the keystroke usually submits the form. When user
has focus in a multi-line <textarea> element, the keystroke inserts a line
break. The WAI-ARIA textbox role differentiates these types of boxes with
the aria-multiline attribute, so authors are advised to be aware of this
distinction when designing the field.

Characteristics of textbox

Characteristic Value

Superclass Role: input

Related Concepts: XForms input
HTML textarea
HTML input[type="text"]

Supported States and Properties: aria-activedescendant
aria-autocomplete
aria-multiline
aria-readonly
aria-required

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

timer (role)

A type of live region containing a numerical counter which indicates an amount of
elapsed time from a start point, or the time remaining until an end point.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

103 of 167 05/07/2020, 11:38

#

The text contents of the timer object indicate the current time measurement, and are
updated as that amount changes. The timer value is not necessarily machine
parsable, but authors SHOULD update the text contents at fixed intervals, except
when the timer is paused or reaches an end-point.

Note: Elements with the role timer maintain the default aria-live value of
off.

Characteristics of timer

Characteristic Value

Superclass Role: status

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

toolbar (role)

A collection of commonly used function buttons or controls represented in compact
visual form.

The toolbar is often a subset of functions found in a menubar, designed to reduce
user effort in using these functions. Authors MUST supply an aria-label property
on each toolbar when the application contains more than one toolbar.

Authors MAY manage focus of descendants for all instances of this role, as
described in Managing Focus.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

104 of 167 05/07/2020, 11:38

#

Characteristics of toolbar

Characteristic Value

Superclass Role: group

Related Concepts: menubar

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

tooltip (role)

A contextual popup that displays a description for an element.

The tooltip typically becomes visible in response to a mouse hover, or after the
owning element receives keyboard focus. In each of these cases, authors SHOULD
display the tooltip after a short delay. The use of a WAI-ARIA tooltip is a supplement
to the normal tooltip behavior of the user agent.

Note: Typical tooltip delays last from one to five seconds.

Authors SHOULD ensure that elements with the role tooltip are referenced
through the use of aria-describedby by the time the tooltip is displayed.

Characteristics of tooltip

Characteristic Value

Superclass Role: section

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

105 of 167 05/07/2020, 11:38

#

Characteristic Value

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: contents
author

Accessible Name Required: True

tree (role)

A type of list that may contain sub-level nested groups that can be collapsed and
expanded.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Characteristics of tree

Characteristic Value

Superclass Role: select

Subclass Roles: treegrid

Required Owned Elements: group → treeitem
treeitem

Supported States and Properties: aria-multiselectable
aria-required

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

106 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-disabled (state)
aria-dropeffect
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

Accessible Name Required: True

treegrid (role)

A grid whose rows can be expanded and collapsed in the same manner as for a
tree.

A treegrid is considered editable unless otherwise specified. To make a treegrid
read-only, set the aria-readonly attribute of the treegrid to true. The value of the
treegrid element's aria-readonly attribute is implicitly propagated to all of its
owned gridcell elements, and will be exposed through the accessibility API. An
author may override an individual gridcell element's propagated aria-readonly
value by setting the aria-readonly attribute on the gridcell.

To be keyboard accessible, authors SHOULD manage focus of descendants for all
instances of this role, as described in Managing Focus.

Characteristics of treegrid

Characteristic Value

Superclass Role: grid
tree

Required Owned Elements: row

Inherited States and Properties: aria-activedescendant
aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

107 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-expanded (state)
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-level
aria-live
aria-multiselectable
aria-owns
aria-readonly
aria-relevant
aria-required

Name From: author

Accessible Name Required: True

treeitem (role)

An option item of a tree. This is an element within a tree that may be expanded or
collapsed if it contains a sub-level group of treeitem elements.

A collection of treeitem elements to be expanded and collapsed are enclosed in an
element with the group role.

Authors MUST ensure elements with role treeitem are contained in, or owned by,
an element with the role group or tree.

Characteristics of treeitem

Characteristic Value

Superclass Role: listitem
option

Required Context Role: group
tree

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-checked (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-expanded (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

108 of 167 05/07/2020, 11:38

#

Characteristic Value
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-level
aria-live
aria-owns
aria-posinset
aria-relevant
aria-selected (state)
aria-setsize

Name From: contents
author

Accessible Name Required: True

widget (abstract role)

An interactive component of a graphical user interface (GUI).

Widgets are discrete user interface objects with which the user can interact. Widget
roles map to standard features in accessibility APIs. When the user navigates an
element assigned any of the non-abstract subclass roles of widget, assistive
technologies that typically intercept standard keyboard events SHOULD switch to an
application browsing mode, and pass keyboard events through to the web
application. The intent is to hint to certain assistive technologies to switch from
normal browsing mode into a mode more appropriate for interacting with a web
application; some user agents have a browse navigation mode where keys, such as
up and down arrows, are used to browse the document, and this native behavior
prevents the use of these keys by a web application.

Note: widget is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of widget

Characteristic Value

Is Abstract: True

Superclass Role: roletype

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

109 of 167 05/07/2020, 11:38

#

Characteristic Value

Subclass Roles: columnheader
command
composite
gridcell
input
range
row
rowheader
tab

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: n/a

window (abstract role)

A browser or application window.

Elements with this role have a window-like behavior in a graphical user interface
(GUI) context, regardless of whether they are implemented as a native window in the
operating system, or merely as a section of the document styled to look like a
window.

Note: window is an abstract role used for the ontology. Authors are
instructed not to use this role in content.

Characteristics of window

Characteristic Value

Is Abstract: True

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

110 of 167 05/07/2020, 11:38

#

#

#

Characteristic Value

Superclass Role: roletype

Subclass Roles: dialog

Supported States and Properties: aria-expanded (state)

Inherited States and Properties: aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Name From: author

6. Supported States and Properties

This section is normative.

6.1. Clarification of States versus Properties

The terms "states" and "properties" refer to similar features. Both provide specific
information about an object, and both form part of the definition of the nature of roles. In
this document, states and properties are both treated as aria-prefixed markup attributes.
However, they are maintained conceptually distinct to clarify subtle differences in their
meaning. One major difference is that the values of properties (such as aria-
labelledby) are often less likely to change throughout the application life-cycle than the
values of states (such as aria-checked) which may change frequently due to user
interaction. Note that the frequency of change difference is not a rule; a few properties,
such as aria-activedescendant, aria-valuenow, and aria-valuetext are expected
to change often. Because the distinction between states and properties is of little
consequence to most web content authors, this specification refers to both "states" and
"properties" simply as "attributes" whenever possible. See the definitions of state and
property for more information.

6.2. Characteristics of States and Properties

States and properties have the characteristics described in the following sections.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

111 of 167 05/07/2020, 11:38

#

#

#

#

6.2.1. Related Concepts

Advisory information about features from this or other languages that correspond to this
state or property. While the correspondence may not be exact, it is useful to help
understand the intent of the state or property.

6.2.2. Used in Roles

Advisory information about roles that use this state or property. This information is
provided to help understand the appropriate usage of the state or property. Use of a
given state or property is not defined when used on roles other than those listed.

6.2.3. Inherits into Roles

Advisory information about roles that inherit the state or property from an ancestor role.

6.2.4. Value

Value type of the state or property. The value may be one of the following types:

true/false
Value representing either true or false, with a default "false" value.

tristate
Value representing true or false, with an intermediate "mixed" value. Default value is
"false" unless otherwise specified.

true/false/undefined
Value representing true or false, with a default "undefined" value indicating the state
or property is not relevant.

ID reference
Reference to the ID of another element in the same document

ID reference list
A list of one or more ID references.

integer
A numerical value without a fractional component.

number
Any real numerical value.

string
Unconstrained value type.

token
One of a limited set of allowed values.

token list
A list of one or more tokens.

The "undefined" value, when allowed on a state or property, is an explicit indication that
the state or property is not set. The value is used on states and properties that support
tokens, and the "undefined" value is a string that is one of the allowed tokens. It is also
used on some states and properties that accept true/false values, when "undefined" has
a different meaning than "false".

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

112 of 167 05/07/2020, 11:38

#

#

#

These are generic types for states and properties, but do not define specific
representation. See State and Property Attribute Processing for details on how these
values are expressed and handled in host languages.

6.3. Values for States and Properties

Many states and properties accept a specific set of tokens as values. The allowed values
and explanation of their meaning is shown after the table of characteristics. The default
value, if defined, is shown in strong type, followed by the parenthetical term 'default'.
When a value is indicated as the default, the user agent MUST follow the behavior
prescribed by this value when the state or property is empty or undefined. Some roles
also define what behavior to use when certain states or properties, that do not have
default values, are not provided.

6.4. Global States and Properties

Some states and properties are applicable to all host language elements regardless of
whether a role is applied. The following global states and properties are supported by all
roles and by all base markup elements.

aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Global states and properties are applied to the role roletype, which is the base role, and
therefore inherit into all roles. To facilitate reading, they are not explicitly identified as
either supported or inherited states and properties in the specification. Instead, the
inheritance is indicated by a link to this section.

6.5. Taxonomy of WAI-ARIA States and Properties

States and properties are categorized as follows:

1. Widget Attributes
2. Live Region Attributes
3. Drag-and-Drop Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

113 of 167 05/07/2020, 11:38

#

#

4. Relationship Attributes

6.5.1. Widget Attributes

This section contains attributes specific to common user interface elements found on GUI
systems or in rich internet applications which receive user input and process user
actions. These attributes are used to support the widget roles.

aria-autocomplete
aria-checked (state)
aria-disabled (state)
aria-expanded (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-level
aria-multiline
aria-multiselectable
aria-orientation
aria-pressed (state)
aria-readonly
aria-required
aria-selected (state)
aria-sort
aria-valuemax
aria-valuemin
aria-valuenow
aria-valuetext

Widget attributes might be mapped by a user agent to platform accessibility API states,
for access by assistive technologies, or they might be accessed directly from the DOM.
User agents MUST provide a way for assistive technologies to be notified when states
change, either through DOM attribute change events or platform accessibility API events.

6.5.2. Live Region Attributes

This section contains attributes specific to live regions in rich internet applications. These
attributes may be applied to any element. The purpose of these attributes is to indicate
that content changes may occur without the element having focus, and to provide
assistive technologies with information on how to process those content updates. Some
roles specify a default value for the aria-live attribute specific to that role. An example
of a live region is a ticker section that lists updating stock quotes.

aria-atomic
aria-busy (state)
aria-live
aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

114 of 167 05/07/2020, 11:38

#

#

#

6.5.3. Drag-and-Drop Attributes

This section lists attributes which indicate information about drag-and-drop interface
elements, such as draggable elements and their drop targets. Drop target information will
be rendered visually by the author and provided to assistive technologies through an
alternate modality.

aria-dropeffect
aria-grabbed (state)

For more information about using drag-and-drop, see Drag-and-Drop Support in the WAI-
ARIA Authoring Practices ([ARIA-PRACTICES]).

6.5.4. Relationship Attributes

This section lists attributes that indicate relationships or associations between elements
which cannot be readily determined from the document structure.

aria-activedescendant
aria-controls
aria-describedby
aria-flowto
aria-labelledby
aria-owns
aria-posinset
aria-setsize

6.6. Definitions of States and Properties (all aria-* attributes)

Below is an alphabetical list of WAI-ARIA states and properties to be used by rich internet
application authors. A detailed definition of each WAI-ARIA state and property follows this
compact list.

aria-activedescendant
Identifies the currently active descendant of a composite widget.

aria-atomic
Indicates whether assistive technologies will present all, or only parts of, the
changed region based on the change notifications defined by the aria-relevant
attribute. See related aria-relevant.

aria-autocomplete
Indicates whether user input completion suggestions are provided.

aria-busy (state)
Indicates whether an element, and its subtree, are currently being updated.

aria-checked (state)
Indicates the current "checked" state of checkboxes, radio buttons, and other
widgets. See related aria-pressed and aria-selected.

aria-controls
Identifies the element (or elements) whose contents or presence are controlled by
the current element. See related aria-owns.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

115 of 167 05/07/2020, 11:38

aria-describedby
Identifies the element (or elements) that describes the object. See related aria-
labelledby.

aria-disabled (state)
Indicates that the element is perceivable but disabled, so it is not editable or
otherwise operable. See related aria-hidden and aria-readonly.

aria-dropeffect
Indicates what functions can be performed when the dragged object is released on
the drop target. This allows assistive technologies to convey the possible drag
options available to users, including whether a pop-up menu of choices is provided
by the application. Typically, drop effect functions can only be provided once an
object has been grabbed for a drag operation as the drop effect functions available
are dependent on the object being dragged.

aria-expanded (state)
Indicates whether the element, or another grouping element it controls, is currently
expanded or collapsed.

aria-flowto
Identifies the next element (or elements) in an alternate reading order of content
which, at the user's discretion, allows assistive technology to override the general
default of reading in document source order.

aria-grabbed (state)
Indicates an element's "grabbed" state in a drag-and-drop operation.

aria-haspopup
Indicates that the element has a popup context menu or sub-level menu.

aria-hidden (state)
Indicates that the element and all of its descendants are not visible or perceivable
to any user as implemented by the author. See related aria-disabled.

aria-invalid (state)
Indicates the entered value does not conform to the format expected by the
application.

aria-label
Defines a string value that labels the current element. See related aria-labelledby.

aria-labelledby
Identifies the element (or elements) that labels the current element. See related
aria-label and aria-describedby.

aria-level
Defines the hierarchical level of an element within a structure.

aria-live
Indicates that an element will be updated, and describes the types of updates the
user agents, assistive technologies, and user can expect from the live region.

aria-multiline
Indicates whether a text box accepts multiple lines of input or only a single line.

aria-multiselectable
Indicates that the user may select more than one item from the current selectable
descendants.

aria-orientation
Indicates whether the element and orientation is horizontal or vertical.

aria-owns
Identifies an element (or elements) in order to define a visual, functional, or

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

116 of 167 05/07/2020, 11:38

#

contextual parent/child relationship between DOM elements where the DOM
hierarchy cannot be used to represent the relationship. See related aria-controls.

aria-posinset
Defines an element's number or position in the current set of listitems or treeitems.
Not required if all elements in the set are present in the DOM. See related aria-
setsize.

aria-pressed (state)
Indicates the current "pressed" state of toggle buttons. See related aria-checked
and aria-selected.

aria-readonly
Indicates that the element is not editable, but is otherwise operable. See related
aria-disabled.

aria-relevant
Indicates what user agent change notifications (additions, removals, etc.) assistive
technologies will receive within a live region. See related aria-atomic.

aria-required
Indicates that user input is required on the element before a form may be
submitted.

aria-selected (state)
Indicates the current "selected" state of various widgets. See related aria-checked
and aria-pressed.

aria-setsize
Defines the number of items in the current set of listitems or treeitems. Not required
if all elements in the set are present in the DOM. See related aria-posinset.

aria-sort
Indicates if items in a table or grid are sorted in ascending or descending order.

aria-valuemax
Defines the maximum allowed value for a range widget.

aria-valuemin
Defines the minimum allowed value for a range widget.

aria-valuenow
Defines the current value for a range widget. See related aria-valuetext.

aria-valuetext
Defines the human readable text alternative of aria-valuenow for a range widget.

aria-activedescendant (property)

Identifies the currently active descendant of a composite widget.

This is used when a composite widget is responsible for managing its current active
child to reduce the overhead of having all children be focusable. Examples include:
multi-level lists, trees, and grids. In some implementations the user agent may use
aria-activedescendant to tell assistive technologies that the active descendant
has focus. Authors MAY use the aria-activedescendant attribute on the focused
descendant of a composite widget; for example, on a textbox descendant of a combo
box.

Authors SHOULD ensure that the element targeted by the aria-activedescendant

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

117 of 167 05/07/2020, 11:38

#

attribute is either a descendant of the container in the DOM, or is a logical
descendant as indicated by the aria-owns attribute. The user agent is not expected
to validate that the active descendant is a descendant of the container. Authors
SHOULD ensure that the currently active descendant is visible and in view (or scrolls
into view) when focused.

Characteristics of aria-activedescendant

Characteristic Value

Related Concepts: SVG [SVG] and DOM [DOM] active

Used in Roles: composite
group
textbox

Inherits into Roles: combobox
grid
listbox
menu
menubar
radiogroup
row
rowgroup
select
tablist
toolbar
tree
treegrid

Value: ID reference

aria-atomic (property)

Indicates whether assistive technologies will present all, or only parts of, the
changed region based on the change notifications defined by the aria-relevant
attribute. See related aria-relevant.

Both accessibility APIs and the Document Object Model [DOM] provide events to
allow the assistive technologies to determine changed areas of the document.

When the content of a live region changes, user agents SHOULD examine the
changed element and traverse the ancestors to find the first element with aria-
atomic set, and apply the appropriate behavior for the cases below.

1. If none of the ancestors have explicitly set aria-atomic, the default is that
aria-atomic is false, and assistive technologies will only present the
changed node to the user.

2. If aria-atomic is explicitly set to false, assistive technologies will stop
searching up the ancestor chain and present only the changed node to the

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

118 of 167 05/07/2020, 11:38

#

user.
3. If aria-atomic is explicitly set to true, assistive technologies will present the

entire contents of the element.

When aria-atomic is true, assistive technologies MAY choose to combine several
changes and present the entire changed region at once.

Characteristics of aria-atomic

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values of aria-atomic

Value Description

true: Assistive technologies will present the entire
region as a whole.

false (default): A change within the region may be
processed by the assistive technologies on
its own.

aria-autocomplete (property)

Indicates whether user input completion suggestions are provided.

For a textbox with the aria-autocomplete attribute set to either inline or both,
authors SHOULD ensure that any auto-completed text is selected, so the user can
type over it.

Characteristics of aria-autocomplete

Characteristic Value

Related Concepts: XForms selection attribute in select

Used in Roles: combobox
textbox

Value: token

Values of aria-autocomplete

Value Description

inline: The system provides text after the caret as a
suggestion for how to complete the field.

list: A list of choices appears from which the user
can choose.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

119 of 167 05/07/2020, 11:38

#

#

Value Description

both: A list of choices appears and the currently
selected suggestion also appears inline.

none (default): No input completion suggestions are
provided.

aria-busy (state)

Indicates whether an element, and its subtree, are currently being updated.

The default is that aria-busy is false. If authors know that multiple parts of the
same element need to be loaded or modified, they can set aria-busy to true when
the first part is loaded, and then set aria-busy to false when the last part is loaded.
When a widget is missing required owned elements due to script execution or
loading, authors MUST mark a containing element with aria-busy equal to true.
For example, until a page is fully initialized and complete, an author could mark the
document element as busy. If there is an error updating the element, author MAY set
the aria-invalid attribute to true.

Characteristics of aria-busy

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values of aria-busy

Value Description

true: The live region is still being updated.

false (default): There are no more expected updates for that
live region.

aria-checked (state)

Indicates the current "checked" state of checkboxes, radio buttons, and other
widgets. See related aria-pressed and aria-selected.

The aria-checked attribute indicates whether the element is checked (true),
unchecked (false), or represents a group of other elements that have a mixture of
checked and unchecked values (mixed). Most inputs only support values of true
and false, but the mixed value is supported by certain tri-state inputs such as a
checkbox or menuitemcheckbox.

The mixed value is not supported on radio or menuitemradio or any element that

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

120 of 167 05/07/2020, 11:38

#

inherits from these in the taxonomy, and user agents MUST treat a mixed value as
equivalent to false for those roles.

Examples using the mixed value of tri-state inputs are covered in WAI-ARIA
Authoring Practices [ARIA-PRACTICES]

Characteristics of aria-checked

Characteristic Value

Used in Roles: option

Inherits into Roles: menuitemradio
radio
treeitem

Value: tristate

Values of aria-checked

Value Description

true: The element is checked.

false: The element supports being checked but is
not currently checked.

mixed: Indicates a mixed mode value for a tri-state
checkbox or menuitemcheckbox.

undefined (default): The element does not support being
checked.

aria-controls (property)

Identifies the element (or elements) whose contents or presence are controlled by
the current element. See related aria-owns.

For example:

A table of contents tree view may control the content of a neighboring
document pane.
A group of checkboxes may control what commodity prices are tracked live in a
table or graph.
A tab controls the display of its associated tab panel.

Characteristics of aria-controls

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

121 of 167 05/07/2020, 11:38

#

#

aria-describedby (property)

Identifies the element (or elements) that describes the object. See related aria-
labelledby.

The aria-labelledby attribute is similar to aria-describedby in that both
reference other elements to calculate a text alternative, but a label should be
concise, where a description is intended to provide more verbose information.

The element or elements referenced by the aria-describedby comprise the entire
description. Include ID references to multiple elements if necessary, or enclose a set
of elements (e.g., paragraphs) with the element referenced by the ID.

Characteristics of aria-describedby

Characteristic Value

Related Concepts: Related concepts:
Hint or Help in XForms [XForms]
Label in XForms
Label in HTML [HTML]
online help
HTML table cell headers

HTML label element, and HTML table cell
headers are de facto describedby values.

Used in Roles: All elements of the base markup

Value: ID reference list

aria-disabled (state)

Indicates that the element is perceivable but disabled, so it is not editable or
otherwise operable. See related aria-hidden and aria-readonly.

For example, irrelevant options in a radio group may be disabled. Disabled elements
might not receive focus from the tab order. For some disabled elements, applications
might choose not to support navigation to descendants. In addition to setting the
aria-disabled attribute, authors SHOULD change the appearance (grayed out,
etc.) to indicate that the item has been disabled.

The state of being disabled applies to the current element and all focusable
descendant elements of the element on which the aria-disabled attribute is
applied.

Characteristics of aria-disabled

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

122 of 167 05/07/2020, 11:38

#

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values of aria-disabled

Value Description

true: The element and all focusable descendants
are disabled and its value cannot be
changed by the user.

false (default): The element is enabled.

aria-dropeffect (property)

Indicates what functions can be performed when the dragged object is released on
the drop target. This allows assistive technologies to convey the possible drag
options available to users, including whether a pop-up menu of choices is provided
by the application. Typically, drop effect functions can only be provided once an
object has been grabbed for a drag operation as the drop effect functions available
are dependent on the object being dragged.

More than one drop effect may be supported for a given element. Therefore, the
value of this attribute is a space-delimited set of tokens indicating the possible
effects, or none if there is no supported operation. In addition to setting the aria-
dropeffect attribute, authors SHOULD show a visual indication of potential drop
targets.

Characteristics of aria-dropeffect

Characteristic Value

Used in Roles: All elements of the base markup

Value: token list

Values of aria-dropeffect

Value Description

copy: A duplicate of the source object will be
dropped into the target.

move: The source object will be removed from its
current location and dropped into the target.

link: A reference or shortcut to the dragged object
will be created in the target object.

execute: A function supported by the drop target is
executed, using the drag source as an input.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

123 of 167 05/07/2020, 11:38

#

Value Description

popup: There is a popup menu or dialog that allows
the user to choose one of the drag
operations (copy, move, link, execute) and
any other drag functionality, such as cancel.

none (default): No operation can be performed; effectively
cancels the drag operation if an attempt is
made to drop on this object. Ignored if
combined with any other token value. e.g.
'none copy' is equivalent to a 'copy' value.

aria-expanded (state)

Indicates whether the element, or another grouping element it controls, is currently
expanded or collapsed.

For example, this indicates whether a portion of a tree is expanded or collapsed. In
other instances, this may be applied to page sections to mark expandable and
collapsible regions that are flexible for managing content density. Simplifying the user
interface by collapsing sections may improve usability for all, including those with
cognitive or developmental disabilities.

If the element with the aria-expanded attribute controls the expansion of another
grouping container that is not 'owned by' the element, the author SHOULD reference
the container by using the aria-controls attribute.

Characteristics of aria-expanded

Characteristic Value

Related Concepts: Tapered prompts in voice browsing. Switch
in SMIL [SMIL].

Used in Roles: button
document
link
section
sectionhead
separator
window

Inherits into Roles: alert
alertdialog
application
article
banner
columnheader
combobox
complementary

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

124 of 167 05/07/2020, 11:38

Characteristic Value
contentinfo
definition
dialog
directory
form
grid
gridcell
group
heading
img
landmark
list
listbox
listitem
log
main
marquee
math
menu
menubar
navigation
note
radiogroup
region
row
rowgroup
rowheader
search
select
status
tab
tablist
tabpanel
timer
toolbar
tooltip
tree
treegrid
treeitem

Value: true/false/undefined

Values of aria-expanded

Value Description

true: The element, or another grouping element it
controls, is expanded.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

125 of 167 05/07/2020, 11:38

#

#

Value Description

false: The element, or another grouping element it
controls, is collapsed.

undefined (default): The element, or another grouping element it
controls, is neither expandable nor
collapsible; all its child elements are shown
or there are no child elements.

aria-flowto (property)

Identifies the next element (or elements) in an alternate reading order of content
which, at the user's discretion, allows assistive technology to override the general
default of reading in document source order.

When aria-flowto has a single IDREF, it allows assistive technologies to, at the
user's request, forego normal document reading order and go to the targeted object.
However, when aria-flowto is provided with multiple IDREFS, assistive
technologies SHOULD present the referenced elements as path choices.

In the case of one or more IDREFS, user agents or assistive technologies SHOULD
give the user the option of navigating to any of the targeted elements. The name of
the path can be determined by the name of the target element of the aria-flowto
attribute. Accessibility APIs can provide named path relationships.

Characteristics of aria-flowto

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

aria-grabbed (state)

Indicates an element's "grabbed" state in a drag-and-drop operation.

When it is set to true it has been selected for dragging, false indicates that the
element can be grabbed for a drag-and-drop operation, but is not currently grabbed,
and undefined (or no value) indicates the element cannot be grabbed (default).

When aria-grabbed is set to true, authors SHOULD update the aria-dropeffect
attribute of all potential drop targets. When an element is not grabbed (the value is
set to false, undefined, or the attribute is removed), authors SHOULD revert the
aria-dropeffect attributes of the associated drop targets to none.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

126 of 167 05/07/2020, 11:38

#

Characteristics of aria-grabbed

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false/undefined

Values of aria-grabbed

Value Description

true: Indicates that the element has been
"grabbed" for dragging.

false: Indicates that the element supports being
dragged.

undefined (default): Indicates that the element does not support
being dragged.

aria-haspopup (property)

Indicates that the element has a popup context menu or sub-level menu.

This means that activation renders conditional content. Note that ordinary tooltips are
not considered popups in this context.

A popup is generally presented visually as a group of items that appears to be on top
of the main page content.

Characteristics of aria-haspopup

Characteristic Value

Related Concepts: aria-controls
User Agent Accessibility Guidelines [UAAG
conditional content

Used in Roles: All elements of the base markup

Value: true/false

Values of aria-haspopup

Value Description

true: Indicates the object has a popup, either as a
descendant or pointed to by aria-owns.

false (default): The object has no popup.

aria-hidden (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

127 of 167 05/07/2020, 11:38

Indicates that the element and all of its descendants are not visible or perceivable to
any user as implemented by the author. See related aria-disabled.

If an element is only visible after some user action, authors MUST set the aria-
hidden attribute to true. When the element is presented, authors MUST set the
aria-hidden attribute to false or remove the attribute, indicating that the element is
visible. Some assistive technologies access WAI-ARIA information directly through
the DOM and not through platform accessibility supported by the browser. Authors
MUST set aria-hidden="true" on content that is not displayed, regardless of the
mechanism used to hide it. This allows assistive technologies or user agents to
properly skip hidden elements in the document.

It is recommended that authors key visibility of elements off this attribute, rather than
change visibility and separately have to remember to update this property. CSS 2
provides a way to select on attribute values ([CSS]). The following CSS declaration
makes content visible unless the aria-hidden attribute is true; scripts need only
update the value of this attribute to change visibility:

[aria-hidden="true"] { visibility: hidden; }

Note: Authors are reminded that visibility:hidden and display:none apply to
all CSS media types; therefore, use of either will hide the content from
assistive technologies that access the DOM through a rendering engine.
However, in order to support assistive technologies that access the DOM
directly, or other authoring techniques to visibly hide content (for example,
opacity or off-screen positioning), authors need to ensure the aria-hidden
attribute is always updated accordingly when an element is shown or
hidden, unless the intent of using off-screen positioning is to make the
content visible only to screen reader users and not others.

Authors MAY, with caution, use aria-hidden to hide visibly rendered content from
assistive technologies only if the act of hiding this content is intended to improve the
experience for users of assistive technologies by removing redundant or extraneous
content. Authors using aria-hidden to hide visible content from screen readers MUST
ensure that identical or equivalent meaning and functionality is exposed to assistive
technologies.

Note: Authors are advised to use extreme caution and consider a wide
range of disabilities when hiding visibly rendered content from assistive
technologies. For example, a sighted, dexterity-impaired individual may use
voice-controlled assistive technologies to access a visual interface. If an
author hides visible link text "Go to checkout" and exposes similar, yet non-
identical link text "Check out now" to the accessibility API, the user may be
unable to access the interface they perceive using voice control. Similar
problems may also arise for screen reader users. For example, a sighted
telephone support technician may attempt to have the blind screen reader

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

128 of 167 05/07/2020, 11:38

#

user click the "Go to checkout" link, which they may be unable to find using
a type-ahead item search ("Go to…").

Characteristics of aria-hidden

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values of aria-hidden

Value Description

true: Indicates that this section of the document
and its children are hidden from the rendered
view.

false (default): Indicates that this section of the document is
rendered.

Note: Authors are advised to avoid using aria-hidden="false" with styles
or attributes that have historically prevented rendering in all modalities,
such as display:none or visibility:hidden in CSS, or the hidden
attribute in HTML 5. At the time of this writing, aria-hidden="false" is
known to work inconsistently when used in conjunction with such features.
As future implementations improve, use caution and test thoroughly before
relying on this approach.

aria-invalid (state)

Indicates the entered value does not conform to the format expected by the
application.

If the value is computed to be invalid or out-of-range, the application author
SHOULD set this attribute to true. User agents SHOULD inform the user of the
error. Application authors SHOULD provide suggestions for corrections if they are
known. Authors MAY prevent form submission when an associated form element has
its aria-invalid attribute set to true.

When the user attempts to submit data involving a field for which aria-required is
true, authors MAY use the aria-invalid attribute to signal there is an error.
However, if the user has not attempted to submit the form, authors SHOULD NOT
set the aria-invalid attribute on required widgets simply because the user has not
yet entered data.

For future expansion, the aria-invalid attribute is an enumerated type. Any value

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

129 of 167 05/07/2020, 11:38

#

not recognized in the list of allowed values MUST be treated by user agents as if the
value true had been provided. If the attribute is not present, or its value is false, or
its value is an empty string, the default value of false applies.

Characteristics of aria-invalid

Characteristic Value

Related Concepts: XForms [XForms] 'invalid' event
http://www.w3.org/TR/2006/REC-xforms-
20060314/slice4.html#evt-revalidate. Note:
This state is true if a form field is required
but empty. However, the XForms valid
property would be set to false.

Used in Roles: All elements of the base markup

Value: token

Values of aria-invalid

Value Description

grammar: A grammatical error was detected.

false (default): There are no detected errors in the value.

spelling: A spelling error was detected.

true: The value entered by the user has failed
validation.

aria-label (property)

Defines a string value that labels the current element. See related aria-
labelledby.

The purpose of aria-label is the same as that of aria-labelledby. It provides the
user with a recognizable name of the object. The most common accessibility API
mapping for a label is the accessible name property.

If the label text is visible on screen, authors SHOULD use aria-labelledby and
SHOULD NOT use aria-label. There may be instances where the name of an
element cannot be determined programmatically from the content of the element,
and there are cases where providing a visible label is not the desired user
experience. Most host languages provide an attribute that could be used to name the
element (e.g., the title attribute in HTML [HTML]), yet this could present a browser
tooltip. In the cases where a visible label or visible tooltip is undesirable, authors
MAY set the accessible name of the element using aria-label. As required by the
text alternative computation, user agents give precedence to aria-labelledby over
aria-label when computing the accessible name property.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

130 of 167 05/07/2020, 11:38

#

#

Characteristics of aria-label

Characteristic Value

Related Concepts: A related concept is title in HTML [HTML

Used in Roles: All elements of the base markup

Value: string

aria-labelledby (property)

Identifies the element (or elements) that labels the current element. See related
aria-label and aria-describedby.

The purpose of aria-labelledby is the same as that of aria-label. It provides the
user with a recognizable name of the object. The most common accessibility API
mapping for a label is the accessible name property.

If the label text is visible on screen, authors SHOULD use aria-labelledby and
SHOULD NOT use aria-label. Use aria-label only if the interface is such that it
is not possible to have a visible label on the screen. As required by the text
alternative computation, user agents give precedence to aria-labelledby over
aria-label when computing the accessible name property.

The aria-labelledby attribute is similar to aria-describedby in that both
reference other elements to calculate a text alternative, but a label should be
concise, where a description is intended to provide more verbose information.

Note: The expected spelling of this property in U.S. English is "labeledby."
However, the accessibility API features to which this property is mapped
have established the "labelledby" spelling. This property is spelled that way
to match the convention and minimize the difficulty for developers.

Characteristics of aria-labelledby

Characteristic Value

Related Concepts: A related concept is label in XForms
[XForms] and HTML [HTML].

Used in Roles: All elements of the base markup

Value: ID reference list

aria-level (property)

Defines the hierarchical level of an element within a structure.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

131 of 167 05/07/2020, 11:38

This can be applied inside trees to tree items, to headings inside a document, to
nested grids, nested tablists and to other structural items that may appear inside a
container or participate in an ownership hierarchy. The value for aria-level is an
integer greater than or equal to 1.

Levels increase with depth. If the DOM ancestry does not accurately represent the
level, authors SHOULD explicitly define the aria-level attribute.

This attribute is applied to elements that act as leaf nodes within the orientation of
the set, for example, on elements with role treeitem rather than elements with role
group. This means that multiple elements in a set may have the same value for this
attribute. Although it would be less repetitive to provide a single value on the
container, restricting this to leaf nodes ensures that there is a single way for assistive
technologies to use the attribute.

If the DOM ancestry accurately represents the level, the user agent can calculate the
level of an item from the document structure. This attribute can be used to provide
an explicit indication of the level when that is not possible to calculate from the
document structure or the aria-owns attribute. User agent support for automatic
calculation of level may vary; authors SHOULD test with user agents and assistive
technologies to determine whether this attribute is needed. If the author intends for
the user agent to calculate the level, the author SHOULD omit this attribute.

Note: In the case of a treegrid, aria-level is supported on elements
with the role row, not elements with role gridcell. At first glance, this may
seem inconsistent with the application of aria-level on treeitem
elements, but it is consistent in that the row acts as the leaf node within the
vertical orientation of the grid, whereas the gridcell is a leaf node within
the horizontal orientation of each row. Level is not supported on sets of
cells within rows, so the aria-level attribute is applied to the element with
the role row.

Characteristics of aria-level

Characteristic Value

Used in Roles: grid
heading
listitem
row
tablist

Inherits into Roles: treegrid
treeitem

Value: integer

aria-live (property)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

132 of 167 05/07/2020, 11:38

Indicates that an element will be updated, and describes the types of updates the
user agents, assistive technologies, and user can expect from the live region.

The values of this attribute are expressed in degrees of importance. When regions
are specified as polite, assistive technologies will notify users of updates but
generally do not interrupt the current task, and updates take low priority. When
regions are specified as assertive, assistive technologies will immediately notify the
user, and could potentially clear the speech queue of previous updates. Please refer
to Live Region Properties and How to Use Them ([ARIA-PRACTICES], Section
5.2.1).

Politeness levels are essentially an ordering mechanism for updates and serve as a
strong suggestion to user agents or assistive technologies. The value may be
overridden by user agents, assistive technologies, or the user. For example, if
assistive technologies can determine that a change occurred in response to a key
press or a mouse click, the assistive technologies may present that change
immediately even if the value of the aria-live attribute states otherwise.

Since different users have different needs, it is up to the user to tweak his or her
assistive technologies' response to a live region with a certain politeness level from
the commonly defined baseline. Assistive technologies may choose to implement
increasing and decreasing levels of granularity so that the user can exercise control
over queues and interruptions.

When the property is not set on an object that needs to send updates, the politeness
level is the value of the nearest ancestor that sets the aria-live attribute.

The aria-live attribute is the primary determination for the order of presentation of
changes to live regions. Implementations will also consider the default level of
politeness in a role when the aria-live attribute is not set in the ancestor chain
(e.g., log changes are polite by default). Items which are assertive will be
presented immediately, followed by polite items. User agents or assistive
technologies MAY choose to clear queued changes when an assertive change
occurs. (e.g., changes in an assertive region may remove all currently queued
changes)

Characteristics of aria-live

Characteristic Value

Used in Roles: All elements of the base markup

Value: token

Values of aria-live

Value Description

off (default): Updates to the region will not be presented
to the user unless the assistive technology is
currently focused on that region.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

133 of 167 05/07/2020, 11:38

#

#

Value Description

polite: (Background change) Assistive technologies
SHOULD announce updates at the next
graceful opportunity, such as at the end of
speaking the current sentence or when the
user pauses typing.

assertive: This information has the highest priority and
assistive technologies SHOULD notify the
user immediately. Because an interruption
may disorient users or cause them to not
complete their current task, authors
SHOULD NOT use the assertive value
unless the interruption is imperative.

aria-multiline (property)

Indicates whether a text box accepts multiple lines of input or only a single line.

Note: In most user agent implementations, the default behavior of the
ENTER or RETURN key is different between the single-line and multi-line text
fields in HTML. When user has focus in a single-line <input
type="text"> element, the keystroke usually submits the form. When user
has focus in a multi-line <textarea> element, the keystroke inserts a line
break. The WAI-ARIA textbox role differentiates these types of boxes with
the aria-multiline attribute, so authors are advised to be aware of this
distinction when designing the field.

Characteristics of aria-multiline

Characteristic Value

Used in Roles: textbox

Value: true/false

Values of aria-multiline

Value Description

true: This is a multi-line text box.

false (default): This is a single-line text box.

aria-multiselectable (property)

Indicates that the user may select more than one item from the current selectable

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

134 of 167 05/07/2020, 11:38

#

descendants.

Authors SHOULD ensure that selected descendants have the aria-selected
attribute set to true, and selectable descendant have the aria-selected attribute
set to false. Authors SHOULD NOT use the aria-selected attribute on
descendants that are not selectable.

Note: Lists and trees are examples of roles that might allow users to select
more than one item at a time.

Characteristics of aria-multiselectable

Characteristic Value

Used in Roles: grid
listbox
tablist
tree

Inherits into Roles: treegrid

Value: true/false

Values of aria-multiselectable

Value Description

true: More than one item in the widget may be
selected at a time.

false (default): Only one item can be selected.

aria-orientation (property)

Indicates whether the element and orientation is horizontal or vertical.

Characteristics of aria-orientation

Characteristic Value

Used in Roles: scrollbar
separator
slider

Value: token

Values of aria-orientation

Value Description

vertical: The element is oriented vertically.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

135 of 167 05/07/2020, 11:38

#

#

Value Description

horizontal (default): The element is oriented horizontally.

aria-owns (property)

Identifies an element (or elements) in order to define a visual, functional, or
contextual parent/child relationship between DOM elements where the DOM
hierarchy cannot be used to represent the relationship. See related aria-controls.

The value of the aria-owns attribute is a space-separated list of IDREFS that
reference one or more elements in the document by ID. The reason for adding aria-
owns is to expose a parent/child contextual relationship to assistive technologies that
is otherwise impossible to infer from the DOM.

Authors SHOULD NOT use aria-owns as a replacement for the DOM hierarchy. If
the relationship is represented in the DOM, do not use aria-owns. Authors MUST
ensure that an element's ID is not specified in more than one other element's aria-
owns attribute at any time. In other words, an element can have only one explicit
owner.

Characteristics of aria-owns

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

aria-posinset (property)

Defines an element's number or position in the current set of listitems or treeitems.
Not required if all elements in the set are present in the DOM. See related aria-
setsize.

If all items in a set are present in the document structure, it is not necessary to set
this attribute, as the user agent can automatically calculate the set size and position
for each item. However, if only a portion of the set is present in the document
structure at a given moment, this property is needed to provide an explicit indication
of an element's position.

The following example shows items 5 through 8 in a set of 16.

<h2 id="label_fruit"> Available Fruit </h2>
<ul role="listbox" aria-labelledby="label_fruit">

<li role="option" aria-setsize="16" aria-posinset="5"> apples
<li role="option" aria-setsize="16" aria-posinset="6"> bananas
<li role="option" aria-setsize="16" aria-posinset="7"> cantaloupes

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

136 of 167 05/07/2020, 11:38

#

<li role="option" aria-setsize="16" aria-posinset="8"> dates

Authors MUST set the value for aria-posinset to an integer greater than or equal
to 1, and less than or equal to the size of the set. Authors SHOULD use aria-
posinset in conjunction with aria-setsize.

Characteristics of aria-posinset

Characteristic Value

Used in Roles: listitem
option

Inherits into Roles: menuitemradio
radio
treeitem

Value: integer

aria-pressed (state)

Indicates the current "pressed" state of toggle buttons. See related aria-checked
and aria-selected.

Toggle buttons require a full press-and-release cycle to change their value.
Activating it once changes the value to true, and activating it another time changes
the value back to false. A value of mixed means that the values of more than one
item controlled by the button do not all share the same value. Examples of mixed-
state buttons are described in WAI-ARIA Authoring Practices [ARIA-PRACTICES]. If
the attribute is not present, the button is not a toggle button.

The aria-pressed attribute is similar but not identical to the aria-checked attribute.
Operating systems support pressed on buttons and checked on checkboxes.

Characteristics of aria-pressed

Characteristic Value

Used in Roles: button

Value: tristate

Values of aria-pressed

Value Description

true: The element is pressed.

false: The element supports being pressed but is
not currently pressed.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

137 of 167 05/07/2020, 11:38

#

Value Description

mixed: Indicates a mixed mode value for a tri-state
toggle button.

undefined (default): The element does not support being
pressed.

aria-readonly (property)

Indicates that the element is not editable, but is otherwise operable. See related
aria-disabled.

This means the user can read but not set the value of the widget. Readonly elements
are relevant to the user, and application authors SHOULD NOT restrict navigation to
the element or its focusable descendants. Other actions such as copying the value of
the element are also supported. This is in contrast to disabled elements, to which
applications might not allow user navigation to descendants.

Examples include:

A form element which represents a constant.
Row or column headers in a spreadsheet grid.
The result of a calculation such as a shopping cart total.

Characteristics of aria-readonly

Characteristic Value

Related Concepts: XForms [XForms] Readonly

Used in Roles: grid
gridcell
textbox

Inherits into Roles: columnheader
rowheader
treegrid

Value: true/false

Values of aria-readonly

Value Description

true: The user cannot change the value of the
element.

false (default): The user can set the value of the element.

aria-relevant (property)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

138 of 167 05/07/2020, 11:38

Indicates what user agent change notifications (additions, removals, etc.) assistive
technologies will receive within a live region. See related aria-atomic.

The attribute is represented as a space delimited list of the following values:
additions, removals, text; or a single catch-all value all.

This is used to describe semantically meaningful changes, as opposed to merely
presentational ones. For example, nodes that are removed from the top of a log are
merely removed for purposes of creating room for other entries, and the removal of
them does not have meaning. However, in the case of a buddy list, removal of a
buddy name indicates that they are no longer online, and this is a meaningful event.
In that case aria-relevant will be set to all. When the aria-relevant attribute is
not provided, the default value, additions text, indicates that text modifications
and node additions are relevant, but that node removals are irrelevant.

Note: aria-relevant values of removals or all are to be used sparingly.
Assistive technologies only need to be informed of content removal when
its removal represents an important change, such as a buddy leaving a chat
room.

Note: Text removals should only be considered relevant if one of the
specified values is 'removals' or 'all'. For example, for a text change from
'foo' to 'bar' in a live region with a default aria-relevant value, the text
addition ('bar') would be spoken, but the text removal ('foo') would not.

aria-relevant is an optional attribute of live regions. This is a suggestion to
assistive technologies, but assistive technologies are not required to present
changes of all the relevant types.

Both accessibility APIs and Document Object Model Level 2 Events [DOM] provides
events to allow assistive technologies to determine changed areas of the document.

When aria-relevant is not defined, an element's value is inherited from the
nearest ancestor with a defined value. Although the value is a token list, inherited
values are not additive; the value provided on a descendant element completely
overrides any inherited value from an ancestor element.

When text changes are denoted as relevant, user agents MUST monitor any
descendant node change that affects the text alternative computation of the live
region as if the accessible name were determined from contents (nameFrom:
contents). For example, a text change would be triggered if the HTML alt attribute
of a contained image changed. However, no change would be triggered if there was
a text change to a node outside the live region, even if that node was referenced (via
aria-labelledby) by an element contained in the live region.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

139 of 167 05/07/2020, 11:38

#

Characteristics of aria-relevant

Characteristic Value

Used in Roles: All elements of the base markup

Value: token list

Values of aria-relevant

Value Description

additions: Element nodes are added to the DOM within
the live region.

removals: Text or element nodes within the live region
are removed from the DOM.

text: Text is added to any DOM descendant nodes
of the live region.

all: Equivalent to the combination of all values,
"additions removals text".

additions text (default): Equivalent to the combination of values,
"additions text".

aria-required (property)

Indicates that user input is required on the element before a form may be submitted.

For example, if the user needs to fill in an address field, the author will need to set
the field's aria-required attribute to true.

Note: The fact that the element is required is often presented visually (such
as a sign or symbol after the widget). Using the aria-required attribute
allows the author to explicitly convey to assistive technologies that an
element is required.

Unless an exactly equivalent native attribute is available, host languages SHOULD
allow authors to use the aria-required attribute on host language form elements
that require input or selection by the user.

Characteristics of aria-required

Characteristic Value

Related Concepts: HTML 5 required

Used in Roles: combobox
gridcell
listbox
radiogroup

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

140 of 167 05/07/2020, 11:38

#

Characteristic Value
spinbutton
textbox
tree

Inherits into Roles: columnheader
rowheader
treegrid

Value: true/false

Values of aria-required

Value Description

true: Users need to provide input on an element
before a form is submitted.

false (default): User input is not necessary to submit the
form.

aria-selected (state)

Indicates the current "selected" state of various widgets. See related aria-checked
and aria-pressed.

This attribute is used with single-selection and multiple-selection widgets:

1. Single-selection containers where the currently focused item is not selected.
The selection normally follows the focus, and is managed by the user agent.

2. Multiple-selection containers. Authors SHOULD ensure that any selectable
descendant of a container in which the aria-multiselectable attribute is
true specifies a value of either true or false for the aria-selected attribute.

Any explicit assignment of aria-selected takes precedence over the implicit
selection based on focus. If no DOM element in the widget is explicitly marked as
selected, assistive technologies MAY convey implicit selection which follows the
keyboard focus of the managed focus widget. If any DOM element in the widget is
explicitly marked as selected, the user agent MUST NOT convey implicit selection
for the widget.

Characteristics of aria-selected

Characteristic Value

Used in Roles: gridcell
option
row
tab

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

141 of 167 05/07/2020, 11:38

#

Characteristic Value

Inherits into Roles: columnheader
menuitemradio
radio
rowheader
treeitem

Value: true/false/undefined

Values of aria-selected

Value Description

true: The selectable element is selected.

false: The selectable element is not selected.

undefined (default): The element is not selectable.

aria-setsize (property)

Defines the number of items in the current set of listitems or treeitems. Not required
if all elements in the set are present in the DOM. See related aria-posinset.

This property is marked on the members of a set, not the container element that
collects the members of the set. To orient the user by saying an element is "item X
out of Y," the assistive technologies would use X equal to the aria-posinset
attribute and Y equal to the aria-setsize attribute.

If all items in a set are present in the document structure, it is not necessary to set
this property, as the user agent can automatically calculate the set size and position
for each item. However, if only a portion of the set is present in the document
structure at a given moment (in order to reduce document size), this property is
needed to provide an explicit indication of set size.

The following example shows items 5 through 8 in a set of 16.

<h2 id="label_fruit"> Available Fruit </h2>
<ul role="listbox" aria-labelledby="label_fruit">

<li role="option" aria-setsize="16" aria-posinset="5"> apples
<li role="option" aria-setsize="16" aria-posinset="6"> bananas
<li role="option" aria-setsize="16" aria-posinset="7"> cantaloupes
<li role="option" aria-setsize="16" aria-posinset="8"> dates

Authors SHOULD use aria-setsize in conjunction with aria-posinset.

Characteristics of aria-setsize

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

142 of 167 05/07/2020, 11:38

#

#

Characteristic Value

Used in Roles: listitem
option

Inherits into Roles: menuitemradio
radio
treeitem

Value: integer

aria-sort (property)

Indicates if items in a table or grid are sorted in ascending or descending order.

Authors SHOULD only apply this property to table headers or grid headers. If the
property is not provided, there is no defined sort order. For each table or grid,
authors SHOULD apply aria-sort to only one header at a time.

Characteristics of aria-sort

Characteristic Value

Used in Roles: columnheader
rowheader

Value: token

Values of aria-sort

Value Description

ascending: Items are sorted in ascending order by this
column.

descending: Items are sorted in descending order by this
column.

none (default): There is no defined sort applied to the
column.

other: A sort algorithm other than ascending or
descending has been applied.

aria-valuemax (property)

Defines the maximum allowed value for a range widget.

A range widget may start with a given value, which can be increased until a
maximum value, defined by this property, is reached.

Declaring the minimum and maximum values allows alternate devices to react to

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

143 of 167 05/07/2020, 11:38

#

arrow keys, validate the current value, or simply let the user know the size of the
range. If the aria-valuenow has a known maximum and minimum, the author
SHOULD provide properties for aria-valuemax and aria-valuemin. Authors MUST
ensure the value of aria-valuemax is greater than or equal to the value of aria-
valuemin.

Characteristics of aria-valuemax

Characteristic Value

Related Concepts: XForms [XForms] range

Used in Roles: range

Inherits into Roles: progressbar
scrollbar
slider
spinbutton

Value: number

aria-valuemin (property)

Defines the minimum allowed value for a range widget.

A range widget may start with a given value, which can be decreased until a
minimum value, defined by this property, is reached.

Declaring the minimum and maximum values allows alternate devices to react to
arrow keys, validate the current value, or simply let the user know the size of the
range. If the aria-valuenow has a known maximum and minimum, the author
SHOULD provide properties for aria-valuemax and aria-valuemin.

Authors MUST ensure the value of aria-valuemin is less than or equal to the value
of aria-valuemax.

Characteristics of aria-valuemin

Characteristic Value

Related Concepts: XForms [XForms] range

Used in Roles: range

Inherits into Roles: progressbar
scrollbar
slider
spinbutton

Value: number

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

144 of 167 05/07/2020, 11:38

#aria-valuenow (property)

Defines the current value for a range widget. See related aria-valuetext.

This property is used, for example, on a range widget such as a slider or progress
bar.

If the current value is not known (for example, an indeterminate progress bar), the
author SHOULD NOT set the aria-valuenow attribute. If the aria-valuenow
attribute is absent, no information is implied about the current value. If the aria-
valuenow has a known maximum and minimum, the author SHOULD provide
properties for aria-valuemax and aria-valuemin.

The value of aria-valuenow is a decimal number. If the range is a set of numeric
values, then aria-valuenow is one of those values. For example, if the range is [0,
1], a valid aria-valuenow is 0.5. A value outside the range, such as -2.5 or 1.1, is
invalid.

For progressbar elements and scrollbar elements, assistive technologies
SHOULD render the value to users as a percent, calculated as a position on the
range from aria-valuemin to aria-valuemax if both are defined, otherwise the
actual value with a percent indicator. For elements with role slider and
spinbutton, assistive technologies SHOULD render the actual value to users.

When the rendered value cannot be accurately represented as a number, authors
SHOULD use the aria-valuetext attribute in conjunction with aria-valuenow to
provide a user-friendly representation of the range's current value. For example, a
slider may have rendered values of small, medium, and large. In this case, the
values of aria-valuenow could range from 1 through 3, which indicate the position
of each value in the value space, but the aria-valuetext would be one of the
strings: small, medium, or large.

Note: If aria-valuetext is specified, assistive technologies render that
instead of the value of aria-valuenow.

Characteristics of aria-valuenow

Characteristic Value

Related Concepts: XForms [XForms] range, start

Used in Roles: range

Inherits into Roles: progressbar
scrollbar
slider
spinbutton

Value: number

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

145 of 167 05/07/2020, 11:38

#

#

aria-valuetext (property)

Defines the human readable text alternative of aria-valuenow for a range widget.

This property is used, for example, on a range widget such as a slider or progress
bar.

If the aria-valuetext attribute is set, authors SHOULD also set the aria-
valuenow attribute, unless that value is unknown (for example, on an indeterminate
progressbar).

Authors SHOULD only set the aria-valuetext attribute when the rendered value
cannot be meaningfully represented as a number. For example, a slider may have
rendered values of small, medium, and large. In this case, the values of aria-
valuenow could range from 1 through 3, which indicate the position of each value in
the value space, but the aria-valuetext would be one of the strings: small,
medium, or large. If the aria-valuetext attribute is absent, the assistive
technologies will rely solely on the aria-valuenow attribute for the current value.

If aria-valuetext is specified, assistive technologies SHOULD render that value
instead of the value of aria-valuenow.

Characteristics of aria-valuetext

Characteristic Value

Related Concepts: XForms [XForms] range, start

Used in Roles: range

Inherits into Roles: progressbar
scrollbar
slider
spinbutton

Value: string

7. Implementation in Host Languages

This section is normative.

The roles, states, and properties defined in this specification do not form a complete web
language or format. They are intended to be used in the context of a host language. This
section discusses how host languages are to implement WAI-ARIA, to ensure that the
markup specified here will integrate smoothly and effectively with the host language
markup.

Although markup languages look alike superficially, they do not share language definition
infrastructure. To accommodate differences in language-building approaches, the
requirements are both general and modularization-specific. While allowing for differences
in how the specifications are written, the intent is to maintain consistency in how the WAI-

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

146 of 167 05/07/2020, 11:38

#

#

ARIA information looks to authors and how it is manipulated in the DOM by scripts.

WAI-ARIA roles, states, and properties are implemented as attributes of elements. Roles
are applied by placing their names among the tokens appearing in the value of a host-
language-provided role attribute. States and properties each get their own attribute, with
values as defined for each particular state or property in this specification. The name of
the attribute is the aria-prefixed name of the state or property.

7.1. Role Attribute

An implementing host language will provide an attribute with the following characteristics:

The attribute name MUST be role;
The attribute value MUST allow a token list as the value;
The appearance of the name literal of any concrete WAI-ARIA role as one of these
tokens MUST NOT in and of itself make the attribute value illegal in the host-
language syntax; and
The first name literal of a non-abstract WAI-ARIA role in the list of tokens in the role
attribute defines the role according to which the user agent MUST process the
element. User Agent processing for roles is defined in the WAI-ARIA User Agent
Implementation Guide [ARIA-IMPLEMENTATION].

7.2. State and Property Attributes

An implementing host language MUST allow attributes with the following characteristics:

The attribute name is the name of any state or property identified in the Supported
States and Properties section, such as aria-busy, aria-selected, aria-
activedescendant, aria-valuetext;
The syntax does NOT prevent the attribute from appearing anywhere that it is
applicable, as specified in this specification;
When these attributes appear in a document instance, the attributes will be
processed as defined in this specification.

Host languages that support XML Namespaces [XML-NAMES] MAY require that WAI-
ARIA attributes be used with a namespace. In this case, the namespace for WAI-ARIA
state and property attributes MUST be http://www.w3.org/ns/wai-aria/. To use WAI-
ARIA in host languages that do not explicitly describe support for it, authors SHOULD
use this namespace as well, if the host language supports namespaces and there is
expectation that user agents will recognize the WAI-ARIA namespace. The namespace
prefix is not defined by this specification but generally is expected to be "aria".

Note: The WAI-ARIA state and property attributes have a naming convention
such that they all begin with the string "aria-". This is not a namespace prefix,
it is a part of the state or property name. Therefore, when using WAI-ARIA
states and properties with namespace prefixes, the complete attribute name will
be like "aria:aria-foo".

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

147 of 167 05/07/2020, 11:38

#

#

Some host languages do not use namespaces with WAI-ARIA state and property
attributes, either because the host language does not support namespaces or because
the designers wish to incorporate WAI-ARIA into the core feature set. In these host
languages, the namespace name for these attributes has no value. The names of these
attributes do not have a prefix offset by a colon; in the terms of namespaces they are
unprefixed attribute names. The ECMAScript binding of the DOM interface
getAttributeNS for example, treats an empty string ("") as representing this condition,
so that both getAttribute("aria-busy") and getAttributeNS("", "aria-busy")
access the same aria-busy attribute in the DOM.

Note: According to the requirements of this section, some user agents recognize
WAI-ARIA state and property attributes with namespaces, some without
namespaces, and some might recognize both. Authors are advised to be aware
of which form is supported for the host language they are using. Unless the host
language and supporting user agents explicitly indicate that the namespace is
required, authors are advised to use the attribute without namespaces. Even
user agents that support namespaces generally do not publish namespaced
WAI-ARIA states and properties to accessibility APIs. In particular, current
implementations of HTML, including XHTML, do not support this namespace.

7.3. Focus Navigation

An implementing host language MUST provide support for the author to make all
interactive elements focusable, that is, any renderable or event-receiving elements. An
implementing host language MUST provide a facility to allow web authors to define
whether these focusable, interactive elements appear in the default tab navigation order.
The tabindex attribute in HTML 5 is an example of one implementation.

7.4. Implicit WAI-ARIA Semantics

WAI-ARIA is designed to provide semantic information about objects when host
languages lack native semantics for the object. WAI-ARIA is designed, however, to
provide additional semantics for many host languages. Furthermore, host languages over
time can evolve and provide new native features that correspond to WAI-ARIA features.
Therefore, there are many situations in which WAI-ARIA semantics are redundant with
host language semantics.

These host language features can be viewed as having "implicit WAI-ARIA semantics".
User agent processing of features with implicit WAI-ARIA semantics would be similar to
the processing for the WAI-ARIA feature. The processing might not be identical because
of lexical differences between the host language feature and the WAI-ARIA feature, but
generally the user agent would expose the same information to the accessibility API.
Features with implicit WAI-ARIA semantics satisfy WAI-ARIA structural requirements
such as required owned elements, required states and properties, etc. and do not require
explicit WAI-ARIA semantics to be provided.

For example, if an element with the functionality already exists, such as a checkbox or
radio button, use the native semantics of the host language. WAI-ARIA markup is only

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

148 of 167 05/07/2020, 11:38

#

intended to be used to enhance the native semantics (e.g., indicating that the element is
required with aria-required), or to change the semantics to a different purpose form the
standard functionality of the element.

Implicit WAI-ARIA semantics affect the conflict resolution procedures in the following
section, Conflicts with Host Language Semantics. Therefore, implicit WAI-ARIA
semantics need to be defined in a normative specification, such as the host language
specification or the WAI-ARIA User Agent Implementation Guide [ARIA-
IMPLEMENTATION].

7.5. Conflicts with Host Language Semantics

WAI-ARIA roles, states, and properties are intended to add semantic information when
native host language elements with these semantics are not available, and are generally
used on elements that have no native semantics of their own. They can also be used on
elements that have similar but non-identical semantics (for example, a nested list could
be used to represent a tree structure). This method can be part of a fallback strategy for
older browsers that have no WAI-ARIA implementation, or because native presentation of
the repurposed element reduces the amount of style and/or script needed. Except for the
cases outlined below, user agents MUST always use the WAI-ARIA semantics to define
how it exposes the element to accessibility APIs, rather than using the host language
semantics.

In addition to these normal situations in which WAI-ARIA is expected to override native
semantics, there are elements that are inappropriate to override with WAI-ARIA. This
could be because identical host language semantics exist, so WAI-ARIA is not needed, or
because semantics from WAI-ARIA directly conflict with host language semantics. When
a feature in the host language with identical role semantics and values is available, and
the author has no compelling reason to avoid using the host language feature, authors
SHOULD use the host language features rather than repurpose other elements with WAI-
ARIA.

Host languages can have features that have implicit WAI-ARIA semantics corresponding
to roles. When a WAI-ARIA role is provided, user agents MUST use the semantic of the
WAI-ARIA role for processing, not the native semantic, unless the role requires WAI-ARIA
states and properties whose attributes are explicitly forbidden on the native element by
the host language. Values for roles do not conflict in the same way as values for states
and properties (for example, the HTML 'checked' attribute and the 'aria-checked' attribute
could have conflicting values), and authors are expected to have valid reason to provide
a WAI-ARIA role even on elements that would not normally be repurposed.

When WAI-ARIA states and properties correspond to host language features that have
the same implicit WAI-ARIA semantic, it can be particularly problematic to use the WAI-
ARIA feature. If the WAI-ARIA feature and the host language feature are both provided
but their values are not kept in sync, user agents and assistive technologies cannot know
which value to use. Therefore, to prevent providing conflicting states and properties to
assistive technologies, host languages MUST explicitly declare where the use of WAI-
ARIA attributes on each host language element conflicts with native attributes for that
element. When a host language declares a WAI-ARIA attribute to be in direct semantic
conflict with a native attribute for a given element, user agents MUST ignore the WAI-

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

149 of 167 05/07/2020, 11:38

#

ARIA attribute and instead use the host language attribute with the same implicit
semantic.

Host languages MAY document features that cannot be overridden with WAI-ARIA (these
are called "strong native semantics"). These can be features that have implicit WAI-ARIA
semantics, as well as features where the processing would be uncertain if the semantics
were changed with WAI-ARIA. Conformance checkers MAY signal an error or warning
when a WAI-ARIA role is used on elements with strong native semantics, but as
described above, user agents MUST still use the value of the the semantic of the WAI-
ARIA role when exposing the element to accessibility APIs.

7.6. State and Property Attribute Processing

State and property attributes are included in host languages, and therefore syntax for
representation of their value types is governed by the host language. For each of the
value types defined in Value, an appropriate value type from the host language is used.
Recommended correspondences between WAI-ARIA value types and various host
language value types are listed in Mapping WAI-ARIA Value types to languages. This is a
non-normative mapping in order to accommodate new host languages supporting WAI-
ARIA.

The list value types—ID reference list and token list—allow more than one value of the
given type to be provided. The values are separated by delimiter characters recognized
by the host language for list attributes, such as space characters, commas, etc. Some
languages may require a specific, single delimiter, while others may allow various
delimiters.

Global states and properties are supported on any element in the host language.
However, authors MUST only use non-global states and properties on elements with a
role supporting the state or property; either defined as an explicit WAI-ARIA role, or as
defined by the host language semantic matching an appropriate WAI-ARIA role. When a
role attribute is added to an element, the semantics and behavior of the element,
including support for WAI-ARIA states and properties, are augmented or overridden by
the role behavior. User agents MUST ignore non-global states and properties used on an
element without a role supporting the state or property; either defined as an explicit WAI-
ARIA role, or as defined by the host language semantic matching an appropriate WAI-
ARIA role. For example, the aria-valuetext attribute may be used on a progress
element in HTML, without requiring the author to explicitly and redundantly specify the
role as progressbar.

When WAI-ARIA roles are used, supported states and properties that are not present in
the DOM are treated according to their default value, unless they are required. For token
states and properties, an attribute value that is a zero-length string ("") also corresponds
to the default value. Therefore, user agents SHOULD treat token state and property
attributes with a value of "" the same as they treat an absent attribute. Normally this
corresponds to the default value (usually "undefined"), but if it is a required attribute, they
signal an error (because a null value is the same as failing to provide the required
attribute).

8. Conformance

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

150 of 167 05/07/2020, 11:38

#

#

#

This section is normative.

8.1. Non-interference with the Host Language

WAI-ARIA processing by the user agent MUST NOT interfere with the normal operation
of the built-in features of the host language.

If a CSS selector includes a WAI-ARIA attribute (e.g., input[aria-invalid="true"]),
user agents MUST update the visual display of any elements matching (or no longer
matching) the selector any time the attribute is added/changed/removed in the DOM. The
user agent MAY alter the mapping of the host language features into an accessibility API,
but the user agent MUST NOT alter the DOM in order to remap WAI-ARIA markup into
host language features.

8.2. All WAI-ARIA in DOM

A conforming user agent which implements a document object model that does not
conform to the W3C DOM specification MUST include the content attribute for role and its
WAI-ARIA role values, as well as the WAI-ARIA States and Properties in the DOM as
specified by the author, even though processing may affect how the elements are
exposed to accessibility APIs. Doing so ensures that each role attribute and all WAI-ARIA
states and properties, including their values, are in the document in an unmodified form
so other tools, such as assistive technologies, can access them. A conforming W3C
DOM meets this criteria.

8.3. Assistive Technology Notifications Communicated to Web
Applications

Assistive technologies, such as voice recognition systems and alternate input devices for
users with mobility impairments, require the ability to control a web application in a
device-independent way. WAI-ARIA states and properties reflect the current state of rich
internet application components. The ability for assistive technologies to notify web
application of necessary changes is essential because it allows these alternative input
solutions to control an application without being dependent on the standard input device
which the user is unable to effectively control directly.

User agents MUST provide a method to notify the web application when a change occurs
to states or properties in the system accessibility API. Likewise, web application authors
SHOULD update the web application accordingly when notified of a change request from
the user agent or assistive technology.

Note: Many state and properties can be changed by assistive technologies
through existing accessibility APIs by responding to a default action event. For
example, the aria-selected state of a tab in a tabpanel can be changed by
triggering the default action on the element.

8.4. Conformance Checkers

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

151 of 167 05/07/2020, 11:38

#

#

#

Any application or script verifying document conformance or validity SHOULD include a
test for all of the normative author requirements in this specification. If testing for a given
requirement, conformance checkers MUST issue an error if an author "MUST"
requirement isn't met, and MUST issue a warning if an author "SHOULD" requirement
isn't met.

9. References

This section is normative.

9.1. Normative References

Resources referenced normatively are considered part of this specification.
Implementations of this specification MUST implement the requirements of these
resources.

[ARIA-IMPLEMENTATION]
WAI-ARIA 1.0 User Agent Implementation Guide. J. Scheuhammer, A. Snow-
Weaver, M. Cooper, A. Leventhal, Editors, W3C Recommendation, 20 March 2014.
This version of WAI-ARIA User Agent Implementation Guide is available at
http://www.w3.org/TR/2014/REC-wai-aria-implementation-20140320/. Latest
version of WAI-ARIA User Agent Implementation available at http://www.w3.org
/TR/wai-aria-implementation/.

9.2. Informative References

Resources referenced informatively provide useful information relevant to this document,
but do not comprise a part of its requirements.

[ARIA-PRACTICES]
WAI-ARIA Authoring Practices. J. Scheuhammer, M. Cooper, L. Pappas, R.
Schwerdtfeger, Editors, W3C Working Draft (work in progress), 7 March 2013. This
version of WAI-ARIA 1.0 Authoring Practices is available at http://www.w3.org
/TR/2013/WD-wai-aria-practices-20130307/. Latest version of WAI-ARIA Authoring
Practices available at http://www.w3.org/TR/wai-aria-practices/.

[ARIA-PRIMER]
WAI-ARIA 1.0 Primer. L. Pappas, R. Schwerdtfeger, M. Cooper, Editors, W3C
Working Draft (work in progress), 16 September 2010. This version of WAI-ARIA
Primer is available at http://www.w3.org/TR/2010/WD-wai-aria-primer-20100916/.
Latest version of WAI-ARIA Primer available at http://www.w3.org/TR/wai-aria-
primer/.

[ARIA-ROADMAP]
Roadmap for Accessible Rich Internet Applications (WAI-ARIA Roadmap), R.
Schwerdtfeger, Editor, W3C Working Draft (work in progress), 4 February 2008.
This version of WAI-ARIA Roadmap is available at http://www.w3.org/TR/2008/WD-
wai-aria-roadmap-20080204/. Latest version of WAI-ARIA Roadmap available at
http://www.w3.org/TR/wai-aria-roadmap/.

[ATK]
Gnome Accessibility Toolkit 2.10.0. Available at https://developer.gnome.org

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

152 of 167 05/07/2020, 11:38

/atk/2.10/.
[AT-SPI]

Assistive Technology-Service Provider Interface 2.10. Available at
https://developer.gnome.org/libatspi/2.10/.

[AXAPI]
The Mac OS X Accessibility Protocol Mac OS 10.9. Available at:
https://developer.apple.com/library/mac/documentation/Cocoa/Reference
/ApplicationKit/Protocols/NSAccessibility_Protocol/Reference/Reference.html.

[CSS]
Cascading Style Sheets, Level 2 Revision 1 (CSS2) Specification, B. Bos, T. Çelic,
I. Hickson, H. Lie, Editors, W3C Recommendation, 12 May 1998, http://www.w3.org
/TR/2011/REC-CSS2-20110607/. Latest version of CSS2 available at
http://www.w3.org/TR/CSS2/.

[DOM]
Document Object Model (DOM) Level 2 Core Specification, L. Wood, G. Nicol, A.
Le Hors, J. Robie, S. Byrne, P. Le Hégaret, M. Champion, Editors, W3C
Recommendation, 13 November 2000, http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113/. Latest version of DOM Core available at
http://www.w3.org/TR/DOM-Level-2-Core/.

[HTML]
HTML 4.01 Specification, I. Jacobs, A. Le Hors, D. Raggett, Editors, W3C
Recommendation, 24 December 1999, http://www.w3.org/TR/1999/REC-
html401-19991224/. Latest version of HTML 4.01 available at http://www.w3.org
/TR/html401/.

[HTML5]
HTML 5, R. Berjon, S. Faulkner, T. Leithead, E. Doyle Navara, E. O'Connor, S.
Pfeiffer, I. Hickson, Editors, W3C Candidate Recommendation (work in progress), 4
February 2014, http://www.w3.org/TR/2014/CR-html5-20140204/. Latest version of
HTML 5 available at http://www.w3.org/TR/html5/.

[IA2]
IAccessible2 1.3. Available at http://www.linuxfoundation.org/collaborate
/workgroups/accessibility/iaccessible2.

[MSAA]
Microsoft Active Accessibility (MSAA) 2.0. Available at http://msdn.microsoft.com
/en-us/library/ms697707.aspx.

[MATHML]
Mathematical Markup Language (MathML) Version 3.0, D. Carlisle, P. Ion, R. Miner,
Editors, W3C Recommendation, 21 October 2010, http://www.w3.org/TR/2010
/REC-MathML3-20101021/. Latest version available at http://www.w3.org
/TR/MathML3/.

[OWL]
OWL 2 Web Ontology Language Overview (Second Edition), W3C
Recommendation, 11 December 2012, http://www.w3.org/TR/2012/REC-owl2-
overview-20121211/. Latest version of OWL Overview available at
http://www.w3.org/TR/owl-overview/.

[RDF]
RDF 1.1 Concepts and Abstract Syntax, R. Cyganiak, D. Wood, and M. Lanthaler,
Editors, W3C Recommendation, 25 February 2014, http://www.w3.org/TR/2014
/REC-rdf11-concepts-20140225/. Latest version of RDF 1.1 Concepts and Abstract
Syntax available at http://www.w3.org/TR/rdf11-concepts/.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

153 of 167 05/07/2020, 11:38

[RDFS]
RDF Schema 1.1, D. Brickley, R. V. Guha, Editors, W3C Recommendation, 25
February 2014, http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. Latest
version of RDF Schema available at http://www.w3.org/TR/rdf-schema/.

[RFC2119]
Key words for use in RFCs to indicate requirement levels, RFC 2119, S. Bradner,
March 1997. Available at: http://www.rfc-editor.org/rfc/rfc2119.txt.

[ROLE]
Role Attribute, S. McCarron, Editor, W3C Recommendation, 28 March 2013,
http://www.w3.org/TR/2013/REC-role-attribute-20130328/. Latest version of Role
Attribute available at http://www.w3.org/TR/role-attribute/.

[SMIL]
Synchronized Multimedia Integration Language (SMIL) 3.0 Specification, W3C
Recommendation, 1 December 2008, http://www.w3.org/TR/2008/REC-
SMIL3-20081201/. Latest version of SMIL available at http://www.w3.org/TR/SMIL/.

[SVG]
Scalable Vector Graphics (SVG) 1.1 Specification (Second Edition), E. Dahlström ,
P. Dengler, A. Grasso, C. Lilly, C. McCormack, D. Schepers, J. Watt, J. Ferraiolo, 藤
沢, D. Jackson, Editors, W3C Recommendation, 16 August 2011, http://www.w3.org
/TR/2011/REC-SVG11-20110816/. Latest version of SVG available at
http://www.w3.org/TR/SVG11/.

[UAAG]
User Agent Accessibility Guidelines 1.0, I. Jacobs, J. Gunderson, E. Hansen,
Editors, W3C Recommendation, 17 December 2002, http://www.w3.org/TR/2002
/REC-UAAG10-20021217/. Latest version available at http://www.w3.org
/TR/UAAG10/.

[UIA-ARIA]
UI Automation for W3C Accessible Rich Internet Applications Specification.
Available at http://msdn.microsoft.com/en-us/library/ee684013%28VS.85%29.aspx.

[WCAG20]
Web Content Accessibility Guidelines 2.0, B. Caldwell, G. Vanderheiden, L. Guarino
Reid, M. Cooper, Editors, W3C Recommendation, 11 December 2008,
http://www.w3.org/TR/2008/REC-WCAG20-20081211/. Latest version of WCAG 2.0
available at http://www.w3.org/TR/WCAG20/.

[XFORMS]
XForms 1.1, J. Boyer, Editor, W3C Recommendation, 20 October 2009,
http://www.w3.org/TR/2009/REC-xforms-20091020/. Latest version of XForms
available at http://www.w3.org/TR/xforms/.

[XHTML]
XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition), S.
Pemberton, Editor, W3C Recommendation, 1 August 2002, http://www.w3.org
/TR/2002/REC-xhtml1-20020801/. Latest version of XHTML 1.0 available at
http://www.w3.org/TR/xhtml1/.

[XML]
Extensible Markup Language (XML) 1.0 (Fifth Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, E. Maler, F. Yergeau, Editors, W3C Recommendation, 26
November 2008, http://www.w3.org/TR/2008/REC-xml-20081126/. Latest version of
XML available at http://www.w3.org/TR/xml/.

[XML-NAMES]
Namespaces in XML 1.0 (Third Edition), T. Bray, D. Hollander, A. Layman, R. Tobin,

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

154 of 167 05/07/2020, 11:38

#

#

#

#

#

H. Thompson, Editors, W3C Recommendation, 8 December 2009,
http://www.w3.org/TR/2009/REC-xml-names-20091208/. Latest version of XML
Namespaces available at http://www.w3.org/TR/xml-names/.

[XSD]
XML Schema Part 0: Primer Second Edition, D. C. Fallside, P. Walmsley, Editors,
W3C Recommendation, 28 October 2004, http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028/. Latest version of XML Schema Primer available at
http://www.w3.org/TR/xmlschema-0/.

10. Appendices

This section is informative.

10.1. Schemata

WAI-ARIA roles, states, and properties are available in a number of machine-readable
formats to support validation of content using WAI-ARIA attributes. WAI-ARIA is not
finalized, however, so these files are subject to change without notice.

It is not appropriate to use these document types for live content. These are made
available only for download, to support local use in development, evaluation, and
validation tools. Using these versions directly from the W3C server could cause
automatic blockage, preventing them from loading.

If it is necessary to use schemata in content, follow guidelines to avoid excessive DTD
traffic. For instance, use caching proxies to avoid fetching the schema each time it is
used, or ensure software uses a local cache, such as with XML catalogs.

10.1.1. Roles Implementation

The taxonomy for WAI-ARIA expressed in RDF is available from http://www.w3.org
/WAI/ARIA/schemata/aria-1.rdf.

10.1.2. WAI-ARIA Attributes Module

This module declares the WAI-ARIA attributes as a module that can be included in a
modularized DTD. A sample XHTML DTD using this module follows. Note the WAI-ARIA
attributes are in no namespace, and the attribute name begins with "aria-" to reduce the
likelihood of collision with existing attributes.

This module is available from http://www.w3.org/MarkUp/DTD/aria-attributes-1.mod.

10.1.3. XHTML plus WAI-ARIA DTD

This DTD extends XHTML 1.1 and adds the WAI-ARIA state and property attributes to all
its elements. In order to provide broader keyboard support and conform with the Focus
Navigation section above, it also adds the tabindex attribute to a wider set of elements.

This is not a formal document type and may be obsoleted by future formal XHTML DTDs

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

155 of 167 05/07/2020, 11:38

#

that support WAI-ARIA.

The XHTML 1.1 plus WAI-ARIA DTD is available from http://www.w3.org/WAI/ARIA
/schemata/xhtml-aria-1.dtd.

Documents written using this XHTML Family markup language can be validated using the
above DTD. If a document author wants to facilitate such validation, they can include the
following declaration at the top of their document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+ARIA 1.0//EN"
 "http://www.w3.org/WAI/ARIA/schemata/xhtml-aria-1.dtd">

However, note that when this DOCTYPE is present in a document, most user agents
treat the document as generic XML rather than HTML. This causes them to be unable to
support named character entities defined by the DTD (e.g., ©). Therefore, authors
need to avoid use of named entities outside of the predefined entities in XML ([XML],
Section 4.6).

To avoid the above problem, authors can omit the above DOCTYPE statement. This
causes user agents to treat the document as generic HTML with named character entity
support as well as built-in ARIA support. However, it causes user agents to enter "quirks"
mode which affects CSS rendering, and causes conformance checkers to fail the
document due to the added ARIA attributes.

To avoid the issues of named character entity support and quirks mode, authors can
instead use the following generic DOCTYPE declaration for HTML:

<!DOCTYPE html>

However, this still does not guarantee that documents will be validated by conformance
checkers.

10.1.4. SGML Open Catalog Entry for XHTML+ARIA

This section contains the SGML Open Catalog-format definition [CATALOG] of the public
identifiers for XHTML+ARIA 1.0.

-- .. --
-- File catalog .. --

-- XHTML+ARIA Catalog Data File

 Revision: $Revision: 1.3 $

 See "Entity Management", SGML Open Technical Resolution 9401 for detailed
 information on supplying and using catalog data. This document is available
 from OASIS at URL:

 <http://www.oasis-open.org/html/tr9401.html>

--

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

156 of 167 05/07/2020, 11:38

#

#

-- .. --
-- SGML declaration associated with XHTML --

OVERRIDE YES

SGMLDECL "xml1.dcl"

-- :: --

-- XHTML+ARIA modules .. --

PUBLIC "-//W3C//DTD XHTML+ARIA 1.0//EN" "xhtml-aria-1.dtd"

PUBLIC "-//W3C//ENTITIES XHTML ARIA Attributes 1.0//EN" "aria-attributes-1.mod"

-- End of catalog data ... --
-- .. --

10.1.5. WAI-ARIA Attributes XML Schema Module

This module declares the WAI-ARIA attributes as an XML Schema module that can be
included in a modularized schema. Note the WAI-ARIA attributes are in no namespace,
and the attribute name begins with "aria-" to reduce the likelihood of collision with existing
attributes.

This module is available from http://www.w3.org/MarkUp/SCHEMA/aria-attributes-1.xsd.

10.1.6. HTML 4.01 plus WAI-ARIA DTD

This standalone DTD adds WAI-ARIA state and property attributes to all elements in
HTML 4.01, as well as a role attribute. In order to provide broader keyboard support, it
also adds the tabindex attribute to a wider set of elements.

The DTD is based on the HTML 4.01 Transitional DTD, and includes all entity references
needed to make it a standalone file. This is not an official W3C DTD and should be
considered a derivative work of HTML 4.01.

Documents written using this markup language can be validated using the above DTD. If
a document author wants to facilitate such validation, they can include the following
declaration at the top of their document:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML+ARIA 1.0//EN"
 "http://www.w3.org/WAI/ARIA/schemata/html4-aria-1.dtd">

However, note that when this DOCTYPE is present in a document, most user agents
treat the document as generic XML rather than HTML. This causes them to be unable to
support named character entities defined by the DTD (e.g., ©). Therefore, authors
need to avoid use of named entities outside of the predefined entities in XML ([XML],
Section 4.6).

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

157 of 167 05/07/2020, 11:38

#

To avoid the above problem, authors can omit the above DOCTYPE statement. This
causes user agents to treat the document as generic HTML with named character entity
support as well as built-in ARIA support. However, it causes user agents to enter "quirks"
mode which affects CSS rendering, and causes conformance checkers to fail the
document due to the added ARIA attributes.

To avoid the issues of named character entity support and quirks mode, authors can
instead use the following generic DOCTYPE declaration for HTML:

<!DOCTYPE html>

However, this still does not guarantee that documents will be validated by conformance
checkers.

The HTML Working Group is incorporating WAI-ARIA into HTML 5. Official support for
WAI-ARIA in HTML will be provided in that specification. This DTD is made available only
as a bridging solution for applications requiring DTD validation but not using HTML 5.

This module is available from http://www.w3.org/WAI/ARIA/schemata/html4-aria-1.dtd.

10.2. Mapping WAI-ARIA Value types to languages

Editorial note: The HTML 5 column of the table below is expected to be moved to the
HTML 5 specification and become normative for that specification. Comments about
ARIA lexicial processing in HTML 5 should be taken to the HTML Working Group,
referencing ISSUE-129.

Editorial note: The suggested mappings for true/false values in HTML 5 use Keyword
and enumerated attributes with allowed values of "true" and "false", instead of using
the HTML 5 boolean value type. @@ can't rely on attribute absence because of
default value in true/false/undefined case.

The table below provides recommended mappings between WAI-ARIA state and property
types and attribute types from HTML 5, XML Schema Datatypes [XSD], SVG, and SGML.

Languages not listed below might have appropriate value types defined in the language.
If they do not, we recommend XML Schema Datatypes for general purpose XML
languages. Documents using DTDs instead of schemas will not be able to validate
automatically and require additional processing on WAI-ARIA attributes.

WAI-ARIA
type

HTML 5 XML Schema

true/false Keyword and enumerated
attributes with allowed values of
"true" and "false"

boolean

true/false
/undefined

Keyword and enumerated
attributes with allowed values of
"true", "false", and "undefined"

NMTOKEN with an enumeration
constraint allowing values of "true",
"false", and "undefined"

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

158 of 167 05/07/2020, 11:38

#

tristate Keyword and enumerated
attributes with allowed values of
"true", "false", and "mixed"

NMTOKEN with an enumeration
constraint allowing values of "true",
"false", and "mixed"

number Real number decimal

integer Non-negative integer integer

token Keyword and enumerated
attributes

NMTOKEN with an enumeration
constraint allowing values listed in
the state or property definition

token list Space-separated tokens NMTOKENS with an enumeration
constraintallowing values listed in the
state or property definition

ID reference The value of a defined id attribute
on another element

IDREF

ID reference
list

The value of one or more defined
id attributes on other element(s),
represented as Space-separated
tokens

IDREFS

string No value constraints string

10.3. WAI-ARIA Role, State, and Property Quick Reference

The following table provides a quick reference to the supported states and properties for
all WAI-ARIA roles that may be used in markup.

In addition to the states and properties shown in the table, the following global states and
properties are supported on all roles.

aria-atomic
aria-busy (state)
aria-controls
aria-describedby
aria-disabled (state)
aria-dropeffect
aria-flowto
aria-grabbed (state)
aria-haspopup
aria-hidden (state)
aria-invalid (state)
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

Role Required Properties Supported Properties

alert aria-expanded (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

159 of 167 05/07/2020, 11:38

Role Required Properties Supported Properties

alertdialog aria-expanded (state)

application aria-expanded (state)

article aria-expanded (state)

banner aria-expanded (state)

button aria-expanded (state)
aria-pressed (state)

checkbox aria-checked (state)

columnheader aria-sort
aria-readonly
aria-required
aria-selected (state)
aria-expanded (state)

combobox aria-expanded (state) aria-autocomplete
aria-required
aria-activedescendant

complementary aria-expanded (state)

contentinfo aria-expanded (state)

definition aria-expanded (state)

dialog aria-expanded (state)

directory aria-expanded (state)

document aria-expanded (state)

form aria-expanded (state)

grid aria-level
aria-multiselectable
aria-readonly
aria-activedescendant
aria-expanded (state)

gridcell aria-readonly
aria-required
aria-selected (state)
aria-expanded (state)

group aria-activedescendant
aria-expanded (state)

heading aria-level
aria-expanded (state)

img aria-expanded (state)

link aria-expanded (state)

list aria-expanded (state)

listbox aria-multiselectable
aria-required
aria-expanded (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

160 of 167 05/07/2020, 11:38

Role Required Properties Supported Properties
aria-activedescendant
aria-expanded (state)

listitem aria-level
aria-posinset
aria-setsize
aria-expanded (state)

log aria-expanded (state)

main aria-expanded (state)

marquee aria-expanded (state)

math aria-expanded (state)

menu aria-expanded (state)
aria-activedescendant
aria-expanded (state)

menubar aria-expanded (state)
aria-activedescendant
aria-expanded (state)

menuitem

menuitemcheckbox aria-checked (state)

menuitemradio aria-checked (state) aria-posinset
aria-selected (state)
aria-setsize

navigation aria-expanded (state)

note aria-expanded (state)

option aria-checked (state)
aria-posinset
aria-selected (state)
aria-setsize

presentation

progressbar aria-valuemax
aria-valuemin
aria-valuenow
aria-valuetext

radio aria-checked (state) aria-posinset
aria-selected (state)
aria-setsize

radiogroup aria-required
aria-activedescendant
aria-expanded (state)

region aria-expanded (state)

row aria-level
aria-selected (state)
aria-activedescendant

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

161 of 167 05/07/2020, 11:38

Role Required Properties Supported Properties
aria-expanded (state)

rowgroup aria-activedescendant
aria-expanded (state)

rowheader aria-sort
aria-readonly
aria-required
aria-selected (state)
aria-expanded (state)

search aria-expanded (state)

separator aria-expanded (state)
aria-orientation

scrollbar aria-controls
aria-orientation
aria-valuemax
aria-valuemin
aria-valuenow

aria-valuetext

slider aria-valuemax
aria-valuemin
aria-valuenow

aria-orientation
aria-valuetext

spinbutton aria-valuemax
aria-valuemin
aria-valuenow

aria-required
aria-valuetext

status aria-expanded (state)

tab aria-selected (state)
aria-expanded (state)

tablist aria-level
aria-multiselectable
aria-activedescendant
aria-expanded (state)

tabpanel aria-expanded (state)

textbox aria-activedescendant
aria-autocomplete
aria-multiline
aria-readonly
aria-required

timer aria-expanded (state)

toolbar aria-activedescendant
aria-expanded (state)

tooltip aria-expanded (state)

tree aria-multiselectable
aria-required
aria-activedescendant
aria-expanded (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

162 of 167 05/07/2020, 11:38

#

#

Role Required Properties Supported Properties

treegrid aria-level
aria-multiselectable
aria-readonly
aria-activedescendant
aria-expanded (state)
aria-multiselectable
aria-required
aria-activedescendant
aria-expanded (state)

treeitem aria-level
aria-posinset
aria-setsize
aria-expanded (state)
aria-checked (state)
aria-posinset
aria-selected (state)
aria-setsize

10.4. Acknowledgments

The following people contributed to the development of this document.

10.4.1. Participants active in the PFWG at the time of publication

Christy Blew (Invited Expert, University of Illinois)
David Bolter (Mozilla Foundation)
Michael Cooper (W3C/MIT)
James Craig (Apple Inc.)
Joanmarie Diggs (Igalia)
Steve Faulkner (The Paciello Group)
John Foliot (Invited Expert)
Scott González (JQuery Foundation)
Karl Groves (The Paciello Group)
Jon Gunderson (Invited Expert, University of Illinois)
Markus Gylling (DAISY Consortium)
Mona Heath (Invited Expert, University of Illinois)
Matthew King (IBM Corporation)
Dominic Mazzoni (Google, Inc.)
Shane McCarron (Invited Expert, Aptest)
Charles McCathieNevile (Yandex)
Mary Jo Mueller (IBM Corporation)
James Nurthen (Oracle Corporation)
Mark Sadecki (W3C)
Janina Sajka (Invited Expert, The Linux Foundation)
Joseph Scheuhammer (Invited Expert, Inclusive Design Research Centre, OCAD
University)
Stefan Schnabel (SAP AG)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

163 of 167 05/07/2020, 11:38

#

Richard Schwerdtfeger (IBM Corporation)
Lisa Seeman (Invited Expert)
Cynthia Shelly (Microsoft Corporation)
Alexander Surkov (Mozilla Foundation)
Andi Snow-Weaver (IBM Corporation)
Léonie Watson (The Paciello Group)
Wu Wei (W3C / RITT)
Gottfried Zimmermann (Invited Expert, Access Technologies Group)

10.4.2. Other ARIA contributors, commenters, and previously active PFWG
participants

The Protocols and Formats Working Group expresses special thanks to three individuals
for extraordinary contributions to ARIA:

Richard Schwerdfeger who conceived the technology now encapsulated in the
ARIA specification and who has lead the PF's work on ARIA from the beginning as
our ARIA Task Force Facilitator.
Alfred Gilman who, as Chair of PFWG, grasped the need and the opportunity for
PF to create this technology and convinced the W3C that PF should develop ARIA.
Aaron Leventhal for authoring literally tens of thousands of lines of software code
that allowed Firefox to demonstrate the practical viability of ARIA, and for
conceiving and authoring the first ARIA User Agent Implementation Guide draft.

Other contributors:

Shadi Abou-Zahra (W3C)
Jim Allan (TSB)
Jonny Axelsson (Opera Software)
David Baron (Mozilla Foundation)
Art Barstow (Nokia Corporation)
Simon Bates
Chris Blouch (AOL)
Judy Brewer (W3C/MIT)
Mark Birbeck (Sidewinder Labs)
Sally Cain (Royal National Institute of Blind People (RNIB))
Gerardo Capiel (Benetech)
Ben Caldwell (Trace)
Sofia Celic-Li
Jaesik Chang (Samsung Electronics Co., Ltd.)
Alex Qiang Chen (University of Manchester)
Charles Chen (Google, Inc.)
Christian Cohrs
Deborah Dahl
Erik Dahlström (Opera Software)
Dimitar Denev (Frauenhofer Gesellschaft)
Micah Dubinko (Invited Expert)
Mandana Eibegger
Beth Epperson (Websense)
Donald Evans (AOL)

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

164 of 167 05/07/2020, 11:38

Chris Fleizach (Apple Inc.)
Kelly Ford (Microsoft Corporation)
Geoff Freed (Invited Expert, NCAM)
Kentarou Fukuda (IBM Corporation)
Bryan Garaventa
Guido Geloso
Ali Ghassemi
Becky Gibson (IBM)
Alfred S. Gilman
Andres Gonzalez (Adobe Systems Inc.)
James Graham
Georgios Grigoriadis (SAP AG)
Jeff Grimes (Oracle)
Loretta Guarino Reid (Google, Inc.)
Katie Haritos-Shea (Invited Expert)
Barbara Hartel
James Hawkins (Google, Inc.)
Benjamin Hawkes-Lewis
Sean Hayes (Microsoft Corporation)
Jan Heck
Shawn Henry
Tina Homboe
John Hrvatin (Microsoft Corporation)
Takahiro Inada
Masayasu Ishikawa (W3C)
Jim Jewitt
Kenny Johar (Microsoft Corporation)
Shilpi Kapoor (BarrierBreak Technologies)
Masahiko Kaneko (Microsoft Corporation)
Marjolein Katsma
George Kerscher (International Digital Publishing Forum)
Jason Kiss (New Zealand Government)
Todd Kloots
Johannes Koch
Sam Kuper
Earl Johnson (Sun)
Jael Kurz
Rajesh Lal (Nokia Corporation)
Diego La Monica (International Webmasters Association / HTML Writers Guild
(IWA-HWG))
Aaron Leventhal (IBM Corporation)
Gez Lemon (International Webmasters Association / HTML Writers Guild (IWA-
HWG))
Alex Li (SAP)
Chris Lilley
Thomas Logan (HiSoftware Inc.)
William Loughborough (Invited Expert)
Linda Mao (Microsoft)
David MacDonald (Invited Expert, CanAdapt Solutions Inc.)
Carolyn MacLeod

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

165 of 167 05/07/2020, 11:38

#

Anders Markussen (Opera Software)
Matthew May (Adobe Systems Inc.)
Krzysztof Maczyński
Alexandre Morgaut (4D)
Ann Navarro (Invited Expert)
Joshue O Connor (Invited Expert, CFIT)
Artur Ortega (Microsoft Corporation)
Sailesh Panchang (Deque)
Lisa Pappas (Society for Technical Communication (STC))
Marta Pawlowlska (Samsung Electronics Co., Ltd.)
Dave Pawson (RNIB)
Steven Pemberton (CWI Amsterdam)
Simon Pieters (Opera Software)
Jean-Bernard Piot (4D)
David Poehlman, Simon Pieters (Opera Software)
Sarah Pulis (Media Access Australia)
T.V. Raman (Google, Inc.)
Jan Richards
Gregory Rosmaita (Invited Expert)
Tony Ross (Microsoft Corporation)
Alex Russell (Dojo Foundation) (
Mario Sánchez Prada (Samsung Electronics Co., Ltd. and Gnome Foundation)
Martin Schaus (SAP AG)
Doug Schepers (W3C)
Matthias Schmitt
Marc Silbey (Microsoft Corporation)
Leif Halvard Sili
Henri Sivonen (Mozilla)
Michael Smith (W3C)
Ville Skyttä
Henny Swan (BBC)
Neil Soiffer (Design Science)
Vitaly Sourikov
Mike Squillace (IBM)
Maciej Stachowiak (Apple Inc.)
Christophe Strobbe
Suzanne Taylor (Pearson plc)
Terrill Thompson
David Todd
Gregg Vanderheiden (Invited Expert, Trace)
Anne van Kesteren
Ryan Williams (Oracle)
Tom Wlodkowski
Sam White (Apple Inc.)

10.4.3. Enabling funders

This publication has been funded in part with Federal funds from the U.S. Department of
Education, National Institute on Disability and Rehabilitation Research (NIDRR) under

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

166 of 167 05/07/2020, 11:38

contract number ED05CO0039 and ED-OSE-10-C-0067. The content of this publication
does not necessarily reflect the views or policies of the U.S. Department of Education,
nor does mention of trade names, commercial products, or organizations imply
endorsement by the U.S. Government.

Accessible Rich Internet Applications (WAI-ARIA) 1.0 https://www.w3.org/TR/wai-aria-1.0/complete

167 of 167 05/07/2020, 11:38

