
Accessible Rich Internet
Applications (WAI-ARIA) 1.1
W3C Recommendation 14 December 2017

This version:
https://www.w3.org/TR/2017/REC-wai-aria-1.1-20171214/

Latest published version:
https://www.w3.org/TR/wai-aria-1.1/

Latest editor's draft:
https://w3c.github.io/aria/

Implementation report:
https://w3c.github.io/test-results/wai-aria/

Previous version:
https://www.w3.org/TR/2017/PR-wai-aria-1.1-20171102/

Previous Recommendation:
https://www.w3.org/TR/wai-aria-1.0/

Editors:
Joanmarie Diggs, Igalia, S.L., jdiggs@igalia.com
Shane McCarron, Spec-Ops, shane@spec-ops.io
Michael Cooper, W3C, cooper@w3.org
Richard Schwerdtfeger, IBM Corporation, schwer@us.ibm.com (until October 2017)
James Craig, Apple Inc., jcraig@apple.com (until May 2016)

Please check the errata for any errors or issues reported since publication.

See also translations.

Copyright © 2013-2017 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use rules apply.

Abstract

Accessibility of web content requires semantic information about widgets, structures, and behaviors,
in order to allow assistive technologies to convey appropriate information to persons with disabilities.
This specification provides an ontology of roles, states, and properties that define accessible user
interface elements and can be used to improve the accessibility and interoperability of web content
and applications. These semantics are designed to allow an author to properly convey user interface
behaviors and structural information to assistive technologies in document-level markup. This version
adds features new since WAI-ARIA 1.0 [wai-aria-1.0] to improve interoperability with assistive

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

1 of 238 05/07/2020, 09:09

1.

technologies to form a more consistent accessibility model for [html5] and [SVG2]. This specification
complements both [html5] and [SVG2].

This document is part of the WAI-ARIA suite described in the WAI-ARIA Overview.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical
report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This is the WAI-ARIA 1.1 W3C Recommendation by the Accessible Rich Internet Applications
Working Group. The Working Group created a WAI-ARIA 1.1 Implementation Report to demonstrate
that the specification is implementable. A history of changes to WAI-ARIA 1.1 is available in the
appendix.

To comment on this document, file an issue in the W3C aria GitHub repository. If this is not feasible,
send email to public-aria@w3.org (comment archive). Comments received on the WAI-ARIA 1.1
Recommendation cannot result in changes to this version of the specification, but may be addressed in
errata or future versions of WAI-ARIA. The Working Group may not make formal responses to
comments but future work undertaken by the Working Group may address comments received on this
document. In-progress updates to the technology may be viewed in the publicly visible editors' draft.

This document was published by the Accessible Rich Internet Applications Working Group as a
Recommendation.

Please see the Working Group's implementation report.

This document has been reviewed by W3C Members, by software developers, and by other W3C
groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a
stable document and may be used as reference material or cited from another document. W3C's role in
making the Recommendation is to draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of the Web.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a
public list of any patent disclosures made in connection with the deliverables of the group; that page
also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

This document is governed by the 1 March 2017 W3C Process Document.

Table of Contents

Introduction

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

2 of 238 05/07/2020, 09:09

1.1

1.2

1.3

1.4

1.5

1.5.1

1.5.2

1.6

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

3.4

3.5

4.

5.

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

Rich Internet Application Accessibility

Target Audience

User Agent Support

Co-Evolution of WAI-ARIA and Host Languages

Authoring Practices

Authoring Tools

Testing Practices and Tools

Assistive Technologies

Using WAI-ARIA

WAI-ARIA Roles

WAI-ARIA States and Properties

Managing Focus

Conformance

Non-interference with the Host Language

All WAI-ARIA in DOM

Assistive Technology Notifications Communicated to Web Applications

Conformance Checkers

Deprecated Requirements

Important Terms

The Roles Model

Relationships Between Concepts

Superclass Role

Subclass Roles

Related Concepts

Base Concept

Characteristics of Roles

Abstract Roles

Required States and Properties

Supported States and Properties

Inherited States and Properties

Required Owned Elements

Required Context Role

Accessible Name Calculation

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

3 of 238 05/07/2020, 09:09

5.2.7.1

5.2.7.2

5.2.7.3

5.2.7.4

5.2.7.5

5.2.8

5.2.9

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.4

6.

6.1

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.3

6.4

6.5

6.5.1

6.5.2

6.5.3

6.5.4

6.6

7.

7.1

7.2

7.3

7.4

Name Computation

Description Computation

Text Alternative Computation

Roles Supporting Name from Author

Roles Supporting Name from Content

Presentational Children

Implicit Value for Role

Categorization of Roles

Abstract Roles

Widget Roles

Document Structure

Landmark Roles

Live Region Roles

Window Roles

Definition of Roles

Supported States and Properties

Clarification of States versus Properties

Characteristics of States and Properties

Related Concepts

Used in Roles

Inherits into Roles

Value

Values for States and Properties

Global States and Properties

Taxonomy of WAI-ARIA States and Properties

Widget Attributes

Live Region Attributes

Drag-and-Drop Attributes

Relationship Attributes

Definitions of States and Properties (all aria-* attributes)

Implementation in Host Languages

Role Attribute

State and Property Attributes

Focus Navigation

Implicit WAI-ARIA Semantics

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

4 of 238 05/07/2020, 09:09

7.5

7.6

A.

A.1

A.2

A.3

A.4

A.5

A.6

B.

C.

D.

D.1

D.2

D.3

E.

E.1

E.2

§

Conflicts with Host Language Semantics

State and Property Attribute Processing

Schemata

Roles Implementation

WAI-ARIA Attributes Module

XHTML plus WAI-ARIA DTD

SGML Open Catalog Entry for XHTML+ARIA

WAI-ARIA Attributes XML Schema Module

HTML 4.01 plus WAI-ARIA DTD

Mapping WAI-ARIA Value types to languages

Change Log: substantive changes since the WAI-ARIA 1.0 Recommendation

Acknowledgments

Participants active in the ARIA WG at the time of publication

Other ARIA contributors, commenters, and previously active participants

Enabling funders

References

Normative references

Informative references

1. Introduction

This section is non-normative.

The goals of this specification include:

expanding the accessibility information that may be supplied by the author;

requiring that supporting host languages provide full keyboard support that may be implemented
in a device-independent way, for example, by telephones, handheld devices, e-book readers, and
televisions;

improving the accessibility of dynamic content generated by scripts; and

providing for interoperability with assistive technologies.

WAI-ARIA is a technical specification that provides a framework to improve the accessibility and
interoperability of web content and applications. This document is primarily for developers creating
custom widgets and other web application components. Please see the WAI-ARIA Overview for links

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

5 of 238 05/07/2020, 09:09

§

to related documents for other audiences, such as WAI-ARIA Authoring Practices [wai-aria-
practices-1.1] that introduces developers to the accessibility problems that WAI-ARIA is intended to
solve, the fundamental concepts, and the technical approach of WAI-ARIA.

This draft currently handles two aspects of roles: user interface functionality and structural
relationships. For more information and use cases, see [wai-aria-practices-1.1] for the use of roles in
making interactive content accessible.

The role taxonomy is designed in part to support the common roles found in platform accessibility
APIs. Reference to roles found in this taxonomy by dynamic web content may be used to support
interoperability with assistive technologies.

The schema to support this standard has been designed to be extensible so that custom roles can be
created by extending base roles. This allows user agents to support at least the base role, and user
agents that support the custom role can provide enhanced access. Note that much of this could be
formalized in [xmlschema-2]. However, being able to define similarities between roles, such as
baseConcepts and more descriptive definitions, would not be available in XSD.

WAI-ARIA 1.1 is a member of the WAI-ARIA 1.1 suite that defines how to expose semantics of WAI-
ARIA and other web content languages to accessibility APIs.

1.1 Rich Internet Application Accessibility

The domain of web accessibility defines how to make web content usable by persons with disabilities.
Persons with certain types of disabilities use assistive technologies (AT) to interact with content.
Assistive technologies can transform the presentation of content into a format more suitable to the
user, and can allow the user to interact in different ways. For example, the user may need to, or choose
to, interact with a slider widget via arrow keys, instead of dragging and dropping with a mouse. In
order to accomplish this effectively, the software needs to understand the semantics of the content.
Semantics is the science of meaning; in this case, used to assign roles, states, and properties that apply
to user interface and content elements as a human would understand. For instance, if a paragraph is
semantically identified as such, assistive technologies can interact with it as a unit separable from the
rest of the content, knowing the exact boundaries of that paragraph. An adjustable range slider or
collapsible list (a.k.a. a tree widget) are more complex examples, in which various parts of the widget
have semantics that need to be properly identified for assistive technologies to support effective
interaction.

New technologies often overlook semantics required for accessibility, and new authoring practices
often misuse the intended semantics of those technologies. Elements that have one defined meaning in
the language are used with a different meaning intended to be understood by the user.

For example, web application developers create collapsible tree widgets in HTML using CSS and
JavaScript even though HTML has no semantic tree element. To a non-disabled user, it may look and
act like a collapsible tree widget, but without appropriate semantics, the tree widget may not be
perceivable to, or operable by, a person with a disability because assistive technologies may not
recognize the role. Similarly, web application developers create interactive button widgets in SVG
using JavaScript even though SVG has no semantic button element. To a non-disabled user, it may
look and act like a button widget, but without appropriate semantics, the button widget may not be

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

6 of 238 05/07/2020, 09:09

perceivable to, or operable by, a person with a disability because assistive technologies may not
recognize the role.

The incorporation of WAI-ARIA is a way for an author to provide proper semantics for custom
widgets to make these widgets accessible, usable, and interoperable with assistive technologies. This
specification identifies the types of widgets and structures that are commonly recognized by
accessibility products, by providing an ontology of corresponding roles that can be attached to content.
This allows elements with a given role to be understood as a particular widget or structural type
regardless of any semantics inherited from the implementing host language. Roles are a common
property of platform accessibility APIs which assistive technologies use to provide the user with
effective presentation and interaction.

This role taxonomy includes interaction widgets and elements denoting document structure. The role
taxonomy describes inheritance and details the attributes each role supports. Information about
mapping of roles to accessibility APIs is provided by the Core Accessibility API Mappings 1.1 [core-
aam-1.1].

Roles are element types and will not change with time or user actions. Role information is used by
assistive technologies, through interaction with the user agent, to provide normal processing of the
specified element type.

States and properties are used to declare important attributes of an element that affect and describe
interaction. They enable the user agent and operating system to properly handle the element even
when the attributes are dynamically changed by client-side scripts. For example, alternative input and
output technology, such as screen readers and speech dictation software, need to be able to recognize
and effectively manipulate and communicate various interaction states (e.g., disabled, checked) to the
user.

While it is possible for assistive technologies to access these properties directly through the Document
Object Model [dom], the preferred mechanism is for the user agent to map the states and properties to
the accessibility API of the operating system. See the Core Accessibility API Mappings 1.1 [core-
aam-1.1] and the Accessible Name and Description: Computation and API Mappings 1.1 [accname-
aam-1.1] for details.

Figure 1.0 illustrates the relationship between user agents (e.g., browsers), accessibility APIs, and
assistive technologies. It describes the "contract" provided by the user agent to assistive technologies,
which includes typical accessibility information found in the accessibility API for many of our
accessible platforms for GUIs (role, state, selection, event notification, relationship information, and
descriptions). The DOM, usually HTML, acts as the data model and view in a typical model-view-
controller relationship, and JavaScript acts as the controller by manipulating the style and content of
the displayed data. The user agent conveys relevant information to the operating system's accessibility
API, which can be used by any assistive technologies, such as screen readers.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

7 of 238 05/07/2020, 09:09

Figure 1: The contract model with accessibility APIs

For more information see WAI-ARIA Authoring Practices [wai-aria-practices-1.1] for the use of roles
in making interactive content accessible.

In addition to the prose documentation, the role taxonomy is provided in Web Ontology Language
(OWL) [owl-features], which is expressed in Resource Description Framework (RDF) [rdf-concepts].
Tools can use these to validate the implementation of roles in a given content document. For example,
instances of some roles are expected to be children of a specific parent role. Also, some roles may
support a specific state or property that another role does not support.

Users of alternate input devices need keyboard accessible content. The new semantics, when
combined with the recommended keyboard interactions provided in WAI-ARIA Authoring Practices
[wai-aria-practices-1.1], will allow alternate input solutions to facilitate command and control via an
alternate input solution.

WAI-ARIA introduces navigational landmarks through its taxonomy and the XHTML role landmarks,

NOTE

The use of RDF/OWL as a formal representation of roles may be used to support future
extensibility. Standard RDF/OWL mechanisms can be used to define new roles that inherit
from the roles defined in this specification. The mechanism to define and use role extensions in
an interoperable manner, however, is not defined by this specification, and RDF/OWL
processing is not essential to interoperable implementation of this specification. A future
version of WAI-ARIA is expected to define how to extend roles.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

8 of 238 05/07/2020, 09:09

§

which can help persons with dexterity and vision impairments by providing for improved keyboard
navigation. WAI-ARIA may also be used to assist persons with cognitive learning disabilities. The
additional semantics allow authors to restructure and substitute alternative content as needed.

Assistive technologies need the ability to support alternative inputs by getting and setting the current
value of widget states and properties. Assistive technologies also need to determine what objects are
selected and manage widgets that allow multiple selections, such as list boxes and grids.

Speech-based command and control systems can benefit from WAI-ARIA semantics like the role
attribute to assist in conveying audio information to the user. For example, upon encountering an
element with a role of menu with child elements of role menuitem each containing text content
representing a different flavor, a speech system might state to the user, "Select one of three choices:
chocolate, strawberry, or vanilla."

WAI-ARIA is intended to be used as a supplement for native language semantics, not a replacement.
When the host language provides a feature that provides equivalent accessibility to the WAI-ARIA
feature, use the host language feature. WAI-ARIA should only be used in cases where the host
language lacks the needed role, state, and property indicators. Use a host language feature that is as
similar as possible to the WAI-ARIA feature, then refine the meaning by adding WAI-ARIA. For
instance, a multi-selectable grid could be implemented as a table, and then WAI-ARIA used to clarify
that it is an interactive grid, not just a static data table. This allows for the best possible fallback for
user agents that do not support WAI-ARIA and preserves the integrity of the host language semantics.

1.2 Target Audience

This specification defines the basic model for WAI-ARIA, including roles, states, properties, and
values. It impacts several audiences:

User agents that process content containing WAI-ARIA features;

Assistive technologies that present content in special ways to user with disabilities;

Authors who create content;

Authoring tools that help authors create conforming content; and

Conformance checkers that verify appropriate use of WAI-ARIA.

Each conformance requirement indicates the audience to which it applies.

Although this specification is applicable to the above audiences, it is not specifically targeted to, nor is
it intended to be the sole source of information for, any of these audiences. The following documents
provide important supporting information:

WAI-ARIA Authoring Practices 1.1 addresses authoring recommendations for HTML, and is also
of interest to developers of authoring tools and conformance checkers.

Core Accessibility API Mappings 1.1 addresses developers of user agents and assistive
technologies.

Accessible Name and Description: Computation and API Mappings 1.1 also addresses developers
of user agents and assistive technologies.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

9 of 238 05/07/2020, 09:09

§

§

1.3 User Agent Support

WAI-ARIA relies on user agent support for its features in two ways:

Mainstream user agents use WAI-ARIA to alter how host language features are exposed to
accessibility APIs in order to improve accessibility. The mechanism for this is defined in the
Core Accessibility API Mappings [core-aam-1.1].

Assistive technologies use the enhanced information available in an accessibility API, or uses the
WAI-ARIA markup directly via the DOM, to convey semantic and interaction information to the
user.

Aside from using WAI-ARIA markup to improve what is exposed to accessibility APIs, user agents
behave as they would natively. Assistive technologies react to the extra information in the accessibility
API as they already do for the same information on non-web content. User agents that are not assistive
technologies, however, need do nothing beyond providing appropriate updates to the accessibility API.

The WAI-ARIA specification neither requires nor forbids user agents from enhancing native
presentation and interaction behaviors on the basis of WAI-ARIA markup. Mainstream user agents
might expose WAI-ARIA navigational landmarks (for example, as a dialog box or through a keyboard
command) with the intention to facilitate navigation for all users. User agents are encouraged to
maximize their usefulness to users, including users without disabilities.

WAI-ARIA is intended to provide missing semantics so that the intent of the author may be conveyed
to assistive technologies. Generally, authors using WAI-ARIA will provide the appropriate
presentation and interaction features. Over time, host languages may add WAI-ARIA equivalents,
such as new form controls, that are implemented as standard accessible user interface controls by the
user agent. This allows authors to use them instead of custom WAI-ARIA enabled user interface
components. In this case the user agent would support the native host language feature. Developers of
host languages that implement WAI-ARIA are advised to continue supporting WAI-ARIA semantics
when they do not adversely conflict with implicit host language semantics, as WAI-ARIA semantics
more clearly reflect the intent of the author if the host language features are inadequate to meet the
author's needs.

1.4 Co-Evolution of WAI-ARIA and Host Languages

WAI-ARIA is intended to augment semantics in supporting languages like [html5] and [SVG2], or to
be used as an accessibility enhancement technology in other markup-based languages that do not
explicitly include support for ARIA. It clarifies semantics to assistive technologies when authors
create new types of objects, via style and script, that are not yet directly supported by the language of
the page, because the invention of new types of objects is faster than standardized support for them
appears in web languages.

It is not appropriate to create objects with style and script when the host language provides a semantic
element for that type of object. While WAI-ARIA can improve the accessibility of these objects,
accessibility is best provided by allowing the user agent to handle the object natively. For example, it's
better to use an h1 element in HTML than to use the heading role on a div element.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

10 of 238 05/07/2020, 09:09

§

§

It is expected that, over time, host languages will evolve to provide semantics for objects that currently
can only be declared with WAI-ARIA. This is natural and desirable, as one goal of WAI-ARIA is to
help stimulate the emergence of more semantic and accessible markup. When native semantics for a
given feature become available, it is appropriate for authors to use the native feature and stop using
WAI-ARIA for that feature. Legacy content may continue to use WAI-ARIA, however, so the need for
user agents to support WAI-ARIA remains.

While specific features of WAI-ARIA may lose importance over time, the general possibility of WAI-
ARIA to add semantics to web pages is expected to be a persistent need. Host languages may not
implement all the semantics WAI-ARIA provides, and various host languages may implement
different subsets of the features. New types of objects are continually being developed, and one goal
of WAI-ARIA is to provide a way to make such objects accessible, because web authoring practices
often advance faster than host language standards. In this way, WAI-ARIA and host languages both
evolve together but at different rates.

Some host languages exist to create semantics for features other than the user interface. For example,
SVG expresses the semantics behind production of graphical objects, not of user interface components
that those objects may represent; XForms provides semantics for form controls and does not provide
wider user interface features. Host languages such as these might, by design, not provide native
semantics that map to WAI-ARIA features. In these cases, WAI-ARIA could be adopted as a long-
term approach to add semantic information to user interface components.

1.5 Authoring Practices

1.5.1 Authoring Tools

Many of the requirements in the definitions of WAI-ARIA roles, states, and properties can be checked
automatically during the development process, similar to other quality control processes used for
validating code. To assist authors who are creating custom widgets, authoring tools may compare
widget roles, states, and properties to those supported in WAI-ARIA as well as those supported in
related and cross-referenced roles, states, and properties. Authoring tools may notify authors of errors
in widget design patterns, and may also prompt developers for information that cannot be determined
from context alone. For example, a scripting library can determine the labels for the tree items in a tree
view, but would need to prompt the author to label the entire tree. To help authors visualize a logical
accessibility structure, an authoring environment might provide an outline view of a web resource
based on the WAI-ARIA markup.

In both HTML and SVG, tabindex is an important way browsers support keyboard focus navigation
for implementations of WAI-ARIA; authoring and debugging tools may check to make sure
tabindex values are properly set. For example, error conditions may include cases where more than
one treeitem in a tree has a tabindex value greater than or equal to 0, where tabindex is not set on
any treeitem, or where aria-activedescendant is not defined when the element with the role tree
has a tabindex value of greater than or equal to 0.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

11 of 238 05/07/2020, 09:09

§

§

§

§

1.5.2 Testing Practices and Tools

The accessibility of interactive content cannot be confirmed by static checks alone. Developers of
interactive content should test for device-independent access to widgets and applications, and should
verify accessibility API access to all content and changes during user interaction.

1.6 Assistive Technologies

Programmatic access to accessibility semantics is essential for assistive technologies. Most assistive
technologies interact with user agents, like other applications, through a recognized accessibility API.
Perceivable objects in the user interface are exposed to assistive technologies as accessible objects,
defined by the accessibility API interfaces. To do this properly, accessibility information – role, states,
properties as well as contextual information – needs to be accurately conveyed to the assistive
technologies through the accessibility API. When a state change occurs, the user agent provides the
appropriate event notification to the accessibility API. Contextual information, in many host languages
like HTML, can be determined from the DOM itself as it provides a contextual tree hierarchy.

While some assistive technologies interact with these accessibility APIs, others may access the content
directly from the DOM. These technologies can restructure, simplify, style, or reflow the content to
help a different set of users. Common use cases for these types of adaptations may be the aging
population, persons with cognitive impairments, or persons in environments that interfere with use of
their tools. For example, the availability of regional navigational landmarks may allow for a mobile
device adaptation that shows only portions of the content at any one time based on its semantics. This
could reduce the amount of information the user needs to process at any one time. In other situations it
may be appropriate to replace a custom user interface control with something that is easier to navigate
with a keyboard, or touch screen device.

2. Using WAI-ARIA

This section is non-normative.

Complex web applications become inaccessible when assistive technologies cannot determine the
semantics behind portions of a document or when the user is unable to effectively navigate to all parts
of it in a usable way (see WAI-ARIA Authoring Practices [wai-aria-practices-1.1]). WAI-ARIA divides
the semantics into roles (the type defining a user interface element) and states and properties
supported by the roles.

Authors need to associate elements in the document to a WAI-ARIA role and the appropriate states
and properties (aria-* attributes) during its life-cycle, unless the elements already have the appropriate
implicit WAI-ARIA semantics for states and properties. In these instances the equivalent host
language states and properties take precedence to avoid a conflict while the role attribute will take
precedence over the implicit role of the host language element.

2.1 WAI-ARIA Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

12 of 238 05/07/2020, 09:09

§

A WAI-ARIA role is set on an element using a role attribute, similar to the role attribute defined in
Role Attribute [role-attribute].

The roles defined in this specification include a collection of document landmarks and the WAI-ARIA
role taxonomy.

The roles in this taxonomy and their expected behaviors are modeled using RDF/OWL [owl-features].
Features of the role taxonomy provide the following information for each role:

an informative description of the role;

hierarchical information about related roles (e.g., a directory is a type of list);

context of the role (e.g., a listitem is contained inside a list);

references to related concepts in other specifications;

use of OWL to provide a type hierarchy allowing for semantic inheritance (similar to a class
hierarchy); and

supported states and properties for each role (e.g., a checkbox supports being checked via
aria-checked).

Attaching a role gives assistive technologies information about how to handle each element.

2.2 WAI-ARIA States and Properties

WAI-ARIA provides a collection of accessibility states and properties which are used to support
platform accessibility APIs on various operating system platforms. Assistive technologies may access
this information through an exposed user agent DOM or through a mapping to the platform
accessibility API. When combined with roles, the user agent can supply the assistive technologies with
user interface information to convey to the user at any time. Changes in states or properties will result
in a notification to assistive technologies, which could alert the user that a change has occurred.

In the following example, a list item (html:li) has been used to create a checkable menu item, and
JavaScript events will capture mouse and keyboard events to toggle the value of aria-checked. A
role is used to make the behavior of this simple widget known to the user agent. Attributes that change
with user actions (such as aria-checked) are defined in the states and properties section.

Some accessibility states, called managed states, are controlled by the user agent. Examples of

EXAMPLE 1

<li role="menuitem">Open file…

EXAMPLE 2

<li role="menuitemcheckbox" aria-checked="true">Sort by Last Modified

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

13 of 238 05/07/2020, 09:09

§

managed state include keyboard focus and selection. Managed states often have corresponding CSS
pseudo-classes (such as :focus and ::selection) to define style changes. In contrast, the states in
this specification are typically controlled by the author and are called unmanaged states. Some states
are managed by the user agent, such as aria-posinset and aria-setsize, but the author can
override them if the DOM is incomplete and would cause the user agent calculation to be incorrect.
User agents map both managed and unmanaged states to the platform accessibility APIs.

Most modern user agents support CSS attribute selectors ([css3-selectors]), and can allow the author
to create UI changes based on WAI-ARIA attribute information, reducing the amount of scripts
necessary to achieve equivalent functionality. In the following example, a CSS selector is used to
determine whether or not the text is bold and an image of a check mark is shown, based on the value
of the aria-checked attribute.

If CSS is not used to toggle the visual representation of the check mark, the author could include
additional markup and scripts to manage an image that represents whether or not the
menuitemcheckbox is checked.

2.3 Managing Focus

An application should always have an element with focus when in use, as applications require
users to have a place to provide user input. Authors are advised to not destroy the element with focus
or scroll it off-screen unless through user intervention. All interactive objects should be focusable. All
parts of composite interactive controls need to be focusable or have a documented alternative method
to achieve their function, such as a keyboard shortcut. Authors are advised to maintain an obvious,
discoverable way, either through tabbing or other standard navigation techniques, for keyboard users
to move the focus to any interactive element. See User Agent Accessibility Guidelines, Guideline 9
([UAAG10], Guideline 9).

When using standard HTML and basic WAI-ARIA widgets, application developers can simply
manipulate the tab order or use a script to create keyboard shortcuts to elements in the document. Use
of more complex widgets requires the author to manage focus within them. SVG Tiny provides a
similar navigation "ring" mechanism that by default follows document order and which should be

EXAMPLE 3

[aria-checked="true"] { font-weight: bold; }
[aria-checked="true"]::before { background-image: url(checked.gif); }

EXAMPLE 4

<li role="menuitemcheckbox" aria-checked="true">

<!-- note: additional scripts required to toggle image source -->

 Sort by Last Modified

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

14 of 238 05/07/2020, 09:09

§

implemented using system dependent input facilities (the TAB key on most desktop computers). SVG
authors may place elements in the navigation order by manipulating the focusable attribute and they
may dynamically specify the navigation order by modifying elements' navigation attributes.

WAI-ARIA includes a number of "managing container" widgets, also known as "composite" widgets.
When appropriate, the container is responsible for tracking the last descendant that was active (the
default is usually the first item in the container). It is essential that a container maintain a usable and
consistent strategy when focus leaves a container and is then later refocused. While there may be
exceptions, it is recommended that when a previously focused container is refocused, the active
descendant be the same element as the active descendant when the container was last focused.
Exceptions include cases where the contents of a container widget have changed, and widgets like a
menubar where the user expects to always return to the first item when focus leaves the menu bar. For
example, if the second item of a tree group was the active descendant when the user tabbed out of the
tree group, then the second item of the tree group remains the active descendant when the tree group
gets focus again. The user may also activate the container by clicking on one of the descendants within
it.

When the container or its active descendant has focus, the user may navigate through the container by
pressing additional keys, such as the arrow keys, to change the currently active descendant. Any
additional press of the main navigation key (generally the TAB key) will move out of the container to
the next widget.

For example, a grid may be used as a spreadsheet with thousands of gridcell elements, all of
which may not be present in the document at one time. This requires focus to be managed by the
container using the aria-activedescendant attribute on the managing container element, or by the
container managing the tabindex of its child elements and setting focus on the appropriate child.

Content authors are required to manage focus on the following container roles:

combobox

grid

listbox

menu

menubar

radiogroup

tree

treegrid

tablist

More information on managing focus can be found in the Developing a Keyboard Interface section of
the WAI-ARIA Authoring Practices [wai-aria-practices-1.1].

3. Conformance

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

15 of 238 05/07/2020, 09:09

§

§

§

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes
in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT are to be interpreted as
described in [RFC2119].

This specification indicates whether a section is normative or informative. Classifying a section as
normative or informative applies to the entire section. A statement "This section is normative" or
"This section is informative" applies to all sub-sections of that section.

Normative sections provide requirements that authors, user agents, and assistive technologies MUST
follow for an implementation to conform to this specification.

Informative sections provide information useful to understanding the specification. Such sections may
contain examples of recommended practice, but it is not required to follow such recommendations in
order to conform to this specification.

3.1 Non-interference with the Host Language

WAI-ARIA processing by the user agent MUST NOT interfere with the normal operation of the built-
in features of the host language.

If a CSS selector includes a WAI-ARIA attribute (e.g., input[aria-invalid="true"]), user
agents MUST update the visual display of any elements matching (or no longer matching) the selector
any time the attribute is added/changed/removed in the DOM. The user agent MAY alter the mapping
of the host language features into an accessibility API, but the user agent MUST NOT alter the DOM
in order to remap WAI-ARIA markup into host language features.

3.2 All WAI-ARIA in DOM

A conforming user agent which implements a document object model that does not conform to the
W3C DOM specification MUST include the content attribute for role and its WAI-ARIA role values,
as well as the WAI-ARIA States and Properties in the DOM as specified by the author, even though
processing may affect how the elements are exposed to accessibility APIs. Doing so ensures that each
role attribute and all WAI-ARIA states and properties, including their values, are in the document in
an unmodified form so other tools, such as assistive technologies, can access them. A conforming
W3C DOM meets this criterion.

3.3 Assistive Technology Notifications Communicated to Web Applications

Assistive technologies, such as speech recognition systems and alternate input devices for users with
mobility impairments, require the ability to control a web application in a device-independent way.
WAI-ARIA states and properties reflect the current state of rich internet application components. The
ability for assistive technologies to notify web applications of necessary changes is essential because it

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

16 of 238 05/07/2020, 09:09

§

§

§

allows these alternative input solutions to control an application without being dependent on the
standard input device which the user is unable to effectively control directly.

User agents MUST provide a method to notify the web application when a change occurs to states or
properties in the system accessibility API. Likewise, web application authors SHOULD update the
web application accordingly when notified of a change request from the user agent or assistive
technology.

3.4 Conformance Checkers

Any application or script verifying document conformance or validity SHOULD include a test for all
of the normative author requirements in this specification. If testing for a given requirement,
conformance checkers MUST issue an error if an author "MUST" requirement isn't met, and MUST
issue a warning if an author "SHOULD" requirement isn't met.

3.5 Deprecated Requirements

As the technology evolves, sometimes new ways to meet a use case become available, that work better
than a feature that was previously defined. But because of existing implementation of the older
feature, that feature cannot be removed from the conformance model without rendering formerly
conforming content non-conforming. In this case, the older feature is marked as "deprecated". This
indicates that the feature is allowed in the conformance model and expected to be supported by user
agents, but it is recommended that authors do not use it for new content. In future versions of the
specification, if the feature is no longer widely used, the feature could be removed and no longer
expected to be supported by user agents.

4. Important Terms

This section is non-normative.

While some terms are defined in place, the following definitions are used throughout this document.

Accessibility API
Operating systems and other platforms provide a set of interfaces that expose information about
objects and events to assistive technologies. Assistive technologies use these interfaces to get
information about and interact with those widgets. Examples of accessibility APIs are Microsoft

NOTE

Many state and properties can be changed by assistive technologies through existing
accessibility APIs by responding to a default action event. For example, the aria-selected
state of a tab in a tabpanel can be changed by triggering the default action on the element.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

17 of 238 05/07/2020, 09:09

Active Accessibility [MSAA], Microsoft User Interface Automation [UI-AUTOMATION],
MSAA with UIA Express [UIA-EXPRESS], the Mac OS X Accessibility Protocol [AXAPI], the
Linux/Unix Accessibility Toolkit [ATK] and Assistive Technology Service Provider Interface [AT-
SPI], and IAccessible2 [IAccessible2].

Accessible Description
An accessible description provides additional information, related to an interface element, that
complements the accessible name. The accessible description might or might not be visually
perceivable.

Accessible Name
The accessible name is the name of a user interface element. Each platform accessibility API
provides the accessible name property. The value of the accessible name may be derived from a
visible (e.g., the visible text on a button) or invisible (e.g., the text alternative that describes an
icon) property of the user interface element. See related accessible description.

A simple use for the accessible name property may be illustrated by an "OK" button. The text
"OK" is the accessible name. When the button receives focus, assistive technologies may
concatenate the platform's role description with the accessible name. For example, a screen
reader may speak "push-button OK" or "OK button". The order of concatenation and specifics of
the role description (e.g., "button", "push-button", "clickable button") are determined by platform
accessibility APIs or assistive technologies.

Assistive Technologies
Hardware and/or software that:

relies on services provided by a user agent to retrieve and render Web content

works with a user agent or web content itself through the use of APIs, and

provides services beyond those offered by the user agent to facilitate user interaction with
web content by people with disabilities

This definition may differ from that used in other documents.

Examples of assistive technologies that are important in the context of this document include the
following:

screen magnifiers, which are used to enlarge and improve the visual readability of rendered
text and images;

screen readers, which are most-often used to convey information through synthesized speech
or a refreshable Braille display;

text-to-speech software, which is used to convert text into synthetic speech;

speech recognition software, which is used to allow spoken control and dictation;

alternate input technologies (including head pointers, on-screen keyboards, single switches,
and sip/puff devices), which are used to simulate the keyboard;

alternate pointing devices, which are used to simulate mouse pointing and clicking.

Attribute

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

18 of 238 05/07/2020, 09:09

In this specification, attribute is used as it is in markup languages. Attributes are structural
features added to elements to provide information about the states and properties of the object
represented by the element.

Class
A set of instance objects that share similar characteristics.

Deprecated
A deprecated role, state, or property is one which has been outdated by newer constructs or
changed circumstances, and which may be removed in future versions of the WAI-ARIA
specification. User agents are encouraged to continue to support items identified as deprecated
for backward compatibility. For more information, see Deprecated Requirements in the
Conformance section.

Element
In this specification, element is used as it is in markup languages. Elements are the structural
elements in markup language that contains the data profile for objects.

Event
A programmatic message used to communicate discrete changes in the state of an object to other
objects in a computational system. User input to a web page is commonly mediated through
abstract events that describe the interaction and can provide notice of changes to the state of a
document object. In some programming languages, events are more commonly known as
notifications.

Graphical Document
A document containing graphic representations with user-navigable parts. Charts, maps,
diagrams, blueprints, and dashboards are examples of graphical documents. A graphical
document is composed using any combination of symbols, images, text, and graphic primitives
(shapes such as circles, points, lines, paths, rectangles, etc).

Hidden
Indicates that the element is not visible, perceivable, or interactive to any user. An element is
considered hidden if it or any one of its ancestor elements is not rendered or is explicitly hidden.

Informative
Content provided for information purposes and not required for conformance. Content required
for conformance is referred to as normative.

Keyboard Accessible
Accessible to the user using a keyboard or assistive technologies that mimic keyboard input, such
as a sip and puff tube. References in this document relate to WCAG 2.0 Guideline 2.1: Make all
functionality available from a keyboard [WCAG20].

Landmark
A type of region on a page to which the user may want quick access. Content in such a region is
different from that of other regions on the page and relevant to a specific user purpose, such as
navigating, searching, perusing the primary content, etc.

Live Region

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

19 of 238 05/07/2020, 09:09

Live regions are perceivable regions of a web page that are typically updated as a result of an
external event when user focus may be elsewhere. These regions are not always updated as a
result of a user interaction. This practice has become commonplace with the growing use of Ajax.
Examples of live regions include a chat log, stock ticker, or a sport scoring section that updates
periodically to reflect game statistics. Since these asynchronous areas are expected to update
outside the user's area of focus, assistive technologies such as screen readers have either been
unaware of their existence or unable to process them for the user. WAI-ARIA has provided a
collection of properties that allow the author to identify these live regions and process them: aria-
live, aria-relevant, aria-atomic, and aria-busy.

Managed State
Accessibility API state that is controlled by the user agent, such as focus and selection. These are
contrasted with "unmanaged states" that are typically controlled by the author. Nevertheless,
authors can override some managed states, such as aria-posinset and aria-setsize. Many managed
states have corresponding CSS pseudo-classes, such as :focus, and pseudo-elements, such as
::selection, that are also updated by the user agent.

Nemeth Braille
The Nemeth Braille Code for Mathematics is a braille code for encoding mathematical and
scientific notation. See Nemeth Braille on Wikipedia.

Normative
Required for conformance. By contrast, content identified as informative or "non-normative" is
not required for conformance.

Object
In the context of user interfaces, an item in the perceptual user experience, represented in markup
languages by one or more elements, and rendered by user agents.

In the context of programming, the instantiation of one or more classes and interfaces which
define the general characteristics of similar objects. An object in an accessibility API may
represent one or more DOM objects. Accessibility APIs have defined interfaces that are distinct
from DOM interfaces.

Ontology
A description of the characteristics of classes and how they relate to each other.

Operable
Usable by users in ways they can control. References in this document relate to WCAG 2.0
Principle 2: Content must be operable [WCAG20]. See Keyboard Accessible.

Owned Element
An 'owned element' is any DOM descendant of the element, any element specified as a child via
aria-owns, or any DOM descendant of the owned child.

Perceivable
Presentable to users in ways they can sense. References in this document relate to WCAG 2.0
Principle 1: Content must be perceivable [WCAG20].

Property

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

20 of 238 05/07/2020, 09:09

§

Attributes that are essential to the nature of a given object, or that represent a data value
associated with the object. A change of a property may significantly impact the meaning or
presentation of an object. Certain properties (for example, aria-multiline) are less likely to
change than states, but note that the frequency of change difference is not a rule. A few
properties, such as aria-activedescendant, aria-valuenow, and aria-valuetext are
expected to change often. See clarification of states versus properties.

Relationship
A connection between two distinct things. Relationships may be of various types to indicate
which object labels another, controls another, etc.

Role
Main indicator of type. This semantic association allows tools to present and support interaction
with the object in a manner that is consistent with user expectations about other objects of that
type.

Semantics
The meaning of something as understood by a human, defined in a way that computers can
process a representation of an object, such as elements and attributes, and reliably represent the
object in a way that various humans will achieve a mutually consistent understanding of the
object.

State
A state is a dynamic property expressing characteristics of an object that may change in response
to user action or automated processes. States do not affect the essential nature of the object, but
represent data associated with the object or user interaction possibilities. See clarification of
states versus properties.

Taxonomy
A hierarchical definition of how the characteristics of various classes relate to each other, in
which classes inherit the properties of superclasses in the hierarchy. A taxonomy can comprise
part of the formal definition of an ontology.

Understandable
Presentable to users in ways they can construct an appropriate meaning. References in this
document relate to WCAG 2.0 Principle 3: Information and the operation of user interface must
be understandable [WCAG20].

User Agent
Any software that retrieves, renders and facilitates end user interaction with Web content. This
definition may differ from that used in other documents.

Widget
Discrete user interface object with which the user can interact. Widgets range from simple objects
that have one value or operation (e.g., check boxes and menu items), to complex objects that
contain many managed sub-objects (e.g., trees and grids).

5. The Roles Model

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

21 of 238 05/07/2020, 09:09

§

§

§

This section defines the WAI-ARIA role taxonomy and describes the characteristics and properties of
all roles. A formal RDF/OWL representation of all the information presented here is available in
Schemata Appendix.

The roles, their characteristics, the states and properties they support, and specification of how they
may be used in markup, shall be considered normative. The RDF/OWL representation used to model
the taxonomy shall be considered informative. The RDF/OWL taxonomy may be used as a vehicle to
extend WAI-ARIA in the future or by tool manufacturers to validate states and properties applicable to
roles per this specification.

Roles are element types and authors MUST NOT change role values over time or with user actions.
Authors wishing to change a role MUST do so by deleting the associated element and its children and
replacing it with a new element with the appropriate role. Typically, platform accessibility APIs do not
provide a vehicle to notify assistive technologies of a role value change, and consequently, assistive
technologies may not update their cache with the new role attribute value.

In order to reflect the content in the DOM, user agents SHOULD map the role attribute to the
appropriate value in the implemented accessibility API, and user agents SHOULD update the mapping
when the role attribute changes.

5.1 Relationships Between Concepts

The role taxonomy uses the following relationships to relate WAI-ARIA roles to each other and to
concepts from other specifications, such as HTML and XForms.

5.1.1 Superclass Role

Inheritance is expressed in RDF using the RDF Schema 1.1 subClassOf ([rdf-schema]) property.

RDF Property
rdfs:subClassOf

The role that the current subclassed role extends in the taxonomy. This extension causes all the
properties and constraints of the superclass role to propagate to the subclass role. Other than well
known stable specifications, inheritance may be restricted to items defined inside this specification, so
that external items cannot be changed and affect inherited classes.

5.1.2 Subclass Roles

RDF Property
<none>

Informative list of roles for which this role is the superclass. This is provided to facilitate reading of
the specification but adds no new information.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

22 of 238 05/07/2020, 09:09

§

§

§

§

5.1.3 Related Concepts

RDF Property
role:relatedConcept

Informative data about a similar or related idea from other specifications. Concepts that are related are
not necessarily identical. Related concepts do not inherit properties from each other. Hence if the
definition of one concept changes, the properties, behavior, and definition of its related concept is not
affected.

For example, a progress bar is like a status indicator. Therefore, the progressbar widget has a
relatedConcept value which includes status. However, if the definition of status is modified,
the definition of a progressbar is not affected.

5.1.4 Base Concept

RDF Property
role:baseConcept

Informative data about objects that are considered prototypes for the role. Base concept is similar to
type, but without inheritance of limitations and properties. Base concepts are designed as a substitute
for inheritance for external concepts. A base concept is like a related concept except that the base
concept is almost identical to the role definition.

For example, the checkbox defined in this document has similar functionality and anticipated
behavior to a checkbox defined in HTML. Therefore, a checkbox has an HTML checkbox as a
baseConcept. However, if the original HTML checkbox baseConcept definition is modified, the
definition of a checkbox in this document will not be affected, because there is no actual inheritance
of the respective type.

5.2 Characteristics of Roles

Roles are defined and described by their characteristics. Characteristics define the structural function
of a role, such as what a role is, concepts behind it, and what instances the role can or must contain. In
the case of widgets this also includes how it interacts with the user agent based on mapping to HTML
forms and XForms. States and properties from WAI-ARIA that are supported by the role are also
indicated.

The roles taxonomy defines the following characteristics. These characteristics are implemented in
RDF as properties of the OWL classes that describe the roles.

5.2.1 Abstract Roles

RDF Property

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

23 of 238 05/07/2020, 09:09

§

§

N/A

Values
Boolean

Abstract roles are the foundation upon which all other WAI-ARIA roles are built. Content authors
MUST NOT use abstract roles because they are not implemented in the API binding. User agents
MUST NOT map abstract roles to the standard role mechanism of the accessibility API. Abstract roles
are provided to help with the following:

1. Organize the role taxonomy and provide roles with a meaning in the context of known concepts.

2. Streamline the addition of roles that include necessary features.

5.2.2 Required States and Properties

RDF Property
role:requiredState

Values
Any valid RDF object reference, such as a URI.

States and properties specifically required for the role and subclass roles. Content authors MUST
provide a non-empty value for required states and properties. Content authors MUST NOT use the
value undefined for required states and properties, unless undefined is an explicitly-supported
value of that state or property.

When an object inherits from multiple ancestors and one ancestor indicates that property is supported
while another ancestor indicates that it is required, the property is required in the inheriting object.

5.2.3 Supported States and Properties

RDF Property
role:supportedState

Values
Any valid RDF object reference, such as a URI.

States and properties specifically applicable to the role and child roles. User agents MUST map all
supported states and properties for the role to an accessibility API. Content authors MAY provide
values for supported states and properties, but need not in some cases where default values are
sufficient.

NOTE

A host language attribute with the appropriate implicit WAI-ARIA semantic fulfills this
requirement.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

24 of 238 05/07/2020, 09:09

§

§

5.2.4 Inherited States and Properties

Informative list of properties that are inherited onto a role from superclass roles. States and properties
are inherited from superclass roles in the role taxonomy, not from ancestor elements in the DOM tree.
These properties are not explicitly defined on the role, as the inheritance of properties is automatic.
This information is provided to facilitate reading of the specification. The set of supported states and
properties combined with inherited states and properties forms the full set of states and properties
supported by the role.

5.2.5 Required Owned Elements

RDF Property
role:mustContain

Values
Any valid RDF object reference, such as a URI.

Any element that will be owned by the element with this role. For example, an element with the role
list will own at least one element with the role group or listitem.

When multiple roles are specified as required owned elements for a role, at least one instance of one
required owned element is expected. This specification does not require an instance of each of the
listed owned roles. For example, a menu should have at least one instance of a menuitem,
menuitemcheckbox, or menuitemradio. The menu role does not require one instance of each.

There may be times that required owned elements are missing, for example, while editing or while
loading a data set. When a widget is missing required owned elements due to script execution or
loading, authors MUST mark a containing element with aria-busy equal to true. For example,
until a page is fully initialized and complete, an author could mark the document element as busy.

NOTE

A host language attribute with the appropriate implicit WAI-ARIA semantic fulfills this
requirement.

NOTE

A role that has 'required owned elements' does not imply the reverse relationship. While
processing of a role may be incomplete without elements of given roles present as descendants,
elements with roles in this list do not always have to be found within elements of the given
role. See required context role for requirements about the context where elements of a given
role will be contained.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

25 of 238 05/07/2020, 09:09

§

§

5.2.6 Required Context Role

RDF Property
role:scope

Values
Any valid RDF object reference, such as a URI.

The required context role defines the owning container where this role is allowed. If a role has a
required context, authors MUST ensure that an element with the role is contained inside (or owned by)
an element with the required context role. For example, an element with role listitem is only
meaningful when contained inside (or owned by) an element with role list.

5.2.7 Accessible Name Calculation

NOTE

An element with a subclass role of the 'required owned element' does not fulfill this
requirement. For example, the list role requires ownership of an element using either the
listitem or group role. Although the group role is the superclass of row, adding a owned
element with a role of row will not fulfill the requirement that list must own a listitem or
a group.

NOTE

An element with the appropriate implicit WAI-ARIA semantic fulfills this requirement.

NOTE

A role that has 'required context role' does not imply the reverse relationship. While an element
with the given role needs to appear within an element of the listed role(s) in order to be
meaningful, elements of the listed roles do not always need descendant elements of the given
role in order to be meaningful. See required owned elements for requirements about elements
that require presence of a given descendant to be processed properly.

NOTE

An element with the appropriate implicit WAI-ARIA semantic fulfills this requirement.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

26 of 238 05/07/2020, 09:09

§

§

§

§

§

RDF Property
role:nameFrom

Values
One of the following values:

1. author: name comes from values provided by the author in explicit markup features such as
the aria-label attribute, the aria-labelledby attribute, or the host language labeling
mechanism, such as the alt or title attributes in HTML, with HTML title attribute
having the lowest precedence for specifying a text alternative.

2. contents: name comes from the text value of the element node. Although this may be
allowed in addition to "author" in some roles, this is used in content only if higher priority
"author" features are not provided. Priority is defined by the text alternative computation
algorithm.

5.2.7.1 Name Computation

Name Computation is defined in the Accessible Name and Description specification [accname-
aam-1.1].

5.2.7.2 Description Computation

Description Computation is defined in the Accessible Name and Description specification [accname-
aam-1.1].

5.2.7.3 Text Alternative Computation

Text Alternative Computation is defined in the Accessible Name and Description specification
[accname-aam-1.1].

5.2.7.4 Roles Supporting Name from Author

All roles support name from author with two exceptions. The roles that do not support name from
author are presentation and none.

5.2.7.5 Roles Supporting Name from Content

button

cell

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

27 of 238 05/07/2020, 09:09

§

§

checkbox

columnheader

gridcell

heading

link

menuitem

menuitemcheckbox

menuitemradio

option

radio

row

rowgroup

rowheader

switch

tab

tooltip

tree

treeitem

5.2.8 Presentational Children

RDF Property
role:childrenArePresentational

Values
Boolean (true | false)

The DOM descendants are presentational. User agents SHOULD NOT expose descendants of this
element through the platform accessibility API. If user agents do not hide the descendant nodes, some
information may be read twice.

5.2.9 Implicit Value for Role

Many states and properties have default values. Occasionally, the default value when used on a given
role should be different from the usual default. Roles that require a state or property to have a non-
standard default value indicate this in the "Implicit Value for Role". This is expressed in the form
"state or property name is new default value". Roles that define this have the new default
value for the state or property if the author does not provide an explicit value.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

28 of 238 05/07/2020, 09:09

§

§

5.3 Categorization of Roles

To support the current user scenario, this specification categorizes roles that define user interface
widgets (sliders, tree controls, etc.) and those that define page structure (sections, navigation, etc.).
Note that some assistive technologies provide special modes of interaction for regions marked with
role application or document.

Class diagram of the relationships described in the role data model.

SVG class diagram | PNG class diagram | Class diagram description

Roles are categorized as follows:

1. Abstract Roles

2. Widget Roles

3. Document Structure Roles

4. Landmark Roles

5. Live Region Roles

6. Window Roles

5.3.1 Abstract Roles

The following roles are used to support the WAI-ARIA role taxonomy for the purpose of defining
general role concepts.

Abstract roles are used for the ontology. Authors MUST NOT use abstract roles in content.

command

composite

input

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

29 of 238 05/07/2020, 09:09

§

landmark

range

roletype

section

sectionhead

select

structure

widget

window

5.3.2 Widget Roles

The following roles act as standalone user interface widgets or as part of larger, composite widgets.

button

checkbox

gridcell

link

menuitem

menuitemcheckbox

menuitemradio

option

progressbar

radio

scrollbar

searchbox

separator (when focusable)

slider

spinbutton

switch

tab

tabpanel

textbox

treeitem

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

30 of 238 05/07/2020, 09:09

§

The following roles act as composite user interface widgets. These roles typically act as containers
that manage other, contained widgets.

combobox

grid

listbox

menu

menubar

radiogroup

tablist

tree

treegrid

5.3.3 Document Structure

The following roles describe structures that organize content in a page. Document structures are not
usually interactive.

application

article

cell

columnheader

definition

directory

document

feed

figure

group

heading

img

list

listitem

math

none

note

presentation

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

31 of 238 05/07/2020, 09:09

§

§

§

row

rowgroup

rowheader

separator (when not focusable)

table

term

toolbar

tooltip

5.3.4 Landmark Roles

The following roles are regions of the page intended as navigational landmarks. All of these roles
inherit from the landmark base type and all are imported from the Role Attribute [role-attribute]. The
roles are included here in order to make them clearly part of the WAI-ARIA Role taxonomy.

banner

complementary

contentinfo

form

main

navigation

region

search

5.3.5 Live Region Roles

The following roles are live regions and may be modified by live region attributes.

alert

log

marquee

status

timer

5.3.6 Window Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

32 of 238 05/07/2020, 09:09

§

The following roles act as windows within the browser or application.

alertdialog

dialog

5.4 Definition of Roles

Below is an alphabetical list of WAI-ARIA roles to be used by rich internet application authors.

Abstract roles are used for the ontology. Authors MUST NOT use abstract roles in content.

alert
A type of live region with important, and usually time-sensitive, information. See related
alertdialog and status.

alertdialog
A type of dialog that contains an alert message, where initial focus goes to an element within the
dialog. See related alert and dialog.

application
A structure containing one or more focusable elements requiring user input, such as keyboard
or gesture events, that do not follow a standard interaction pattern supported by a widget role.

article
A section of a page that consists of a composition that forms an independent part of a document,
page, or site.

banner
A region that contains mostly site-oriented content, rather than page-specific content.

button
An input that allows for user-triggered actions when clicked or pressed. See related link.

cell
A cell in a tabular container. See related gridcell.

checkbox
A checkable input that has three possible values: true, false, or mixed.

columnheader
A cell containing header information for a column.

combobox
A composite widget containing a single-line textbox and another element, such as a listbox
or grid, that can dynamically pop up to help the user set the value of the textbox.

command (abstract role)
A form of widget that performs an action but does not receive input data.

complementary
A supporting section of the document, designed to be complementary to the main content at a
similar level in the DOM hierarchy, but remains meaningful when separated from the main
content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

33 of 238 05/07/2020, 09:09

composite (abstract role)
A widget that may contain navigable descendants or owned children.

contentinfo
A large perceivable region that contains information about the parent document.

definition
A definition of a term or concept. See related term.

dialog
A dialog is a descendant window of the primary window of a web application. For HTML pages,
the primary application window is the entire web document, i.e., the body element.

directory
A list of references to members of a group, such as a static table of contents.

document
An element containing content that assistive technology users may want to browse in a reading
mode.

feed
A scrollable list of articles where scrolling may cause articles to be added to or removed
from either end of the list.

figure
A perceivable section of content that typically contains a graphical document, images, code
snippets, or example text. The parts of a figure MAY be user-navigable.

form
A landmark region that contains a collection of items and objects that, as a whole, combine to
create a form. See related search.

grid
A composite widget containing a collection of one or more rows with one or more cells where
some or all cells in the grid are focusable by using methods of two-dimensional navigation, such
as directional arrow keys.

gridcell
A cell in a grid or treegrid.

group
A set of user interface objects which are not intended to be included in a page summary or table
of contents by assistive technologies.

heading
A heading for a section of the page.

img
A container for a collection of elements that form an image.

input (abstract role)
A generic type of widget that allows user input.

landmark (abstract role)
A perceivable section containing content that is relevant to a specific, author-specified purpose
and sufficiently important that users will likely want to be able to navigate to the section easily
and to have it listed in a summary of the page. Such a page summary could be generated

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

34 of 238 05/07/2020, 09:09

dynamically by a user agent or assistive technology.

link
An interactive reference to an internal or external resource that, when activated, causes the user
agent to navigate to that resource. See related button.

list
A section containing listitem elements. See related listbox.

listbox
A widget that allows the user to select one or more items from a list of choices. See related
combobox and list.

listitem
A single item in a list or directory.

log
A type of live region where new information is added in meaningful order and old information
may disappear. See related marquee.

main
The main content of a document.

marquee
A type of live region where non-essential information changes frequently. See related log.

math
Content that represents a mathematical expression.

menu
A type of widget that offers a list of choices to the user.

menubar
A presentation of menu that usually remains visible and is usually presented horizontally.

menuitem
An option in a set of choices contained by a menu or menubar.

menuitemcheckbox
A menuitem with a checkable state whose possible values are true, false, or mixed.

menuitemradio
A checkable menuitem in a set of elements with the same role, only one of which can be
checked at a time.

navigation
A collection of navigational elements (usually links) for navigating the document or related
documents.

none
An element whose implicit native role semantics will not be mapped to the accessibility API. See
synonym presentation.

note
A section whose content is parenthetic or ancillary to the main content of the resource.

option
A selectable item in a select list.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

35 of 238 05/07/2020, 09:09

presentation
An element whose implicit native role semantics will not be mapped to the accessibility API. See
synonym none.

progressbar
An element that displays the progress status for tasks that take a long time.

radio
A checkable input in a group of elements with the same role, only one of which can be checked at
a time.

radiogroup
A group of radio buttons.

range (abstract role)
An input representing a range of values that can be set by the user.

region
A perceivable section containing content that is relevant to a specific, author-specified purpose
and sufficiently important that users will likely want to be able to navigate to the section easily
and to have it listed in a summary of the page. Such a page summary could be generated
dynamically by a user agent or assistive technology.

roletype (abstract role)
The base role from which all other roles in this taxonomy inherit.

row
A row of cells in a tabular container.

rowgroup
A structure containing one or more row elements in a tabular container.

rowheader
A cell containing header information for a row in a grid.

scrollbar
A graphical object that controls the scrolling of content within a viewing area, regardless of
whether the content is fully displayed within the viewing area.

search
A landmark region that contains a collection of items and objects that, as a whole, combine to
create a search facility. See related form and searchbox.

searchbox
A type of textbox intended for specifying search criteria. See related textbox and search.

section (abstract role)
A renderable structural containment unit in a document or application.

sectionhead (abstract role)
A structure that labels or summarizes the topic of its related section.

select (abstract role)
A form widget that allows the user to make selections from a set of choices.

separator
A divider that separates and distinguishes sections of content or groups of menuitems.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

36 of 238 05/07/2020, 09:09

slider
A user input where the user selects a value from within a given range.

spinbutton
A form of range that expects the user to select from among discrete choices.

status
A type of live region whose content is advisory information for the user but is not important
enough to justify an alert, often but not necessarily presented as a status bar.

structure (abstract role)
A document structural element.

switch
A type of checkbox that represents on/off values, as opposed to checked/unchecked values. See
related checkbox.

tab
A grouping label providing a mechanism for selecting the tab content that is to be rendered to the
user.

table
A section containing data arranged in rows and columns. See related grid.

tablist
A list of tab elements, which are references to tabpanel elements.

tabpanel
A container for the resources associated with a tab, where each tab is contained in a tablist.

term
A word or phrase with a corresponding definition. See related definition.

textbox
A type of input that allows free-form text as its value.

timer
A type of live region containing a numerical counter which indicates an amount of elapsed time
from a start point, or the time remaining until an end point.

toolbar
A collection of commonly used function buttons or controls represented in compact visual form.

tooltip
A contextual popup that displays a description for an element.

tree
A type of list that may contain sub-level nested groups that can be collapsed and expanded.

treegrid
A grid whose rows can be expanded and collapsed in the same manner as for a tree.

treeitem
An option item of a tree. This is an element within a tree that may be expanded or collapsed if it
contains a sub-level group of tree item elements.

widget (abstract role)
An interactive component of a graphical user interface (GUI).

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

37 of 238 05/07/2020, 09:09

§

window (abstract role)
A browser or application window.

alert (role)

A type of live region with important, and usually time-sensitive, information. See related
alertdialog and status.

Alerts are used to convey messages to alert the user. In the case of audio warnings this is an accessible
alternative for a hearing-impaired user. The alert role goes on the node containing the alert message.
Alerts are specialized forms of the status role, which will be processed as an atomic live region.

Alerts are assertive live regions and will be processed as such by assistive technologies. Neither
authors nor user agents are required to set or manage focus to them in order for them to be processed.
Since alerts are not required to receive focus, content authors SHOULD NOT require users to close an
alert. If the operating system allows, the user agent SHOULD fire a system alert event through the
accessibility API when the WAI-ARIA alert is created. If an alert requires focus to close the alert, then
content authors SHOULD use alertdialog instead.

Elements with the role alert have an implicit aria-live value of assertive, and an implicit
aria-atomic value of true.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: alertdialog

Related Concepts: XForms alert

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

38 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-live is assertive.
Default for aria-atomic is true.

alertdialog (role)

A type of dialog that contains an alert message, where initial focus goes to an element within the
dialog. See related alert and dialog.

Alert dialogs are used to convey messages to alert the user. The alertdialog role goes on the node
containing both the alert message and the rest of the dialog. Content authors SHOULD make alert
dialogs modal by ensuring that, while the alertdialog is shown, keyboard and mouse interactions
only operate within the dialog. See aria-modal.

Unlike alert, alertdialog can receive a response from the user. For example, to confirm that the
user understands the alert being generated. When the alert dialog is displayed, authors SHOULD set
focus to an active element within the alert dialog, such as a form edit field or an OK button. The user
agent SHOULD fire a system alert event through the accessibility API when the alert is created,
provided one is specified by the intended accessibility API.

Authors SHOULD use aria-describedby on an alertdialog to reference the alert message
element in the dialog. If they do not, an assistive technology can resort to its internal recovery
mechanism to determine the contents of the alert message.

Characteristics:

Characteristic Value

Superclass Role: alert

dialog

Related Concepts: XForms alert

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

39 of 238 05/07/2020, 09:09

§

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-modal

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

application (role)

A structure containing one or more focusable elements requiring user input, such as keyboard or
gesture events, that do not follow a standard interaction pattern supported by a widget role.

Some user agents and assistive technologies have a browse mode where standard input events, such as
up and down arrow key events, are intercepted and used to control a reading cursor. This browse mode
behavior prevents elements that do not have a widget role from receiving and using such keyboard
and gesture events to provide interactive functionality.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

40 of 238 05/07/2020, 09:09

When there is a need to create an element with an interaction model that is not supported by any of the
WAI-ARIA widget roles, authors MAY give that element role application. And, when a user
navigates into an element with role application, assistive technologies that intercept standard input
events SHOULD switch to a mode that passes most or all standard input events through to the web
application.

For example, a presentation slide editor uses arrow keys to change the positions of textbox and image
elements on the slide. There are not any WAI-ARIA widget roles that correspond to such an
interaction model so an author could give the slide container role application, an aria-
roledescription of "Slide Editor", and use aria-describedby to provide instructions.

Because only the focusable elements contained in an application element are accessible to users of
some assistive technologies, authors MUST use one of the following techniques to ensure all non-
decorative static text or image content inside an application is accessible:

1. Associate the content with a focusable element using aria-labelledby or aria-
describedby.

2. Place the content in a focusable element that has role document or article.

3. Manage focus of descendants as described in Managing Focus, updating the value of aria-
activedescendant to reference the element containing the focused content.

Characteristics:

Characteristic Value

Superclass Role: structure

Related Concepts: Device Independence Delivery Unit

Supported States and Properties: aria-activedescendant

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

41 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

article (role)

A section of a page that consists of a composition that forms an independent part of a document, page,
or site.

An article is not a navigational landmark, but may be nested to form a discussion where assistive
technologies could pay attention to article nesting to assist the user in following the discussion. An
article could be a forum post, a magazine or newspaper article, a web log entry, a user-submitted
comment, or any other independent item of content. It is independent in that its contents could stand
alone, for example in syndication. However, the element is still associated with its ancestors; for
instance, contact information that applies to a parent body element still covers the article as well.
When nesting articles, the child articles represent content that is related to the content of the parent
article. For instance, a web log entry on a site that accepts user-submitted comments could represent
the comments as articles nested within the article for the web log entry. Author, heading, date, or other
information associated with an article does not apply to nested articles.

When the user navigates to an element assigned the role of article, assistive technologies that
typically intercept standard keyboard events SHOULD switch to document browsing mode, as
opposed to passing keyboard events through to the web application. Assistive technologies MAY
provide a feature allowing the user to navigate the hierarchy of any nested article elements.

When an article is in the context of a feed, the author MAY specify values for aria-posinset
and aria-setsize.

Characteristics:

Characteristic Value

Superclass Role: document

Related Concepts: HTML article

Supported States and Properties: aria-posinset

aria-setsize

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

42 of 238 05/07/2020, 09:09

§

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

banner (role)

A region that contains mostly site-oriented content, rather than page-specific content.

Site-oriented content typically includes things such as the logo or identity of the site sponsor, and a
site-specific search tool. A banner usually appears at the top of the page and typically spans the full
width.

User agents SHOULD treat elements with the role of banner as navigational landmarks.

Within any document or application, the author SHOULD mark no more than one element with
the banner role.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

43 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

NOTE

Because document and application elements can be nested in the DOM, they may have
multiple banner elements as DOM descendants, assuming each of those is associated with
different document nodes, either by a DOM nesting (e.g., document within document) or by
use of the aria-owns attribute.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

44 of 238 05/07/2020, 09:09

§button (role)

An input that allows for user-triggered actions when clicked or pressed. See related link.

Buttons are mostly used for discrete actions. Standardizing the appearance of buttons enhances the
user's recognition of the widgets as buttons and allows for a more compact display in toolbars.

Buttons support the optional attribute aria-pressed. Buttons with a non-empty aria-pressed
attribute are toggle buttons. When aria-pressed is true the button is in a "pressed" state, when
aria-pressed is false it is not pressed. If the attribute is not present, the button is a simple
command button.

Characteristics:

Characteristic Value

Superclass Role: command

Base Concept: HTML button

Related Concepts: link

XForms trigger

Supported States and Properties: aria-expanded

aria-pressed

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

45 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

cell (role)

A cell in a tabular container. See related gridcell.

Authors MUST ensure elements with role cell are contained in, or owned by, an element with the role
row.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: columnheader

gridcell

rowheader

Base Concept: HTML td

Required Context Role: row

Supported States and Properties: aria-colindex

aria-colspan

aria-rowindex

aria-rowspan

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

46 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

checkbox (role)

A checkable input that has three possible values: true, false, or mixed.

The aria-checked attribute of a checkbox indicates whether the input is checked (true),
unchecked (false), or represents a group of elements that have a mixture of checked and unchecked
values (mixed). Many checkboxes do not use the mixed value, and thus are effectively boolean
checkboxes.

Characteristics:

Characteristic Value

Superclass Role: input

Subclass Roles: menuitemcheckbox

switch

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

47 of 238 05/07/2020, 09:09

Characteristic Value

Related Concepts: HTML input[type="checkbox"]

option

Required States and Properties: aria-checked

Supported States and Properties: aria-readonly

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-checked is false.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

48 of 238 05/07/2020, 09:09

§columnheader (role)

A cell containing header information for a column.

columnheader can be used as a column header in a table or grid. It could also be used in a pie chart
to show a similar relationship in the data.

The columnheader establishes a relationship between it and all cells in the corresponding column. It
is the structural equivalent to an HTML th element with a column scope.

Authors MUST ensure elements with role columnheader are contained in, or owned by, an element
with the role row.

Applying the aria-selected state on a columnheader MUST not cause the user agent to
automatically propagate the aria-selected state to all the cells in the corresponding column. An
author MAY choose to propagate selection in this manner depending on the specific application.

While the columnheader role can be used in both interactive grids and non-interactive tables, the use
of aria-readonly and aria-required is only applicable to interactive elements. Therefore,
authors SHOULD NOT use aria-required or aria-readonly in a columnheader that descends
from a table, and user agents SHOULD NOT expose either property to assistive technologies unless
the columnheader descends from a grid.

Characteristics:

Characteristic Value

Superclass Role: cell

gridcell

sectionhead

Base Concept: HTML th[scope="col"]

Required Context Role: row

Supported States and Properties: aria-sort

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-colindex

aria-colspan

aria-controls

NOTE

Because cells are organized into rows, there is not a single container element for the column.
The column is the set of gridcell elements in a particular position within their respective
row containers.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

49 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

aria-rowindex

aria-rowspan

aria-selected (state)

Name From: contents

author

Accessible Name Required: True

combobox (role)

A composite widget containing a single-line textbox and another element, such as a listbox or
grid, that can dynamically pop up to help the user set the value of the textbox.

Authors MUST ensure an element with role combobox contains or owns a text input element with role

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

50 of 238 05/07/2020, 09:09

textbox or searchbox and that the text input has aria-multiline set to false. If the combobox
provides autocompletion behavior for the text input as described in aria-autocomplete, authors
MUST set aria-autocomplete on the textbox element to the value that corresponds to the
provided behavior.

Typically, the default state of a combobox is collapsed. In the collapsed state, only the textbox
element of a combobox is visible. A combobox is said to be expanded when both the textbox and a
secondary element that serves as its popup are visible. Authors MUST set aria-expanded to true
on an element with role combobox when it is expanded and false when it is collapsed. Elements
with the role combobox have an implicit aria-expanded value of false.

When a combobox is expanded, authors MUST ensure it contains or owns an element that has a role
of listbox, tree, grid, or dialog. This element is the combobox popup. When the combobox is
expanded, authors MUST set aria-controls on the textbox element to a value that refers to the
combobox popup element.

Elements with the role combobox have an implicit aria-haspopup value of listbox. If the
combobox popup element has a role other than listbox, authors MUST specify a value for aria-
haspopup that corresponds to the type of its popup.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus. When a combobox receives focus, authors SHOULD ensure
focus is placed on the textbox element.

Authors SHOULD provide keyboard mechanisms for moving focus between the textbox element
and the elements contained in the popup. For example, one common convention is that Down Arrow
moves focus from the text input to the first focusable descendant of the popup element. If the popup
element supports aria-activedescendant, in lieu of moving focus, such keyboard mechanisms
can control the value of aria-activedescendant on the textbox element. When a descendant of
the popup element is active, authors MAY set aria-activedescendant on the textbox to a value
that refers to the active element within the popup while focus remains on the textbox element.

The ARIA 1.0 specification describes a combobox pattern where a text input element has the
combobox role and owns a listbox element. User agents, assistive technologies, and conformance
checkers SHOULD continue to support the ARIA 1.0 pattern so that existing implementations of the
ARIA 1.0 pattern remain functional.

The features and behaviors of combobox implementations vary widely. Consequently, there are many
important authoring considerations. See the WAI-ARIA Authoring Practices Guide [wai-aria-

EXAMPLE 5

<div aria-label="Tag" role="combobox" aria-expanded="true" aria-owns="owned_listbox" aria-haspopup
<input type="text" aria-autocomplete="list" aria-controls="owned_listbox" aria-activedescendant

</div>
<ul role="listbox" id="owned_listbox">

<li role="option">Zebra
<li role="option" id="selected_option">Zoom

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

51 of 238 05/07/2020, 09:09

practices-1.1] for additional details on implementing combobox design patterns.

Characteristics:

Characteristic Value

Superclass Role: select

Related Concepts: HTML select

XForms select

Required Owned Elements: textbox and, when expanded, one of:

listbox

tree

grid

dialog

Required States and Properties: aria-controls

aria-expanded

Supported States and Properties: aria-autocomplete

aria-readonly

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

52 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-expanded is false.
Default for aria-haspopup is listbox.

command (abstract role)

A form of widget that performs an action but does not receive input data.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: button

link

menuitem

Related Concepts: menuitem in [html51]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

NOTE

command is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

53 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

complementary (role)

A supporting section of the document, designed to be complementary to the main content at a similar
level in the DOM hierarchy, but remains meaningful when separated from the main content.

There are various types of content that would appropriately have this role. For example, in the case of
a portal, this may include but not be limited to show times, current weather, related articles, or stocks
to watch. The complementary role indicates that contained content is relevant to the main content. If
the complementary content is completely separable from the main content, it may be appropriate to
use a more general role.

User agents SHOULD treat elements with the role of complementary as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

54 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

composite (abstract role)

A widget that may contain navigable descendants or owned children.

Authors SHOULD ensure that a composite widget exists as a single navigation stop within the larger
navigation system of the web page. Once the composite widget has focus, authors SHOULD provide a
separate navigation mechanism for users to navigate to elements that are descendants or owned
children of the composite element.

Characteristics:

Characteristic Value

NOTE

composite is an abstract role used for the ontology. Authors should not use this role in
content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

55 of 238 05/07/2020, 09:09

§

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: grid

select

spinbutton

tablist

Supported States and Properties: aria-activedescendant

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

contentinfo (role)

A large perceivable region that contains information about the parent document.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

56 of 238 05/07/2020, 09:09

Examples of information included in this region of the page are copyrights and links to privacy
statements.

User agents SHOULD treat elements with the role of contentinfo as navigational landmarks.

Within any document or application, the author SHOULD mark no more than one element with
the contentinfo role.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

NOTE

Because document and application elements can be nested in the DOM, they may have
multiple contentinfo elements as DOM descendants, assuming each of those is associated
with different document nodes, either by a DOM nesting (e.g., document within document)
or by use of the aria-owns attribute.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

57 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-owns

aria-relevant

aria-roledescription

Name From: author

definition (role)

A definition of a term or concept. See related term.

Authors SHOULD identify the element being defined by giving that element a role of term and
referencing it with the aria-labelledby attribute.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: HTML dd

HTML dfn

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

58 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

dialog (role)

A dialog is a descendant window of the primary window of a web application. For HTML pages, the
primary application window is the entire web document, i.e., the body element.

Dialogs are most often used to prompt the user to enter or respond to information. A dialog that is
designed to interrupt workflow is usually modal. See related alertdialog.

Authors SHOULD provide a dialog label, which can be done with the aria-label or aria-
labelledby attribute.

Authors SHOULD ensure that all dialogs (both modal and non-modal) have at least one focusable
descendant element. Authors SHOULD focus an element in the modal dialog when it is displayed, and
authors SHOULD manage focus of modal dialogs.

Characteristics:

Characteristic Value

Superclass Role: window

Subclass Roles: alertdialog

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

NOTE

In the description of this role, the term "web application" does not refer to the application
role, which specifies specific assistive technology behaviors.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

59 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-modal

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

directory (role)

A list of references to members of a group, such as a static table of contents.

Authors SHOULD use this role for a static table of contents, whether linked or unlinked. This includes
tables of contents built with lists, including nested lists. Dynamic tables of contents, however, might
use a tree role instead.

Characteristics:

Characteristic Value

Superclass Role: list

Related Concepts: DAISY Guide

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

60 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

document (role)

An element containing content that assistive technology users may want to browse in a reading mode.

When user agent focus moves to an element assigned the role of document, assistive technologies
having a reading mode for browsing static content MAY switch to that reading mode and intercept
standard input events, such as Up or Down arrow keyboard events, to control the reading cursor.

Because assistive technologies that have a reading mode default to that mode for all elements except
for those with either a widget or application role, the only circumstance where the document role
is useful for changing assistive technology behavior is when the element with role document is a
focusable child element of a widget or application. For example, given an application element
which contains some static rich text, the author can apply role document to the element containing the
text and give it a tabindex of 0. When a screen reader user presses the Tab key and places focus on
the document element, the user will be able to read the text with the screen reader's reading cursor.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

61 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Superclass Role: structure

Subclass Roles: article

Related Concepts: Device Independence Delivery Unit

Supported States and Properties: aria-expanded

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

feed (role)

A scrollable list of articles where scrolling may cause articles to be added to or removed from
either end of the list.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

62 of 238 05/07/2020, 09:09

A feed enables users of assistive technologies that have a document browse mode, such as screen
readers, to use the browse mode reading cursor to both read and scroll through a stream of rich content
that may continue scrolling infinitely by loading more content as the user reads. In a feed, assistive
technologies provide a web application with signals of the user's reading cursor movement by moving
user agent focus, enabling the application to both add new content and visually position content as the
user browses the page. The feed also lets authors inform assistive technologies when additions and
removals are occurring so assistive technologies can more reliably update their reading view without
disrupting reading or degrading performance.

For example, a feed could be used to present a stream of news stories where each article contains
a story with text, links, images, and comments as well as widgets for sharing and commenting. As a
screen reader user reads and interacts with each story and moves the screen reader reading cursor from
story to story, each story scrolls into view and, as needed, new stories are loaded.

A feed is a container element whose children have role article. When articles are added or
removed from either or both ends of a feed, authors SHOULD set aria-busy to true on the feed
element before the changes are made and set it to false after the changes are complete. Authors
SHOULD avoid inserting or removing articles in the middle of a feed. These requirements help
assistive technologies gracefully respond to changes in the feed content that occur simultaneously
with user commands to move the reading cursor within the feed.

Authors SHOULD make each article in a feed focusable and ensure that the application scrolls an
article into view when user agent focus is set on the article or one of its descendant elements.
For example, in HTML, each article element should have a tabindex value of either -1 or 0.

When an assistive technology reading cursor moves from one article to another, assistive
technologies SHOULD set user agent focus on the article that contains the reading cursor. If the
reading cursor lands on a focusable element inside the article, the assistive technology MAY set
focus on that element in lieu of setting focus on the containing article.

Because the ability to scroll to another article with an assistive technology reading cursor depends
on the presence of another article in the page, authors SHOULD attempt to load additional articles
before user agent focus reaches an article at either end of the set of articles that has been loaded.
Alternatively, authors MAY include an article at either or both ends of the loaded set of articles that
includes an element, such as a button, that lets the user request more articles to be loaded.

In addition to providing a brief label, authors MAY apply aria-describedby to article elements
in a feed to suggest to screen readers which elements to speak after the label when users navigate by
article. Screen readers MAY provide users with a way to quickly scan feed content by speaking
both the label and accessible description when navigating by article, enabling the user to ignore
repetitive or less important elements, such as embedded interaction widgets, that the author has left
out of the description.

Authors SHOULD provide keyboard commands for moving focus among articles in a feed so users
who do not utilize an assistive technology that provides article navigation features can use the
keyboard to navigate the feed.

If the number of articles available in a feed supply is static, authors MAY specify aria-setsize on
article elements in that feed. However, if the total number is extremely large, indefinite, or

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

63 of 238 05/07/2020, 09:09

§

changes often, authors MAY set aria-setsize to -1 to communicate the unknown size of the set.

See the WAI-ARIA Authoring Practices [wai-aria-practices-1.1] for additional details on implementing
a feed design pattern.

Characteristics:

Characteristic Value

Superclass Role: list

Required Owned Elements: article

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

figure (role)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

64 of 238 05/07/2020, 09:09

A perceivable section of content that typically contains a graphical document, images, code
snippets, or example text. The parts of a figure MAY be user-navigable.

Authors SHOULD provide a reference to the figure from the main text, but the figure need not be
displayed at the same location as the referencing element. Authors MAY reference text serving as a
caption using aria-describedby. Authors MAY provide a label using aria-label or MAY
reference text serving as a label using aria-labelledby.

Assistive technologies SHOULD enable users to quickly navigate to figures. Mainstream user agents
MAY enable users to quickly navigate to figures.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: HTML figure

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

65 of 238 05/07/2020, 09:09

§

Characteristic Value

Name From: author

Accessible Name Required: False

form (role)

A landmark region that contains a collection of items and objects that, as a whole, combine to create
a form. See related search.

A form may be a mix of host language form controls, scripted controls, and hyperlinks. Authors are
reminded to use native host language semantics to create form controls, whenever possible. For search
facilities, authors SHOULD use the search role and not the generic form role. Authors SHOULD
provide a visible label for the form referenced with aria-labelledby. If an author uses a script to
submit a form based on a user action that would otherwise not trigger an onsubmit event (for
example, a form submission triggered by the user changing a form element's value), the author
SHOULD provide the user with advance notification of the behavior.

User agents SHOULD treat elements with the role of form as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Base Concept: HTML form

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

66 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

grid (role)

A composite widget containing a collection of one or more rows with one or more cells where some
or all cells in the grid are focusable by using methods of two-dimensional navigation, such as
directional arrow keys.

The grid role does not imply a specific visual, e.g., tabular, presentation. It describes relationships
among elements. It may be used for purposes as simple as grouping a collection of checkboxes or
navigation links or as complex as creating a full-featured spreadsheet application.

The cell elements of a grid have role gridcell. Authors MAY designate a cell as a row or column
header by using either the rowheader or columnheader role in lieu of the gridcell role. Authors
MUST ensure elements with role gridcell, columnheader, or rowheader are owned by elements
with role row, which are in turn owned by an element with role rowgroup, or grid.

To be keyboard accessible, authors SHOULD manage focus of descendants of a grid as described in
Managing Focus. When a user is navigating the grid content with a keyboard, authors SHOULD set
focus as follows:

If a gridcell contains a single interactive widget that will not consume arrow key presses
when it receives focus, such as a checkbox, button, or link, authors MAY set focus on the
interactive element contained in that cell. This allows the contained widget to be directly
operable.

Otherwise, authors SHOULD ensure the element that receives focus is a gridcell, rowheader,
or columnheader element.

Authors SHOULD provide a mechanism for changing to an interaction or edit mode that allows users
to navigate and interact with content contained inside a focusable cell if that focusable cell contains
any of the following:

a widget that requires arrow keys to operate, e.g., a combobox or radiogroup

multiple interactive elements

editable content

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

67 of 238 05/07/2020, 09:09

For example, if a cell in a spreadsheet contains a combobox or editable text, the Enter key might be
used to activate a cell interaction or editing mode when that cell has focus so the directional arrow
keys can be used to operate the contained combobox or textbox. Depending on the implementation,
pressing Enter again, Tab, Escape, or another key may switch the application back to the grid
navigation mode.

Authors MAY use a gridcell to display the result of a formula, which could be editable by the user.
In a spreadsheet application, for example, a gridcell may show a value calculated from a formula
until the user activates the gridcell for editing when a textbox appears in the gridcell
containing the formula in an editable state.

If aria-readonly is set on an element with role grid, user agents MUST propagate the value to all
gridcell elements owned by the grid and expose the value in the accessibility API. An author
MAY override the propagated value of aria-readonly for an individual gridcell element.

In a grid that provides cell content editing functions, if the content of a focusable gridcell element
is not editable, authors MAY set aria-readonly to true on the gridcell element. However, the
value of aria-readonly, whether specified for a grid or individual cells, only indicates whether the
content contained in cells is editable. It does not represent availability of functions for navigating or
manipulating the grid itself.

An unspecified value for aria-readonly does not imply that a grid or a gridcell contains
editable content. For example, if a grid presents a collection of elements that are not editable, such as
a collection of link elements representing dates in a datepicker, it is not necessary for the author to
specify a value for aria-readonly.

Authors MAY indicate that a focusable gridcell is selectable as the object of an action with the
aria-selected attribute. If the grid allows multiple gridcells to be selected, the author
SHOULD set aria-multiselectable to true on the element with role grid.

Since WAI-ARIA can augment an element of the host language, a grid can reuse the elements and
attributes of a native table, such as an HTML table element. For example, if an author applies the
grid role to an HTML table element, the author does not need to apply the row and gridcell
roles to the descendant HTML tr and td elements because the user agent will automatically make the
appropriate translations. When the author is reusing a native host language table element and needs a
gridcell element to span multiple rows or columns, the author SHOULD apply the appropriate host
language attributes instead of WAI-ARIA aria-rowspan or aria-colspan properties.

See the WAI-ARIA Authoring Practices Guide [wai-aria-practices-1.1] for additional details on
implementing grid design patterns.

Characteristics:

Characteristic Value

Superclass Role: composite

table

Subclass Roles: treegrid

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

68 of 238 05/07/2020, 09:09

Characteristic Value

Base Concept: HTML table

Required Owned Elements: row

rowgroup → row

Supported States and Properties: aria-level

aria-multiselectable

aria-readonly

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-colcount

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-rowcount

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

69 of 238 05/07/2020, 09:09

§

Characteristic Value

Accessible Name Required: True

gridcell (role)

A cell in a grid or treegrid.

A gridcell may be focusable, editable, and selectable. A gridcell may have relationships such as
aria-controls to address the application of functional relationships.

If an author intends a gridcell to have a row header, column header, or both, and if the relevant
headers cannot be determined from the DOM structure, authors SHOULD explicitly indicate which
header cells are relevant to the gridcell by applying aria-describedby on the gridcell and
referencing elements with role rowheader or columnheader.

In a treegrid, authors MAY define a gridcell as expandable by using the aria-expanded
attribute. If the aria-expanded attribute is provided, it applies only to the individual cell. It is not a
proxy for the container row, which also can be expanded. The main use case for providing this
attribute on a gridcell is pivot table behavior.

Authors MUST ensure elements with role gridcell are contained in, or owned by, an element with the
role row.

Characteristics:

Characteristic Value

Superclass Role: cell

widget

Subclass Roles: columnheader

rowheader

Base Concept: HTML td

Required Context Role: row

Supported States and Properties: aria-readonly

aria-required

aria-selected

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-colindex

aria-colspan

aria-controls

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

70 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-rowindex

aria-rowspan

Name From: contents

author

Accessible Name Required: True

group (role)

A set of user interface objects which are not intended to be included in a page summary or table of
contents by assistive technologies.

Contrast with region which is a grouping of user interface objects that will be included in a page
summary or table of contents.

Authors SHOULD use a group to form logical collection of items in a widget such as children in a
tree widget forming a collection of siblings in a hierarchy, or a collection of items having the same

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

71 of 238 05/07/2020, 09:09

container in a directory. However, when a group is used in the context of list, authors MUST limit its
children to listitem elements. Therefore, proper handling of group by authors and assistive
technologies is determined by the context in which it is provided.

Authors MAY nest group elements. If a section is significant enough to warrant inclusion in the web
page's table of contents, the author SHOULD assign the section a role of region or a standard
landmark role.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: row

select

toolbar

Related Concepts: HTML fieldset

Supported States and Properties: aria-activedescendant

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

72 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-relevant

aria-roledescription

Name From: author

heading (role)

A heading for a section of the page.

Often, heading elements will be referenced with the aria-labelledby attribute of the section for
which they serve as a heading. If headings are organized into a logical outline, the aria-level
attribute is used to indicate the nesting level.

Characteristics:

Characteristic Value

Superclass Role: sectionhead

Related Concepts: HTML h1, h2, h3, h4, h5, and h6

Required States and Properties: aria-level

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

73 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Implicit Value for Role: Default for aria-level is 2.

img (role)

A container for a collection of elements that form an image.

An img can contain captions and descriptive text, as well as multiple image files that when viewed
together give the impression of a single image. An img represents a single graphic within a document,
whether or not it is formed by a collection of drawing objects. In order for elements with a role of img
be perceivable, authors MUST provide alternative text or a label determined by the accessible name
calculation.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: HTML img

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

74 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Children Presentational: True

input (abstract role)

A generic type of widget that allows user input.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: checkbox

option

radio

slider

spinbutton

textbox

Related Concepts: XForms input

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

75 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

landmark (abstract role)

A perceivable section containing content that is relevant to a specific, author-specified purpose and
sufficiently important that users will likely want to be able to navigate to the section easily and to have
it listed in a summary of the page. Such a page summary could be generated dynamically by a user
agent or assistive technology.

Authors designate the purpose of the content by assigning a role that is a subclass of the landmark role
and, when needed, by providing a brief, descriptive label.

Elements with a role that is a subclass of the landmark role are known as landmark regions or
navigational landmark regions. Assistive technologies SHOULD enable users to quickly navigate to
landmark regions. Mainstream user agents MAY enable users to quickly navigate to landmark regions.

NOTE

landmark is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

76 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: section

Subclass Roles: banner

complementary

contentinfo

form

main

navigation

region

search

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

77 of 238 05/07/2020, 09:09

§

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

link (role)

An interactive reference to an internal or external resource that, when activated, causes the user agent
to navigate to that resource. See related button.

If this is a native link in the host language (such as an HTML anchor with an href value), activating
the link causes the user agent to navigate to that resource. If this is a simulated link, the web
application author is responsible for managing navigation.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

78 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Superclass Role: command

Related Concepts: HTML a

HTML link

Supported States and Properties: aria-expanded

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

NOTE

If pressing the link triggers an action but does not change browser focus or page location,
authors are advised to consider using the button role instead of the link role.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

79 of 238 05/07/2020, 09:09

§

Characteristic Value

Name From: contents

author

Accessible Name Required: True

list (role)

A section containing listitem elements. See related listbox.

Lists contain children whose role is listitem, or elements whose role is group which in turn
contains children whose role is listitem.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: directory

feed

Base Concept: HTML ol

HTML ul

Required Owned Elements: group → listitem

listitem

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

80 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

listbox (role)

A widget that allows the user to select one or more items from a list of choices. See related combobox
and list.

Items within the list are static and, unlike standard HTML select elements, may contain images. List
boxes contain children whose role is option.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus.

Elements with the role listbox have an implicit aria-orientation value of vertical.

Characteristics:

Characteristic Value

Superclass Role: select

Related Concepts: list

HTML select

XForms select

Required Owned Elements: option

Supported States and Properties: aria-multiselectable

aria-readonly

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

81 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-orientation is vertical.

listitem (role)

A single item in a list or directory.

Authors MUST ensure elements with role listitem are contained in, or owned by, an element with
the role list or group.

Characteristics:

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

82 of 238 05/07/2020, 09:09

Characteristic Value

Superclass Role: section

Subclass Roles: treeitem

Base Concept: HTML li

Related Concepts: XForms item

Required Context Role: group

list

Supported States and Properties: aria-level

aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

83 of 238 05/07/2020, 09:09

§log (role)

A type of live region where new information is added in meaningful order and old information may
disappear. See related marquee.

Examples include chat logs, messaging history, game log, or an error log. In contrast to other live
regions, in this role there is a relationship between the arrival of new items in the log and the reading
order. The log contains a meaningful sequence and new information is added only to the end of the
log, not at arbitrary points.

Elements with the role log have an implicit aria-live value of polite.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

84 of 238 05/07/2020, 09:09

§

Characteristic Value

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-live is polite.

main (role)

The main content of a document.

This marks the content that is directly related to or expands upon the central topic of the document.
The main role is a non-obtrusive alternative for "skip to main content" links, where the navigation
option to go to the main content (or other landmarks) is provided by the user agent through a dialog or
by assistive technologies.

User agents SHOULD treat elements with the role of main as navigational landmarks.

Within any document or application, the author SHOULD mark no more than one element with
the main role.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

NOTE

Because document and application elements can be nested in the DOM, they may have
multiple main elements as DOM descendants, assuming each of those is associated with
different document nodes, either by a DOM nesting (e.g., document within document) or by
use of the aria-owns attribute.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

85 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

marquee (role)

A type of live region where non-essential information changes frequently. See related log.

Common usages of marquee include stock tickers and ad banners. The primary difference between a
marquee and a log is that logs usually have a meaningful order or sequence of important content
changes.

Elements with the role marquee have an implicit aria-live value of off.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

86 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

math (role)

Content that represents a mathematical expression.

Content with the role math is intended to be marked up in an accessible format such as MathML
[MathML3], or with another type of textual representation such as TeX or LaTeX, which can be
converted to an accessible format by native browser implementations or a polyfill library.

While it is not ideal to use an image of a mathematical expression, there exists a significant amount of
legacy content where images are used to represent mathematical expressions. Authors SHOULD
ensure that images of math are labeled by text that describes the mathematical expression as it might
be spoken.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

87 of 238 05/07/2020, 09:09

§MathML Example with Embedded TeX Annotation

NOTE

Browsers that support native implementations of MathML are able to provide a more robust,
accessible math experience than can be accomplished with plain text approximations of math.
Some rendering engines have close integration with screen readers that allow spacial touch
exploration of the formula and refreshable braille display output in the Nemeth Braille format.
This level of integration is not supported with images of mathematical formulas, even if the
author provides a plain text approximation.

At the time of this writing, some mainstream browsers do not support MathML natively, and
must be retrofit using a JavaScript polyfill library. When authoring math content, use native
MathML wherever possible, and test thoroughly. Use a polyfill library or provide a fallback
image with a text alternative approximation if necessary.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

88 of 238 05/07/2020, 09:09

§Plain HTML or Polyfill DOM Result of the MathML Quadratic Formula

If a rendering engine does not support a native math format such as MathML, authors MAY use
JavaScript to downgrade the content to a format the browser can display, such as this HTML image
using a data URI and plain text alternative.

EXAMPLE 6

<!-- Note: Use a JavaScript polyfill library to ensure
 this renders in user agents that do not support MathML. -->
<!-- The math element has an implicit role="math". -->
<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>

<mrow>
<mo form="prefix">−</mo>
<mi>b</mi>
<mo>±</mo>
<msqrt>

<msup>
<mi>b</mi>
<mn>2</mn>

</msup>
<mo>−</mo>
<mn>4</mn>
<mo>⁢<!-- ⁢ --></mo>
<mi>a</mi>
<mo>⁢<!-- ⁢ --></mo>
<mi>c</mi>

</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢<!-- ⁢ --></mo>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>
<annotation encoding="TeX">

 x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
</annotation>

</math>

EXAMPLE 7

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

89 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Children Presentational: True

menu (role)

A type of widget that offers a list of choices to the user.

A menu is often a list of common actions or functions that the user can invoke. The menu role is
appropriate when a list of menu items is presented in a manner similar to a menu on a desktop
application.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

90 of 238 05/07/2020, 09:09

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus.

Elements with the role menu have an implicit aria-orientation value of vertical.

Characteristics:

Characteristic Value

Superclass Role: select

Subclass Roles: menubar

Related Concepts: list

XForms select

JAPI MENU

Required Owned Elements: group → menuitemradio

menuitem

menuitemcheckbox

menuitemradio

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

91 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is vertical.

menubar (role)

A presentation of menu that usually remains visible and is usually presented horizontally.

The menubar role is used to create a menu bar similar to those found in Windows, Mac, and Gnome
desktop applications. A menu bar is used to create a consistent set of frequently used commands.
Authors SHOULD ensure that menubar interaction is similar to the typical menu bar interaction in a
desktop graphical user interface.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus.

Elements with the role menubar have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: menu

Related Concepts: toolbar

Required Owned Elements: group → menuitemradio

menuitem

menuitemcheckbox

menuitemradio

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

92 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is
horizontal.

menuitem (role)

An option in a set of choices contained by a menu or menubar.

Authors MAY disable a menu item with the aria-disabled attribute. If the menu item has its aria-
haspopup attribute set to true, it indicates that the menu item may be used to launch a sub-level
menu, and authors SHOULD display a new sub-level menu when the menu item is activated.

Authors MUST ensure that menu items are owned by an element with role menu or menubar in order
to identify that they are related widgets. Authors MAY separate menu items into sets by use of a
separator or an element with an equivalent role from the native markup language.

Characteristics:

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

93 of 238 05/07/2020, 09:09

Characteristic Value

Superclass Role: command

Subclass Roles: menuitemcheckbox

Related Concepts: JAPI MENU_ITEM

menuitem in [html51]

listitem

option

Required Context Role: group

menu

menubar

Supported States and Properties: aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

94 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-roledescription

Name From: contents

author

Accessible Name Required: True

menuitemcheckbox (role)

A menuitem with a checkable state whose possible values are true, false, or mixed.

The aria-checked attribute of a menuitemcheckbox indicates whether the menu item is checked
(true), unchecked (false), or represents a sub-level menu of other menu items that have a mixture
of checked and unchecked values (mixed).

Authors MUST ensure that menu item checkboxes are owned by an element with role menu or
menubar in order to identify that they are related widgets. Authors MAY separate menu items into sets
by use of a separator or an element with an equivalent role from the native markup language.

Characteristics:

Characteristic Value

Superclass Role: checkbox

menuitem

Subclass Roles: menuitemradio

Related Concepts: menuitem

Required Context Role: menu

menubar

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-checked (state) (required)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

95 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-posinset

aria-readonly

aria-relevant

aria-roledescription

aria-setsize

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-checked is false.

menuitemradio (role)

A checkable menuitem in a set of elements with the same role, only one of which can be checked at a
time.

Authors SHOULD enforce that only one menuitemradio in a group can be checked at the same
time. When one item in the group is checked, the previously checked item becomes unchecked (its
aria-checked attribute becomes false).

Authors MUST ensure that menu item radios are owned by an element with role group, menu, or
menubar in order to identify that they are related widgets. Authors MAY separate menu items into sets
by use of a separator or an element with an equivalent role from the native markup language.

If a menu or menubar contains more than one group of menuitemradio elements, or if the menu
contains one group and other, unrelated menu items, authors SHOULD nest each set of related
menuitemradio elements in an element using the group role, and authors SHOULD delimit the

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

96 of 238 05/07/2020, 09:09

group from other menu items with an element using the separator role.

Characteristics:

Characteristic Value

Superclass Role: menuitemcheckbox (see structure)

radio

Related Concepts: menuitem

Required Context Role: group

menu

menubar

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-checked (state) (required)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-posinset

aria-readonly

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

97 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-setsize

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-checked is false.

navigation (role)

A collection of navigational elements (usually links) for navigating the document or related
documents.

User agents SHOULD treat elements with the role of navigation as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Related Concepts: HTML nav

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

98 of 238 05/07/2020, 09:09

§

§

Characteristic Value
aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

none (role)

An element whose implicit native role semantics will not be mapped to the accessibility API. See
synonym presentation.

note (role)

A section whose content is parenthetic or ancillary to the main content of the resource.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

§

NOTE

Note regarding the ARIA 1.1 none role.

In ARIA 1.1, the working group introduced none as a synonym to the presentation role,
due to author confusion surrounding the intended meaning of the word "presentation" or
"presentational." Many individuals erroneously consider role="presentation" to be
synonymous with aria-hidden="true", and we believe role="none" conveys the actual
meaning more unambiguously.

Until implementations include sufficient support for role="none", web authors are advised to
use the presentation role alone role="presentation" or redundantly as a fallback to the
none role role="none presentation".

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

99 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

option (role)

A selectable item in a select list.

Authors MUST ensure elements with role option are contained in, or owned by, an element with the
role listbox. Options not associated with a listbox might not be correctly mapped to an
accessibility API.

Elements with the role option have an implicit aria-selected value of false.

Characteristics:

Characteristic Value

Superclass Role: input

Subclass Roles: treeitem

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

100 of 238 05/07/2020, 09:09

Characteristic Value

Base Concept: HTML option

Related Concepts: listitem

XForms item

Required Context Role: listbox

Required States and Properties: aria-selected

Supported States and Properties: aria-checked

aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

101 of 238 05/07/2020, 09:09

§

Characteristic Value

Children Presentational: True

Implicit Value for Role: Default for aria-selected is false.

presentation (role)

An element whose implicit native role semantics will not be mapped to the accessibility API. See
synonym none.

The intended use is when an element is used to change the look of the page but does not have all the
functional, interactive, or structural relevance implied by the element type, or may be used to provide
for an accessible fallback in older browsers that do not support WAI-ARIA.

Example use cases:

An element whose content is completely presentational (like a spacer image, decorative graphic,
or clearing element);

An image that is in a container with the img role and where the full text alternative is available
and is marked up with aria-labelledby and (if needed) aria-describedby;

An element used as an additional markup "hook" for CSS; or

A layout table and/or any of its associated rows, cells, etc.

For any element with a role of presentation and which is not focusable, the user agent MUST NOT
expose the implicit native semantics of the element (the role and its states and properties) to
accessibility APIs. However, the user agent MUST expose content and descendant elements that do
not have an explicit or inherited role of presentation. Thus, the presentation role causes a given
element to be treated as having no role or to be removed from the accessibility tree, but does not cause
the content contained within the element to be removed from the accessibility tree.

§

NOTE

Note regarding the ARIA 1.1 none role.

In ARIA 1.1, the working group introduced none as a synonym to the presentation role,
due to author confusion surrounding the intended meaning of the word "presentation" or
"presentational." Many individuals erroneously consider role="presentation" to be
synonymous with aria-hidden="true", and we believe role="none" conveys the actual
meaning more unambiguously.

Until implementations include sufficient support for role="none", web authors are advised to
use the presentation role alone role="presentation" or redundantly as a fallback to the
none role role="none presentation".

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

102 of 238 05/07/2020, 09:09

For example, according to an accessibility API, the following markup elements would appear to have
identical role semantics (no role) and identical content.

The presentation role is used on an element that has implicit native semantics, meaning that there
is a default accessibility API role for the element. Some elements are only complete when additional
descendant elements are provided. For example, in HTML, table elements (matching the grid role)
require tr descendants (the row role), which in turn require th or td children (the gridcell,
columnheader, rowheader roles). Similarly, lists require list item children. The descendant
elements that complete the semantics of an element are described in WAI-ARIA as required owned
elements.

When an explicit or inherited role of presentation is applied to an element with the implicit
semantic of a WAI-ARIA role that has required owned elements, in addition to the element with the
explicit role of presentation, the user agent MUST apply an inherited role of presentation to any
owned elements that do not have an explicit role defined. Also, when an explicit or inherited role of
presentation is applied to a host language element which has required children as defined by the host
language specification, in addition to the element with the explicit role of presentation, the user agent
MUST apply an inherited role of presentation to any required children that do not have an explicit role
defined.

In HTML, the img element is treated as a single entity regardless of the type of image file.
Consequently, using role="presentation" or role="none" on an HTML img is equivalent to
using aria-hidden="true". In order to make the image contents accessible, authors can embed the
object using an object or iframe element, or use inline SVG code, and follow the accessibility
guidelines for the image content.

For any element with an explicit or inherited role of presentation and which is not focusable, user
agents MUST ignore role-specific WAI-ARIA states and properties for that element. For example, in
HTML, a ul or ol element with a role of presentation will have the implicit native semantics of
its li elements removed because the list role to which the ul or ol corresponds has a required
owned element of listitem. Likewise, although an HTML table element does not have an implicit
native semantic role corresponding directly to a WAI-ARIA role, the implicit native semantics of its
thead/tbody/tfoot/tr/th/td descendants will also be removed, because the HTML specification
indicates that these are required structural descendants of the table element.

EXAMPLE 8

<!-- 1. [role="presentation"] negates the implicit 'heading' role semantics but does not affect the cont
<h1 role="presentation"> Sample Content </h1>

<!-- 2. There is no implicit role for span, so only the contents are exposed. -->
 Sample Content

<!-- 3. Depending on styling and other factors, this role declaration is redundant in some implementatio
 Sample Content

<!-- 4. In all cases, the element contents are exposed to accessibility APIs without any implied role se
<!-- <> --> Sample Content <!-- </> -->

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

103 of 238 05/07/2020, 09:09

For example, according to an accessibility API, the following markup elements would appear to have
identical role semantics (no roles) and identical content.

For any element with an explicit or inherited role of presentation, user agents MUST apply an
inherited role of presentation to all host-language-specific labeling elements for the presentational
element. For example, a table element with a role of presentation will have the implicit native
semantics of its caption element removed, because the caption is merely a label for the
presentational table.

Authors SHOULD NOT provide meaningful alternative text (for example, use alt="" in HTML)
when the presentation role is applied to an image.

In the following code sample, the containing img and is appropriately labeled by the caption
paragraph. In this example the img element can be marked as presentation because the role and the
text alternatives are provided by the containing element.

NOTE

Only the implicit native semantics of elements that correspond to WAI-ARIA required owned
elements are removed. All other content remains intact, including nested tables or lists, unless
those elements also have a explicit role of presentation applied.

EXAMPLE 9

<!-- 1. [role="presentation"] negates the implicit 'list' and 'listitem' role semantics but does not aff
<ul role="presentation">

 Sample Content
 More Sample Content

<!-- 2. There is no implicit role for "foo", so only the contents are exposed. -->
<foo>

<foo> Sample Content </foo>
<foo> More Sample Content </foo>

</foo>

NOTE

There are other WAI-ARIA roles with required children for which this situation is applicable
(e.g., radiogroups and listboxes), but tables and lists are the most common real-world cases in
which the presentation inheritance is likely to apply.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

104 of 238 05/07/2020, 09:09

§

In the following code sample, because the anchor (HTML a element) is acting as the treeitem, the list
item (HTML li element) is assigned an explicit WAI-ARIA role of presentation to override the user
agent's implicit native semantics for list items.

Presentational Roles Conflict Resolution

There are a number of ways presentational role conflicts are resolved.

Host languages elements, having implicit presentational roles for which no roles, may be applied,
MUST never be exposed to in the accessibility tree. With this exception, user agents MUST always
expose global WAI-ARIA states and properties to accessibility APIs. In this case, the user agent
ignores the presentation role and exposes the element according to its implicit native semantics.
However, user agents MUST ignore any non-global, role-specific WAI-ARIA states and properties,
unless it is on an inherited presentational role where an explicit role is applied.

For example, aria-haspopup is a global attribute and would always be applied; aria-level is not
a global attribute and would therefore only apply if the element was not in a presentational state.

Explicit roles on a descendant or owned element override the inherited role of presentation, and
cause the owned element to behave as any other element with an explicit role. If the action of
exposing the implicit role causes the accessibility tree to be malformed, the expected results are

EXAMPLE 10

<div role="img" aria-labelledby="caption">

<p id="caption">A visible text caption labeling the image.</p>

</div>

EXAMPLE 11

<ul role="tree">
<li role="presentation">

An expanded tree node

 …

EXAMPLE 12

<!-- 1. [role="presentation"] is ignored due to the global aria-haspopup property. -->
<h1 role="presentation" aria-haspopup="true"> Sample Content </h1>
<!-- 2. [role="presentation"] negates the both the implicit 'heading' and the non-global level. -->
<h1 role="presentation" aria-level="2"> Sample Content </h1>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

105 of 238 05/07/2020, 09:09

undefined and the user agent MAY resort to an internal recovery mechanism to repair the accessibility
tree.

If an element with a role of presentation is focusable, or otherwise interactive, user agents MUST
ignore the normal effect of the role and expose the element with implicit native semantics, in order to
ensure that the element is both understandable and operable.

User agents MUST always expose global WAI-ARIA states and properties to accessibility APIs, even
if an element has an explicit or inherited role of presentation. In this case, the user agent ignores the
presentation role and exposes the element according to its implicit native semantics. However,
user agents MUST ignore any non-global, role-specific WAI-ARIA states and properties, unless it is
on an inherited presentational role where an explicit role is applied.

Characteristics:

Characteristic Value

Superclass Role: structure

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author (if role discarded by error conditions)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

106 of 238 05/07/2020, 09:09

§progressbar (role)

An element that displays the progress status for tasks that take a long time.

A progressbar indicates that the user's request has been received and the application is making
progress toward completing the requested action. The author SHOULD supply values for aria-
valuenow, aria-valuemin, and aria-valuemax, unless the value is indeterminate, in which case
the author SHOULD omit the aria-valuenow attribute. Authors SHOULD update these values
when the visual progress indicator is updated. If the progressbar is describing the loading progress
of a particular region of a page, the author SHOULD use aria-describedby to point to the status,
and set the aria-busy attribute to true on the region until it is finished loading. It is not possible for
the user to alter the value of a progressbar because it is always readonly.

Characteristics:

Characteristic Value

Superclass Role: range

Related Concepts: status

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

NOTE

Assistive technologies generally will render the value of aria-valuenow as a percent of a
range between the value of aria-valuemin and aria-valuemax, unless aria-valuetext
is specified. It is best to set the values for aria-valuemin, aria-valuemax, and aria-
valuenow in a manner that is appropriate for this calculation.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

107 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuemax

aria-valuemin

aria-valuenow

aria-valuetext

Name From: author

Accessible Name Required: True

Children Presentational: True

radio (role)

A checkable input in a group of elements with the same role, only one of which can be checked at a
time.

Authors SHOULD ensure that elements with role radio are explicitly grouped in order to indicate
which ones affect the same value. This is achieved by enclosing the radio elements in an element with
role radiogroup. If it is not possible to make the radio buttons DOM children of the radiogroup,
authors SHOULD use the aria-owns attribute on the radiogroup element to indicate the
relationship to its children.

Characteristics:

Characteristic Value

Superclass Role: input

Subclass Roles: menuitemradio

Related Concepts: HTML input[type="radio"]

Required States and Properties: aria-checked

Supported States and Properties: aria-posinset

aria-setsize

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

108 of 238 05/07/2020, 09:09

§

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-checked is false.

radiogroup (role)

A group of radio buttons.

A radiogroup is a type of select list that can only have a single entry checked at any one time.
Authors SHOULD enforce that only one radio button in a group can be checked at the same time.
When one item in the group is checked, the previously checked item becomes unchecked (its aria-

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

109 of 238 05/07/2020, 09:09

checked attribute becomes false).

Characteristics:

Characteristic Value

Superclass Role: select

Related Concepts: list

Required Owned Elements: radio

Supported States and Properties: aria-readonly

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

110 of 238 05/07/2020, 09:09

§

Characteristic Value

Accessible Name Required: True

range (abstract role)

An input representing a range of values that can be set by the user.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: progressbar

scrollbar

slider

spinbutton

Supported States and Properties: aria-valuemax

aria-valuemin

aria-valuenow

aria-valuetext

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

NOTE

range is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

111 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

region (role)

A perceivable section containing content that is relevant to a specific, author-specified purpose and
sufficiently important that users will likely want to be able to navigate to the section easily and to have
it listed in a summary of the page. Such a page summary could be generated dynamically by a user
agent or assistive technology.

Authors SHOULD limit use of the region role to sections containing content with a purpose that is not
accurately described by one of the other landmark roles, such as main, complementary, or
navigation.

Authors MUST give each element with role region a brief label that describes the purpose of the
content in the region. Authors SHOULD reference a visible label with aria-labelledby if a visible
label is present. Authors SHOULD include the label inside of a heading whenever possible. The
heading MAY be an instance of the standard host language heading element or an instance of an
element with role heading.

Assistive technologies SHOULD enable users to quickly navigate to elements with role region.
Mainstream user agents MAY enable users to quickly navigate to elements with role region.

Characteristics:

Characteristic Value

Superclass Role: landmark

Related Concepts: HTML frame

Device Independence Glossary perceivable unit

section

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

112 of 238 05/07/2020, 09:09

§

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

roletype (abstract role)

The base role from which all other roles in this taxonomy inherit.

Properties of this role describe the structural and functional purpose of objects that are assigned this
role (known in RDF terms as "instances"). A role is a concept that can be used to understand and
operate instances.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

113 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Is Abstract: True

Subclass Roles: structure

widget

window

Related Concepts: XHTML role

HTML rel

Dublin Core type

Supported States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

NOTE

roletype is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

114 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-roledescription

Name From: n/a

row (role)

A row of cells in a tabular container.

Rows contain cell or gridcell elements, and thus serve to organize the table or grid.

In a treegrid, authors MAY mark rows as expandable, using the aria-expanded attribute to
indicate the present status. This is not the case for an ordinary table or grid, in which the aria-
expanded attribute is not present.

Authors MUST ensure elements with role row are contained in, or owned by, an element with the role
table, grid, rowgroup, or treegrid.

Characteristics:

Characteristic Value

Superclass Role: group

widget

Base Concept: HTML tr

Required Context Role: grid

rowgroup

table

treegrid

Required Owned Elements: cell

columnheader

gridcell

rowheader

Supported States and Properties: aria-colindex

aria-level

aria-rowindex

aria-selected

Inherited States and Properties: aria-activedescendant

aria-atomic

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

115 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

rowgroup (role)

A structure containing one or more row elements in a tabular container.

The rowgroup role establishes a relationship between owned row elements. It is a structural
equivalent to the thead, tfoot, and tbody elements in an HTML table element.

Authors MUST ensure elements with role rowgroup are contained in, or owned by, an element with
the role table or grid.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

116 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Superclass Role: structure

Base Concept: HTML tbody

HTML tfoot

HTML thead

Required Context Role: grid

table

treegrid

Required Owned Elements: row

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

NOTE

The rowgroup role exists, in part, to support role symmetry in HTML, and allows for the
propagation of presentation inheritance on HTML table elements with an explicit
presentation role applied.

NOTE

This role does not differentiate between types of row groups (e.g., thead vs. tbody), but an
issue has been raised for WAI-ARIA 2.0.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

117 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

rowheader (role)

A cell containing header information for a row in a grid.

Rowheader can be used as a row header in a table or grid. The rowheader establishes a relationship
between it and all cells in the corresponding row. It is a structural equivalent to setting scope="row"
on an HTML th element.

Authors MUST ensure elements with role rowheader are contained in, or owned by, an element with
the role grid.

Applying the aria-selected state on a rowheader MUST not cause the user agent to automatically
propagate the aria-selected state to all the cells in the corresponding row. An author MAY choose
to propagate selection in this manner depending on the specific application.

While the rowheader role can be used in both interactive grids and non-interactive tables, the use of
aria-readonly and aria-required is only applicable to interactive elements. Therefore, authors
SHOULD NOT use aria-required or aria-readonly in a rowheader that descends from a
table, and user agents SHOULD NOT expose either property to assistive technologies unless the
rowheader descends from a grid.

Characteristics:

Characteristic Value

Superclass Role: cell

gridcell

sectionhead

Base Concept: HTML th[scope="row"]

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

118 of 238 05/07/2020, 09:09

Characteristic Value

Required Context Role: row

Supported States and Properties: aria-sort

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-colindex

aria-colspan

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

aria-rowindex

aria-rowspan

aria-selected (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

119 of 238 05/07/2020, 09:09

§

Characteristic Value

Name From: contents

author

Accessible Name Required: True

scrollbar (role)

A graphical object that controls the scrolling of content within a viewing area, regardless of whether
the content is fully displayed within the viewing area.

A scrollbar represents the current value and range of possible values via the size of the scrollbar and
position of the thumb with respect to the visible range of the orientation (horizontal or vertical) it
controls. Its orientation represents the orientation of the scrollbar and the scrolling effect on the
viewing area controlled by the scrollbar. It is typically possible to add or subtract to the current value
by using directional keys such as arrow keys.

Authors MUST set the aria-controls attribute on the scrollbar element to reference the scrollable
area it controls.

Authors MUST set the aria-valuemin, aria-valuemax, and aria-valuenow attributes. If
missing, their implicit values follow the same rules as the HTML range input type:

If aria-valuemin is missing or not a number, it defaults to 0 (zero).

If aria-valuemax is missing or not a number, it defaults to 100.

If aria-valuenow is missing or not a number, it defaults to the value half way between aria-
valuemin and aria-valuemax.

If aria-valuenow is present but less than aria-valuemin, it defaults to the value of aria-
valuemin.

If aria-valuenow is present but greater than aria-valuemax, it defaults to the value of
aria-valuemax.

Elements with the role scrollbar have an implicit aria-orientation value of vertical.

Characteristics:

Characteristic Value

NOTE

Assistive technologies generally will render the value of aria-valuenow as a percent of a
range between the value of aria-valuemin and aria-valuemax, unless aria-valuetext
is specified. It is best to set the values for aria-valuemin, aria-valuemax, and aria-
valuenow in a manner that is appropriate for this calculation.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

120 of 238 05/07/2020, 09:09

Characteristic Value

Superclass Role: range

Required States and Properties: aria-controls

aria-orientation

aria-valuemax

aria-valuemin

aria-valuenow

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuetext

Name From: author

Accessible Name Required: False

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is vertical.
Default for aria-valuemin is 0.
Default for aria-valuemax is 100.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

121 of 238 05/07/2020, 09:09

§

Characteristic Value
Default for aria-valuenow is half way between
aria-valuemax and aria-valuemin.

search (role)

A landmark region that contains a collection of items and objects that, as a whole, combine to create
a search facility. See related form and searchbox.

A search region may be a mix of host language form controls, scripted controls, and hyperlinks.

User agents SHOULD treat elements with the role of search as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

122 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-roledescription

Name From: author

searchbox (role)

A type of textbox intended for specifying search criteria. See related textbox and search.

Characteristics:

Characteristic Value

Superclass Role: textbox

Base Concept: HTML input[type="search"]

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-autocomplete

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-multiline

aria-owns

aria-placeholder

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

123 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-readonly

aria-relevant

aria-required

aria-roledescription

Name From: author

Accessible Name Required: True

section (abstract role)

A renderable structural containment unit in a document or application.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: structure

Subclass Roles: alert

cell

definition

figure

group

img

landmark

list

listitem

log

marquee

math

note

status

table

NOTE

section is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

124 of 238 05/07/2020, 09:09

§

Characteristic Value
tabpanel

term

tooltip

Related Concepts: SMIL par

Supported States and Properties: aria-expanded

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: n/a

sectionhead (abstract role)

A structure that labels or summarizes the topic of its related section.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

125 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: structure

Subclass Roles: columnheader

heading

rowheader

tab

Supported States and Properties: aria-expanded

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

NOTE

sectionhead is an abstract role used for the ontology. Authors should not use this role in
content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

126 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-roledescription

Name From: contents

author

select (abstract role)

A form widget that allows the user to make selections from a set of choices.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: composite

group

Subclass Roles: combobox

listbox

menu

radiogroup

tree

Supported States and Properties: aria-orientation

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

NOTE

select is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

127 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

separator (role)

A divider that separates and distinguishes sections of content or groups of menuitems.

There are two types of separators: a static structure that provides only a visible boundary and a
focusable, interactive widget that is also moveable. If a separator is not focusable, it is revealed to
assistive technologies as a static structural element. For example, a static separator can be used to
help visually divide two groups of menu items in a menu or to provide a horizontal rule between two
sections of a page.

Authors MAY make a separator focusable to create a widget that both provides a visible boundary
between two sections of content and enables the user to change the relative size of the sections by
changing the position of the separator. A variable separator widget can be moved continuously
within a range, whereas a fixed separator widget supports only two discrete positions. Typically, a
fixed separator widget is used to toggle one of the sections between expanded and collapsed states.

If the separator is focusable, authors MUST set the value of aria-valuenow to a number
reflecting the current position of the separator and update that value when it changes. Authors
SHOULD also provide the value of aria-valuemin if it is not 0 and the value of aria-valuemax
if it is not 100. If missing or not a number, the implicit values of these attributes are as follows:

The implicit value of aria-valuemin is 0.

The implicit value of aria-valuemax is 100.

The implicit value of aria-valuenow is 50.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

128 of 238 05/07/2020, 09:09

In applications where there is more than one focusable separator, authors SHOULD provide an
accessible name for each one.

Elements with the role separator have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: structure (if not focusable)

widget (if focusable)

Related Concepts: HTML hr

Required States and Properties: aria-valuemax (if focusable)

aria-valuemin (if focusable)

aria-valuenow (if focusable)

Supported States and Properties: aria-orientation

aria-valuetext (if focusable)

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

129 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-roledescription

Name From: author

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is
horizontal.
Default for aria-valuemin is 0.
Default for aria-valuemax is 100.
Default for aria-valuenow is 50.

Implicit Value for Role: Default for aria-orientation is
horizontal.

slider (role)

A user input where the user selects a value from within a given range.

A slider represents the current value and range of possible values via the size of the slider and position
of the thumb. It is typically possible to add or subtract to the value by using directional keys such as
arrow keys.

Authors MUST set the aria-valuemin, aria-valuemax, and aria-valuenow attributes. If
missing, their implicit values follow the same rules as the HTML range input type:

If aria-valuemin is missing or not a number, it defaults to 0 (zero).

If aria-valuemax is missing or not a number, it defaults to 100.

If aria-valuenow is missing or not a number, it defaults to the value half way between aria-
valuemin and aria-valuemax.

If aria-valuenow is present but less than aria-valuemin, it defaults to the value of aria-
valuemin.

If aria-valuenow is present but greater than aria-valuemax, it defaults to the value of
aria-valuemax.

Elements with the role slider have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: input

range

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

130 of 238 05/07/2020, 09:09

Characteristic Value

Required States and Properties: aria-valuemax

aria-valuemin

aria-valuenow

Supported States and Properties: aria-orientation

aria-readonly

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuetext

Name From: author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is
horizontal.
Default for aria-valuemin is 0.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

131 of 238 05/07/2020, 09:09

§

Characteristic Value
Default for aria-valuemax is 100.
Default for aria-valuenow is half way between
aria-valuemax and aria-valuemin.

spinbutton (role)

A form of range that expects the user to select from among discrete choices.

A spinbutton typically allows the user to select from the given range through the use of an up and
down button on the keyboard. Visibly, the current value is incremented or decremented until a
maximum or minimum value is reached. Authors SHOULD ensure this functionality is accomplished
programmatically through the use of up and down arrows on the keyboard.

Although a spinbutton is similar in appearance to many presentations of select, it is advisable to
use spinbutton when working with known ranges (especially in the case of large ranges) as opposed
to distinct options. For example, a spinbutton representing a range from 1 to 1,000,000 would
provide much better performance than a select widget representing the same values.

Authors MAY create a spinbutton with children or owned elements, but MUST limit those elements
to a textbox and/or two buttons.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus. When a spinbutton receives focus, authors SHOULD ensure
focus is placed on the textbox element if one is present, and on the spinbutton itself otherwise.
Authors SHOULD NOT include contained button elements in the primary navigation ring, e.g., the
Tab ring in HTML, because they are superfluous for people using keyboard devices.

Authors MUST set the aria-valuenow attribute. Authors SHOULD set the aria-valuemin
attribute when there is a minimum value, and the aria-valuemax attribute when there is a maximum
value. If missing or not a number, the implicit values of these attributes are as follows:

The implicit value of aria-valuemin is that there is no minimum value.

The implicit value of aria-valuemax is that there is no maximum value.

The implicit value of aria-valuenow is 0.

Characteristics:

Characteristic Value

Superclass Role: composite

input

range

Required States and Properties: aria-valuemax

aria-valuemin

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

132 of 238 05/07/2020, 09:09

Characteristic Value
aria-valuenow

Supported States and Properties: aria-readonly

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuetext

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-valuemin is that there is no
minimum value.
Default for aria-valuemax is that there is no
maximum value.
Default for aria-valuenow is 0.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

133 of 238 05/07/2020, 09:09

§status (role)

A type of live region whose content is advisory information for the user but is not important enough to
justify an alert, often but not necessarily presented as a status bar.

Authors SHOULD ensure an element with role status does not receive focus as a result of change in
status.

Status is a form of live region. If another part of the page controls what appears in the status, authors
SHOULD make the relationship explicit with the aria-controls attribute.

Assistive technologies MAY reserve some cells of a Braille display to render the status.

Elements with the role status have an implicit aria-live value of polite and an implicit aria-
atomic value of true.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: progressbar

timer

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

134 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-live is polite.
Default for aria-atomic is true.

structure (abstract role)

A document structural element.

Roles for document structure support the accessibility of dynamic web content by helping assistive
technologies determine active content versus static document content. Structural roles by themselves
do not all map to accessibility APIs, but are used to create widget roles or assist content adaptation for
assistive technologies.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: roletype

Subclass Roles: application

document

presentation

rowgroup

section

sectionhead

separator

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

NOTE

structure is an abstract role used for the ontology. Authors should not use this role in
content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

135 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: n/a

switch (role)

A type of checkbox that represents on/off values, as opposed to checked/unchecked values. See related
checkbox.

The aria-checked attribute of a switch indicates whether the input is on (true) or off (false).
The mixed value is invalid, and user agents MUST treat a mixed value as equivalent to false for
this role.

NOTE

A switch provides approximately the same functionality as a checkbox and toggle button,
but makes it possible for assistive technologies to present the widget in a fashion consistent
with its on-screen appearance.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

136 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Superclass Role: checkbox

Related Concepts: button

Required States and Properties: aria-checked

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-readonly

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-checked is false.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

137 of 238 05/07/2020, 09:09

§tab (role)

A grouping label providing a mechanism for selecting the tab content that is to be rendered to the user.

If a tabpanel or item in a tabpanel has focus, the associated tab is the currently active tab in the
tablist, as defined in Managing Focus. tablist elements, which contain a set of associated tab
elements, are typically placed near a series of tabpanel elements, usually preceding it. See the WAI-
ARIA Authoring Practices [wai-aria-practices-1.1] for details on implementing a tab set design pattern.

Authors MUST ensure elements with role tab are contained in, or owned by, an element with the role
tablist.

Authors SHOULD ensure the tabpanel associated with the currently active tab is perceivable to the
user.

For a single-selectable tablist, authors SHOULD hide other tabpanel elements from the user until
the user selects the tab associated with that tabpanel. For a multi-selectable tablist, authors
SHOULD ensure each visible tabpanel has its aria-expanded attribute set to true, and that the
remaining hidden tabpanel elements have their aria-expanded attributes set to false.

In either case, authors SHOULD ensure that a selected tab has its aria-selected attribute set to
true, that inactive tab elements have their aria-selected attribute set to false, and that the
currently selected tab provides a visual indication that it is selected. In the absence of an aria-
selected attribute on the current tab, user agents SHOULD indicate to assistive technologies
through the platform accessibility API that the currently focused tab is selected.

Characteristics:

Characteristic Value

Superclass Role: sectionhead

widget

Required Context Role: tablist

Supported States and Properties: aria-posinset

aria-selected

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

138 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Children Presentational: True

Implicit Value for Role: Default for aria-selected is false.

table (role)

A section containing data arranged in rows and columns. See related grid.

The table role is intended for tabular containers which are not interactive. If the tabular container
maintains a selection state, provides its own two-dimensional navigation, or allows the user to
rearrange or otherwise manipulate its contents or the display thereof, authors SHOULD use grid or
treegrid instead.

Authors SHOULD prefer the use of the host language's semantics for table whenever possible, such as
the HTML table element.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: grid

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

139 of 238 05/07/2020, 09:09

§

Characteristic Value

Base Concept: HTML table

Required Owned Elements: row

rowgroup → row

Supported States and Properties: aria-colcount

aria-rowcount

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

tablist (role)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

140 of 238 05/07/2020, 09:09

A list of tab elements, which are references to tabpanel elements.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus.

For a single-selectable tablist, authors SHOULD hide other tabpanel elements from the user until
the user selects the tab associated with that tabpanel. For a multi-selectable tablist, authors
SHOULD ensure each visible tabpanel has its aria-expanded attribute set to true, and that the
remaining hidden tabpanel elements have their aria-expanded attributes set to false.

tablist elements are typically placed near usually preceding, a series of tabpanel elements. See
the WAI-ARIA Authoring Practices [wai-aria-practices-1.1] for details on implementing a tab set
design pattern.

Elements with the role tablist have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: composite

Related Concepts: DAISY Guide

Required Owned Elements: tab

Supported States and Properties: aria-level

aria-multiselectable

aria-orientation

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

141 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is
horizontal.

tabpanel (role)

A container for the resources associated with a tab, where each tab is contained in a tablist.

Authors SHOULD associate a tabpanel element with its tab, either by using the aria-controls
attribute on the tab to reference the tab panel, or by using the aria-labelledby attribute on the tab
panel to reference the tab.

tablist elements are typically placed near, usually preceding, a series of tabpanel elements. See
the WAI-ARIA Authoring Practices [wai-aria-practices-1.1] for details on implementing a tab set
design pattern.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

142 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

term (role)

A word or phrase with a corresponding definition. See related definition.

The term role is used to explicitly identify a word or phrase for which a definition has been
provided by the author or is expected to be provided by the user.

Authors SHOULD NOT use the term role on interactive elements such as links because doing so
could prevent users of assistive technologies from interacting with those elements.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: HTML dt

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

143 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

textbox (role)

A type of input that allows free-form text as its value.

If the aria-multiline attribute is true, the widget accepts line breaks within the input, as in an
HTML textarea. Otherwise, this is a simple text box. The intended use is for languages that do not
have a text input element, or cases in which an element with different semantics is repurposed as a text
field.

Characteristics:

Characteristic Value

Superclass Role: input

NOTE

In most user agent implementations, the default behavior of the ENTER or RETURN key is
different between the single-line and multi-line text fields in HTML. When user has focus in a
single-line <input type="text"> element, the keystroke usually submits the form. When
user has focus in a multi-line <textarea> element, the keystroke inserts a line break. The
WAI-ARIA textbox role differentiates these types of boxes with the aria-multiline
attribute, so authors are advised to be aware of this distinction when designing the field.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

144 of 238 05/07/2020, 09:09

Characteristic Value

Subclass Roles: searchbox

Related Concepts: XForms input

HTML textarea

HTML input[type="text"]

Supported States and Properties: aria-activedescendant

aria-autocomplete

aria-multiline

aria-placeholder

aria-readonly

aria-required

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

145 of 238 05/07/2020, 09:09

§

Characteristic Value

Accessible Name Required: True

timer (role)

A type of live region containing a numerical counter which indicates an amount of elapsed time from
a start point, or the time remaining until an end point.

The text contents of the timer object indicate the current time measurement, and are updated as that
amount changes. The timer value is not necessarily machine parsable, but authors SHOULD update
the text contents at fixed intervals, except when the timer is paused or reaches an end-point.

Elements with the role timer have an implicit aria-live value of off.

Characteristics:

Characteristic Value

Superclass Role: status

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

146 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

toolbar (role)

A collection of commonly used function buttons or controls represented in compact visual form.

The toolbar is often a subset of functions found in a menubar, designed to reduce user effort in using
these functions. Authors MUST supply a label on each toolbar when the application contains more
than one toolbar.

Authors MAY manage focus of descendants for all instances of this role, as described in Managing
Focus.

Elements with the role toolbar have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: group

Related Concepts: menubar

Supported States and Properties: aria-orientation

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

147 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is
horizontal.

tooltip (role)

A contextual popup that displays a description for an element.

The tooltip typically becomes visible in response to a mouse hover, or after the owning element
receives keyboard focus. In each of these cases, authors SHOULD display the tooltip after a short
delay. The use of a WAI-ARIA tooltip is a supplement to the normal tooltip behavior of the user agent.

Authors SHOULD ensure that elements with the role tooltip are referenced through the use of
aria-describedby before or at the time the tooltip is displayed.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

NOTE

Typical tooltip delays last from one to five seconds.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

148 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

tree (role)

A type of list that may contain sub-level nested groups that can be collapsed and expanded.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus.

Elements with the role tree have an implicit aria-orientation value of vertical.

Characteristics:

Characteristic Value

Superclass Role: select

Subclass Roles: treegrid

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

149 of 238 05/07/2020, 09:09

Characteristic Value

Required Owned Elements: group → treeitem

treeitem

Supported States and Properties: aria-multiselectable

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-orientation is vertical.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

150 of 238 05/07/2020, 09:09

§treegrid (role)

A grid whose rows can be expanded and collapsed in the same manner as for a tree.

If aria-readonly is set on an element with role treegrid, user agents MUST propagate the value
to all gridcell elements owned by the treegrid and expose the value in the accessibility API. An
author MAY override the propagated value of aria-readonly for an individual gridcell element.

When the aria-readonly attribute is applied to a focusable gridcell, it indicates whether the
content contained in the gridcell is editable. The aria-readonly attribute does not represent
availability of functions for navigating or manipulating the treegrid itself.

In a treegrid that provides content editing functions, if the content of a focusable gridcell
element is not editable, authors MAY set aria-readonly to true on the gridcell element.
However, if a treegrid presents a collection of elements that do not support aria-readonly, such
as a collection of link elements, it is not necessary for the author to specify a value for aria-
readonly.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this
role, as described in Managing Focus.

Characteristics:

Characteristic Value

Superclass Role: grid

tree

Required Owned Elements: row

rowgroup → row

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-colcount

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

151 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-level

aria-live

aria-multiselectable

aria-orientation

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

aria-rowcount

Name From: author

Accessible Name Required: True

treeitem (role)

An option item of a tree. This is an element within a tree that may be expanded or collapsed if it
contains a sub-level group of tree item elements.

A collection of treeitem elements to be expanded and collapsed are enclosed in an element with the
group role.

Authors MUST ensure elements with role treeitem are contained in, or owned by, an element with
the role group or tree.

Characteristics:

Characteristic Value

Superclass Role: listitem

option

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

152 of 238 05/07/2020, 09:09

Characteristic Value

Required Context Role: group

tree

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-checked (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-level

aria-live

aria-owns

aria-posinset

aria-relevant

aria-roledescription

aria-selected (state) (required)

aria-setsize

Name From: contents

author

Accessible Name Required: True

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

153 of 238 05/07/2020, 09:09

§widget (abstract role)

An interactive component of a graphical user interface (GUI).

Widgets are discrete user interface objects with which the user can interact. Widget roles map to
standard features in accessibility APIs. When the user navigates an element assigned any of the non-
abstract subclass roles of widget, assistive technologies that typically intercept standard keyboard
events SHOULD switch to an application browsing mode, and pass keyboard events through to the
web application. The intent is to hint to certain assistive technologies to switch from normal browsing
mode into a mode more appropriate for interacting with a web application; some user agents have a
browse navigation mode where keys, such as up and down arrows, are used to browse the document,
and this native behavior prevents the use of these keys by a web application.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: roletype

Subclass Roles: command

composite

gridcell

input

range

row

separator

tab

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

NOTE

widget is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

154 of 238 05/07/2020, 09:09

§

Characteristic Value
aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: n/a

window (abstract role)

A browser or application window.

Elements with this role have a window-like behavior in a graphical user interface (GUI) context,
regardless of whether they are implemented as a native window in the operating system, or merely as a
section of the document styled to look like a window.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: roletype

NOTE

In the description of this role, the term "application" does not refer to the application role,
which specifies specific assistive technology behaviors.

NOTE

window is an abstract role used for the ontology. Authors should not use this role in content.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

155 of 238 05/07/2020, 09:09

§

§

Characteristic Value

Subclass Roles: dialog

Supported States and Properties: aria-expanded

aria-modal

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

6. Supported States and Properties

6.1 Clarification of States versus Properties

The terms "states" and "properties" refer to similar features. Both provide specific information about
an object, and both form part of the definition of the nature of roles. In this document, states and

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

156 of 238 05/07/2020, 09:09

§

§

§

§

§

properties are both treated as aria-prefixed markup attributes. However, they are maintained
conceptually distinct to clarify subtle differences in their meaning. One major difference is that the
values of properties (such as aria-labelledby) are often less likely to change throughout the
application life-cycle than the values of states (such as aria-checked) which may change frequently
due to user interaction. Note that the frequency of change difference is not a rule; a few properties,
such as aria-valuetext are expected to change often. Because the distinction between states and
properties is of little consequence to most web content authors, this specification refers to both "states"
and "properties" simply as "attributes" whenever possible. See the definitions of state and property for
more information.

6.2 Characteristics of States and Properties

States and properties have the characteristics described in the following sections.

6.2.1 Related Concepts

Advisory information about features from this or other languages that correspond to this state or
property. While the correspondence may not be exact, it is useful to help understand the intent of the
state or property.

6.2.2 Used in Roles

Advisory information about roles that use this state or property. This information is provided to help
understand the appropriate usage of the state or property. Use of a given state or property is not
defined when used on roles other than those listed.

6.2.3 Inherits into Roles

Advisory information about roles that inherit the state or property from an ancestor role.

6.2.4 Value

Value type of the state or property. The value may be one of the following types:

true/false
Value representing either true or false. The default value for this value type is false unless
otherwise specified.

tristate
Value representing true or false, with an intermediate "mixed" value. The default value for this
value type is false unless otherwise specified.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

157 of 238 05/07/2020, 09:09

§

§

true/false/undefined
Value representing true, false, or not applicable. For example, an element with aria-expanded
set to false is not currently expanded; an element with aria-expanded set to undefined is
not expandable. The default value for this value type is undefined unless otherwise specified.

ID reference
Reference to the ID of another element in the same document

ID reference list
A list of one or more ID references.

integer
A numerical value without a fractional component.

number
Any real numerical value.

string
Unconstrained value type.

token
One of a limited set of allowed values. An explicit value of undefined for this type is the
equivalent of providing no value.

token list
A list of one or more tokens.

URI
A Uniform Resource Identifier as defined by RFC 3986 [RFC3986]. It may reference a separate
document, or a content fragment identifier in a separate document, or a content fragment
identifier within the same document.

These are generic types for states and properties, but do not define specific representation. See State
and Property Attribute Processing for details on how these values are expressed and handled in host
languages.

6.3 Values for States and Properties

Many states and properties accept a specific set of tokens as values. The allowed values and
explanation of their meaning is shown after the table of characteristics. The default value, if defined, is
shown in strong type, followed by the parenthetical term 'default'. When a value is indicated as the
default, the user agent MUST follow the behavior prescribed by this value when the state or property
is empty or unspecified. Some roles also define what behavior to use when certain states or properties,
that do not have default values, are not provided.

6.4 Global States and Properties

Some states and properties are applicable to all host language elements regardless of whether a role is
applied. The following global states and properties are supported by all roles and by all base markup
elements.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

158 of 238 05/07/2020, 09:09

§

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Global states and properties are applied to the role roletype, which is the base role, and therefore
inherit into all roles. To facilitate reading, they are not explicitly identified as either supported or
inherited states and properties in the specification. Instead, the inheritance is indicated by a link to this
section.

6.5 Taxonomy of WAI-ARIA States and Properties

States and properties are categorized as follows:

1. Widget Attributes

2. Live Region Attributes

3. Drag-and-Drop Attributes

4. Relationship Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

159 of 238 05/07/2020, 09:09

§

§

6.5.1 Widget Attributes

This section contains attributes specific to common user interface elements found on GUI systems or
in rich internet applications which receive user input and process user actions. These attributes are
used to support the widget roles.

aria-autocomplete

aria-checked

aria-disabled

aria-errormessage

aria-expanded

aria-haspopup

aria-hidden

aria-invalid

aria-label

aria-level

aria-modal

aria-multiline

aria-multiselectable

aria-orientation

aria-placeholder

aria-pressed

aria-readonly

aria-required

aria-selected

aria-sort

aria-valuemax

aria-valuemin

aria-valuenow

aria-valuetext

Widget attributes might be mapped by a user agent to platform accessibility API state, for access by
assistive technologies, or they might be accessed directly from the DOM. User agents MUST provide
a way for assistive technologies to be notified when states change, either through DOM attribute
change events or platform accessibility API events.

6.5.2 Live Region Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

160 of 238 05/07/2020, 09:09

§

§

This section contains attributes specific to live regions in rich internet applications. These attributes
may be applied to any element. The purpose of these attributes is to indicate that content changes may
occur without the element having focus, and to provide assistive technologies with information on
how to process those content updates. Some roles specify a default value for the aria-live attribute
specific to that role. An example of a live region is a ticker section that lists updating stock quotes.

aria-atomic

aria-busy

aria-live

aria-relevant

6.5.3 Drag-and-Drop Attributes

This section lists attributes which indicate information about drag-and-drop interface elements, such
as draggable elements and their drop targets. Drop target information will be rendered visually by the
author and provided to assistive technologies through an alternate modality.

aria-dropeffect

aria-grabbed

6.5.4 Relationship Attributes

This section lists attributes that indicate relationships or associations between elements which cannot
be readily determined from the document structure.

aria-activedescendant

aria-colcount

aria-colindex

aria-colspan

aria-controls

aria-describedby

aria-details

aria-errormessage

aria-flowto

aria-labelledby

aria-owns

aria-posinset

aria-rowcount

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

161 of 238 05/07/2020, 09:09

§

aria-rowindex

aria-rowspan

aria-setsize

6.6 Definitions of States and Properties (all aria-* attributes)

Below is an alphabetical list of WAI-ARIA states and properties to be used by rich internet application
authors. A detailed definition of each WAI-ARIA state and property follows this compact list.

aria-activedescendant
Identifies the currently active element when DOM focus is on a composite widget, textbox,
group, or application.

aria-atomic
Indicates whether assistive technologies will present all, or only parts of, the changed region
based on the change notifications defined by the aria-relevant attribute.

aria-autocomplete
Indicates whether inputting text could trigger display of one or more predictions of the user's
intended value for an input and specifies how predictions would be presented if they are made.

aria-busy
Indicates an element is being modified and that assistive technologies MAY want to wait until the
modifications are complete before exposing them to the user.

aria-checked
Indicates the current "checked" state of checkboxes, radio buttons, and other widgets. See related
aria-pressed and aria-selected.

aria-colcount
Defines the total number of columns in a table, grid, or treegrid. See related aria-
colindex.

aria-colindex
Defines an element's column index or position with respect to the total number of columns within
a table, grid, or treegrid. See related aria-colcount and aria-colspan.

aria-colspan
Defines the number of columns spanned by a cell or gridcell within a table, grid, or
treegrid. See related aria-colindex and aria-rowspan.

aria-controls
Identifies the element (or elements) whose contents or presence are controlled by the current
element. See related aria-owns.

aria-current
Indicates the element that represents the current item within a container or set of related elements.

aria-describedby
Identifies the element (or elements) that describes the object. See related aria-labelledby.

aria-details

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

162 of 238 05/07/2020, 09:09

Identifies the element that provides a detailed, extended description for the object. See related
aria-describedby.

aria-disabled
Indicates that the element is perceivable but disabled, so it is not editable or otherwise operable.
See related aria-hidden and aria-readonly.

aria-dropeffect
[Deprecated in ARIA 1.1] Indicates what functions can be performed when a dragged object is
released on the drop target.

aria-errormessage
Identifies the element that provides an error message for the object. See related aria-invalid
and aria-describedby.

aria-expanded
Indicates whether the element, or another grouping element it controls, is currently expanded or
collapsed.

aria-flowto
Identifies the next element (or elements) in an alternate reading order of content which, at the
user's discretion, allows assistive technology to override the general default of reading in
document source order.

aria-grabbed
[Deprecated in ARIA 1.1] Indicates an element's "grabbed" state in a drag-and-drop operation.

aria-haspopup
Indicates the availability and type of interactive popup element, such as menu or dialog, that can
be triggered by an element.

aria-hidden
Indicates whether the element is exposed to an accessibility API. See related aria-disabled.

aria-invalid
Indicates the entered value does not conform to the format expected by the application. See
related aria-errormessage.

aria-keyshortcuts
Indicates keyboard shortcuts that an author has implemented to activate or give focus to an
element.

aria-label
Defines a string value that labels the current element. See related aria-labelledby.

aria-labelledby
Identifies the element (or elements) that labels the current element. See related aria-
describedby.

aria-level
Defines the hierarchical level of an element within a structure.

aria-live
Indicates that an element will be updated, and describes the types of updates the user agents,
assistive technologies, and user can expect from the live region.

aria-modal

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

163 of 238 05/07/2020, 09:09

Indicates whether an element is modal when displayed.

aria-multiline
Indicates whether a text box accepts multiple lines of input or only a single line.

aria-multiselectable
Indicates that the user may select more than one item from the current selectable descendants.

aria-orientation
Indicates whether the element's orientation is horizontal, vertical, or unknown/ambiguous.

aria-owns
Identifies an element (or elements) in order to define a visual, functional, or contextual
parent/child relationship between DOM elements where the DOM hierarchy cannot be used to
represent the relationship. See related aria-controls.

aria-placeholder
Defines a short hint (a word or short phrase) intended to aid the user with data entry when the
control has no value. A hint could be a sample value or a brief description of the expected format.

aria-posinset
Defines an element's number or position in the current set of listitems or treeitems. Not required
if all elements in the set are present in the DOM. See related aria-setsize.

aria-pressed
Indicates the current "pressed" state of toggle buttons. See related aria-checked and aria-
selected.

aria-readonly
Indicates that the element is not editable, but is otherwise operable. See related aria-disabled.

aria-relevant
Indicates what notifications the user agent will trigger when the accessibility tree within a live
region is modified. See related aria-atomic.

aria-required
Indicates that user input is required on the element before a form may be submitted.

aria-roledescription
Defines a human-readable, author-localized description for the role of an element.

aria-rowcount
Defines the total number of rows in a table, grid, or treegrid. See related aria-rowindex.

aria-rowindex
Defines an element's row index or position with respect to the total number of rows within a
table, grid, or treegrid. See related aria-rowcount and aria-rowspan.

aria-rowspan
Defines the number of rows spanned by a cell or gridcell within a table, grid, or treegrid.
See related aria-rowindex and aria-colspan.

aria-selected
Indicates the current "selected" state of various widgets. See related aria-checked and aria-
pressed.

aria-setsize
Defines the number of items in the current set of listitems or treeitems. Not required if all

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

164 of 238 05/07/2020, 09:09

§

elements in the set are present in the DOM. See related aria-posinset.

aria-sort
Indicates if items in a table or grid are sorted in ascending or descending order.

aria-valuemax
Defines the maximum allowed value for a range widget.

aria-valuemin
Defines the minimum allowed value for a range widget.

aria-valuenow
Defines the current value for a range widget. See related aria-valuetext.

aria-valuetext
Defines the human readable text alternative of aria-valuenow for a range widget.

aria-activedescendant (property)

Identifies the currently active element when DOM focus is on a composite widget, textbox,
group, or application.

The aria-activedescendant property provides an alternative method of managing focus for
interactive elements that may contain multiple focusable descendants, such as menus, grids, and
toolbars. Instead of moving DOM focus among descendant elements, authors MAY set DOM focus on
an element that supports aria-activedescendant and then use aria-activedescendant to
refer to the element that is active.

Authors MUST ensure that one of the following two sets of conditions is met when setting the value
of aria-activedescendant on an element with DOM focus:

1. The value of aria-activedescendant refers to an element that is either a descendant of the
element with DOM focus or is a logical descendant as indicated by the aria-owns attribute.

2. The element with DOM focus is a textbox with aria-controls referring to an element that
supports aria-activedescendant, and the value of aria-activedescendant specified for
the textbox refers to either a descendant of the element controlled by the textbox or is a
logical descendant of that controlled element as indicated by the aria-owns attribute. For
example, in a combobox, focus may remain on the textbox while the value of aria-
activedescendant on the textbox element refers to a descendant of a popup listbox that is
controlled by the textbox.

Authors SHOULD also ensure that the currently active descendant is visible and in view (or scrolls
into view) when focused.

Characteristics:

Characteristic Value

Related Concepts: SVG [SVG2] and DOM [dom] active

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

165 of 238 05/07/2020, 09:09

§

Characteristic Value

Used in Roles: application

composite

group

textbox

Inherits into Roles: combobox

grid

listbox

menu

menubar

radiogroup

row

searchbox

select

spinbutton

tablist

toolbar

tree

treegrid

Value: ID reference

aria-atomic (property)

Indicates whether assistive technologies will present all, or only parts of, the changed region based on
the change notifications defined by the aria-relevant attribute.

Both accessibility APIs and the Document Object Model [dom] provide events to allow the assistive
technologies to determine changed areas of the document.

When the content of a live region changes, user agents SHOULD examine the changed element and
traverse the ancestors to find the first element with aria-atomic set, and apply the appropriate
behavior for the cases below.

1. If none of the ancestors have explicitly set aria-atomic, the default is that aria-atomic is
false, and assistive technologies will only present the changed node to the user.

2. If aria-atomic is explicitly set to false, assistive technologies will stop searching up the
ancestor chain and present only the changed node to the user.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

166 of 238 05/07/2020, 09:09

§

3. If aria-atomic is explicitly set to true, assistive technologies will present the entire contents
of the element, including the author-defined live region label if one exists.

When aria-atomic is true, assistive technologies MAY choose to combine several changes and
present the entire changed region at once.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values:

Value Description

false (default) Assistive technologies will present only the
changed node or nodes.

true Assistive technologies will present the entire
changed region as a whole, including the author-
defined label if one exists.

aria-autocomplete (property)

Indicates whether inputting text could trigger display of one or more predictions of the user's intended
value for an input and specifies how predictions would be presented if they are made.

The aria-autocomplete property describes the type of interaction model a textbox, searchbox,
or combobox employs when dynamically helping users complete text input. It distinguishes between
two models: the inline model (aria-autocomplete="inline") that presents a value completion
prediction inside the text input and the list model (aria-autocomplete="list") that presents a
collection of possible values in a separate element that pops up adjacent to the text input. It is possible
for an input to offer both models at the same time (aria-autocomplete="both").

The aria-autocomplete property is limited to describing predictive behaviors of an input element.
Authors SHOULD either omit specifying a value for aria-autocomplete or set aria-
autocomplete to none if an input element provides one or more input proposals where none of the
proposals are dependent on the specific input provided by the user. For instance, a combobox where
the value of aria-autocomplete would be none is a search field that displays suggested values by
listing the 5 most recently used search terms without any filtering of the list based on the user's input.
Elements with a role that supports aria-autocomplete have a default value for aria-
autocomplete of none.

When an inline suggestion is made as a user types in an input, suggested text for completing the value
of the field dynamically appears in the field after the input cursor, and the suggested value is accepted
as the value of the input if the user performs an action that causes focus to leave the field. When an
element has aria-autocomplete set to inline or both, authors SHOULD ensure that the
automatically suggested portion of the text is presented as selected text. This enables assistive

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

167 of 238 05/07/2020, 09:09

technologies to distinguish between a user's input and the automatic suggestion and, in the event that
the suggestion is not the desired value, enables the user to easily delete the suggestion or replace it by
continuing to type.

If an element has aria-autocomplete set to list or both, authors MUST ensure both of the
following conditions are met:

1. The element has a value specified for aria-controls that refers to the element that contains
the collection of suggested values.

2. Either the element or a containing element with role combobox has a value for aria-haspopup
that matches the role of the element that contains the collection of suggested values.

Some implementations of the list model require the user to perform an action, such as moving focus to
the suggestion with the Down Arrow or clicking on the suggestion, in order to choose the suggestion.
In such implementations, authors MAY manage focus by either using aria-activedescendant if
the collection container supports it or by moving DOM focus to the suggestion. However, other
implementations of the list model automatically highlight one suggestion as the selected value that
will be accepted when the field loses focus, e.g., when the user presses the Tab key or clicks on a
different field. If an element has aria-autocomplete set to list or both, and if a suggestion is
automatically selected as the user provides input, authors MUST ensure all the following conditions
are met:

1. The collection of suggestions is presented in an element with a role that supports aria-
activedescendant.

2. The value of aria-activedescendant set on the input field is dynamically adjusted to refer to
the element containing the selected suggestion as described in the definition of aria-
activedescendant.

3. DOM focus remains on the text input while the suggestions are displayed.

The aria-autocomplete property is not intended to indicate the presence of a completion
suggestion, and authors SHOULD NOT dynamically change its value in order to communicate the
presence of a suggestion. When an element has aria-autocomplete set to list or both, authors
SHOULD use the aria-expanded state to communicate whether the element that presents the
suggestion collection is displayed.

Characteristics:

Characteristic Value

Related Concepts: XForms selection attribute in select

Used in Roles: combobox

textbox

Inherits into Roles: searchbox

Value: token

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

168 of 238 05/07/2020, 09:09

§

Values:

Value Description

inline When a user is providing input, text suggesting
one way to complete the provided input may be
dynamically inserted after the caret.

list When a user is providing input, an element
containing a collection of values that could
complete the provided input may be displayed.

both When a user is providing input, an element
containing a collection of values that could
complete the provided input may be displayed. If
displayed, one value in the collection is
automatically selected, and the text needed to
complete the automatically selected value
appears after the caret in the input.

none (default) When a user is providing input, an automatic
suggestion that attempts to predict how the user
intends to complete the input is not displayed.

aria-busy (state)

Indicates an element is being modified and that assistive technologies MAY want to wait until the
modifications are complete before exposing them to the user.

The default value of aria-busy is false for all elements. When aria-busy is true for an element,
assistive technologies MAY ignore changes to content owned by that element and then process all
changes made during the busy period as a single, atomic update when aria-busy becomes false.

If it is necessary to make multiple additions, modifications, or removals within a container element
that is already either partially or fully rendered, authors MAY set aria-busy to true on the container
element before the first change, and then set it to false when the last change is complete. For
example, if multiple changes to a live region should be spoken as a single unit of speech, authors MAY
set aria-busy to true while the changes are being made and then set it to false when the changes
are complete and ready to be spoken.

If an element with role feed is marked busy, assistive technologies MAY defer rendering changes that
occur inside the feed with the exception of user-initiated changes that occur inside the article that
the user is reading during the busy period.

If changes to a rendered widget would create a state where the widget is missing required owned
elements during script execution, authors MUST set aria-busy to true on the widget during the
update process. For example, if a rendered tree grid required a set of simultaneous updates to multiple
discontiguous branches, an alternative to replacing the complete tree element with a single update
would be to mark the tree busy while each of the branches are modified.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

169 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values:

Value Description

false (default): There are no expected updates for the element.

true The element is being updated.

aria-checked (state)

Indicates the current "checked" state of checkboxes, radio buttons, and other widgets. See related
aria-pressed and aria-selected.

The aria-checked attribute indicates whether the element is checked (true), unchecked (false),
or represents a group of other elements that have a mixture of checked and unchecked values (mixed).
Most inputs only support values of true and false, but the mixed value is supported by certain tri-
state inputs such as a checkbox or menuitemcheckbox.

The mixed value is not supported on radio, menuitemradio, switch or any element that inherits
from these in the taxonomy, and user agents MUST treat a mixed value as equivalent to false for
those roles.

Examples using the mixed value of tri-state inputs are covered in WAI-ARIA Authoring Practices
[wai-aria-practices-1.1]

Characteristics:

Characteristic Value

Used in Roles: checkbox

option

radio

switch

Inherits into Roles: menuitemcheckbox

menuitemradio

treeitem

Value: tristate

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

170 of 238 05/07/2020, 09:09

§

Values:

Value Description

false The element supports being checked but is not
currently checked.

mixed Indicates a mixed mode value for a tri-state
checkbox or menuitemcheckbox.

true The element is checked.

undefined (default) The element does not support being checked.

aria-colcount (property)

Defines the total number of columns in a table, grid, or treegrid. See related aria-colindex.

If all of the columns are present in the DOM, it is not necessary to set this attribute as the user agent
can automatically calculate the total number of columns. However, if only a portion of the columns is
present in the DOM at a given moment, this attribute is needed to provide an explicit indication of the
number of columns in the full table.

Authors MUST set the value of aria-colcount to an integer equal to the number of columns in the
full table. If the total number of columns is unknown, authors MUST set the value of aria-
colcount to -1 to indicate that the value should not be calculated by the user agent.

The following example shows a grid with 16 columns, of which columns 2, 3, 4, and 9 are displayed
to the user.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

171 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: table

Inherits into Roles: grid

treegrid

Value: integer

aria-colindex (property)

Defines an element's column index or position with respect to the total number of columns within a
table, grid, or treegrid. See related aria-colcount and aria-colspan.

If all of the columns are present in the DOM, it is not necessary to set this attribute as the user agent
can automatically calculate the column index of each cell or gridcell. However, if only a portion of
the columns is present in the DOM at a given moment, this attribute is needed to provide an explicit
indication of the column of each cell or gridcell with respect to the full table.

EXAMPLE 13

<div role="grid" aria-colcount="16">
<div role="rowgroup">
<div role="row">

First Name
Last Name
Company
Phone

</div>
</div>
<div role="rowgroup">
<div role="row">

Fred
Jackson
Acme, Inc.
555-1234

</div>
<div role="row">

Sara
James
Acme, Inc.
555-1235

</div>
 …

</div>
</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

172 of 238 05/07/2020, 09:09

Authors MUST set the value for aria-colindex to an integer greater than or equal to 1, greater than
the aria-colindex value of any previous elements within the same row, and less than or equal to the
number of columns in the full table. For a cell or gridcell which spans multiple columns, authors
MUST set the value of aria-colindex to the start of the span.

If the set of columns which is present in the DOM is contiguous, and if there are no cells which span
more than one row or column in that set, then authors MAY place aria-colindex on each row,
setting the value to the index of the first column of the set. Otherwise, authors SHOULD place aria-
colindex on all of the children or owned elements of each row.

The following example shows a grid with 16 columns, of which columns 2 through 5 are displayed to
the user. Because the set of columns is contiguous, aria-colindex can be placed on each row.

The following example shows a grid with 16 columns, of which columns 2 through 5 are displayed to
the user. While the set of columns is contiguous, some of the cells span multiple rows. As a result,
aria-colindex needs to be placed on all of the owned elements of each row.

EXAMPLE 14

<div role="grid" aria-colcount="16">
<div role="rowgroup">
<div role="row" aria-colindex="2">

First Name
Last Name
Company
Address

</div>
</div>
<div role="rowgroup">
<div role="row" aria-colindex="2">

Fred
Jackson
Acme, Inc.
123 Broad St.

</div>
<div role="row" aria-colindex="2">

Sara
James
Acme, Inc.
123 Broad St.

</div>
 …

</div>
</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

173 of 238 05/07/2020, 09:09

The following example shows a grid with 16 columns, of which columns 2, 3, 4, and 9 are displayed
to the user. Because the set of columns is non-contiguous, aria-colindex needs to be placed on all
of the owned elements of each row.

EXAMPLE 15

<div role="grid" aria-colcount="16">
<div role="rowgroup">
<div role="row">

First Name
Last Name
Company
Address

</div>
</div>
<div role="rowgroup">
<div role="row">

Fred
Jackson
Acme, Inc.
123 Broad St.

</div>
<div role="row">

Sara
James

</div>
 …

</div>
</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

174 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: cell

row

Inherits into Roles: columnheader

gridcell

rowheader

Value: integer

aria-colspan (property)

Defines the number of columns spanned by a cell or gridcell within a table, grid, or treegrid. See
related aria-colindex and aria-rowspan.

This attribute is intended for cells and gridcells which are not contained in a native table. When
defining the column span of cells or gridcells in a native table, authors SHOULD use the host

EXAMPLE 16

<div role="grid" aria-colcount="16">
<div role="rowgroup">
<div role="row">

First Name
Last Name
Company
Phone

</div>
</div>
<div role="rowgroup">
<div role="row">

Fred
Jackson
Acme, Inc.
555-1234

</div>
<div role="row">

Sara
James
Acme, Inc.
555-1235

</div>
 …

</div>
</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

175 of 238 05/07/2020, 09:09

§

§

language's attribute instead of aria-colspan. If aria-colspan is used on an element for which the
host language provides an equivalent attribute, user agents MUST ignore the value of aria-colspan
and instead expose the value of the host language's attribute to assistive technologies.

Authors MUST set the value of aria-colspan to an integer greater than or equal to 1 and less than
the value which would cause the cell or gridcell to overlap the next cell or gridcell in the same row.

Characteristics:

Characteristic Value

Used in Roles: cell

Inherits into Roles: columnheader

gridcell

rowheader

Value: integer

aria-controls (property)

Identifies the element (or elements) whose contents or presence are controlled by the current element.
See related aria-owns.

For example:

A table of contents tree view may control the content of a neighboring document pane.

A group of checkboxes may control what commodity prices are tracked live in a table or graph.

A tab controls the display of its associated tab panel.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

aria-current (state)

Indicates the element that represents the current item within a container or set of related elements.

The aria-current attribute is an enumerated type. Any value not included in the list of allowed
values SHOULD be treated by assistive technologies as if the value true had been provided. If the
attribute is not present or its value is an empty string or undefined, the default value of false
applies and the aria-current state MUST NOT be exposed by user agents or assistive technologies.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

176 of 238 05/07/2020, 09:09

The aria-current attribute is used when an element within a set of related elements is visually
styled to indicate it is the current item in the set. For example:

A page token used to indicate a link within a set of pagination links, where the link is visually
styled to represent the currently-displayed page.

A step token used to indicate a link within a step indicator for a step-based process, where the
link is visually styled to represent the current step.

A location token used to indicate the image that is visually highlighted as the current
component of a flow chart.

A date token used to indicate the current date within a calendar.

A time token used to indicate the current time within a timetable.

Authors SHOULD only mark one element in a set of elements as current with aria-current.

Authors SHOULD NOT use the aria-current attribute as a substitute for aria-selected in
widgets where aria-selected has the same meaning. For example, in a tablist, aria-selected
is used on a tab to indicate the currently-displayed tabpanel.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token

Values:

Value Description

page Represents the current page within a set of pages.

step Represents the current step within a process.

location Represents the current location within an
environment or context.

date Represents the current date within a collection of
dates.

time Represents the current time within a set of times.

NOTE

In some use cases for widgets that support aria-selected, current and selected can have
different meanings and can both be used within the same set of elements. For example, aria-
current="page" can be used in a navigation tree to indicate which page is currently
displayed, while aria-selected="true" indicates which page will be displayed if the user
activates the treeitem. Furthermore, the same tree may support operating on one or more
selected pages (treeitems) by way of a context menu containing options such as "delete" and
"move."

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

177 of 238 05/07/2020, 09:09

§

§

Value Description

true Represents the current item within a set.

false (default) Does not represent the current item within a set.

aria-describedby (property)

Identifies the element (or elements) that describes the object. See related aria-labelledby.

The aria-labelledby attribute is similar to the aria-describedby in that both reference other
elements to calculate a text alternative, but a label should be concise, where a description is intended
to provide more verbose information.

The element or elements referenced by the aria-describedby comprise the entire description. Include
ID references to multiple elements if necessary, or enclose a set of elements (e.g., paragraphs) with the
element referenced by the ID.

Characteristics:

Characteristic Value

Related Concepts: Hint or Help in XForms [XFORMS10]

Label in XForms

Label in HTML [xhtml11]

online help

HTML table cell headers

Used in Roles: All elements of the base markup

Value: ID reference list

aria-details (property)

Identifies the element that provides a detailed, extended description for the object. See related aria-
describedby.

The aria-details attribute references a single element that provides more detailed information than
would normally be provided by aria-describedby. It enables assistive technologies to make users
aware of the availability of an extended description as well as navigate to it. Authors SHOULD ensure
the element referenced by aria-details is visible to all users.

Unlike elements referenced by aria-describedby, the element referenced by aria-details is not
used in either the Accessible Name Computation or the Accessible Description Computation as
defined in the Accessible Name and Description specification [accname-aam-1.1]. Thus, the content
of an element referenced by aria-details is not flattened to a string when presented to assistive
technology users. This makes aria-details particularly useful when converting the information to

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

178 of 238 05/07/2020, 09:09

a string would cause a loss of information or make the extended description more difficult to
understand.

In some user agents, multiple reference relationships for descriptive information are not supported by
the accessibility API. In such cases, if both aria-describedby and aria-details are provided on
an element, aria-details takes precedence.

A common use for aria-details is in digital publishing where an extended description needs to be
conveyed in a book that requires structural markup or the embedding of other technology to provide
illustrative content. The following example demonstrates this scenario.

Alternatively, aria-details may refer to a link to a web page having the extended description, as
shown in the following example.

Characteristics:

Characteristic Value

EXAMPLE 17

<!-- Provision of an extended description -->

<details id="det">

<summary>Example</summary>
<p>

 The Pythagorean Theorem is a relationship in Euclidean Geometry between the three sides of
 a right triangle, where the square of the hypotenuse is the sum of the squares of the two
 opposing sides.

</p>
<p>

 The following drawing illustrates an application of the Pythagorean Theorem when used to
 construct a skateboard ramp.

</p>
<object data="skatebd-ramp.svg" type="image/svg+xml"/>
<p>

 In this example you will notice a skateboard with a base and vertical board whose width
 is the width of the ramp. To compute how long the ramp must be, simply calculate the
 base length, square it, sum it with the square of the height of the ramp, and take the
 square root of the sum.

</p>
</details>

EXAMPLE 18

<!-- Provision of an extended description -->

<p>
 See an Application of the Pythagorean Theorem
</p>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

179 of 238 05/07/2020, 09:09

§

§

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference

aria-disabled (state)

Indicates that the element is perceivable but disabled, so it is not editable or otherwise operable. See
related aria-hidden and aria-readonly.

For example, irrelevant options in a radio group may be disabled. Disabled elements might not receive
focus from the tab order. For some disabled elements, applications might choose not to support
navigation to descendants. In addition to setting the aria-disabled attribute, authors SHOULD
change the appearance (grayed out, etc.) to indicate that the item has been disabled.

The state of being disabled applies to the current element and all focusable descendant elements of the
element on which the aria-disabled attribute is applied.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values:

Value Description

false (default) The element is enabled.

true The element and all focusable descendants are
disabled and its value cannot be changed by the
user.

aria-dropeffect (property)

[Deprecated in ARIA 1.1] Indicates what functions can be performed when a dragged object is
released on the drop target.

This property allows assistive technologies to convey the possible drag options available to users,

NOTE

The aria-dropeffect property is expected to be replaced by a new feature in a future
version of WAI-ARIA. Authors are therefore advised to treat aria-dropeffect as
deprecated.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

180 of 238 05/07/2020, 09:09

§

including whether a pop-up menu of choices is provided by the application. Typically, drop effect
functions can only be provided once an object has been grabbed for a drag operation as the drop effect
functions available are dependent on the object being dragged.

More than one drop effect may be supported for a given element. Therefore, the value of this attribute
is a space-delimited set of tokens indicating the possible effects, or none if there is no supported
operation. In addition to setting the aria-dropeffect attribute, authors SHOULD show a visual
indication of potential drop targets.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token list

Values:

Value Description

copy A duplicate of the source object will be dropped
into the target.

execute A function supported by the drop target is
executed, using the drag source as an input.

link A reference or shortcut to the dragged object will
be created in the target object.

move The source object will be removed from its
current location and dropped into the target.

none (default) No operation can be performed; effectively
cancels the drag operation if an attempt is made
to drop on this object. Ignored if combined with
any other token value. e.g., 'none copy' is
equivalent to a 'copy' value.

popup There is a popup menu or dialog that allows the
user to choose one of the drag operations (copy,
move, link, execute) and any other drag
functionality, such as cancel.

aria-errormessage (property)

Identifies the element that provides an error message for the object. See related aria-invalid and
aria-describedby.

The aria-errormessage attribute references another element that contains custom error message
text. Authors MUST use aria-invalid in conjunction with aria-errormessage. Initially, the
object is in a valid state and either has aria-invalid set to false or no aria-invalid attribute,
and the element referenced by aria-errormessage is not applicable. If the user enters an invalid
value for the object, aria-invalid is set to true to indicate that aria-errormessage is now

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

181 of 238 05/07/2020, 09:09

§

pertinent. When aria-errormessage is pertinent, authors MUST ensure the content is not hidden
and is included in a container that exposes the content to the user as it is expected that the assistive
technology user will navigate to the content in order to access it.

Authors MAY use live regions for the error message element applying either an aria-live property
or using one of the live region roles, for example, alert. A live region scenario is when an error
message is displayed to users only after they have provided invalid information. The message
describes what is wrong and advises users as to what is required. For example, an error message might
be, "Invalid time: the time must be between 9:00 AM and 5:00 PM". The following example shows
the markup for the initial valid state and for the subsequent invalid state. Note the changes to aria-
invalid on the text input object, and to aria-live on the element containing the text of the error
message:

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference

aria-expanded (state)

Indicates whether the element, or another grouping element it controls, is currently expanded or
collapsed.

For example, this indicates whether a portion of a tree is expanded or collapsed. In other instances,
this may be applied to page sections to mark expandable and collapsible regions that are flexible for
managing content density. Simplifying the user interface by collapsing sections may improve usability
for all, including those with cognitive or developmental disabilities.

If the element with the aria-expanded attribute controls the expansion of another grouping
container that is not 'owned by' the element, the author SHOULD reference the container by using the
aria-controls attribute.

EXAMPLE 19

<!-- Initial valid state -->
<label for="startTime"> Please enter a start time for the meeting: </label>
<input id="startTime" type="text" aria-errormessage="msgID" value="" aria-invalid="false"
 Invalid time: the time must be between 9:00

<!-- User has input an invalid value -->
<label for="startTime"> Please enter a start time for the meeting: </label>
<input id="startTime" type="text" aria-errormessage="msgID" aria-invalid="true" value="11:30 PM"
 Invalid time: the time must be betwe

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

182 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Related Concepts: Tapered prompts in voice browsing. Switch in
SMIL [SMIL3].

Used in Roles: button

combobox

document

link

section

sectionhead

window

Inherits into Roles: alert

alertdialog

article

banner

cell

columnheader

complementary

contentinfo

definition

dialog

directory

feed

figure

form

grid

gridcell

group

heading

img

landmark

list

listbox

listitem

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

183 of 238 05/07/2020, 09:09

Characteristic Value
log

main

marquee

math

menu

menubar

navigation

note

progressbar

radiogroup

region

row

rowheader

search

select

status

tab

table

tabpanel

term

timer

toolbar

tooltip

tree

treegrid

treeitem

Value: true/false/undefined

Values:

Value Description

false The element, or another grouping element it
controls, is collapsed.

true The element, or another grouping element it
controls, is expanded.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

184 of 238 05/07/2020, 09:09

§

§

Value Description

undefined (default) The element, or another grouping element it
controls, is neither expandable nor collapsible; all
its child elements are shown or there are no child
elements.

aria-flowto (property)

Identifies the next element (or elements) in an alternate reading order of content which, at the user's
discretion, allows assistive technology to override the general default of reading in document source
order.

When aria-flowto has a single IDREF, it allows assistive technologies to, at the user's request,
forego normal document reading order and go to the targeted object. However, when aria-flowto is
provided with multiple IDREFS, assistive technologies SHOULD present the referenced elements as
path choices.

In the case of one or more IDREFS, user agents or assistive technologies SHOULD give the user the
option of navigating to any of the targeted elements. The name of the path can be determined by the
name of the target element of the aria-flowto attribute. Accessibility APIs can provide named path
relationships.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

aria-grabbed (state)

[Deprecated in ARIA 1.1] Indicates an element's "grabbed" state in a drag-and-drop operation.

Setting aria-grabbed to true indicates that the element has been selected for dragging. Setting
aria-grabbed to false indicates that the element can be grabbed for a drag-and-drop operation, but
is not currently grabbed. If aria-grabbed is unspecified or set to undefined (default), the element
cannot be grabbed.

When aria-grabbed is set to true, authors SHOULD update the aria-dropeffect attribute of

NOTE

The aria-grabbed state is expected to be replaced by a new feature in a future version of
WAI-ARIA. Authors are therefore advised to treat aria-grabbed as deprecated.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

185 of 238 05/07/2020, 09:09

§

all potential drop targets. When an element is not grabbed (the value is set to false or undefined, or
the attribute is removed), authors SHOULD revert the aria-dropeffect attributes of the associated
drop targets to none.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false/undefined

Values:

Value Description

false Indicates that the element supports being
dragged.

true Indicates that the element has been "grabbed" for
dragging.

undefined (default) Indicates that the element does not support being
dragged.

aria-haspopup (property)

Indicates the availability and type of interactive popup element, such as menu or dialog, that can be
triggered by an element.

A popup element usually appears as a block of content that is on top of other content. Authors MUST
ensure that the role of the element that serves as the container for the popup content is menu,
listbox, tree, grid, or dialog, and that the value of aria-haspopup matches the role of the
popup container.

For the popup element to be keyboard accessible, authors SHOULD ensure that the element that can
trigger the popup is focusable, that there is a keyboard mechanism for opening the popup, and that the
popup element manages focus of all its descendants as described in Managing Focus.

The aria-haspopup property is an enumerated type. User agents MUST treat any value of aria-
haspopup that is not included in the list of allowed values, including an empty string, as if the value
false had been provided. To provide backward compatibility with ARIA 1.0 content, user agents
MUST treat an aria-haspopup value of true as equivalent to a value of menu.

Assistive technologies SHOULD NOT expose the aria-haspopup property if it has a value of
false.

NOTE

A tooltip is not considered to be a popup in this context.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

186 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Related Concepts: aria-controls

User Agent Accessibility Guidelines [UAAG10]
conditional content

Used in Roles: All elements of the base markup

Value: token

Values:

Value Description

false (default) Indicates the element does not have a popup.

true Indicates the popup is a menu.

menu Indicates the popup is a menu.

listbox Indicates the popup is a listbox.

tree Indicates the popup is a tree.

grid Indicates the popup is a grid.

dialog Indicates the popup is a dialog.

aria-hidden (state)

Indicates whether the element is exposed to an accessibility API. See related aria-disabled.

User agents determine an element's hidden status based on whether it is rendered, and the rendering is
usually controlled by CSS. For example, an element whose display property is set to none is not
rendered. An element is considered hidden if it, or any of its ancestors are not rendered or have their
aria-hidden attribute value set to true.

Authors MAY, with caution, use aria-hidden to hide visibly rendered content from assistive
technologies only if the act of hiding this content is intended to improve the experience for users of
assistive technologies by removing redundant or extraneous content. Authors using aria-hidden to hide
visible content from screen readers MUST ensure that identical or equivalent meaning and
functionality is exposed to assistive technologies.

EXAMPLE 20

[aria-hidden="true"] { visibility: hidden; }

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

187 of 238 05/07/2020, 09:09

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false/undefined

Values:

Value Description

false The element is exposed to the accessibility API
as if it was rendered.

NOTE

Authors are advised to use extreme caution and consider a wide range of disabilities when
hiding visibly rendered content from assistive technologies. For example, a sighted, dexterity-
impaired individual may use voice-controlled assistive technologies to access a visual
interface. If an author hides visible link text "Go to checkout" and exposes similar, yet non-
identical link text "Check out now" to the accessibility API, the user may be unable to access
the interface they perceive using voice control. Similar problems may also arise for screen
reader users. For example, a sighted telephone support technician may attempt to have the
blind screen reader user click the "Go to checkout" link, which they may be unable to find
using a type-ahead item search ("Go to…").

NOTE

At the time of this writing, aria-hidden="false" is known to work inconsistently in
browsers. As future implementations improve, use caution and test thoroughly before relying
on this approach.

NOTE

It is recommended that authors key visibility of elements off this attribute, rather than change
visibility and separately update this property. CSS 2 introduced a way to select on attribute
values ([css3-selectors]). The following CSS declaration makes content visible unless the
aria-hidden attribute is true; scripts need only update the value of this attribute to change
visibility:

EXAMPLE 21

[aria-hidden="true"] { visibility: hidden; }

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

188 of 238 05/07/2020, 09:09

§

§

Value Description

true The element is hidden from the accessibility API.

undefined (default) The element's hidden state is determined by the
user agent based on whether it is rendered.

aria-invalid (state)

Indicates the entered value does not conform to the format expected by the application. See related
aria-errormessage.

If the value is computed to be invalid or out-of-range, the application author SHOULD set this
attribute to true. User agents SHOULD inform the user of the error. Application authors SHOULD
provide suggestions for corrections if they are known.

When the user attempts to submit data involving a field for which aria-required is true, authors
MAY use the aria-invalid attribute to signal there is an error. However, if the user has not
attempted to submit the form, authors SHOULD NOT set the aria-invalid attribute on required
widgets simply because the user has not yet entered data.

For future expansion, the aria-invalid attribute is an enumerated type. Any value not recognized
in the list of allowed values MUST be treated by user agents as if the value true had been provided.
If the attribute is not present, or its value is false, or its value is an empty string, the default value of
false applies.

Characteristics:

Characteristic Value

Related Concepts: XForms [XFORMS11] 'invalid' event. This state
is true if a form field is required but empty.
However, the XForms valid property would be
set to false.

Used in Roles: All elements of the base markup

Value: token

Values:

Value Description

grammar A grammatical error was detected.

false (default) There are no detected errors in the value.

spelling A spelling error was detected.

true The value entered by the user has failed
validation.

aria-keyshortcuts (property)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

189 of 238 05/07/2020, 09:09

Indicates keyboard shortcuts that an author has implemented to activate or give focus to an element.

The value of the aria-keyshortcuts attribute is a space-delimited list of keyboard shortcuts that
can be pressed to activate a command or textbox widget. The keys defined in the shortcuts represent
the physical keys pressed and not the actual characters generated. Each keyboard shortcut consists of
one or more tokens delimited by the plus sign ("+") representing zero or more modifier keys and
exactly one non-modifier key that must be pressed simultaneously to activate the given shortcut.

Authors MUST specify modifier keys exactly according to the UI Events KeyboardEvent key Values
spec [uievents-key] - for example, "Alt", "Control", "Shift", "Meta", or "AltGraph". Note that Meta
corresponds to the Command key, and Alt to the Option key, on Apple computers.

The valid names for non-modifier keys are any printable character such as "A", "B", "1", "2", "$",
"Plus" for a plus sign, "Space" for the spacebar, or the names of any other non-modifier key specified
in the UI Events KeyboardEvent key Values spec [uievents-key] - for example, "Enter", "Tab",
"ArrowRight", "PageDown", "Escape", or "F1". The use of "Space" for the spacebar is an exception to
the UI Events KeyboardEvent key Values spec [uievents-key] as the space or spacebar key is encoded
as ' ' and would be treated as a whitespace character.

Authors MUST ensure modifier keys come first when they are part of a keyboard shortcut. Authors
MUST ensure that required non-modifier keys come last when they are part of a shortcut. The order of
the modifier keys is not otherwise significant, so "Alt+Shift+T" and "Shift+Alt+T" are equivalent, but
"T+Shift+Alt" is not valid because all of the modifier keys don't come first, and "Alt" is not valid
because it doesn't include at least one non-modifier key.

When specifying an alphabetic key, both the uppercase and lowercase variants are considered
equivalent: "a" and "A" are the same.

When implementing keyboard shortcuts authors should consider the keyboards they intend to support
to avoid unintended results. Keyboard designs vary significantly based on the device used and the
languages supported. For example, many modifier keys are used in conjunction with other keys to
create common punctuation symbols, create number characters, swap keyboard sides on bilingual
keyboards to switch languages, and perform a number of other functions.

For many supported keyboards, authors can prevent conflicts by avoiding keys other than ASCII
letters, as number characters and common punctuation often require modifiers. Here, the keyboard
shortcut entered does not equate to the key generated. For example, in French keyboard layouts, the
number characters are not available until you press the Control key, so a keyboard shortcut defined as
"Control+2" would be ambiguous as this is how one would type the "2" character on a French
keyboard.

If the character used is determined by a modifier key, the author MUST specify the actual key used to
generate the character, that is generated by the key, and not the resulting character. This convention
enables the assistive technology to accurately convey what keys must be used to generate the shortcut.
For example, on most U.S. English keyboards, the percent sign "%" can be input by pressing Shift+5.
The correct way to specify this shortcut is "Shift+5". It is incorrect to specify "%" or "Shift+%".
However, note that on some international keyboards the percent sign may be an unmodified key, in
which case "%" and "Shift+%" could be correct on those keyboards.

If the key that needs to be specified is illegal in the host language or would cause a string to be

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

190 of 238 05/07/2020, 09:09

§

terminated, authors MUST use the string escaping sequence of the host language to specify it. For
example, the double-quote character can be encoded as "Shift+'" in HTML.

Examples of valid keyboard shortcuts include:

"A"

"Shift+Space"

"Control+Alt+."

"Control+Shift+'"

"Alt+Shift+P Control+F"

"Meta+C Meta+Shift+C"

User agents MUST NOT change keyboard behavior in response to the aria-keyshortcuts
attribute. Authors MUST handle scripted keyboard events to process aria-keyshortcuts. The
aria-keyshortcuts attribute exposes the existence of these shortcuts so that assistive technologies
can communicate this information to users.

Authors SHOULD provide a way to expose keyboard shortcuts so that all users may discover them,
such as through the use of a tooltip. Authors MUST ensure that aria-keyshortcuts applied to
disabled elements are unavailable.

Authors SHOULD avoid implementing shortcut keys that inhibit operating system, user agent, or
assistive technology functionality. This requires the author to carefully consider both which keys to
assign and the contexts and conditions in which the keys are available to the user. For guidance, see
the keyboard shortcuts section of the WAI-ARIA Authoring Practices Guide [wai-aria-practices-1.1].

Characteristics:

Characteristic Value

Related Concepts: Keyboard shortcut

Used in Roles: All elements of the base markup

Value: string

aria-label (property)

Defines a string value that labels the current element. See related aria-labelledby.

The purpose of aria-label is the same as that of aria-labelledby. It provides the user with a
recognizable name of the object. The most common accessibility API mapping for a label is the
accessible name property.

If the label text is visible on screen, authors SHOULD use aria-labelledby and SHOULD NOT
use aria-label. There may be instances where the name of an element cannot be determined
programmatically from the content of the element, and there are cases where providing a visible label
is not the desired user experience. Most host languages provide an attribute that could be used to name

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

191 of 238 05/07/2020, 09:09

§

the element (e.g., the title attribute in HTML), yet this could present a browser tooltip. In the cases
where a visible label or visible tooltip is undesirable, authors MAY set the accessible name of the
element using aria-label. As required by the text alternative computation, user agents give
precedence to aria-labelledby over aria-label when computing the accessible name property.

Characteristics:

Characteristic Value

Related Concepts: HTML title

Used in Roles: All elements of the base markup

Value: string

aria-labelledby (property)

Identifies the element (or elements) that labels the current element. See related aria-describedby.

The purpose of aria-labelledby is the same as that of aria-label. It provides the user with a
recognizable name of the object. The most common accessibility API mapping for a label is the
accessible name property.

If the interface is such that it is not possible to have a visible label on the screen, authors SHOULD
use aria-label and SHOULD NOT use aria-labelledby. As required by the text alternative
computation, user agents give precedence to aria-labelledby over aria-label when computing
the accessible name property.

The aria-labelledby attribute is similar to aria-describedby in that both reference other
elements to calculate a text alternative, but a label should be concise, where a description is intended
to provide more verbose information.

Characteristics:

Characteristic Value

Related Concepts: HTML label

Used in Roles: All elements of the base markup

Value: ID reference list

NOTE

The expected spelling of this property in U.S. English is "labeledby." However, the
accessibility API features to which this property is mapped have established the "labelledby"
spelling. This property is spelled that way to match the convention and minimize the difficulty
for developers.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

192 of 238 05/07/2020, 09:09

§aria-level (property)

Defines the hierarchical level of an element within a structure.

This can be applied inside trees to tree items, to headings inside a document, to nested grids, nested
tablists and to other structural items that may appear inside a container or participate in an ownership
hierarchy. The value for aria-level is an integer greater than or equal to 1.

Levels increase with depth. If the DOM ancestry does not accurately represent the level, authors
SHOULD explicitly define the aria-level attribute.

This attribute is applied to elements that act as leaf nodes within the orientation of the set, for
example, on elements with role treeitem rather than elements with role group. This means that
multiple elements in a set may have the same value for this attribute. Although it would be less
repetitive to provide a single value on the container, restricting this to leaf nodes ensures that there is a
single way for assistive technologies to use the attribute.

If the DOM ancestry accurately represents the level, the user agent can calculate the level of an item
from the document structure. This attribute can be used to provide an explicit indication of the level
when that is not possible to calculate from the document structure or the aria-owns attribute. User
agent support for automatic calculation of level may vary; authors SHOULD test with user agents and
assistive technologies to determine whether this attribute is needed. If the author intends for the user
agent to calculate the level, the author SHOULD omit this attribute.

Characteristics:

Characteristic Value

Used in Roles: grid

heading

listitem

row

tablist

Inherits into Roles: treegrid

treeitem

NOTE

In the case of a treegrid, aria-level is supported on elements with the role row, not
elements with role gridcell. At first glance, this may seem inconsistent with the application
of aria-level on treeitem elements, but it is consistent in that the row acts as the leaf node
within the vertical orientation of the grid, whereas the gridcell is a leaf node within the
horizontal orientation of each row. Level is not supported on sets of cells within rows, so the
aria-level attribute is applied to the element with the role row.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

193 of 238 05/07/2020, 09:09

§

Characteristic Value

Value: integer

aria-live (property)

Indicates that an element will be updated, and describes the types of updates the user agents, assistive
technologies, and user can expect from the live region.

The values of this attribute are expressed in degrees of importance. When regions are specified as
polite, assistive technologies will notify users of updates but generally do not interrupt the current
task, and updates take low priority. When regions are specified as assertive, assistive technologies
will immediately notify the user, and could potentially clear the speech queue of previous updates.

Politeness levels are essentially an ordering mechanism for updates and serve as a strong suggestion to
user agents or assistive technologies. The value may be overridden by user agents, assistive
technologies, or the user. For example, if assistive technologies can determine that a change occurred
in response to a key press or a mouse click, the assistive technologies may present that change
immediately even if the value of the aria-live attribute states otherwise.

Since different users have different needs, it is up to the user to tweak his or her assistive technologies'
response to a live region with a certain politeness level from the commonly defined baseline. Assistive
technologies may choose to implement increasing and decreasing levels of granularity so that the user
can exercise control over queues and interruptions.

When the property is not set on an object that needs to send updates, the politeness level is the value
of the nearest ancestor that sets the aria-live attribute.

The aria-live attribute is the primary determination for the order of presentation of changes to live
regions. Implementations will also consider the default level of politeness in a role when the aria-
live attribute is not set in the ancestor chain (e.g., log changes are polite by default). Items which
are assertive will be presented immediately, followed by polite items. User agents or assistive
technologies MAY choose to clear queued changes when an assertive change occurs. (e.g., changes in
an assertive region may remove all currently queued changes)

When live regions are marked as polite, assistive technologies SHOULD announce updates at the
next graceful opportunity, such as at the end of speaking the current sentence or when the user pauses
typing. When live regions are marked as assertive, assistive technologies SHOULD notify the user
immediately. Because an interruption may disorient users or cause them to not complete their current
task, authors SHOULD NOT use the assertive value unless the interruption is imperative.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

194 of 238 05/07/2020, 09:09

§

Values:

Value Description

assertive Indicates that updates to the region have the
highest priority and should be presented the user
immediately.

off (default) Indicates that updates to the region should not be
presented to the user unless the used is currently
focused on that region.

polite Indicates that updates to the region should be
presented at the next graceful opportunity, such
as at the end of speaking the current sentence or
when the user pauses typing.

aria-modal (property)

Indicates whether an element is modal when displayed.

The aria-modal attribute is used to indicate that the presence of a "modal" element precludes usage
of other content on the page. For example, when a modal dialog is displayed, it is expected that the
user's interaction is limited to the contents of the dialog, until the modal dialog loses focus or is no
longer displayed.

When a modal element is displayed, assistive technologies SHOULD navigate to the element unless
focus has explicitly been set elsewhere. Assistive technologies MAY limit navigation to the modal
element's contents. If focus moves to an element outside the modal element, assistive technologies
SHOULD NOT limit navigation to the modal element.

When a modal element is displayed, authors MUST ensure the interface can be controlled using only
descendants of the modal element. In other words, if a modal dialog has a close button, the button
should be a descendant of the dialog. When a modal element is displayed, authors SHOULD mark all
other contents as inert (such as "inert subtrees" in HTML) if the ability to do so exists in the host
language.

Characteristics:

Characteristic Value

Used in Roles: window

Inherits into Roles: alertdialog

dialog

Value: true/false

Values:

Value Description

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

195 of 238 05/07/2020, 09:09

§

§

Value Description

false (default) Element is not modal.

true Element is modal.

aria-multiline (property)

Indicates whether a text box accepts multiple lines of input or only a single line.

Characteristics:

Characteristic Value

Used in Roles: textbox

Inherits into Roles: searchbox

Value: true/false

Values:

Value Description

false (default) This is a single-line text box.

true This is a multi-line text box.

aria-multiselectable (property)

Indicates that the user may select more than one item from the current selectable descendants.

Authors SHOULD ensure that selected descendants have the aria-selected attribute set to true,
and selectable descendant have the aria-selected attribute set to false. Authors SHOULD NOT
use the aria-selected attribute on descendants that are not selectable.

NOTE

In most user agent implementations, the default behavior of the ENTER or RETURN key is
different between the single-line and multi-line text fields in HTML. When user has focus in a
single-line <input type="text"> element, the keystroke usually submits the form. When
user has focus in a multi-line <textarea> element, the keystroke inserts a line break. The
WAI-ARIA textbox role differentiates these types of boxes with the aria-multiline
attribute, so authors are advised to be aware of this distinction when designing the field.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

196 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: grid

listbox

tablist

tree

Inherits into Roles: treegrid

Value: true/false

Values:

Value Description

false (default) Only one item can be selected.

true More than one item in the widget may be selected
at a time.

aria-orientation (property)

Indicates whether the element's orientation is horizontal, vertical, or unknown/ambiguous.

Characteristics:

Characteristic Value

Used in Roles: scrollbar

select

separator

NOTE

Lists and trees are examples of roles that might allow users to select more than one item at a
time.

NOTE

In ARIA 1.1, the default value for aria-orientation changed from horizontal to
undefined. Implicit defaults are defined on some roles (e.g., slider defaults to horizontal;
scrollbar defaults to vertical) but remain undefined on roles where an expected default
orientation is ambiguous (e.g., radiogroup).

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

197 of 238 05/07/2020, 09:09

§

Characteristic Value
slider

tablist

toolbar

Inherits into Roles: combobox

listbox

menu

menubar

radiogroup

tree

treegrid

Value: token

Values:

Value Description

horizontal The element is oriented horizontally.

undefined (default) The element's orientation is unknown/ambiguous.

vertical The element is oriented vertically.

aria-owns (property)

Identifies an element (or elements) in order to define a visual, functional, or contextual parent/child
relationship between DOM elements where the DOM hierarchy cannot be used to represent the
relationship. See related aria-controls.

The value of the aria-owns attribute is a space-separated list of IDREFS that reference one or more
elements in the document by ID. The reason for adding aria-owns is to expose a parent/child
contextual relationship to assistive technologies that is otherwise impossible to infer from the DOM.

If an element has both aria-owns and DOM children then the order of the child elements with
respect to the parent/child relationship is the DOM children first, then the elements referenced in
aria-owns. If the author intends that the DOM children are not first, then list the DOM children in
aria-owns in the desired order. Authors SHOULD NOT use aria-owns as a replacement for the
DOM hierarchy. If the relationship is represented in the DOM, do not use aria-owns. Authors
MUST ensure that an element's ID is not specified in more than one other element's aria-owns
attribute at any time. In other words, an element can have only one explicit owner.

Characteristics:

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

198 of 238 05/07/2020, 09:09

§

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

aria-placeholder (property)

Defines a short hint (a word or short phrase) intended to aid the user with data entry when the control
has no value. A hint could be a sample value or a brief description of the expected format.

Authors SHOULD NOT use aria-placeholder instead of a label as their purposes are different:
The label indicates what kind of information is expected. The placeholder text is a hint about the
expected value. See related aria-labelledby and aria-label.

Authors SHOULD present this hint to the user by displaying the hint text at any time the control's
value is the empty string. This includes cases where the control first receives focus, and when users
remove a previously-entered value.

The following example shows a searchbox in which the user has entered a value:

The following example shows the same searchbox in which the user has not yet entered a value or
has removed a previously-entered value:

NOTE

As is the case with the related HTML placeholder attribute, use of placeholder text as a
replacement for a displayed label can reduce the accessibility and usability of the control for a
range of users including older users and users with cognitive, mobility, fine motor skill or
vision impairments. While the hint given by the control's label is shown at all times, the short
hint given in the placeholder attribute is only shown before the user enters a value.
Furthermore, placeholder text may be mistaken for a pre-filled value, and as commonly
implemented the default color of the placeholder text provides insufficient contrast and the lack
of a separate visible label reduces the size of the hit region available for setting focus on the
control.

EXAMPLE 22

Birthday:
<div contenteditable role="searchbox" aria-labelledby="label" aria-placeholder="MM-DD-YYYY"

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

199 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Related Concepts: HTML placeholder

Used in Roles: textbox

Inherits into Roles: searchbox

Value: string

aria-posinset (property)

Defines an element's number or position in the current set of listitems or treeitems. Not required if all
elements in the set are present in the DOM. See related aria-setsize.

If all items in a set are present in the document structure, it is not necessary to set this attribute, as the
user agent can automatically calculate the set size and position for each item. However, if only a
portion of the set is present in the document structure at a given moment, this property is needed to
provide an explicit indication of an element's position.

The following example shows items 5 through 8 in a set of 16.

Authors MUST set the value for aria-posinset to an integer greater than or equal to 1, and less
than or equal to the size of the set when that size is known. Authors SHOULD use aria-setsize.

When exposing aria-posinset on a menuitem, menuitemcheckbox, or menuitemradio,
authors SHOULD set the value of aria-posinset with respect to the total number of items in the
menu, excluding any separators.

EXAMPLE 23

Birthday:
<div contenteditable role="searchbox" aria-labelledby="label" aria-placeholder="MM-DD-YYYY"

EXAMPLE 24

<h2 id="label_fruit"> Available Fruit </h2>
<ul role="listbox" aria-labelledby="label_fruit">

<li role="option" aria-setsize="16" aria-posinset="5"> apples
<li role="option" aria-setsize="16" aria-posinset="6"> bananas
<li role="option" aria-setsize="16" aria-posinset="7"> cantaloupes
<li role="option" aria-setsize="16" aria-posinset="8"> dates

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

200 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: article

listitem

menuitem

option

radio

tab

Inherits into Roles: menuitemcheckbox

menuitemradio

treeitem

Value: integer

aria-pressed (state)

Indicates the current "pressed" state of toggle buttons. See related aria-checked and aria-
selected.

Toggle buttons require a full press-and-release cycle to change their value. Activating it once changes
the value to true, and activating it another time changes the value back to false. A value of mixed
means that the values of more than one item controlled by the button do not all share the same value.
Examples of mixed-state buttons are described in WAI-ARIA Authoring Practices [wai-aria-
practices-1.1]. If the attribute is not present, the button is not a toggle button.

The aria-pressed attribute is similar but not identical to the aria-checked attribute. Operating
systems support pressed on buttons and checked on checkboxes.

Characteristics:

Characteristic Value

Used in Roles: button

Value: tristate

Values:

Value Description

false The element supports being pressed but is not
currently pressed.

mixed Indicates a mixed mode value for a tri-state
toggle button.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

201 of 238 05/07/2020, 09:09

§

Value Description

true The element is pressed.

undefined (default) The element does not support being pressed.

aria-readonly (property)

Indicates that the element is not editable, but is otherwise operable. See related aria-disabled.

This means the user can read but not set the value of the widget. Readonly elements are relevant to the
user, and application authors SHOULD NOT restrict navigation to the element or its focusable
descendants. Other actions such as copying the value of the element are also supported. This is in
contrast to disabled elements, to which applications might not allow user navigation to descendants.

Examples include:

A form element which represents a constant.

Row or column headers in a spreadsheet grid.

The result of a calculation such as a shopping cart total.

Characteristics:

Characteristic Value

Related Concepts: XForms [XFORMS10] Readonly

Used in Roles: checkbox

combobox

grid

gridcell

listbox

radiogroup

slider

spinbutton

textbox

Inherits into Roles: columnheader

menuitemcheckbox

menuitemradio

rowheader

searchbox

switch

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

202 of 238 05/07/2020, 09:09

§

Characteristic Value
treegrid

Value: true/false

Values:

Value Description

false (default) The user can set the value of the element.

true The user cannot change the value of the element.

aria-relevant (property)

Indicates what notifications the user agent will trigger when the accessibility tree within a live region
is modified. See related aria-atomic.

The attribute is represented as a space delimited list of the following values: additions, removals,
text; or a single catch-all value all.

This is used to describe semantically meaningful changes, as opposed to merely presentational ones.
For example, nodes that are removed from the top of a log are merely removed for purposes of
creating room for other entries, and the removal of them does not have meaning. However, in the case
of a buddy list, removal of a buddy name indicates that they are no longer online, and this is a
meaningful event. In that case aria-relevant will be set to all. When the aria-relevant
attribute is not provided, the default value, additions text, indicates that text modifications and
node additions are relevant, but that node removals are irrelevant.

aria-relevant is an optional attribute of live regions. This is a suggestion to assistive technologies,
but assistive technologies are not required to present changes of all the relevant types.

When aria-relevant is not defined, an element's value is inherited from the nearest ancestor with a

NOTE

aria-relevant values of removals or all are to be used sparingly. Assistive technologies
only need to be informed of content removal when its removal represents an important change,
such as a buddy leaving a chat room.

NOTE

Text removals should only be considered relevant if one of the specified values is 'removals' or
'all'. For example, for a text change from 'foo' to 'bar' in a live region with a default aria-
relevant value, the text addition ('bar') would be spoken, but the text removal ('foo') would
not.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

203 of 238 05/07/2020, 09:09

§

defined value. Although the value is a token list, inherited values are not additive; the value provided
on a descendant element completely overrides any inherited value from an ancestor element.

When text changes are denoted as relevant, user agents MUST monitor any descendant node change
that affects the text alternative computation of the live region as if the accessible name were
determined from contents (nameFrom: contents). For example, a text change would be triggered if the
HTML alt attribute of a contained image changed. However, no change would be triggered if there
was a text change to a node outside the live region, even if that node was referenced (via aria-
labelledby) by an element contained in the live region.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token list

Values:

Value Description

additions Element nodes are added to the accessibility tree
within the live region.

additions text Equivalent to the combination of values,
"additions text".

all Equivalent to the combination of all values,
"additions removals text".

removals Text content, a text alternative, or an element
node within the live region is removed from the
accessibility tree.

text Text content or a text alternative is added to any
descendant in the accessibility tree of the live
region.

aria-required (property)

Indicates that user input is required on the element before a form may be submitted.

For example, if the user needs to fill in an address field, the author will need to set the field's aria-
required attribute to true.

NOTE

The fact that the element is required is often presented visually (such as a sign or symbol after
the widget). Using the aria-required attribute allows the author to explicitly convey to
assistive technologies that an element is required.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

204 of 238 05/07/2020, 09:09

§

Unless an exactly equivalent native attribute is available, host languages SHOULD allow authors to
use the aria-required attribute on host language form elements that require input or selection by
the user.

Characteristics:

Characteristic Value

Related Concepts: HTML required

Used in Roles: combobox

gridcell

listbox

radiogroup

spinbutton

textbox

tree

Inherits into Roles: columnheader

rowheader

searchbox

treegrid

Value: true/false

Values:

Value Description

false (default) User input is not necessary to submit the form.

true Users need to provide input on an element before
a form is submitted.

aria-roledescription (property)

Defines a human-readable, author-localized description for the role of an element.

Some assistive technologies, such as screen readers, present the role of an element as part of the user
experience. Such assistive technologies typically localize the name of the role, and they may
customize it as well. Users of these assistive technologies depend on the presentation of the role name,
such as "region," "button," or "slider," for an understanding of the purpose of the element and, if it is a
widget, how to interact with it.

The aria-roledescription property gives authors the ability to override how assistive
technologies localize and express the name of a role. Thus inappropriately using aria-
roledescription may inhibit users' ability to understand or interact with an element. Authors

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

205 of 238 05/07/2020, 09:09

SHOULD limit use of aria-roledescription to clarifying the purpose of non-interactive
container roles like group or region, or to providing a more specific description of a widget.

When using aria-roledescription, authors SHOULD also ensure that:

1. The element to which aria-roledescription is applied has a valid WAI-ARIA role or has an
implicit WAI-ARIA role semantic.

2. The value of aria-roledescription is not empty or does not contain only whitespace
characters.

User agents MUST NOT expose the aria-roledescription property if any of the following
conditions exist:

1. The element to which aria-roledescription is applied does not have a valid WAI-ARIA
role or does not have an implicit WAI-ARIA role semantic.

2. The value of aria-roledescription is empty or contains only whitespace characters.

Assistive technologies SHOULD use the value of aria-roledescription when presenting the role
of an element, but SHOULD NOT change other functionality based on the role of an element that has
a value for aria-roledescription. For example, an assistive technology that provides functions
for navigating to the next region or button SHOULD allow those functions to navigate to regions
and buttons that have an aria-roledescription.

The following two examples show the use of aria-roledescription to indicate that a non-
interactive container is a "slide" in a web-based presentation application.

In the previous examples, a screen reader user may hear "Quarterly Report, slide" rather than the more
vague "Quarterly Report, region" or "Quarterly Report, group."

The following examples show the use of aria-roledescription to indicate that a button in a
web-based email client is associated with an "attachment."

EXAMPLE 25

<div role="region" aria-roledescription="slide" id="slide42" aria-labelledby="slide42heading"
<h1 id="slide42heading">Quarterly Report</h1>
<!-- remaining slide contents -->
</div>

EXAMPLE 26

<section aria-roledescription="slide" id="slide42" aria-labelledby="slide42heading">
<h1 id="slide42heading">Quarterly Report</h1>
<!-- remaining slide contents -->
</section>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

206 of 238 05/07/2020, 09:09

§

In the previous two examples, because "button" is part of the localized description, a screen reader
user should still understand how to interact with that control.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: string

aria-rowcount (property)

Defines the total number of rows in a table, grid, or treegrid. See related aria-rowindex.

If all of the rows are present in the DOM, it is not necessary to set this attribute as the user agent can
automatically calculate the total number of rows. However, if only a portion of the rows is present in
the DOM at a given moment, this attribute is needed to provide an explicit indication of the number of
rows in the full table.

Authors MUST set the value of aria-rowcount to an integer equal to the number of rows in the full
table. If the total number of rows is unknown, authors MUST set the value of aria-rowcount to -1
to indicate that the value should not be calculated by the user agent.

The following example shows a grid with 2000 rows, of which the first row and rows 100 through 102
are displayed to the user.

EXAMPLE 27

<div role="button" tabindex="0" aria-roledescription="attachment button">family_reunion.jpg

EXAMPLE 28

<button aria-roledescription="attachment button">family_reunion.jpg</button>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

207 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: table

Inherits into Roles: grid

treegrid

Value: integer

aria-rowindex (property)

Defines an element's row index or position with respect to the total number of rows within a table,
grid, or treegrid. See related aria-rowcount and aria-rowspan.

If all of the rows are present in the DOM, it is not necessary to set this attribute as the user agent can

EXAMPLE 29

<div role="grid" aria-rowcount="2000">
<div role="rowgroup">
<div role="row" aria-rowindex="1">

First Name
Last Name
Company
Phone

</div>
</div>
<div role="rowgroup">
<div role="row" aria-rowindex="100">

Fred
Jackson
Acme, Inc.
555-1234

</div>
<div role="row" aria-rowindex="101">

Sara
James
Acme, Inc.
555-1235

</div>
<div role="row" aria-rowindex="102">

Taylor
Johnson
Acme, Inc.
555-1236

</div>
</div>

</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

208 of 238 05/07/2020, 09:09

automatically calculate the index of each row. However, if only a portion of the rows is present in the
DOM at a given moment, this attribute is needed to provide an explicit indication of each row's
position with respect to the full table.

Authors MUST set the value for aria-rowindex to an integer greater than or equal to 1, greater than
the aria-rowindex value of any previous rows, and less than or equal to the number of rows in the
full table. For a cell or gridcell which spans multiple rows, authors MUST set the value of aria-
rowindex to the start of the span.

Authors SHOULD place aria-rowindex on each row. Authors MAY also place aria-rowindex on
all of the children or owned elements of each row.

The following example shows a grid with 2000 rows, of which the first row and rows 100 through 102
are displayed to the user.

The following example shows the grid from the previous example with aria-rowindex also placed
on all of the owned elements of each row.

EXAMPLE 30

<div role="grid" aria-rowcount="2000">
<div role="rowgroup">
<div role="row" aria-rowindex="1">

First Name
Last Name
Company
Phone

</div>
</div>
<div role="rowgroup">
<div role="row" aria-rowindex="100">

Fred
Jackson
Acme, Inc.
555-1234

</div>
<div role="row" aria-rowindex="101">

Sara
James
Acme, Inc.
555-1235

</div>
<div role="row" aria-rowindex="102">

Taylor
Johnson
Acme, Inc.
555-1236

</div>
</div>

</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

209 of 238 05/07/2020, 09:09

§

Characteristics:

Characteristic Value

Used in Roles: cell

row

Inherits into Roles: columnheader

gridcell

rowheader

Value: integer

aria-rowspan (property)

Defines the number of rows spanned by a cell or gridcell within a table, grid, or treegrid. See

EXAMPLE 31

<div role="grid" aria-rowcount="2000">
<div role="rowgroup">
<div role="row" aria-rowindex="1">

First Name
Last Name
Company
Phone

</div>
</div>
<div role="rowgroup">
<div role="row" aria-rowindex="100">

Fred
Jackson
Acme, Inc.
555-1234

</div>
<div role="row" aria-rowindex="101">

Sara
James
Acme, Inc.
555-1235

</div>
<div role="row" aria-rowindex="102">

Taylor
Johnson
Acme, Inc.
555-1236

</div>
</div>

</div>

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

210 of 238 05/07/2020, 09:09

§

related aria-rowindex and aria-colspan.

This attribute is intended for cells and gridcells which are not contained in a native table. When
defining the row span of cells or gridcells in a native table, authors SHOULD use the host language's
attribute instead of aria-rowspan. If aria-rowspan is used on an element for which the host
language provides an equivalent attribute, user agents MUST ignore the value of aria-rowspan and
instead expose the value of the host language's attribute to assistive technologies.

Authors MUST set the value of aria-rowspan to an integer greater than or equal to 0 and less than
the value which would cause the cell or gridcell to overlap the next cell or gridcell in the same
column. Setting the value to 0 indicates that the cell or gridcell is to span all the remaining rows in the
row group.

Characteristics:

Characteristic Value

Used in Roles: cell

Inherits into Roles: columnheader

gridcell

rowheader

Value: integer

aria-selected (state)

Indicates the current "selected" state of various widgets. See related aria-checked and aria-
pressed.

This attribute is used with single-selection and multiple-selection widgets:

1. Single-selection containers where the currently focused item is not selected. The selection
normally follows the focus, and is managed by the user agent.

2. Multiple-selection containers. Authors SHOULD ensure that any selectable descendant of a
container in which the aria-multiselectable attribute is true specifies a value of either
true or false for the aria-selected attribute.

Any explicit assignment of aria-selected takes precedence over the implicit selection based on
focus. If no DOM element in the widget is explicitly marked as selected, assistive technologies MAY
convey implicit selection which follows the keyboard focus of the managed focus widget. If any DOM
element in the widget is explicitly marked as selected, the user agent MUST NOT convey implicit
selection for the widget.

Characteristics:

Characteristic Value

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

211 of 238 05/07/2020, 09:09

§

Characteristic Value

Used in Roles: gridcell
option

row

tab

Inherits into Roles: columnheader

rowheader

treeitem

Value: true/false/undefined

Values:

Value Description

false The selectable element is not selected.

true The selectable element is selected.

undefined (default) The element is not selectable.

aria-setsize (property)

Defines the number of items in the current set of listitems or treeitems. Not required if all elements in
the set are present in the DOM. See related aria-posinset.

This property is marked on the members of a set, not the container element that collects the members
of the set. To orient the user by saying an element is "item X out of Y," the assistive technologies
would use X equal to the aria-posinset attribute and Y equal to the aria-setsize attribute.

If all items in a set are present in the document structure, it is not necessary to set this property, as the
user agent can automatically calculate the set size and position for each item. However, if only a
portion of the set is present in the document structure at a given moment (in order to reduce document
size), this property is needed to provide an explicit indication of set size.

Authors MUST set the value of aria-setsize to an integer equal to the number of items in the set.
If the total number of items is unknown, authors SHOULD set the value of aria-setsize to -1.

When exposing aria-setsize on a menuitem, menuitemcheckbox, or menuitemradio, authors
SHOULD set the value of aria-setsize based on the total number of items in the menu, excluding
any separators.

The following example shows items 5 through 8 in a set of 16.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

212 of 238 05/07/2020, 09:09

§

The following example shows items 5 through 8 in a set whose total size is unknown.

Characteristics:

Characteristic Value

Used in Roles: article

listitem

menuitem

option

radio

tab

Inherits into Roles: menuitemcheckbox

menuitemradio

treeitem

Value: integer

aria-sort (property)

Indicates if items in a table or grid are sorted in ascending or descending order.

Authors SHOULD only apply this property to table headers or grid headers. If the property is not

EXAMPLE 32

<h2 id="label_fruit"> Available Fruit </h2>
<ul role="listbox" aria-labelledby="label_fruit">

<li role="option" aria-setsize="16" aria-posinset="5"> apples
<li role="option" aria-setsize="16" aria-posinset="6"> bananas
<li role="option" aria-setsize="16" aria-posinset="7"> cantaloupes
<li role="option" aria-setsize="16" aria-posinset="8"> dates

EXAMPLE 33

<h2 id="label_fruit"> Available Fruit </h2>
<ul role="listbox" aria-labelledby="label_fruit">

<li role="option" aria-setsize="-1" aria-posinset="5"> apples
<li role="option" aria-setsize="-1" aria-posinset="6"> bananas
<li role="option" aria-setsize="-1" aria-posinset="7"> cantaloupes
<li role="option" aria-setsize="-1" aria-posinset="8"> dates

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

213 of 238 05/07/2020, 09:09

§

provided, there is no defined sort order. For each table or grid, authors SHOULD apply aria-sort to
only one header at a time.

Characteristics:

Characteristic Value

Used in Roles: columnheader

rowheader

Value: token

Values:

Value Description

ascending Items are sorted in ascending order by this
column.

descending Items are sorted in descending order by this
column.

none (default) There is no defined sort applied to the column.

other A sort algorithm other than ascending or
descending has been applied.

aria-valuemax (property)

Defines the maximum allowed value for a range widget.

Authors MUST ensure the value of aria-valuemax is greater than or equal to the value of aria-
valuemin. If the aria-valuenow has a known maximum and minimum, the author SHOULD
provide properties for aria-valuemax and aria-valuemin.

Characteristics:

Characteristic Value

Related Concepts: XForms [XFORMS10] range

Used in Roles: range

scrollbar

separator

NOTE

A range widget starts with a given value, which can be increased until reaching the maximum
value, defined by this property. Declaring the minimum and maximum values allows assistive
technology to convey the size of the range to users.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

214 of 238 05/07/2020, 09:09

§

§

Characteristic Value
slider

spinbutton

Inherits into Roles: progressbar

Value: number

aria-valuemin (property)

Defines the minimum allowed value for a range widget.

Authors MUST ensure the value of aria-valuemin is less than or equal to the value of aria-
valuemax. If the aria-valuenow has a known maximum and minimum, the author SHOULD
provide properties for aria-valuemax and aria-valuemin.

Characteristics:

Characteristic Value

Related Concepts: XForms [XFORMS10] range

Used in Roles: range

scrollbar

separator

slider

spinbutton

Inherits into Roles: progressbar

Value: number

aria-valuenow (property)

Defines the current value for a range widget. See related aria-valuetext.

This property is used, for example, on a range widget such as a slider or progress bar.

NOTE

A range widget starts with a given value, which can be decreased until reaching the minimum
value, defined by this property. Declaring the minimum and maximum values allows assistive
technology to convey the size of the range to users.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

215 of 238 05/07/2020, 09:09

§

If the current value is not known (for example, an indeterminate progress bar), the author SHOULD
NOT set the aria-valuenow attribute. If the aria-valuenow attribute is absent, no information is
implied about the current value. If the aria-valuenow has a known maximum and minimum, the
author SHOULD provide properties for aria-valuemax and aria-valuemin.

The value of aria-valuenow is a decimal number. If the range is a set of numeric values, then
aria-valuenow is one of those values. For example, if the range is [0, 1], a valid aria-valuenow is
0.5. A value outside the range, such as -2.5 or 1.1, is invalid.

For progressbar elements and scrollbar elements, assistive technologies SHOULD render the
value to users as a percent, calculated as a position on the range from aria-valuemin to aria-
valuemax if both are defined, otherwise the actual value with a percent indicator. For elements with
role slider and spinbutton, assistive technologies SHOULD render the actual value to users.

When the rendered value cannot be accurately represented as a number, authors SHOULD use the
aria-valuetext attribute in conjunction with aria-valuenow to provide a user-friendly
representation of the range's current value. For example, a slider may have rendered values of small,
medium, and large. In this case, the values of aria-valuetext would be one of the strings: small,
medium, or large.

Characteristics:

Characteristic Value

Related Concepts: XForms [XFORMS10] range, start

Used in Roles: range

scrollbar

separator

slider

spinbutton

Inherits into Roles: progressbar

Value: number

aria-valuetext (property)

Defines the human readable text alternative of aria-valuenow for a range widget.

This property is used, for example, on a range widget such as a slider or progress bar.

NOTE

If aria-valuetext is specified, assistive technologies render that instead of the value of
aria-valuenow.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

216 of 238 05/07/2020, 09:09

§

If the aria-valuetext attribute is set, authors SHOULD also set the aria-valuenow attribute,
unless that value is unknown (for example, on an indeterminate progressbar).

Authors SHOULD only set the aria-valuetext attribute when the rendered value cannot be
meaningfully represented as a number. For example, a slider may have rendered values of small,
medium, and large. In this case, the values of aria-valuenow could range from 1 through 3, which
indicate the position of each value in the value space, but the aria-valuetext would be one of the
strings: small, medium, or large. If the aria-valuetext attribute is absent, the assistive
technologies will rely solely on the aria-valuenow attribute for the current value.

If aria-valuetext is specified, assistive technologies SHOULD render that value instead of the value of
aria-valuenow.

Characteristics:

Characteristic Value

Related Concepts: XForms [XFORMS10] range, start

Used in Roles: range

separator

Inherits into Roles: progressbar

scrollbar

slider

spinbutton

Value: string

7. Implementation in Host Languages

The roles, state, and properties defined in this specification do not form a complete web language or
format. They are intended to be used in the context of a host language. This section discusses how host
languages are to implement WAI-ARIA, to ensure that the markup specified here will integrate
smoothly and effectively with the host language markup.

Although markup languages look alike superficially, they do not share language definition
infrastructure. To accommodate differences in language-building approaches, the requirements are
both general and modularization-specific. While allowing for differences in how the specifications are
written, the intent is to maintain consistency in how the WAI-ARIA information looks to authors and
how it is manipulated in the DOM by scripts.

WAI-ARIA roles, states, and properties are implemented as attributes of elements. Roles are applied
by placing their names among the tokens appearing in the value of a host-language-provided role
attribute. States and properties each get their own attribute, with values as defined for each particular
state or property in this specification. The name of the attribute is the aria-prefixed name of the state
or property.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

217 of 238 05/07/2020, 09:09

§

§

7.1 Role Attribute

An implementing host language will provide an attribute with the following characteristics:

The attribute name MUST be role;

The attribute value MUST allow a token list as the value;

The appearance of the name literal of any concrete WAI-ARIA role as one of these tokens MUST
NOT in and of itself make the attribute value illegal in the host-language syntax; and

The first name literal of a non-abstract WAI-ARIA role in the list of tokens in the role attribute
defines the role according to which the user agent MUST process the element. User Agent
processing for roles is defined in the Core Accessibility API Mappings [core-aam-1.1].

7.2 State and Property Attributes

An implementing host language MUST allow attributes with the following characteristics:

The attribute name is the name of any state or property identified in the Supported States and
Properties section, such as aria-busy, aria-selected, aria-activedescendant, aria-
valuetext;

The syntax does NOT prevent the attribute from appearing anywhere that it is applicable, as
specified in this specification;

When these attributes appear in a document instance, the attributes will be processed as defined
in this specification.

Host languages that support XML Namespaces [xml-names] MAY require that WAI-ARIA attributes
be used with a namespace. In this case, the namespace for WAI-ARIA state and property attributes
MUST be http://www.w3.org/ns/wai-aria/. To use WAI-ARIA in host languages that do not
explicitly describe support for it, authors SHOULD use this namespace as well, if the host language
supports namespaces and there is expectation that user agents will recognize the WAI-ARIA
namespace. The namespace prefix is not defined by this specification but generally is expected to be
"aria".

Some host languages do not use namespaces with WAI-ARIA state and property attributes, either
because the host language does not support namespaces or because the designers wish to incorporate
WAI-ARIA into the core feature set. In these host languages, the namespace name for these attributes
has no value. The names of these attributes do not have a prefix offset by a colon; in the terms of

NOTE

The WAI-ARIA state and property attributes have a naming convention such that they all begin
with the string "aria-". This is not a namespace prefix, it is a part of the state or property
name. Therefore, when using WAI-ARIA states and properties with namespace prefixes, the
complete attribute name will be like "aria:aria-foo".

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

218 of 238 05/07/2020, 09:09

§

§

namespaces they are unprefixed attribute names. The ECMAScript binding of the DOM interface
getAttributeNS for example, treats an empty string ("") as representing this condition, so that both
getAttribute("aria-busy") and getAttributeNS("", "aria-busy") access the same
aria-busy attribute in the DOM.

7.3 Focus Navigation

An implementing host language MUST provide support for the author to make all interactive elements
focusable, that is, any renderable or event-receiving elements. An implementing host language MUST
provide a facility to allow web authors to define whether these focusable, interactive elements appear
in the default tab navigation order. The tabindex attribute in HTML 5 is an example of one
implementation.

7.4 Implicit WAI-ARIA Semantics

WAI-ARIA is designed to provide semantic information about objects when host languages lack
native semantics for the object. WAI-ARIA is designed, however, to provide additional semantics for
many host languages. Furthermore, host languages over time can evolve and provide new native
features that correspond to WAI-ARIA features. Therefore, there are many situations in which WAI-
ARIA semantics are redundant with host language semantics.

These host language features can be viewed as having "implicit WAI-ARIA semantics". User agent
processing of features with implicit WAI-ARIA semantics would be similar to the processing for the
WAI-ARIA feature. The processing might not be identical because of lexical differences between the
host language feature and the WAI-ARIA feature, but generally the user agent would expose the same
information to the accessibility API. Features with implicit WAI-ARIA semantics satisfy WAI-ARIA
structural requirements such as required owned elements, required states and properties, etc. and do
not require explicit WAI-ARIA semantics to be provided. On elements with implicit WAI-ARIA roles,
authors can also use WAI-ARIA states and properties supported by those roles without requiring
explicit indication of the WAI-ARIA role.

For example, if an element with the functionality already exists, such as a checkbox or radio button,
use the native semantics of the host language. WAI-ARIA markup is only intended to be used to

NOTE

According to the requirements of this section, some user agents recognize WAI-ARIA state and
property attributes with namespaces, some without namespaces, and some might recognize
both. Authors are advised to be aware of which form is supported for the host language they
are using. Unless the host language and supporting user agents explicitly indicate that the
namespace is required, authors are advised to use the attribute without namespaces. Even user
agents that support namespaces generally do not publish namespaced WAI-ARIA states and
properties to accessibility APIs. In particular, current implementations of HTML, including
XHTML, do not support this namespace.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

219 of 238 05/07/2020, 09:09

§

enhance the native semantics (e.g., indicating that the element is required with aria-required), or
to change the semantics to a different purpose from the standard functionality of the element.

Implicit WAI-ARIA semantics affect the conflict resolution procedures in the following section,
Conflicts with Host Language Semantics. Therefore, implicit WAI-ARIA semantics need to be defined
in a normative specification, such as the host language specification or the Core Accessibility API
Mappings [core-aam-1.1].

7.5 Conflicts with Host Language Semantics

WAI-ARIA roles, states, and properties are intended to add semantic information when native host
language elements with these semantics are not available, and are generally used on elements that
have no native semantics of their own. They can also be used on elements that have similar but non-
identical semantics (for example, a nested list could be used to represent a tree structure). This method
can be part of a fallback strategy for older browsers that have no WAI-ARIA implementation, or
because native presentation of the repurposed element reduces the amount of style and/or script
needed. Except for the cases outlined below, user agents MUST always use the WAI-ARIA semantics
to define how it exposes the element to accessibility APIs, rather than using the host language
semantics.

In addition to these normal situations in which WAI-ARIA is expected to override native semantics,
there are elements that are inappropriate to override with WAI-ARIA. This could be because identical
host language semantics exist, so WAI-ARIA is not needed, or because semantics from WAI-ARIA
directly conflict with host language semantics. When a feature in the host language with identical role
semantics and values is available, and the author has no compelling reason to avoid using the host
language feature, authors SHOULD use the host language features rather than repurpose other
elements with WAI-ARIA.

Host languages can have features that have implicit WAI-ARIA semantics corresponding to roles.
When a WAI-ARIA role is provided, user agents MUST use the semantic of the WAI-ARIA role for
processing, not the native semantic, unless the role requires WAI-ARIA states and properties whose
attributes are explicitly forbidden on the native element by the host language. Values for roles do not
conflict in the same way as values for states and properties (for example, the HTML 'checked' attribute
and the 'aria-checked' attribute could have conflicting values), and authors are expected to have valid
reason to provide a WAI-ARIA role even on elements that would not normally be repurposed.

When WAI-ARIA states and properties correspond to host language features that have the same
implicit WAI-ARIA semantic, it can be particularly problematic to use the WAI-ARIA feature. If the
WAI-ARIA feature and the host language feature are both provided but their values are not kept in
sync, user agents and assistive technologies cannot know which value to use. Therefore, to prevent
providing conflicting states and properties to assistive technologies, host languages MUST explicitly
declare where the use of WAI-ARIA attributes on each host language element conflicts with native
attributes for that element. When a host language declares a WAI-ARIA attribute to be in direct
semantic conflict with a native attribute for a given element, user agents MUST ignore the WAI-ARIA
attribute and instead use the host language attribute with the same implicit semantic.

Host languages MAY document features that cannot be overridden with WAI-ARIA (these are called
"strong native semantics"). These can be features that have implicit WAI-ARIA semantics, as well as

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

220 of 238 05/07/2020, 09:09

§

features where the processing would be uncertain if the semantics were changed with WAI-ARIA.
Conformance checkers MAY signal an error or warning when a WAI-ARIA role is used on elements
with strong native semantics, but as described above, user agents MUST still use the value of the
semantic of the WAI-ARIA role when exposing the element to accessibility APIs unless the native
host language semantic is permanently presentational.

The opportunity for host languages to create exceptions to the WAI-ARIA override of native features
is meant to avoid potential author errors or problems with intrinsic processing of host language
features. Author errors could happen when a host language and WAI-ARIA provide similar but not
identical features, where it might not be clear how changing one but not the other affects the
accessibility API. Intrinsic processing refers to the way a feature is processed, beyond simple
rendering and exposure to the Accessibility API, that cannot reasonably be changed in response to a
ARIA feature, and would lead to unpredictable results were ARIA allowed. In these situations, there is
good reason for host languages to limit the scope of WAI-ARIA. However, this provision does not
give blanket permission for host languages to forbid the use of WAI-ARIA simply by documenting,
feature by feature, that it may not be used. Host languages should create restrictions on the use of
ARIA only when it is critical to effective processing of content.

Certain ARIA features are critical to building a complete model in the accessibility API. Such features
are not expected to conflict with native host language semantics (though they may complement them).
Therefore, host languages MUST NOT declare strong native semantics that prevent use of the
following ARIA features:

aria-describedby

aria-label

aria-labelledby

7.6 State and Property Attribute Processing

State and property attributes are included in host languages, and therefore syntax for representation of
their value types is governed by the host language. For each of the value types defined in Value, an
appropriate value type from the host language is used. Recommended correspondences between WAI-
ARIA value types and various host language value types are listed in Mapping WAI-ARIA Value
types to languages. This is a non-normative mapping in order to accommodate new host languages
supporting WAI-ARIA.

The list value types—ID reference list and token list—allow more than one value of the given type to
be provided. The values are separated by delimiter characters recognized by the host language for list
attributes, such as space characters, commas, etc. Some languages may require a specific, single
delimiter, while others may allow various delimiters.

Global states and properties are supported on any element in the host language. However, authors
MUST only use non-global states and properties on elements with a role supporting the state or
property; either defined as an explicit WAI-ARIA role, or as defined by the host language implicit
WAI-ARIA semantic matching an appropriate WAI-ARIA role. When a role attribute is added to an
element, the semantics and behavior of the element, including support for WAI-ARIA states and
properties, are augmented or overridden by the role behavior. User agents MUST ignore non-global

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

221 of 238 05/07/2020, 09:09

§

states and properties used on an element without a role supporting the state or property; either defined
as an explicit WAI-ARIA role, or as defined by the host language WAI-ARIA semantic matching an
appropriate WAI-ARIA role. For example, the aria-valuetext attribute may be used on a
progressbar.

WAI-ARIA roles have associated states and properties that are qualified as "supported" or "required".
An example of a property supported by the combobox role is aria-autocomplete. The property is
designated "supported" in this case because a given combobox might or might not implement auto
completion. In contrast, the combobox role requires the aria-expanded state in order to indicate that it
is expandable. Comboboxes have a descendant listbox that is either open or closed. If the listbox
is open, the combobox is in its expanded state; otherwise it is collapsed.

When WAI-ARIA roles are used, supported states and properties that are not present in the DOM are
treated according to their default value. Keeping with the combobox example, a missing aria-
autocomplete attribute is equivalent to aria-autocomplete="none", meaning the combobox
does not offer auto completion.

However, required states and properties that are absent are an author error. Missing required states and
properties are treated as if they were present and have an implicit neutral value that is not necessarily
their default value. For example, the default value of aria-expanded is undefined, meaning
neither expandable nor collapsible. But that does not apply to the case of a combobox. In this case,
aria-expanded is needed to convey the expandable/collapsible nature of the combobox. Thus, the
implicit value of aria-expanded for the combobox role is false, meaning expandable (and
currently collapsed). The characteristics table associated with each WAI-ARIA role has an "Implicit
Value for Role" entry that specifies the value of a state or property to use in the context of that role
when the state or property is missing.

Elements that have implicit WAI-ARIA semantics support the full set of WAI-ARIA states and
properties supported by the corresponding role. Therefore, authors MAY omit the role when setting
states and properties. The role is only needed when the implicit WAI-ARIA role of the element needs
to be changed.

Sometimes states and properties are present in the DOM but have a zero-length string ("") as their
value. This is equivalent to their absence. User agents SHOULD treat state and property attributes
with a value of "" the same as they treat an absent attribute. For supported states and properties, this
corresponds to the default value, but if it is a required attribute, it signals an author error, and the
implicit value for the role is used.

A. Schemata

This section is non-normative.

WAI-ARIA roles, states, and properties are available in a number of machine-readable formats to
support validation of content using WAI-ARIA attributes. WAI-ARIA is not finalized, however, so
these files are subject to change without notice. Todo: Remove disclaimers about not final at rec.

It is not appropriate to use these document types for live content. These are made available only for
download, to support local use in development, evaluation, and validation tools. Using these versions

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

222 of 238 05/07/2020, 09:09

§

§

§

directly from the W3C server could cause automatic blockage, preventing them from loading.

If it is necessary to use schemata in content, follow guidelines to avoid excessive DTD traffic. For
instance, use caching proxies to avoid fetching the schema each time it is used, or ensure software
uses a local cache, such as with XML catalogs.

A.1 Roles Implementation

The taxonomy for WAI-ARIA expressed in RDF is available from http://www.w3.org/WAI/ARIA
/schemata/aria-1.rdf.

A.2 WAI-ARIA Attributes Module

This module declares the WAI-ARIA attributes as a module that can be included in a modularized
DTD. A sample XHTML DTD using this module follows. Note the WAI-ARIA attributes are in no
namespace, and the attribute name begins with "aria-" to reduce the likelihood of collision with
existing attributes.

This module is available from http://www.w3.org/MarkUp/DTD/aria-attributes-1.mod.

A.3 XHTML plus WAI-ARIA DTD

This DTD extends XHTML 1.1 and adds the WAI-ARIA state and property attributes to all its
elements. In order to provide broader keyboard support and conform with the Focus Navigation
section above, it also adds the tabindex attribute to a wider set of elements.

This is not a formal document type and may be obsoleted by future formal XHTML DTDs that
support WAI-ARIA.

The XHTML 1.1 plus WAI-ARIA DTD is available from http://www.w3.org/WAI/ARIA/schemata
/xhtml-aria-1.dtd.

Documents written using this XHTML Family markup language can be validated using the above
DTD. If a document author wants to facilitate such validation, they can include the following
declaration at the top of their document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+ARIA 1.0//EN"
 "http://www.w3.org/WAI/ARIA/schemata/xhtml-aria-1.dtd">

However, note that when this DOCTYPE is present in a document, most user agents treat the
document as generic XML rather than HTML. This causes them to be unable to support named
character entities defined by the DTD (e.g., ©). Therefore, authors need to avoid use of named
entities outside of the predefined entities in XML ([xml11], Section 4.6).

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

223 of 238 05/07/2020, 09:09

§

To avoid the above problem, authors can omit the above DOCTYPE statement. This causes user
agents to treat the document as generic HTML with named character entity support as well as built-in
ARIA support. However, it causes user agents to enter "quirks" mode which affects CSS rendering,
and causes conformance checkers to fail the document due to the added ARIA attributes.

To avoid the issues of named character entity support and quirks mode, authors can instead use the
following generic DOCTYPE declaration for HTML:

<!DOCTYPE html>

However, this still does not guarantee that documents will be validated by conformance checkers.

A.4 SGML Open Catalog Entry for XHTML+ARIA

This section contains the SGML Open Catalog-format definition [SGML-CATALOG] of the public
identifiers for XHTML+ARIA 1.0.

-- .. --
-- File catalog .. --

-- XHTML+ARIA Catalog Data File

Revision: $Revision: 1.40 $

See "Entity Management", SGML Open Technical Resolution 9401 for detailed
information on supplying and using catalog data. This document is available
from OASIS at URL:

<http://www.oasis-open.org/html/tr9401.html>

--

-- .. --
-- SGML declaration associated with XHTML --

OVERRIDE YES

SGMLDECL "xml1.dcl"

-- :: --

-- XHTML+ARIA modules .. --

PUBLIC "-//W3C//DTD XHTML+ARIA 1.0//EN" "xhtml-aria-1.dtd"

PUBLIC "-//W3C//ENTITIES XHTML ARIA Attributes 1.0//EN" "aria-attributes-1.mod"

-- End of catalog data ... --
-- .. --

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

224 of 238 05/07/2020, 09:09

§

§

A.5 WAI-ARIA Attributes XML Schema Module

This module declares the WAI-ARIA attributes as an XML Schema module that can be included in a
modularized schema. Note the WAI-ARIA attributes are in no namespace, and the attribute name
begins with "aria-" to reduce the likelihood of collision with existing attributes.

This module is available from http://www.w3.org/MarkUp/SCHEMA/aria-attributes-1.xsd.

A.6 HTML 4.01 plus WAI-ARIA DTD

This standalone DTD adds WAI-ARIA state and property attributes to all elements in HTML 4.01, as
well as a role attribute. In order to provide broader keyboard support, it also adds the tabindex
attribute to a wider set of elements.

The DTD is based on the HTML 4.01 Transitional DTD, and includes all entity references needed to
make it a standalone file. This is not an official W3C DTD and should be considered a derivative work
of HTML 4.01.

Documents written using this markup language can be validated using the above DTD. If a document
author wants to facilitate such validation, they can include the following declaration at the top of their
document:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML+ARIA 1.0//EN"
"http://www.w3.org/WAI/ARIA/schemata/html4-aria-1.dtd">

However, note that when this DOCTYPE is present in a document, most user agents treat the
document as generic XML rather than HTML. This causes them to be unable to support named
character entities defined by the DTD (e.g., ©). Therefore, authors need to avoid use of named
entities outside of the predefined entities in XML ([xml11], Section 4.6).

To avoid the above problem, authors can omit the above DOCTYPE statement. This causes user
agents to treat the document as generic HTML with named character entity support as well as built-in
ARIA support. However, it causes user agents to enter "quirks" mode which affects CSS rendering,
and causes conformance checkers to fail the document due to the added ARIA attributes.

To avoid the issues of named character entity support and quirks mode, authors can instead use the
following generic DOCTYPE declaration for HTML:

<!DOCTYPE html>

However, this still does not guarantee that documents will be validated by conformance checkers.

The HTML Working Group is incorporating WAI-ARIA into HTML5. Official support for WAI-
ARIA in HTML will be provided in that specification. This DTD is made available only as a bridging
solution for applications requiring DTD validation but not using HTML 5.

This module is available from http://www.w3.org/WAI/ARIA/schemata/html4-aria-1.dtd.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

225 of 238 05/07/2020, 09:09

§B. Mapping WAI-ARIA Value types to languages

This section is non-normative.

The table below provides recommended mappings between WAI-ARIA state and property types and
attribute types from HTML 5, XML Schema Datatypes [xmlschema-2], SVG, and SGML.

Languages not listed below might have appropriate value types defined in the language. If they do not,
we recommend XML Schema Datatypes for general purpose XML languages. Documents using
DTDs instead of schemas will not be able to validate automatically and require additional processing
on WAI-ARIA attributes.

WAI-ARIA
type

HTML 5 XML Schema

true/false Keyword and enumerated attributes
with allowed values of "true" and
"false"

boolean

true/false
/undefined

Keyword and enumerated attributes
with allowed values of true, false,
and undefined

NMTOKEN with an enumeration
constraint allowing values of true, false,
and undefined

tristate Keyword and enumerated attributes
with allowed values of "true", "false",
and "mixed"

NMTOKEN with an enumeration
constraint allowing values of "true",
"false", and "mixed"

number Floating-point numbers decimal

integer Non-negative integer integer

token Keyword and enumerated attributes NMTOKEN with an enumeration
constraint allowing values listed in the state
or property definition

token list Space-separated tokens NMTOKENS with an enumeration
constraintallowing values listed in the state
or property definition

NOTE

The HTML 5 column of the table below is advisory. Guidance on use of WAI-ARIA state and
properties in HTML 5 is provided in State and Property Attributes ([html51], section 3.2.7.3.2).

NOTE

The suggested mappings for true/false values in HTML 5 use Keyword and enumerated
attributes with allowed values of true and false, instead of using the HTML 5 boolean value
type.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

226 of 238 05/07/2020, 09:09

§

ID reference The value of a defined id attribute on
another element

IDREF

ID reference
list

The value of one or more defined id
attributes on other element(s),
represented as Space-separated tokens

IDREFS

string No value constraints string

C. Change Log: substantive changes since the WAI-ARIA 1.0
Recommendation

17-Sept-2013: Added first draft of aria-describedat after much group deliberation.

17-Sept-2013: Added URI value type.

24-Apr-2014: aria-orientation now defaults to undefined, and is allowed on more roles with
implicit defaults defined per role.

19-May-2014: radio no longer inherits from option, just from checkbox. radio now adds
aria-posinset and aria-setsize.

19-May-2014: Added aria-posinset and aria-setsize to tab.

27-May-2014: Added placeholder for none role.

03-Aug-2014: Moved aria-selected from "supported" to "required" attribute list for option
role.

05-Aug-2014: Changed rowgroup to subclass structure instead of group.

10-Nov-2014: Added aria-modal attribute.

10-Nov-2014: Added text role.

9-Dec-2014: Removed legacy author requirements from aria-hidden that were once relevant to
DOM-based screen readers.

14-Jan-2015: Added searchbox role.

15-Jan-2015: Added switch role.

22-Jan-2015: Added aria-current attribute.

29-Jan-2015: Made region a type of landmark. Add requirement that authors MUST give a
region a brief label that describes the purpose of the content it contains. Remove the accessible
name property from the section role. Change the superclass role from region to section for
the following roles: alert, grid, landmark, list, log, status, and tabpanel. Remove
region as a superclass role of article, making document the only superclass role of
article.

09-Apr-2015: Added aria-placeholder attribute.

23-Apr-2015: Added aria-colcount, aria-rowcount, aria-colindex, aria-rowindex,
aria-colspan, and aria-rowspan.

05-Jun-2015: Added cell and table roles for non-interactive tables. Made gridcell and

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

227 of 238 05/07/2020, 09:09

grid subclasses of cell and table respectively. Removed widget as one of the immediate
superclasses of columnheader and rowheader. Headers that subclass gridcell will still
inherit the supported properties of widget.

12-Jun-2015: Added aria-kbdshortcuts. Note that his has subsequently been replaced by
aria-keyshortcuts.

23-Jun-2015: Added aria-roledescription attribute.

03-Jul-2015: Added aria-readonly as a supported property of checkbox,
menuitemcheckbox, menuitemradio, and switch. Because this property should not apply to
radio, radio was made a subclass of input.

03-Jul-2015: Expanded explanation of "supported" vs. "required" states and properties. Added
implicit default values of aria-valuemin, aria-valuemax, and aria-valuenow when they
are required for roles scrollbar, slider, and spinbutton.

03-Jul-2015: Made aria-level a required attribute for heading with an implicit value of 2.

08-Jul-2015: Added aria-readonly as a supported property of: combobox, listbox,
radiogroup, slider, and spinbutton.

23-Jul-2015: Added aria-errormessage attribute.

31-Jul-2015: Added -1 as a valid value for aria-setsize as a means to indicate that the set
size is unknown and should not be calculated by user agents.

31-Jul-2015: Added term role.

27-Aug-2015: Added statement that aria-readonly and aria-required SHOULD NOT be
used or exposed on columnheader or rowheader when those headers descend from a non-
interactive table.

15-Oct-2015: Added figure role.

12-Nov-2015: Added feed role; made aria-posinset and aria-setsize supported
properties of article; changed aria-busy so that it could be applied to all elements rather
than limited to live regions; added normative requirement that authors MUST set aria-busy to
true if changes to a rendered widget would result in that widget missing required owned
elements during the update process.

12-Nov-2015: Changed the superclass of application from landmark to structure;
removed the accessible name requirement from document.

28-Jan-2016: Removed list as a superclass of menu and listbox, making it a related concept
of each. Removed directory as a superclass of tablist.

28-Jan-2016: Removed input as a superclass of scrollbar and select.

04-Feb-2016: Marked aria-grabbed and aria-dropeffect as planned for deprecation.

04-Feb-2016: Removed the implicit value for aria-orientation on combobox.

25-Feb-2016: Added aria-details attribute.

25-Feb-2016: Removed aria-describedat which has been made obsolete by aria-details.

29-Feb-2016: Added statement that authors MUST ensure aria-errormessage content is not
hidden and is included in a container that exposes the content to the user.

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

228 of 238 05/07/2020, 09:09

10-Mar-2016: Updated text regarding implicit values for spinbutton: Default for aria-
valuenow is 0. There is no minimum value for aria-valuemin and no maximum value for
aria-valuemax.

23-Jun-2016: Remove children-presentational true from spinbutton; make spinbutton a
subclass of composite.

24-Jun-2016: Add widget as a (possible) superclass of separator. Add aria-valuemax,
aria-valuemin, aria-valuenow, and aria-valuetext as supported properties of
separator.

30-Jun-2016: Remove children-presentational true from menuitem and treeitem.

07-Jul-2016: Remove password. The ARIA Working Group agreed to move the password role
to ARIA 2.0. Note that the content is currently only commented out until we branch for ARIA
1.1.

07-Jul-2016: Make aria-valuenow a required property, and remove aria-expanded as a
supported state, of focusable separator elements.

15-Jul-2016: Explicitly prohibit use of empty and whitespace-only values for aria-
roledescription. Add several normative requirements for authors, user agents, and assistive
technologies.

11-Aug-2016: Change author requirement in aria-details regarding exposure of content from
a MUST to a SHOULD.

28-Apr-2016: Added aria-keyshortcuts (as a replacement for the aria-kbdshortcuts
which was introduced on 12-Jun-2015.

02-May-2016: Added password role.

05-May-2016: Changed the value type of aria-haspopup from boolean to token. Supported
values are: true, false, menu, listbox, tree, grid, and dialog.

05-May-2016: Expanded the roles which can be owned by a combobox to include tree, grid,
and dialog. In addition, the implicit value for aria-haspopup for role combobox was changed
from true to listbox.

12-May-2016: Added normative statement that user agents MUST NOT declare strong native
semantics that prevent the use of: aria-describedby, aria-label, aria-labelledby.

19-May-2016: Added aria-posinset and aria-setsize as supported properties of
menuitem.

19-May-2016: Added aria-activedescendant as a supported property of application.

27-May-2016: Remove text. The ARIA Working Group agreed to move the text role to ARIA
2.0. Note that the content is currently only commented out until we branch for ARIA 1.1.

02-Jun-2016: Add children-presentational true to checkbox, menuitem, menuitemcheckbox,
menuitemradio, option, radio, spinbutton, switch, tab, and treeitem. (N.B. See
subsequent items as some of this is being undone as the result of further discussions within the
working group.)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

229 of 238 05/07/2020, 09:09

§

§

D. Acknowledgments

This section is non-normative.

The following people contributed to the development of this document.

D.1 Participants active in the ARIA WG at the time of publication

Ann Abbott (IBM Corporation)

Irfan Ali (Educational Testing Service)

Amelia Bellamy-Royds (Invited Expert)

Michiel Bijl (Invited Expert)

Christy Blew (University of Illinois at Urbana-Champaign)

David Bolter (Mozilla Foundation)

Bogdan Brinza (Microsoft Corporation)

Michael Cooper (W3C/MIT)

James Craig (Apple Inc.)

Joanmarie Diggs (Igalia)

Steve Faulkner (The Paciello Group, LLC)

John Foliot (Deque Systems, Inc.)

Bryan Garaventa (SSB BART Group)

Matt Garrish (DAISY Consortium)

Jon Gunderson (University of Illinois at Urbana-Champaign)

Markus Gylling (DAISY Consortium)

Markku Hakkinen (Educational Testing Service)

Matthew King (Facebook)

JaEun Jemma Ku (University of Illinois at Urbana-Champaign)

Dominic Mazzoni (Google, Inc.)

Shane McCarron (Invited Expert, Aptest)

James Nurthen (Oracle Corporation)

Ian Pouncey (The Paciello Group, LLC)

Janina Sajka (Invited Expert, The Linux Foundation)

Joseph Scheuhammer (Invited Expert, Inclusive Design Research Centre, OCAD University)

Stefan Schnabel (SAP SE)

Richard Schwerdtfeger (Knowbility)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

230 of 238 05/07/2020, 09:09

§

Lisa Seeman-Kestenbaum (Invited Expert)

Tzviya Siegman (Wiley)

Alexander Surkov (Mozilla Foundation)

Job van Achterberg (Invited Expert)

Léonie Watson (The Paciello Group, LLC)

Evan Yamanishi (W. W. Norton)

Jason White (Educational Testing Service)

D.2 Other ARIA contributors, commenters, and previously active participants

Shadi Abou-Zahra (W3C)

Jim Allan (TSB)

Jonny Axelsson (Opera Software)

David Baron (Mozilla Foundation)

Art Barstow (Nokia Corporation)

Simon Bates

Chris Blouch (AOL)

Judy Brewer (W3C/MIT)

Mark Birbeck (Sidewinder Labs)

Sally Cain (Royal National Institute of Blind People (RNIB))

Gerardo Capiel (Benetech)

Ben Caldwell (Trace)

Sofia Celic-Li

Jaesik Chang (Samsung Electronics Co., Ltd.)

Alex Qiang Chen (University of Manchester)

Charles Chen (Google, Inc.)

Christian Cohrs

Deborah Dahl

Erik Dahlström (Opera Software)

Dimitar Denev (Frauenhofer Gesellschaft)

Micah Dubinko (Invited Expert)

Mandana Eibegger

Beth Epperson (Websense)

Fred Esch (IBM Corporation)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

231 of 238 05/07/2020, 09:09

Donald Evans (AOL)

Chris Fleizach (Apple Inc.)

Kelly Ford (Microsoft Corporation)

Geoff Freed (Invited Expert, NCAM)

Christopher Gallelo (Microsoft Corporation)

Billy Gregory (The Paciello Group, LLC)

Karl Groves (The Paciello Group, LLC)

Birkir Gunnarsson (Deque Systems, Inc.)

Kentarou Fukuda (IBM Corporation)

Bryan Garaventa

Guido Geloso

Ali Ghassemi

Becky Gibson (IBM)

Alfred S. Gilman

Andres Gonzalez (Adobe Systems Inc.)

Scott González (JQuery Foundation)

James Graham

Georgios Grigoriadis (SAP AG)

Jeff Grimes (Oracle)

Loretta Guarino Reid (Google, Inc.)

Katie Haritos-Shea (Knowbility)

Barbara Hartel

James Hawkins (Google, Inc.)

Benjamin Hawkes-Lewis

Sean Hayes (Microsoft Corporation)

Mona Heath (University of Illinois at Urbana-Champaign)

Jan Heck

Shawn Henry

Tina Homboe

Nicholas Hoyt

John Hrvatin (Microsoft Corporation)

Takahiro Inada

Masayasu Ishikawa (W3C)

Jim Jewitt

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

232 of 238 05/07/2020, 09:09

Kenny Johar (Microsoft Corporation)

Shilpi Kapoor (BarrierBreak Technologies)

Masahiko Kaneko (Microsoft Corporation)

Marjolein Katsma

Susann Keohane (IBM Corporation)

George Kerscher (International Digital Publishing Forum)

Jason Kiss (Department of Internal Affairs, New Zealand Government)

Todd Kloots

Jamie Knight (British Broadcasting Corporation)

Johannes Koch

Gerard K. Cohen

Sam Kuper

Earl Johnson (Sun)

Jael Kurz

Rajesh Lal (Nokia Corporation)

Diego La Monica (International Webmasters Association / HTML Writers Guild (IWA-HWG))

Aaron Leventhal (IBM Corporation)

Gez Lemon (International Webmasters Association / HTML Writers Guild (IWA-HWG))

Alex Li (SAP)

Chris Lilley

Thomas Logan (HiSoftware Inc.)

Brian Loh

William Loughborough (Invited Expert)

Linda Mao (Microsoft)

David MacDonald (Invited Expert, CanAdapt Solutions Inc.)

Carolyn MacLeod

Anders Markussen (Opera Software)

Krzysztof Maczyński

Matthew May (Adobe Systems Inc.)

Mark McCarthy

Charles McCathie Nevile (Yandex)

Mary Jo Mueller (IBM Corporation)

Alexandre Morgaut (4D)

Ann Navarro (Invited Expert)

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

233 of 238 05/07/2020, 09:09

Joshue O Connor (Invited Expert, CFIT)

Artur Ortega (Microsoft Corporation)

Sailesh Panchang (Deque)

Lisa Pappas (Society for Technical Communication (STC))

Marta Pawlowlska (Samsung Electronics Co., Ltd.)

Dave Pawson (RNIB)

Steven Pemberton (CWI Amsterdam)

Simon Pieters (Opera Software)

Jean-Bernard Piot (4D)

David Poehlman, Simon Pieters (Opera Software)

Sarah Pulis (Media Access Australia)

T.V. Raman (Google, Inc.)

Jan Richards

Gregory Rosmaita (Invited Expert)

Tony Ross (Microsoft Corporation)

Alex Russell (Dojo Foundation) (

Mark Sadecki (Invited Expert)

Mario Sánchez Prada (Samsung Electronics Co., Ltd. and Gnome Foundation)

Martin Schaus (SAP AG)

Doug Schepers (W3C)

Cynthia Shelly (Microsoft Corporation)

Matthias Schmitt

Marc Silbey (Microsoft Corporation)

Leif Halvard Sili

Henri Sivonen (Mozilla)

Michael Smith (W3C)

Andi Snow-Weaver (IBM Corporation)

Ville Skyttä

Henny Swan (BBC)

Neil Soiffer (Design Science)

Vitaly Sourikov

Mike Squillace (IBM)

Maciej Stachowiak (Apple Inc.)

Christophe Strobbe

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

234 of 238 05/07/2020, 09:09

§

§

§

§

Suzanne Taylor (Pearson plc)

Terrill Thompson

David Todd

Gregg Vanderheiden (Invited Expert, Trace)

Anne van Kesteren

Wen He (Tencent)

Wu Wei (W3C / RITT)

Ryan Williams (Oracle)

Tom Wlodkowski

Sam White (Apple Inc.)

Marco Zehe (Mozilla Foundation)

Gottfried Zimmermann (Invited Expert, Access Technologies Group)

D.3 Enabling funders

This publication has been funded in part with U.S. Federal funds from the Department of Education,
National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR), initially
under contract number ED-OSE-10-C-0067 and currently under contract number
HHSP23301500054C. The content of this publication does not necessarily reflect the views or policies
of the U.S. Department of Education, nor does mention of trade names, commercial products, or
organizations imply endorsement by the U.S. Government.

E. References

E.1 Normative references

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best
Current Practice. URL: https://tools.ietf.org/html/rfc2119

[uievents-key]
UI Events KeyboardEvent key Values. Gary Kacmarcik; Travis Leithead. W3C. 1 June 2017.
W3C Candidate Recommendation. URL: https://www.w3.org/TR/uievents-key/

E.2 Informative references

[accname-aam-1.1]
Accessible Name and Description: Computation and API Mappings 1.1. Joseph Scheuhammer;

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

235 of 238 05/07/2020, 09:09

James Craig; Andi Snow-Weaver; Aaron Leventhal. W3C. 17 March 2016. W3C Working Draft.
URL: https://www.w3.org/TR/accname-aam-1.1/

[AT-SPI]
Assistive Technology Service Provider Interface. The GNOME Project. URL:
https://developer.gnome.org/libatspi/stable/

[ATK]
ATK - Accessibility Toolkit. The GNOME Project. URL: https://developer.gnome.org/atk/stable/

[AXAPI]
The NSAccessibility Protocol for macOS. Apple, Inc. URL: https://developer.apple.com
/documentation/appkit/nsaccessibility

[core-aam-1.1]
Core Accessibility API Mappings 1.1. Joanmarie Diggs; Joseph Scheuhammer; Richard
Schwerdtfeger; Michael Cooper; Andi Snow-Weaver; Aaron Leventhal. W3C. 14 December
2017. W3C Recommendation. URL: https://www.w3.org/TR/core-aam-1.1/

[css3-selectors]
Selectors Level 3. Tantek Çelik; Elika Etemad; Daniel Glazman; Ian Hickson; Peter Linss; John
Williams et al. W3C. 29 September 2011. W3C Recommendation. URL: https://www.w3.org
/TR/css3-selectors/

[dom]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL:
https://dom.spec.whatwg.org/

[html5]
HTML5. Ian Hickson; Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara;
Theresa O'Connor; Silvia Pfeiffer. W3C. 28 October 2014. W3C Recommendation. URL:
https://www.w3.org/TR/html5/

[html51]
HTML 5.1 2nd Edition. Steve Faulkner; Arron Eicholz; Travis Leithead; Alex Danilo. W3C. 3
October 2017. W3C Recommendation. URL: https://www.w3.org/TR/html51/

[IAccessible2]
IAccessible2. Linux Foundation. URL: https://www.linuxfoundation.org/collaborate/workgroups
/accessibility/iaccessible2

[MathML3]
Mathematical Markup Language (MathML) Version 3.0 2nd Edition. David Carlisle; Patrick D F
Ion; Robert R Miner. W3C. 10 April 2014. W3C Recommendation. URL: https://www.w3.org
/TR/MathML3/

[MSAA]
Microsoft Active Accessibility (MSAA) 2.0. Microsoft Corporation. URL:
https://msdn.microsoft.com/en-us/library/ms697707.aspx

[owl-features]
OWL Web Ontology Language Overview. Deborah McGuinness; Frank van Harmelen. W3C. 10
February 2004. W3C Recommendation. URL: https://www.w3.org/TR/owl-features/

[rdf-concepts]
Resource Description Framework (RDF): Concepts and Abstract Syntax. Graham Klyne; Jeremy

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

236 of 238 05/07/2020, 09:09

Carroll. W3C. 10 February 2004. W3C Recommendation. URL: https://www.w3.org/TR/rdf-
concepts/

[rdf-schema]
RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C
Recommendation. URL: https://www.w3.org/TR/rdf-schema/

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986

[role-attribute]
Role Attribute 1.0. Shane McCarron et al. W3C. 28 March 2013. W3C Recommendation. URL:
https://www.w3.org/TR/role-attribute/

[SGML-CATALOG]
Entity Management: OASIS Technical Resolution 9401:1997 (Amendment 2 to TR 9401). Paul
Grosso. Entity Management Subcommittee, SGML Open. 10 September 2007. URL:
https://www.oasis-open.org/specs/tr9401.html

[SMIL3]
Synchronized Multimedia Integration Language (SMIL 3.0). Dick Bulterman. W3C. 1 December
2008. W3C Recommendation. URL: https://www.w3.org/TR/SMIL3/

[SVG2]
Scalable Vector Graphics (SVG) 2. Nikos Andronikos; Rossen Atanassov; Tavmjong Bah;
Amelia Bellamy-Royds; Brian Birtles; Cyril Concolato; Erik Dahlström; Chris Lilley; Cameron
McCormack; Doug Schepers; Dirk Schulze; Richard Schwerdtfeger; Satoru Takagi; Jonathan
Watt et al. W3C. W3C Working Draft. URL: http://www.w3.org/TR/2015/WD-SVG2-20150915/

[UAAG10]
User Agent Accessibility Guidelines 1.0. Ian Jacobs; Jon Gunderson; Eric Hansen. W3C. 17
December 2002. W3C Recommendation. URL: https://www.w3.org/TR/UAAG10/

[UI-AUTOMATION]
UI Automation. Microsoft Corporation. URL: https://msdn.microsoft.com/en-us/library
/ee684009%28v=vs.85%29.aspx

[UIA-EXPRESS]
The IAccessibleEx Interface. Microsoft Corporation. URL: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd561898%28v=vs.85%29.aspx

[wai-aria-1.0]
Accessible Rich Internet Applications (WAI-ARIA) 1.0. James Craig; Michael Cooper et al. W3C.
20 March 2014. W3C Recommendation. URL: https://www.w3.org/TR/wai-aria/

[wai-aria-practices-1.1]
WAI-ARIA Authoring Practices 1.1. Matthew King; James Nurthen; Michiel Bijl; Michael
Cooper; Joseph Scheuhammer; Lisa Pappas; Richard Schwerdtfeger. W3C. 14 December 2017.
W3C Note. URL: https://www.w3.org/TR/wai-aria-practices-1.1/

[WCAG20]
Web Content Accessibility Guidelines (WCAG) 2.0. Ben Caldwell; Michael Cooper; Loretta
Guarino Reid; Gregg Vanderheiden et al. W3C. 11 December 2008. W3C Recommendation.
URL: https://www.w3.org/TR/WCAG20/

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

237 of 238 05/07/2020, 09:09

[XFORMS10]
XForms 1.0 (Third Edition). John Boyer. W3C. 29 October 2007. W3C Recommendation. URL:
https://www.w3.org/TR/xforms/

[XFORMS11]
XForms 1.1. John Boyer. W3C. 20 October 2009. W3C Recommendation. URL:
https://www.w3.org/TR/xforms11/

[xhtml11]
XHTML™ 1.1 - Module-based XHTML - Second Edition. Shane McCarron; Masayasu Ishikawa.
W3C. 23 November 2010. W3C Recommendation. URL: https://www.w3.org/TR/xhtml11/

[xml-names]
Namespaces in XML 1.0 (Third Edition). Tim Bray; Dave Hollander; Andrew Layman; Richard
Tobin; Henry Thompson et al. W3C. 8 December 2009. W3C Recommendation. URL:
https://www.w3.org/TR/xml-names/

[xml11]
Extensible Markup Language (XML) 1.1 (Second Edition). Tim Bray; Jean Paoli; Michael
Sperberg-McQueen; Eve Maler; François Yergeau; John Cowan et al. W3C. 16 August 2006.
W3C Recommendation. URL: https://www.w3.org/TR/xml11/

[xmlschema-2]
XML Schema Part 2: Datatypes Second Edition. Paul V. Biron; Ashok Malhotra. W3C. 28
October 2004. W3C Recommendation. URL: https://www.w3.org/TR/xmlschema-2/

↑

Accessible Rich Internet Applications (WAI-ARIA) 1.1 https://www.w3.org/TR/wai-aria-1.1/

238 of 238 05/07/2020, 09:09

