https://drafts.csswg.org/css-anchor-position-1/

CSS Anchor Positioning Module Level 1

\N?’B CONSO,? »
7

CSS Anchor Positioning Module ¢ 5
Level 1 : <5\3 :
.’%, 0\;

(&Oswoafﬁ‘p

Editor’s Draft, 22 December 2025

v More details about this document

This version:
https://drafts.csswg.org/css-anchor-position-1/

Latest published version:
https://www.w3.org/TR/css-anchor-position-1/

Feedback:
CSSWAG Issues Repository

Inline In Spec

Editors:
Tab Atkins-Bittner (Google)

Elika J. Etemad / fantasai (Apple)
Ian Kilpatrick (Google)

Former Editor:
Jhey Tompkins (Google)

Suggest an Edit for this Spec:
GitHub Editor
Copyright © 2025 World Wide Web Consortium. W3C® liability, trademark and permissive document license rules apply.

Abstract

This specification defines anchor positioning, where a positioned element can size and position itself

relative to one or more “anchor elements” elsewhere on the page.

SS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

Status of this document
2026-01-11, 07:05

1 of 68

CSS Anchor Positioning Module Level 1

2 of 68

https://drafts.csswg.org/css-anchor-position-1/

This is a public copy of the editors’ draft. It is provided for discussion only and may change at any

moment. Its publication here does not imply endorsement of its contents by W3C. Don'’t cite this

document other than as work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-anchor-

position” in the title, like this: “[css-anchor-position] ...summary of comment...”. All issues and

comments are archived. Alternately, feedback can be sent to the (archived) public mailing list www-

style@w3.org.

This document is governed by the 18 August 2025 W3C Process Document.

Table of Contents

2.1
2.2
23
24
24.1
2.5

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.3

4.1
4.2

Introduction

Value Definitions

Determining the Anchor

Creating an Anchor: the ‘anchor-name’ property

Scoping Anchor Names: the ‘anchor-scope’ property

Finding an Anchor

Default Anchors: the ‘position-anchor’ property
Implicit Anchor Elements

Anchor Relevance

Anchor-Based Positioning
The “position-area’ Property
Resolving the Position Area Grid

Syntax of <position-area> Values

Computed Value and Serialization of <position-area>

Anchor-relative Insets: the ‘anchor()’ function
Resolution of ‘anchor()’

Taking Scroll Into Account

Anchor-Based Alignment
Area-specific Default Alignment

Centering on the Anchor: the ‘anchor-center’ alignment value

Anchor-Based Sizing

The ‘anchor-size()’” Function

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

3 of 68

6.2
6.3
6.4
6.5
6.5.1
6.5.1.1
6.5.1.2
65.1.3
6.5.2
6.6

10

11

12

Resolution of ‘anchor-size()’

Overflow Management

Giving Fallback Options: the ‘position-try-fallbacks’ property
Determining Fallback Order: the ‘position-try-order’ property

The “position-try’ Shorthand
The ‘@position-try’ Rule
Applying Position Fallback
Maintaining and Clearing Fallback Choices
Recording the last successful position option
Suspending Fallback During Transitions
Suspending Fallback During Animations
Applying Position Options
Conditional Hiding: the ‘position-visibility” property

Accessibility Implications

DOM Interfaces
The CSSPositionTryRule interface

Appendix: Style & Layout Interleaving
Security Considerations

Privacy Considerations

Changes

Conformance
Document conventions
Conformance classes
Partial implementations
Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index
Terms defined by this specification

Terms defined by reference

References

https://drafts.csswg.org/css-anchor-position-1/

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Normative References

Informative References
Property Index
IDL Index

Issues Index

S 1. Introduction

CSS absolute positioning allows authors to place boxes anywhere on the page, without regard to the

layout of other boxes besides their containing block. This flexibility can be very useful, but also very
limiting—often you want to position relative to some other box. Anchor positioning (via the

‘position-anchor’ and ‘position-area’ properties and/or the anchor functions ‘anchor()’ and ‘anchor-

size()’) allows authors to achieve this, “anchoring” an absolutely positioned box to one or more other
boxes on the page (its anchor references, while also allowing them to try several possible positions to

find the “best” one that avoids overlap/overflow.

4 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 1
For example, an author might want to position a tooltip centered and above the targeted element,
unless that would place the tooltip offscreen, in which case it should be below the targeted

element. This can be done with the following CSS:

.anchor {
anchor-name: --tooltip;
}
.tooltip {
/* Fixpos means we don't need to worry about
containing block relationships;
the tooltip can live anywhere in the DOM. */
position: fixed;

/* All the anchoring behavior will default to
referring to the --tooltip anchor. */
position-anchor: --tooltip;

/* Align the tooltip's bottom to the top of the anchor;

this also defaults to horizontally center-aligning

the tooltip and the anchor (in horizontal writing modes). */
position-area: block-start;

/* Automatically swap if this overflows the window
so the tooltip's top aligns to the anchor's bottom
instead. */

position-try: flip-block;

/* Prevent getting too wide */
max-inline-size: 20@em;

Note that using the Popover API will automatically set ‘position’ and create the anchoring

relationship without setting ‘anchor-name’ or ‘position-anchor’ value (by defining an implicit

anchor element), so those properties wouldn’t need to be explicitly set again. So with the correct

markup, this example can be simplified to:

.tooltip {
/* Using the popover + popovertarget attributes sets 'position: fixed’
and creates the necessary position-anchor relationship already. */
position-area: block-start;

5 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

position-try: flip-block;
max-inline-size: 20@em;

1.1. Value Definitions

This specification follows the CSS property definition conventions from [CSS2] using the value

definition syntax from [CSS-VALUES-3]. Value types not defined in this specification are defined in
CSS Values & Units [CSS-VALUES-3]. Combination with other CSS modules may expand the

definitions of these value types.

In addition to the property-specific values listed in their definitions, all properties defined in this

specification also accept the CSS-wide keywords as their property value. For readability they have not

been repeated explicitly.

Like most operations in CSS besides selector matching, features in this specification operate over the

flattened element tree.

. 2. Determining the Anchor

Several features of this specification refer to the position and size of an anchor box. Unless otherwise

specified, this refers to the border box edge of the principal box of relevant anchor element. In most

cases the relevant anchor element is specified as the default anchor element using the

‘position-anchor’ property, which can refer to an implicit anchor element defined by the host language

or an anchor named via the CSS ‘anchor-name’ and ‘anchor-scope’ properties. (The ‘anchor()’

functions can also reference a named anchor directly.)

The anchor box’s position and size is determined after layout. This position and size includes ‘zoom’
and ‘position’-based adjustments (such as ‘position: relative’ or ‘position: sticky’) as well as

transforms (such as ‘transform’ or ‘offset-path”). In these cases, the axis-aligned bounding rectangle of

the anchor box in the coordinate space of the absolutely positioned element’s containing block is used

instead. Transforms are often optimized onto a different thread, so transform-based updates to an
anchor box’s position may be delayed by a few frames. Authors can avoid this delay by using absolute

or relative positioning instead where practical.

If the anchor box is fragmented, and the containing block of the absolutely positioned box referring to

that anchor box is outside the relevant fragmentation context, the axis-aligned bounding rectangle of

6 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

its box fragments is used instead. (If the absolutely positioned box is inside the fragmentation context,

it sees the anchor box as unfragmented—and can be itself fragmented by the fragmentation context.)

For performance reasons, scrolling is handled specially, see § 3.3 Taking Scroll Into Account. Other

post-layout effects, such as filters, do not affect the anchor box’s position.

> 2.1. Creating an Anchor: the ‘anchor-name’ property

Name: ‘anchor-name’
Value: none | <dashed-ident>#
Initial: none

Applies to: all elements that generate a principal box

Inherited: no

Percentages: n/a

Computed as specified

value:

Canonical per grammar

order:

Animation discrete

The ‘“anchor-name’ property declares that an element is an anchor element, whose principal box is an

anchor box, and gives it a list of anchor names to be targeted by. Values are defined as follows:

‘none’
The property has no effect.

‘<dashed-ident>#’
If the element generates a principal box, the element is an anchor element, with a list of anchor

names as specified. Each anchor name is a loosely matched tree-scoped name.

Otherwise, the property has no effect.

Anchor names do not need to be unique. Not all elements are capable of being the target anchor

7 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

element of a given box. Thus a name can be reused in multiple places if the usages are scoped

appropriately.

NOTE: If multiple elements share an anchor name and are all visible to a given positioned box,

the target anchor element will be the last one in DOM order. The ‘anchor-scope’ property can be

used to further limit what names are visible to a given referencing box.

Anchor names are not scoped by containment by default; even if an element has style or layout
containment (or any similar sort of containment), the anchor names of its descendants are visible to

elements elsewhere in the page.

NOTE: While an element is in the skipped contents of another element (due to ‘content-

visibility: hidden’, for instance), it’s not an acceptable anchor element, effectively acting as if it

had no names.

NOTE: Positioned elements in shadow trees can reference anchor names defined in “higher”

trees. Currently, they cannot reference anchor names defined in “lower” shadow trees, though.

8 2.2. Scoping Anchor Names: the ‘anchor-scope’ property

Name: ‘anchor-scope’

Jalue: none | all | <dashed-ident>#
Initial: none

Applies to: all elements

Inherited: no

Percentages: n/a

Computed as specified

value:

Canonical per grammar

order:

8 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Animation discrete

ype:

This property scopes the specified anchor names, and lookups for these anchor names, to this

element’s subtree. See § 2 Determining the Anchor.

Values have the following meanings:

‘none’
No changes in anchor name scope.

‘all’
Specifies that all anchor names defined by this element or its descendants—whose scope is not

already limited by a descendant using ‘anchor-scope’—to be in scope only for this element’s

descendants; and limits descendants to only match anchor names to anchor elements within this

subtree.

This value only affects anchor names in the same tree scope, as if it were a strictly matched tree-

scoped name. (That is, ‘anchor-scope: all’ acts identically to ‘anchor-scope: --foo, --bar, ...°,

listing all relevant anchor names.)

‘<dashed-ident>’
Specifies that a matching anchor name defined by this element or its descendants—whose scope

is not already limited by a descendant using ‘anchor-scope’—to be in scope only for this
element’s descendants; and limits descendants to only match these anchor names to anchor

elements within this subtree.

The <dashed-ident> represents a strictly matched tree-scoped name, i.e. it can only match against
anchor names in the same shadow tree.[CSS-SCOPING-1]

This property has no effect on implicit anchor elements.

9 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 2

When a design pattern is re-used, ‘anchor-scope’ can prevent naming clashes across identical

components. For example, if a list contains positioned elements within each list item, which want

to position themselves relative to the list item they’re in,

1i {
anchor-name: --list-item;
anchor-scope: --list-item;
}

1li .positioned {
position: absolute;
position-anchor: --1list-item;
position-area: inline-start;

Without ‘anchor-scope’, all of the <1i> elements would be visible to all of the positioned elements,

and so they’d all positioned themselves relative to the final <1i>, stacking up on top of each other.

> 2.3. Finding an Anchor

Several things in this specification find a target anchor element, given an anchor specifier, which is

either a <dashed-ident> (and a tree-scoped reference) that should match an ‘anchor-name’ value

elsewhere on the page, or the keyword ‘auto’, or nothing (a missing specifier).

NOTE: The general rule captured by these conditions is that an element can only be a

positioned box’s target anchor element if its own box is fully laid out before the positioned box

that wants to reference it is laid out. CSS’s layout rules provide some useful guarantees about this,
depending on the anchor and positioned box’s relationship with each other and their containing
blocks. The list of conditions below exactly rephrases the stacking context rules into just what’s

relevant for this purpose, ensuring there is no possibility of circularity in anchor positioning.

To determine the target anchor element given a querying element guery el and an optional anchor

specifier anchor spec:

1. If anchor spec was not passed, return the default anchor element if it exists, otherwise return

nothing.

2. If anchor spec is ‘auto’:

10 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

1. If query el has an implicit anchor element that is an acceptable anchor element, return that
element.

2. Otherwise, return nothing.

NOTE: Future APIs might also define implicit anchor elements. When they do, they’ll be
explicitly handled in this algorithm, to ensure coordination.

3. Otherwise, anchor spec is a <dashed-ident>. Return the last element e/ in tree order that satisfies
the following conditions:

o el is an anchor element with an anchor name of anchor spec.

o el’s anchor name loosely matches anchor spec.

NOTE: The anchor name is a tree-scoped name, while anchor spec is a tree-scoped
reference.

o el 1s an acceptable anchor element for query el.

If no element satisfies these conditions, return nothing.

NOTE: ‘anchor-scope’ can restrict the visibility of certain anchor names, which can affect
what elements can be anchor elements for a given lookup.

NOTE: An ‘anchor-name’ defined by styles in one shadow tree won’t be seen by anchor
functions in styles in a different shadow tree, preserving encapsulation. However, elements in
different shadow trees can still anchor to each other, so long as both the ‘anchor-name’ and anchor
function come from styles in the same tree, such as by using ‘::part()’ to style an element inside a
shadow. (Implicit anchor elements also aren’t intrinsically limited to a single tree, but the details of
that will depend on the API assigning them.)

An element possible anchor is an acceptable anchor element for an absolutely positioned element
positioned el if all of the following are true:

e possible anchor is either an element or a fully styleable tree-abiding pseudo-element.

e possible anchor is in scope for positioned el, per the effects of ‘“anchor-scope’ on possible anchor
or its ancestors.

e possible anchor is laid out strictly before positioned el, aka one of the following is true:

11 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

o possible anchor and positioned el have the same original containing block and either

» possible anchor is in a lower top layer than positioned el, or

= they both exist in the same top layer, but possible anchor is either not absolutely

positioned or occurs earlier in the flat tree order than positioned el

o The element generating possible anchor’s containing block (if one exists) is an acceptable

anchor element for positioned el

e If possible anchor is in the skipped contents of another element, then positioned el is in the

skipped contents of that same element.

NOTE: In other words, positioned el can anchor to possible anchor if they’re both in the
same skipped "leaf", but it can’t anchor "across" leafs. This means skipping an element that
contains both of them won’t suddenly cause the positioned el to move to another anchor, but
still prevents positioned elements e/lsewhere in the page from anchoring to the skipped

element.

8 2.4. Default Anchors: the ‘position-anchor’ property

12 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Name: ‘position-anchor’
Value: none | auto | <anchor-name>
Initial: none

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed as specified

value:

Canonical per grammar
order:

Animation discrete
type:

The ‘position-anchor’ property specifies the default anchor element, which is used by ‘position-area’,

‘position-try’, and (by default) all anchor functions applied to this element. ‘position-anchor’ is a

reset-only sub-property of ‘position’.

‘none’
The box has no default anchor element.

‘auto’
Use the implicit anchor element if it exists; otherwise the box has no default anchor element.

‘<anchor-name>’

The target anchor element selected by the specified <anchor-name> is the box’s default anchor

element.

ISSUE 1 We might want to change the initial value to be slightly more magical, auto-choosing 1
between ‘none’ and ‘auto’ based on ‘position-area’ being used or not. [Issue #13067

The principal box of the default anchor element is the box’s default anchor box.

13 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 3
For example, in the following code both ‘.foo’ and ‘.bar’ elements can use the same positioning

properties, just changing the anchor element they’re referring to:

.anchored {
position: absolute;
top: calc(.5em + anchor(outside));
/* Since no anchor name was specified,
this automatically refers to the
default anchor box. */

.foo.anchored {
position-anchor: --foo;

}

.bar.anchored {
position-anchor: --bar;

. 2.4.1. Implicit Anchor Elements

Some specifications can define that, in certain circumstances, a particular element is an implicit

anchor element for another element.

EXAMPLE 4
TODO: Fill in an example new popover-related details (once that finally lands in the HTML spec).

Implicit anchor elements can be referenced with the ‘auto’ keyword in ‘position-anchor’, or by

omitting the anchor reference in anchor functions.

The implicit anchor element of a pseudo-element is its originating element, unless otherwise specified.

» 2.5. Anchor Relevance

When determining whether an element e/ is relevant to the user, if a descendant of e/ is a target anchor

element for a positioned box (which itself is not skipped and whose containing block is not e/ or a

descendant of e/), then e/ must be considered relevant to the user.

14 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

NOTE: This means that, for example, an anchor in a ‘content-visibility: auto’ subtree will

prevent its subtree from skipping its contents as long as the positioned box relying on it is also not

skipped. (Unless the anchor and the positioned box are both under the same ‘content-visibility:

auto’ element; they can’t cyclicly keep each other visible.)

' 3. Anchor-Based Positioning

An absolutely positioned box can position itself relative to one or more anchor boxes on the page.

The ‘position-area’ property offers a convenient grid-based concept for positioning relative to the

default anchor box; for more complex positioning or positioning relative to multiple boxes, the

‘anchor()’ function can be used in the inset properties to explicitly refer to edges of an anchor box.

> 3.1. The ‘position-area’ Property

Name: ‘position-area’
Value: none | <position-area>
Initial: none

Applies to: positioned boxes with a default anchor box

Inherited: no

Percentages: n/a

Computed the keyword ‘none’ or a pair of keywords, see § 3.1.3 Computed Value and

value: Serialization of <position-area>
Canonical per grammar
order:

Animation TBD
type:

Most common use-cases of anchor positioning are only concerned with the edges of the positioned

box’s containing block and the edges of the default anchor box. These lines can be thought of as

15 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

defining a 3x3 grid; ‘position-area’ lets you easily specify what area of this position-area grid to lay

out the positioned box in.

all
I 1
start center end
start 1st choice top
center center
all
end bottom
lLeft center right

Figure 1 An example of ‘position-area: top left’ positioning in a “horizontal-tb’ ‘ltr’ writing mode.

‘none’
The property has no effect.

‘<position-area>’
If the box does not have a default anchor box, or is not an absolutely positioned box, this value

has no effect.

Otherwise, selects a region of the position-area grid, and makes that the box’s containing block.

NOTE: This means that the inset properties specify offsets from the position-area, and

some property values, like ‘max-height: 100%’, will be relative to the position-area as well.

Values other than ‘none’ have the following additional effects:

e The scrollable containing block is used in place of the local containing block when the absolute-

position containing block is generated by a scroll container, so that the entire scrollable overflow

area (typically) is available for positioning.

e The used value of any ‘auto’ inset properties and ‘auto’ margin properties resolves to ‘0’.

¢ The ‘normal’ value for the self-alignment properties resolves to a corresponding value, see § 4.1

Area-specific Default Alignment.

16 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

17 of 68

. 3.1.1. Resolving the Position Area Grid

The position-area grid is a 3%3 grid, composed of four grid lines in each axis. In order (using the

writing mode of the containing block):

e the start edge of the box’s pre-modification containing block, or the start edge of the default

anchor box if that is more start-ward

e the start edge of the default anchor box

e the end edge of the default anchor box

e the end edge of the box’s pre-modification containing block, or the end edge of the default anchor

box if that is more end-ward.

NOTE: When the default anchor box is partially or completely outside of the pre-modified

containing block, some of the position-area grid’s rows or columns can be zero-sized.

. 3.1.2. Syntax of <position-area> Values

Positions are specified as a pair of values, which can be expressed in flow-relative or physical terms.

The allowed syntax of a <position-area> value is:

<position-area> = |
[left | center | right | span-left | span-right
| x-start | x-end | span-x-start | span-x-end
| self-x-start | self-x-end | span-self-x-start | span-self-x-end
| span-all]
1l
[top | center | bottom | span-top | span-bottom
| y-start | y-end | span-y-start | span-y-end
| self-y-start | self-y-end | span-self-y-start | span-self-y-end

| span-all]
1
[block-start | center | block-end | span-block-start | span-block-end | span-all
1
[inline-start | center | inline-end | span-inline-start | span-inline-end
| span-all]
1
[self-block-start | center | self-block-end | span-self-block-start
| span-self-block-end | span-all]
1l
[self-inline-start | center | self-inline-end | span-self-inline-start

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

| span-self-inline-end | span-all]

1

[start | center | end | span-start | span-end | span-all]{1,2}
1

[self-start | center | self-end | span-self-start | span-self-end | span-all]{1
]

The <position-area> value selects a region of the position-area grid by specitying the rows and

columns the region occupies as follows:

‘start’, ‘end’, ‘self-start’, ‘self-end’
‘top’, ‘bottom’, ‘left’, ‘right’
‘y-start’, ‘y-end’, ‘self-y-start’, ‘self-y-end’
‘x-start’, ‘x-end’, ‘self-x-start’, ‘self-x-end’
‘block-start’, ‘block-end’, ‘self-block-start’, ‘self-block-end’
‘inline-start’, ‘inline-end’, ‘self-inline-start’, ‘self-inline-end’
‘center’
The single corresponding row or column, depending on which axis this keyword is specifying.

Like in ‘anchor()’, the plain logical keywords (‘start’, ‘end’, etc) refer to the writing mode of the

box’s containing block. The ‘x-start’/etc determine their direction in the same way, but in the
specified physical axis.

The ‘self-*" logical keywords (‘self-start’, ‘self-x-end’, etc) are identical, but refer to the box’s
own writing mode.

‘span-start’, ‘span-end’, ‘span-self-start’, ‘span-self-end’

‘span-top’, ‘span-bottom’, ‘span-left’, ‘span-right’

‘span-y-start’, ‘span-y-end’, ‘span-self-y-start’, ‘span-self-y-end’

‘span-x-start’, ‘span-x-end’, ‘span-self-x-start’, ‘span-self-x-end’

‘span-block-start’, ‘span-block-end’, ‘span-self-block-start’, ‘span-self-block-end’

‘span-inline-start’, ‘span-inline-end’, ‘span-self-inline-start’, ‘span-self-inline-end’
Two adjacent rows or columns, depending on which axis this keyword is specifying: the center
row/column, and the row/column corresponding to the other half of the keyword as per the

single-track keywords.

(For example, ‘span-top’ spans the first two rows—the center row and the top row.)

‘span-all’
All three rows or columns, depending on which axis this keyword is specifying.

Some keywords are ambiguous about what axis they refer to: ‘center’, ‘span-all’, and the ‘start’/etc

keywords that don’t specify the block or inline axis explicitly. If the other keyword is unambiguous
about its axis, then the ambiguous keyword is referring to the opposite axis. (For example, in ‘block-
start center’, the ‘center’ keyword is referring to the inline axis.) If both keywords are ambiguous,
however, then the first refers to the block axis of the box’s containing block, and the second to the

18 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

inline axis. (For example, ‘span-all start’ is equivalent to ‘span-all inline-start’.)

If only a single keyword is given, it behaves as if the second keyword is ‘span-all’ if the given
keyword is unambigous about its axis; otherwise, it behaves as if the given keyword was repeated.

(For example, ‘top’ is equivalent to ‘top span-all’, but ‘center’ is equivalent to ‘center center’.)

> 3.1.3. Computed Value and Serialization of <position-area>

The computed value of a <position-area> value is the two keywords indicating the selected tracks in
each axis, with the long (‘block-start’) and short (‘start”) logical keywords treated as equivalent. It
serializes in the order given in the grammar (above), with the logical keywords serialized in their short

forms (e.g. ‘start start’ instead of ‘block-start inline-start’).

> 3.2. Anchor-relative Insets: the ‘anchor()’ function

An absolutely positioned box can use the ‘anchor()’ function as a value in its inset properties to refer

to the position of one or more anchor boxes. The ‘anchor()’ function resolves to a <length>. It is only

allowed in the inset properties (and is otherwise invalid).

Name: ‘top’, ‘left’, ‘right’, ‘bottom’

New <anchor()>

values.

<anchor()> = anchor(<anchor-name>? && <anchor-side>, <length-percentage>?)

<anchor-name> = <dashed-ident>

<anchor-side> = inside | outside
| top | left | right | bottom
| start | end | self-start | self-end

1 <percentage> | center

The ‘anchor()’ function has three arguments:

e the <anchor-name> value specifies how to find the anchor element it will be drawing positioning

information from. Its possible values are:

‘<dashed-ident>’

Specifies the anchor name it will look for. This name is a tree-scoped reference.

omitted

19 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Selects the default anchor element defined for the box, if possible.

See target anchor element for details.

e the <anchor-side> value refers to the position of the corresponding side of the target anchor

element. Its possible values are:

‘inside’

‘outside’
Resolves to one of the anchor box’s sides, depending on which inset property it’s used in.
‘inside’ refers to the same side as the inset property (attaching the positioned box to the
"inside" of the anchor box), while ‘outside’ refers to the opposite.

(top ’

‘right’

‘bottom’

(leﬁ)
Refers to the specified side of the anchor box.

NOTE: These are only usable in the inset properties in the matching axis. For

example, ‘left’ is usable in ‘left’, ‘right’, or the logical inset properties that refer to the
horizontal axis.

‘start’

‘end’

‘self-start’

‘self-end’
Refers to one of the sides of the anchor box in the same axis as the inset property it’s used
in, by resolving the keyword against the writing mode of either the positioned box (for ‘self-

start” and ‘self-end”) or the positioned box’s containing block (for ‘start’ and ‘end’).

3

<percentage>’
‘center’

Refers to a position a corresponding percentage between the ‘start’ and ‘end’ sides, with

‘0%’ being equivalent to ‘start’ and ‘100%’ being equivalent to ‘end’.

‘center’ is equivalent to ‘50%’.

¢ the optional <length-percentage> final argument is a fallback value, specifying what the function

should compute to if it’s an unresolvable anchor function.

An ‘anchor()’ function representing a resolvable anchor function resolves at computed value time

(using style & layout interleaving) to the <length> that would align the edge of the positioned boxes'

inset-modified containing block corresponding to the property the function appears in with the

specified edge of the target anchor element’s anchor box.

20 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

NOTE: This means that transitions or animations of a property using an anchor function will

work "as expected" for all sorts of possible changes: the anchor box moving, anchor elements

being added or removed from the document, the ‘anchor-name’ property being changed on

anchors, etc.

EXAMPLE 5
For example, in ‘.bar { inset-block-start: anchor(--foo block-start); }’, the ‘“anchor()’ will resolve
to the length that’ll line up the .bar element’s block-start edge with the ‘--foo” anchor’s block-
start edge.

On the other hand, in ‘.bar { inset-block-end: anchor(--foo block-start); }’, it will instead resolve
to the length that’ll line up the .bar element’s block-end edge with the ‘--foo” anchor’s block-start
edge.

Since ‘inset-block-start’ and ‘inset-block-end” values specify insets from different edges (the
block-start and block-end of the element’s containing block, respectively), the same ‘anchor()” will

usually resolve to different lengths in each.

21 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 6
Because the ‘anchor()’ function resolves to a <length>, it can be used in math functions like any
other length.

ISSUE 2 Add a better example; this one can be accomplished easily with ‘anchor-center’. ~
[Issue #10776]

For example, the following will set up the element so that its inset-modified containing block is

centered on the anchor box and as wide as possible without overflowing the containing block:

.centered-message {
position: fixed;
max-width: max-content;
justify-self: center;

--center: anchor(--x 50%);
--half-distance: min(

abs(0% - var(--center)),

abs(100% - var(--center))
)s
left: calc(var(--center) - var(--half-distance));
right: calc(var(--center) - var(--half-distance));
bottom: anchor(--x top);

This might be appropriate for an error message on an <input> element, for example, as the

centering will make it easier to discover which input is being referred to.

. 3.2.1. Resolution of ‘anchor()’

An ‘anchor()’ function is a resolvable anchor function only if all the following conditions are true:

e It’s applied to an absolutely positioned box.

e Ifits <anchor-side> specifies a physical keyword, it’s specified in an inset property applicable to
that axis. (For example, ‘left’ can only be used in ‘left’, ‘right’, or a logical inset property in the

horizontal axis.)

e There is a target anchor element for the box it’s used on, and the <anchor-name> value specified

22 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

in the function.

If any of these conditions are false, the ‘anchor()’ function computes to its specified fallback value. If

no fallback value is specified, it makes the declaration referencing it invalid at computed-value time.

. 3.3. Taking Scroll Into Account

For performance reasons, implementations usually perform scrolling on a separate
scrolling/"compositing" thread, which has very limited capabilities (simple movement/transforms/etc.,
but no layout or similar expensive operations) and thus can be relied upon to respond to scrolling fast

enough to be considered "instant" to human perception.

If scrolling just causes an anchor-positioned element to move, there is in theory no issue; the
movement can be performed on the scrolling thread so the positioned element moves smoothly with

the scrolling content. However, anchor positioning allows an element to make the positions of its own

opposite edges depend on things in different scrolling contexts, which means scrolling could move just
one edge and cause a size change, and thus perform layout. This can’t be performed on the scrolling
thread!

To compensate for this, while still allowing as much freedom to anchor to various elements as

possible, anchor positioning uses a combination of remembered scroll offsets and compensating for

scroll.

23 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

The details here are technical, but the gist is:

e When a positioned element is first displayed, or when it changes fallbacks, its position is

correctly calculated according to the up-to-date position of all anchor references.

If these anchor references are in a different scroll context, their total scroll offsets are

memorized, and layout will continue using those memorized offsets, even if those elements
are scrolled later. (Only the scroll offsets are memorized; their actual laid-out positions are
freshly calculated each time and remain accurate.) They’ll only recalculate if the positioned

element stops being displayed and starts again, or changes fallbacks.

e The one exception to this is the default anchor element; if it’s scrolled away from its

remembered scroll offset, the positioned element moves with it. Because this is *purely* a

shift in position, the positioned element can’t change size or otherwise require layout in

response.

The end result is that anchor positioning should generally "just work", regardless of what the

element is anchoring to, but it might be limited in how it can respond to scrolling.

An anchor recalculation point occurs for an absolutely positioned element whenever that element

begins generating boxes (aka switches from ‘display:none” or ‘display:contents’ to any other ‘display’

value), identical to when it starts running CSS animations.

An anchor recalculation point also occurs for an element when determining position fallback styles for

that element; if it changes fallback styles as a result, it uses the result of the anchor recalculation point

associated with the chosen set of fallback styles.

When an anchor recalculation point occurs for an element abspos, then for every element anchor

referenced by one of abspos’s anchor references, it associates a remembered scroll offset equal to the

current sum of the scroll offsets of all scroll container ancestors of anchor, up to but not including

abspos’s containing block. The remembered scroll offset also accounts for other scroll-dependent

positioning changes, such as ‘position: sticky’. If abspos has a default anchor element, it always

calculates a remembered scroll offset for it, even if abspos doesn’t actually have an anchor reference

to it.

All anchor references are calculated as if all scroll containers were at their initial scroll position, and

then have their associated remembered scroll offset added to them.

ISSUE 3 Transforms have the same issue as scrolling, so Anchor Positioning similarly doesn’t ~

pay attention to them normally. Can we go ahead and incorporate the effects of transforms here?

24 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

The above allows a positioned element to respond to the scroll positions of its anchor references once,

but if any of them are scrolled, the positioned element will no longer appear to be anchored to them
(tho it will continue to respond to their non-scrolling movement). While this problem can’t be solved
in general, we can respond to the scrolling of one anchor reference; specifically, the default anchor

element:

An absolutely positioned box abspos compensates for scroll in the horizontal or vertical axis if both

of the following conditions are true:

e abspos has a default anchor box.

e abspos has an anchor reference to its default anchor box or at least to something in the same

scrolling context, aka at least one of:

o abspos’s used self-alignment property value in that axis is ‘anchor-center’;

o abspos has a non-‘none’ value for ‘position-area’

o at least one ‘anchor()’ function on abspos’s used inset properties in the axis refers to a target

anchor element with the same nearest scroll container ancestor as abspos’s default anchor

box.

NOTE: If abspos has a position options list, then whether it compensates for scroll in an axis is
also affected by the applied fallback style.

abspos’s default scroll shift is a pair of lengths for the horizontal and vertical axises, respectively.

Each length is calculated as:

e If abspos is compensating for scroll in the axis, then the length is the difference between the

remembered scroll offset of the default anchor element and what its current remembered scroll

offset would be if it were recalculated.

e Otherwise, the length is 0.

After layout has been performed for abspos, it is additionally shifted by the default scroll shift, as if

affected by a transform (before any other transforms).

I ISSUE 4 Define the precise timing of the snapshot: updated each frame, before style recalc. ~

ISSUE 5 Similar to remembered scroll offset, can we pay attention to transforms on the default~

anchor element?

25 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

26 of 68

NOTE: While remembered scroll offsets affect the value of ‘anchor()’ functions, default scroll

shift directly shifts the element, affer determining the value of its inset properties, applying

alignment, etc. This is usually indistinguishable, but cases like ‘round(anchor(outside), 50px)’,

which transform the default anchor element’s position in a non-linear fashion, will expose the

difference in behavior.

4. Anchor-Based Alignment

> 4.1. Area-specific Default Alignment

When ‘position-area’ is not ‘none’, the used value of ‘normal’ self-alignment changes depending on

the <position-area> value, to align the box towards the anchor:

e [fthe only the center track in an axis is selected, the default alignment in that axis is ‘center’.

e [fall three tracks are selected, the default alignment in that axis is ‘anchor-center’.

e Otherwise, the default alignment in that axis is toward the non-specified side track: if it’s

specifying the “start” track of its axis, the default alignment in that axis is ‘end’; etc.

However, if only one inset property in the relevant axis is ‘auto’, the default alignment is instead

towards the edge with the non-‘auto’ inset; and this is an ‘unsafe’ alignment.

NOTE: This single-‘auto’ behavior preserves the way a single specified inset controls the

position of an absolutely positioned box.

EXAMPLE 7
For example, assuming an English-equivalent writing mode (horizontal-tb, Itr), then the value
‘span-x-start top” resolves to the ‘start’ region of the vertical axis, and the ‘start” and ‘center’

regions of the horizontal axis, so the default alignments will be ‘align-self: end’ (making the box’s

bottom margin edge flush with the bottom of the ‘top’ region) and ‘justify-self: end’ (making the

box’s end-side margin edge flush with the end side of the ‘span-start’ region).

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

If the box overflows its inset-modified containing block, but would still fit within its original

containing block, by default it will “shift” to stay within its original containing block, even if that

violates its normal alignment. See CSS Box Alignment 3 § 4.4 Overflow Alignment: the safe and

unsafe keywords and scroll safety limits for details.

This behavior makes it more likely that positioned boxes remain visible and within their intended

bounds, even when their containing block ends up smaller than anticipated.

For example, a ‘position-area: bottom span-right’ value lets the positioned box stretch from its

anchor’s left edge to its containing block’s right edge, and left-aligns it in that space by default.
But if the positioned box is larger than that space (such as if the anchor is very close to the right

edge of the screen), it will shift leftwards to stay visible.

8 4.2. Centering on the Anchor: the ‘anchor-center’ alignment value

Name: ‘justify-self’, ‘align-self’, ‘justify-items’, ‘align-items’

New anchor-center

values.:

The self-alignment properties allow an absolutely positioned box to align itself within the inset-

modified containing block. The existing values, plus carefully chosen inset properties, are usually

enough for useful alignment, but a common case for anchored positioning—centering over the anchor

box—requires careful and somewhat complex set-up to achieve.

The new ‘anchor-center’ value makes this case extremely simple: if the positioned box has a default
anchor box, then it is centered (insofar as possible) over the default anchor box in the relevant axis.
Additionally:

e The scrollable containing block is used in place of the local containing block where applicable, so

that the entire scrollable overflow area (typically) is available for positioning.

e The used value of any ‘auto’ inset properties and ‘auto’ margin properties resolves to ‘0’.

If the box is not absolutely positioned, or does not have a default anchor box, this value behaves as

‘center’ and has no additional effect on how inset properties resolve.

27 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

NOTE: When using ‘anchor-center’, by default if the anchor is too close to the edge of the box’s

original containing block, it will “shift” from being purely centered, in order to remain within the

original containing block. See CSS Box Alignment 3 § 4.4 Overflow Alignment: the safe and

unsafe keywords and scroll safety limits for more details.

8 5. Anchor-Based Sizing

An absolutely positioned box can use the ‘anchor-size()’ function in its sizing properties to refer to the

size of one or more anchor boxes. The ‘anchor-size()’ function resolves to a <length>. It is only

allowed in the accepted (@position-try properties (and is otherwise invalid).

8§ 5.1. The ‘anchor-size()’ Function

Name: ‘width’, ‘height’, ‘min-width’, ‘min-height’, ‘max-width’, ‘max-height’, ‘top’,

‘left’, ‘right’, ‘bottom’, ‘margin-top’, ‘margin-left’, ‘margin-right’, ‘margin-

bottom’

New <anchor-size()>

values.:

anchor-size([<anchor-name> || <anchor-size>]? , <length-percenta;
width | height | block | inline | self-block | self-inline

anchor-size()

<anchor-size>

The ‘anchor-size()’ function is similar to ‘anchor()’, and takes the same arguments, save that the
<anchor-side> keywords are replaced with <anchor-size>, referring to the distance between two

opposing sides.

The physical <anchor-size> keywords (‘width’ and ‘height’) refer to the width and height,

respectively, of the target anchor element. Unlike ‘anchor()’, there is no restriction on having to match

axises; for example, ‘width: anchor-size(--foo height);’ is valid.

The logical <anchor-size> keywords (‘block’, ‘inline’, ‘self-block’, and ‘self-inline’) map to one of

the physical keywords according to either the writing mode of the box (for ‘self-block’ and ‘self-

inline”) or the writing mode of the box’s containing block (for ‘block’ and ‘inline’).

If the <anchor-size> keyword is omitted, it defaults to behaving as whatever keyword matches the axis

of the property that ‘anchor-size()’ is used in. (For example, ‘width: anchor-size()’ is equivalent to

28 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

‘width: anchor-size(width)’.)

An ‘anchor-size()’ function representing a resolvable anchor-size function resolves at computed value

time (via style & layout interleaving) to the <length> separating the relevant edges (either left and

right, or top and bottom, whichever is in the specified axis) of the target anchor element’s anchor box.

» 5.1.1. Resolution of ‘anchor-size()’

An ‘anchor-size()’ function is a resolvable anchor-size function only if all the following conditions

are true:

e It’s applied to an absolutely positioned box.

e There is a target anchor element for the box it’s used on, and the <anchor-name> value specified

in the function.

If any of these conditions are false, the ‘anchor-size()’ function resolves to its specified fallback value.

If no fallback value is specified, it makes the declaration referencing it invalid at computed-value

time.

. 6. Overflow Management

Anchor positioning, while powerful, can also be unpredictable. The anchor box might be anywhere on
the page, so positioning a box in any particular fashion (such as above the anchor, or the right of the

anchor) might result in the positioned box overflowing its containing block or being positioned

partially off screen.

To ameliorate this, an absolutely positioned box can use the ‘position-try-fallbacks’ property to

specify additional position options (variant sets of positioning/alignment properties generated from the

box’s existing styles, or specified in ‘(@position-try’ rules) that the UA can try if the box overflows its

initial position. Each is applied to the box, one by one in the order specified by ‘position-try-order’,

and the first that doesn’t cause the box to overflow its containing block is taken as the winner.

Once an option has been chosen, the element keeps those styles until it overflows again, even if an
earlier (and presumably more desirable) option again becomes available without causing overflow.

(See remember or forget the last successful position option.)

29 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 8 -
For example, the following CSS will first attempt to position a "popover" below the element, but if
it doesn’t fit on-screen will switch to being above. It defaults to start-aligning with the anchor, but
will switch to end-aligning if that doesn’t fit. If it doesn’t fit on either side, it will take the whole
horizontal space, while centering on the anchor as much as possible (thanks to § 4.1 Area-specific
Default Alignment).

#myPopover {
position: fixed;
position-anchor: --button;
position-area: bottom span-x-end;
position-try-fallbacks: flip-x, flip-y, flip-x flip-y, bottom, top;

/* The popover is at least as wide as the button */
min-width: anchor-size(width);

/* The popover is at least as tall as 2 menu items */
min-height: 6em;

I ISSUE 6 Add a picture! il

8 6.1. Giving Fallback Options: the ‘position-try-fallbacks’ property

Name: ‘position-try-fallbacks’

Value: none | [[<dashed-ident> || <try-tactic>] | <position-area> |#
Initial: none

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed as specified

value:

30 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Canonical per grammar
order:

Animation discrete
type:

This property provides a list of alternate positioning styles to try when the absolutely positioned box

overflows its inset-modified containing block. This pesition options list initially contains a single

position option generated from the element’s fallback base styles, i.e. the computed styles without
applying ‘position-try-fallbacks’.

Each comma-separated entry in the list is a separate option: either the name of a ‘(@position-try’

block, or a <try-tactic> representing an automatic transformation of the box’s existing computed style.
Values have the following meanings:

‘none’
The property has no effect; the box’s position options list is empty.

‘<dashed-ident>’

If there is a ‘(@position-try’ rule with the given name, its associated position option is added to

the position options list.

Otherwise, this value has no effect.

‘<try-tactic>’
Automatically creates a position option by executing the specified try tactic to the box’s base

styles, then adding the constructed position option to the box’s position options list.

<try-tactic> = flip-block || flip-inline || flip-start || flip-x || flip-y

‘flip-block’
swaps the values in the block axis (between, for example, ‘margin-block-start’ and

‘margin-block-end’), essentially mirroring across an inline-axis line.

‘flip-inline’
swaps the values in the inline axis, essentially mirroring across a block-axis line.
lip-x”
swaps the values in the horizontal axis (between, for example, ‘margin-left’ and
‘margin-right’), essentially mirroring across a vertical-axis line.
£]s s
flip-y
swaps the values in the vertical axis, essentially mirroring across a horizontal-axis line.

‘flip-start’

31 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

swaps the values of the start properties with each other, and the end properties with each

other (between, for example, ‘margin-block-start’ and ‘margin-inline-start’), essentially

mirroring across a diagonal drawn from the start-start corner to the end-end corner.

If multiple keywords are given, the transformations are composed in order to produce a single

position option. Logical directions are resolved against the writing mode of the containing block.

‘<dashed-ident> || <try-tactic>’

Combines the effects of the previous two options: if there is a ‘@position-try’ rule with the given

name, applies its position option to the base style, then transforms it according to the specified

<try-tactic> and adds the result to the box’s position options list.

Otherwise, does nothing.

‘<position-area>’

Automatically creates a position option composed solely of a ‘position-area’ property with the

given value.

8 6.2. Determining Fallback Order: the ‘position-try-order’ property

Name: ‘position-try-order’

Value: normal | <try-size>

Initial: normal

Applies to: absolutely positioned boxes
Inherited: no

Percentages: n/a

Computed as specified

value:

Canonical per grammar

order:

Animation discrete

nype.

This property allows an element to sort its position options by the available space they define, if it’s

32 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

more important for the box to have as much space as possible rather than strictly following the order

declared in ‘position-try-fallbacks’.

<try-size> = most-width | most-height | most-block-size | most-inline-size

‘normal’
Try the position options in the order specified by ‘position-try-fallbacks’.

‘most-width’
‘most-height’
‘most-block-size’
‘most-inline-size’
For each entry in the position options list, apply that position option to the box, and find the inset-

modified containing block size that results from those styles (treating ‘auto’ ‘inset’ values as

zero). Stably sort the position options list according to this size, with the largest coming first.

Logical directions are resolved against the writing mode of the containing block.

33 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 9
For example, the following styles will initially position the popup list either above or below its

anchoring button, depending on which option gives it the most space.

.anchor { anchor-name: --foo; }

Llist {
position: fixed;
position-anchor: --foo;
position-area: block-end span-inline-end;
position-try-fallbacks: --bottom-scrollable, flip-block, --top-scrollable;
position-try-order: most-height;

}

@position-try --bottom-scrollable {
align-self: stretch;

}

@position-try --top-scrollable {
position-area: block-start span-inline-end;
align-self: stretch;

The base styles and the ‘--bottom-scrollable” option have the same available height, since in both

cases the inset-modified containing block stretches from the anchor to the edge of the containing

block. Likewise the ‘flip-block’ option and the ‘--top-scrollable’ options have the same available

height. Because ‘position-try-order’ uses a stable sort, these pairs will each retain their relative

positions in the list, with the “*-scrollable” option coming later; and the pair that has the most

space available will come first.

This causes the box to first try to align against the anchor at its natural height on whichever side is

larger (using the base styles or ‘flip-block” styles) but if that causes overflow, it’ll fall back to just

filling the same space and being scrollable instead (using the matching “*-scrollable’ styles), thus

never overflowing and trying to move to the smaller space.

8§ 6.3. The ‘position-try’ Shorthand

Name: ‘position-try’

Value: <'position-try-order™? <'position-try-fallbacks"™

34 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Initial: see individual properties
Applies to: see individual properties
Inherited: see individual properties
Percentages: see individual properties

Computed see individual properties

value:

Animation see individual properties
type:

Canonical per grammar

order:

This shorthand sets both ‘position-try-fallbacks’ and ‘position-try-order’. If <'position-try-order™ is

omitted, it’s set to the property’s initial value.

> 6.4. The ‘@position-try’ Rule

The ‘@position-try’ rule defines a position option with a given name, specifying one or more sets of

positioning properties that can be applied to a box via ‘position-try-fallbacks’,

The syntax of the ‘@position-try’ rule is:

@position-try <dashed-ident> {
<declaration-list>

The <dashed-ident> specified in the prelude is the rule’s name. If multiple ‘(@position-try”’ rules are

declared with the same name, they cascade the same as ‘(@keyframe’ rules do.

The ‘(@position-try” rule only accepts the following properties:

e inset properties

e margin properties

e sizing properties

self-alienment properties

35 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

e ‘position-anchor’

e ‘position-area’

It is invalid to use ‘!limportant” on the properties in the <declaration-list>. Doing so causes the

property it is used on to become invalid, but does not invalidate the ‘@property-try’ rule as a whole.

All of the properties in a ‘@position-try’ are applied to the box as part of the Position Fallback

Origin, a new cascade origin that lies between the Author Origin and the Animation Origin.

Similar to the Animation Origin, use of the ‘revert’ value acts as if the property was part of the Author

Origin, so that it instead reverts back to the User Origin. (As with the Animation Origin, however,
‘revert-layer’ has no special behavior and acts as specified.)

NOTE: The accepted @position-try properties are the smallest group of properties that affect

just the size and position of the box itself, without otherwise changing its contents or styling. This
significantly simplifies the implementation of position fallback while addressing the fundamental
need to move an anchor-positioned box in response to available space. Since these rules override

normal declarations in the Author Origin, this also limits the poor interactions of ‘@position-try’

declarations with the normal cascading and inheritance of other properties. It is expected that a

future extension to container queries will allow querying an element based on the position fallback

it’s using, enabling the sort of conditional styling not allowed by this restricted list.

NOTE: If multiple elements want to use the same ‘(@position-try’ rules, but relative to their

own anchor elements, omit the <anchor-name> in ‘anchor()’ and specify each box’s anchor in

‘position-anchor’ instead.

NOTE: The most common types of fallback positioning (putting the positioned box on one side
of the anchor normally, but flipping to the opposite side if needed) can be done automatically with

keywords in ‘position-try-fallbacks’, without using ‘@position-try’ at all.

. 6.5. Applying Position Fallback

When a positioned box (after applying any default scroll shift) overflows its inset-modified containing

block, and has more than one position option in its position options list, it determines position fallback

styles to attempt to find an option that avoids overflow. The resulting styles are applied to the element
via interleaving, so they affect computed values (and can trigger transitions/etc) even though they

depend on layout and used values.

36 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Implementations may choose to impose an implementation-defined limit on the length of position
options lists, to limit the amount of excess layout work that may be required. This limit must be at

least five.

To determine position fallback styles for an element abspos:

1. Let current styles be the current used styles of abspos (which might be the result of earlier
fallback).

2. For each option in the position options list:

1. If option is currently abspos’s last successful position option, continue.

2. Let adjusted styles be the result of applying a position option option to abspos.

3. Let el rect be the size and position of abspos’s margin box, and cb rect be the size and

position of abspos’s inset-modified containing block, when laid out with adjusted styles.

4. If cb rect was negative-size in either axis and corrected into zero-size, continue.

NOTE: This prevents a zero-size el rect from still being considered "inside" a

negative-size cb rect and getting selected as a successful option.

5. If el rect is not fully contained within cb rect, continue.

6. Return adjusted styles, along with the associated set of remembered scroll offsets that were

hypothetically calculated for them.

3. Assert: The previous step finished without finding a position option that avoids overflow.

4. Return current styles.

NOTE: Descendants overflowing e/ don’t affect this calculation, only e/’s own margin box.

NOTE: Because we purposely skip the position option currently in effect, it doesn’t get its

remembered scroll offsets updated; if none of the other fallbacks work and we stick with the

current styles, all the remembered scroll offsets stay the same.

During a full layout pass, once a box has determined its fallback styles (or determined it’s not using

any), laying out later boxes cannot change this decision.

37 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 10
For example, say you have two positioned boxes, A and B, with A laid out before B. If B
overflows and causes A’s containing block to gain scrollbars, this does not cause A to go back and
re-determine its fallback styles in an attempt to avoid overflowing. (At best, this can result in

exponential layout costs; at worst, it’s cyclic and will never settle.)

Layout does not "go backward", in other words.

. 6.5.1. Maintaining and Clearing Fallback Choices

Some changes to a box have a particularly direct effect on determining position fallback styles and

thus trigger special behavior. These fallback-sensitive changes include:

e [ts computed ‘position’ value has changed, its containing block association has changed, or it no

longer generates a box.

e [ts computed value for any longhand of ‘position-try” has changed.

e Its computed value for any accepted (@position-try property has changed.

e Any of the ‘@position-try’ rules referenced by it have been added, removed, or mutated.

© 6.5.1.1. Recording the last successful position option

In order to maintain layout stability as much as possible, determining position fallback styles

prioritizes the last successful position option, which is determined as follows:

At the time that ResizeObserver events are determined and delivered, the box must record the last

successful position option as follows:

e [f e/ has a last successful position option remove its last successful position option if any

fallback-sensitive changes have occurred. Then, determine position fallback styles for e/ and set

its last successful position option to the set of accepted (@position-try properties (and values) that

it’s now using.

e Otherwise, if a box e/ is absolutely positioned, set its last successful position option to the set of

accepted (@position-try properties (and values) that it’s currently using.

38 0of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

NOTE: The timing of this recording/removal is intentionally identical to the treatment of last

remembered sizes.

ISSUE 7 The following sections attempt to clarify the interaction with transitions and

animations. [Issue #13048

> 6.5.1.2. Suspending Fallback During Transitions

The UA must determine position fallback styles for both the start and end states of a transition (see
[CSS-TRANSITIONS-1]) that includes properties that could cause a fallback-sensitive change.

During a transition for properties that could cause a fallback-sensitive change, however, determining

position fallback styles and recording the last successful position option are suspended.

> 6.5.1.3. Suspending Fallback During Animations

If an animation (see [CSS-ANIMATIONS-1] and [WEB-ANIMATIONS-1]) affects any properties

that could cause a fallback-sensitive change, then the UA must determine position fallback styles for

the keyframes that contain those properties (only). As fallback determination is order-sensitive, later

keyframes must take into account the result of earlier keyframes.

While animating between these keyframes, however, determining position fallback styles and

recording the last successful position option are suspended.

& 6.5.2. Applying Position Options

To apply a position option to a box’s element e/, given a position option new styles:

1. With new styles inserted into the cascade in the position fallback origin, resolve the cascade, and

perform enough layout to determine e/’s used styles.

For the purpose of calculating these styles, a hypothetical anchor recalculation point is calculated,

and the resulting hypothetical remembered scroll offsets are used to determine e/’s styles.

2. Return e/’s used styles.

39 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

To execute a try-tactic to a set of styles of a box’s element e/, between two directions directions,

returning a set of transformed styles:

0. If directions are opposites along the same axis, they are “opposing”. Otherwise (when they are

specifying different axises), they are “perpendicular”.

1. Determine the specified values of the accepted (@position-try properties on e/, and let styles be

the result.

2. Substitute variables, ‘env()’ functions, and similar arbitrary substitution functions in sty/es.

For ‘env()’ functions, if the referenced environment variable is associated with a direction or axis

(such as ‘safe-area-inset-top”), switch the referenced environment variable corresponding to

directions.

EXAMPLE 11

For example, if ‘top: env(safe-area-inset-top):’ is specified, and directions are up and left, the

‘env()” will resolve as if ‘env(safe-area-inset-left)’ had been specified instead. (And then, in

the next step, will actually swap into the ‘left” property.)

3. Swap the values of the s7y/es between the associated properties corresponding to directions.

EXAMPLE 12
For example, if "top" and "left" are being swapped, then the values of ‘margin-top” and
‘margin-left’ are swapped, ‘width’ and ‘height’ are swapped, etc.

NOTE: If the directions are opposites along the same axis, some properties (like ‘width’ or
‘align-self”) wont' swap, since they’re associated with themselves across the two directions,

but their values might be changed by the next step.
4. Modify the values of the properties as they swap to match the new directions, as follows:

o For inset properties, change the specified side in ‘anchor()’ functions to maintain the same

relative relationship to the new direction that they had to the old.

If a <percentage> is used, and directions are opposing, change it to ‘100%’ minus the

original percentage.

40 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

EXAMPLE 13

For example, if "top" and "left" are being swapped, then ‘margin-top: anchor(bottom)’

will become ‘margin-left: anchor(right)’.

If "top" and "bottom" are being swapped, then ‘margin-top: anchor(20%)” will become

‘margin-bottom: anchor(80%)’.

o For sizing properties, change the specified axis in ‘anchor-size()’ functions to maintain the

same relative relationship to the new direction that they had to the old.

EXAMPLE 14 ot

For example, if "top" and "left" are being swapped, then ‘width: anchor-size(width)” will

become ‘height: anchor-size(height)’.

o For the self-alignment properties, if directions are opposing, change the specified <self-

position> (or ‘left’/‘right” keywords), if any, to maintain the same relative relationship to the
new direction that they had to the old.

EXAMPLE 15 =

For example, if "top" and "bottom" are being swapped, then ‘align-self: start’ will

become ‘align-self: end’.

However, ‘align-self: center’ will remain unchanged, as it has the same relationship to

both directions.

Similarly, ‘align-self: first baseline’ will remain unchanged, as it’s a <baseline-position>

rather than a <self-position>.

o For ‘position-area’, change the value so that the selected rows/columns of the position-area

orid maintain the same relative relationship to the new direction that they had to the old.

EXAMPLE 16 e

For example, if "top" and "left" are being swapped, then ‘position-area: left span-

bottom’ will become ‘position-area: top span-right’.

5. Return styles.

8 6.6. Conditional Hiding: the ‘position-visibility’ property

41 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Name: ‘position-visibility’
Value: always | [anchors-valid || anchors-visible || no-overflow]
Initial: anchors-visible

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed as specified

value:

Canonical per grammar
order:

Animation discrete
type:

There are some conditions in which it might not make sense to display an absolutely positioned box.

This property allows such boxes to be made conditionally visible, depending on some commonly

needed layout conditions.

‘always’
This property has no effect. (The box is displayed without regard for its anchors or its

overflowing status.)

‘anchors-valid’
If any of the box’s required anchor references do not resolve to a target anchor element, the box’s

‘visibility’ property computes to ‘force-hidden’.

ISSUE 8 What is a required anchor reference? ‘anchor()’ functions that don’t havea -~

fallback value; the default anchor *sometimes*? Need more detail here.

ISSUE 9 Any anchors are missing, or a// anchors are missing? I can see use-cases for

either, potentially. Do we want to make a decision here, or make it controllable somehow?

‘anchors-visible’
If the box has a default anchor box but that anchor box is invisible or clipped by intervening

boxes, the box’s ‘visibility’ property computes to ‘force-hidden’.

42 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

‘no-overflow’
If the box overflows its inset-modified containing block even after applying ‘position-try’, the

box’s ‘visibility’ property computes to ‘force-hidden’.

An anchor box anchor is clipped by intervening boxes relative to a positioned box abspos relying on it

if anchor’s ink overflow rectangle is fully clipped by a box which is an ancestor of anchor but a
descendant of abspos’s containing block. Clipping in this case refers only to the same clipping effects

that are (by default) checked by IntersectionObserver, i.e. clipping due to ‘clip-path’,

‘overflow’, or other effects (such as paint containment) that clip to the overflow clip edge. If anchor

has non-zero area, it must also have a non-zero intersection area to be considered not fully clipped.

Whether or not anchor is clipped by intervening boxes must be checked after updating content

relevancy for a document (see ‘content-visibility’ in [css-contain-2]) and running any

ResizeObserver, but before running any IntersectionObserver. It may also be checked at

other times to improve responsiveness.

NOTE: This means that if an abspos is next to its anchor in the DOM, for example, it’ll remain

visible even if its default anchor is scrolled off;, since it’s clipped by the same scroller anyway.

ISSUE 10 Make sure this definition of clipped is consistent with View Transitions, which wants

a similar concept.

NOTE: This ensures that in a “chained anchor” situation, if the first abspos is hidden due to this
property (due to its anchor being scrolled off), then another abspos using it as an anchor will also

be hidden, rather than also floating in a nonsensical location.

& 7. Accessibility Implications

CSS Anchor Positioning does not create, delete, or alter any accessibility bindings between

elements. Authors must use appropriate markup features to control such bindings.

Because it can be used in many different ways for many different use cases, CSS Anchor Positioning
does not automatically establish any semantic relationship between a positioned box and any of its
anchors. For example, the visual anchoring relationship in a design might be between an element and
its semantic anchor, or it might connect the element to an ancestor, sibling, or descendant of the
semantic anchor, depending on the desired visual effect. Siimilarly, a design might opt out of a visual

anchoring relationship even while there is a semantic one, or vice versa.

43 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Authors must not rely on the visual connections implied by CSS positioning to link elements together
semantically. Without appropriate markup, the elements linked visually have no meaningful DOM
relationship—which if there is a meaningful relationship, can make them difficult or impossible to use
in non-visual user agents, like screen readers, or in non-graphical navigation modes, such as tab

navigation.

Many features on the web platform, both existing and upcoming, allow establishing semantic
connections explicitly, so that non-visual user agents can also benefit. For example, the Popover API
in HTML automatically links the invoker button to the popover element, including automatically

adjusting tabbing order; it also establishes the invoker button as the implicit anchor element for the

popover, making it easy to use Anchor Positioning as well.

I ISSUE 11 Add a popover example.

In more general cases, ARIA features such as the aria-details or aria-describedby attributes on

an anchor element can create connections in a slightly more manual fashion. In concert with the role
attribute on the positioned element, it allows non-visual user agents to tell their users about the

relationship between the elements and let them automatically navigate between them.

However, authors should not overuse such features either, since overburdening the page with extra,

unnecessary semantic connections can also make the page difficult to comprehend.

ISSUE 12 Suggestions for ways to improve this section, especially author guidance and

examples of best practices for common use cases, is welcome. [Issue #10311

' &. DOM Interfaces

. 8.1. The CSSPositionTryRule interface

The CSSPositionTryRule interface represents the ‘(@position-try’ rule:

[Exposed=Window]
interface CSSPositionTryRule : CSSRule {

readonly attribute CSSOMString name;
[SameObject, PutForwards=cssText] readonly attribute CSSPositionTryDescriptors

}s

[Exposed=Window]
interface CSSPositionTryDescriptors : CSSStyleDeclaration {

44 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

45 of 68

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString

margin;

marginTop;
marginRight;
marginBottom;
marginLeft;
marginBlock;
marginBlockStart;
marginBlockEnd;
marginInline;
marginInlineStart;
marginInlineEnd;
margin-top;
margin-right;
margin-bottom;
margin-left;
margin-block;
margin-block-start;
margin-block-end;
margin-inline;
margin-inline-start;
margin-inline-end;
inset;

insetBlock;
insetBlockStart;
insetBlocREnd;
insetInline;
insetInlineStart;
insetInlineEnd;
top;

Left;

right;

bottom;
inset-blocRk;
inset-block-start;
inset-block-end;
inset-inline;
inset-inline-start;
inset-inline-end;
width;

minWidth;
maxwWidth;

height;

minHeight;

https://drafts.csswg.org/css-anchor-position-1/

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

46 of 68

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

}s

Its name attribute represents the name declared in the rule’s prelude.

Its style attribute represents the properties declared in the rule’s body, in the specified order. On

CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString
CSSOMString

maxHeight;
blockSize;
minBlockSize;
maxBlockSize;
inlineSize;
minInlineSize;
maxInlineSize;
min-width;
max-width;
min-height;
max-height;
block-size;

min-block-size;
max-block-size;

inline-size;

min-inline-size;
max-inline-size;

placeSelf;
alignSelf;
justifySelf;
place-self;
align-self;
Jjustify-self;

positionAnchor;
position-anchor;

positionArea;
position-area;

https://drafts.csswg.org/css-anchor-position-1/

getting, it must return a CSSPositionTryDescriptors object for the ‘@position-try’ at-rule, with

the following properties:

computed flag
Unset

readonly flag
Unset

declarations

The declared descriptors in the rule, in specified order.

parent CSS rule

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

The context object

owner node
Null

8 9. Appendix: Style & Layout Interleaving

Style & layout interleaving is a technique where a style update can occur on a subtree during the

layout process, resulting in retroactive updates to elements’ computed styles.

ISSUE 13 This is not the correct spec for this concept, it should probably go in Cascade, but I 1

need a sketch of it to refer to.

NOTE: Style & layout interleaving is already used with container queries and container query

lengths. A length like ‘10cqw’ is resolved into a computed length using layout information about

the query container’s size, which can thus trigger transitions when the container changes size

between layouts.

The accepted @position-try properties are also interleaved when resolving fallback (see

‘position-try’).

ISSUE 14 Obviously this needs way more details filled in, but for now "act like you already do
for container queries" suffices. That behavior is also undefined, but at least it’s interoperable (to

some extent?).

& 10. Security Considerations

No Security issues have been raised against this document.

8 11. Privacy Considerations

No Privacy issues have been raised against this document.

§ 12. Changes

47 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

Significant changes since the 22 December 2025 Working Draft:

e Clarify positoin fallback interaction with transitions and animation. (Issue 13048)

e Clarify that intersection must be non-zero (when anchor box is non-zero) for ‘anchors-visible’.
(Issue 13176)

Significant changes since the 7 October 2025 Working Dratft:

o Add ‘flip-x’ and ‘flip-y’ to ‘position-try-fallbacks’. (Issue 12869)

e Define ‘anchor-center’ to also use the scrollable containing block so that it doesn’t trigger

overflow alignment when positioned outside the local containing block. (Issue 12952)

e Resolve ‘auto’ margins to zero when ‘position-area’ or ‘anchor-center’ is in effect, due to the ill-

considered HTML UA default stylesheet rules for popovers. Also drop the ‘dialog” alignment

value which was the previous attempt to address this problem. (Issue 10258)

e Add ‘none’ value to ‘position-anchor’ and make it the initial value to avoid switching all

absolutely positioned boxes that have an implicit anchor element to using the scrollable

containing block. Note the initial value may change again, as the discussion is still open... (Issue
13067)

e Clarify that ‘flip-block’, ‘flip-inline’, and ‘flip-start’ use the writing mode of the containing
block. (Issue 12869, Issue 13076)

e Clarify that ‘auto’ ‘inset’ values are treated as zero when finding the inset-modified containing

block size for comparing position options in ‘position-try-order’. (Issue 12942)

e Add ‘clip-path’ to the list of clipping effects considered for ‘anchors-visible’ and clarify the
timing of its checks. (Issue 12732)

¢ Fix error where base styles were accidentally left out of the position options list. (Issue 12890)

e Clarify timing of ‘anchors-visible’ checks. (Issue 12732)

e Clarify that the ‘normal’ alignment resolution based on the ‘position-area’ value affects the used
value (which then keys into how overflow is handled per [CSS-ALIGN-3]).

¢ Fix algorithm error requiring matching tree roots for anchor name matching, since it is sometimes

possible to match across shadow tree boundaries. (Issue 12941)

e Clarify that ‘auto’ ‘inset’ values are treated as zero when finding the inset-modified containing

block size for ‘position-try-order’. (Issue 12942)

e Reorganize prose in § 6 Overflow Management and § 2 Determining the Anchor for better
readability. (Issue 12818, Issue 11022)

e Improve guidance in § 7 Accessibility Implications and clarify UA requirements. (Issue 10311)

48 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

e Improve examples.

See also Previous Changes.

 Conformance

' Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119
terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative
parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,
examples, and notes. [RFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

EXAMPLE 17

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

49 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

v TESTS

Tests relating to the content of this specification may be documented in “Tests” blocks like this

one. Any such block is non-normative.

. Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.

renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool
A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this
module are valid according to the generic CSS grammar and the individual grammars of each feature

defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined
by the appropriate specifications, it supports all the features defined by this specification by parsing
them correctly and rendering the document accordingly. However, the inability of a UA to correctly
render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically
correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

. Partial implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,
user agents must not selectively ignore unsupported component values and honor supported values in

a single multi-value property declaration: if any value is considered invalid (as unsupported values

50 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

must be), CSS requires that the entire declaration be ignored.

. Implementations of Unstable and Proprietary Features

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprietary extensions to CSS.

> Non-experimental implementations

Once a specification reaches the Candidate Recommendation stage, non-experimental
implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working

Group requests that non-experimental CSS renderers submit an implementation report (and, if
necessary, the testcases used for that implementation report) to the W3C before releasing an
unprefixed implementation of any CSS features. Testcases submitted to W3C are subject to review and

correction by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS
Working Group’s website at http://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

 Index

. Terms defined by this specification

acceptable anchor element, in § 2.3 always, in § 6.6
accepted @position-try properties, in § 6.4 anchor, in § 2
align-items, in § 4.2 anchor(), in § 3.2
align-self anchor box, in § 2
(property), in § 4.2 anchor-center, in § 4.2

attribute for CSSPositionTryDescriptors, in § 8.1

anchor element, in § 2.1

alignSelf, in § 8.1
all, in §2.2

anchor functions, in § 1

51 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

52 of 68

<anchor-name>
(type), in § 3.2

value for position-anchor, in § 2.4

anchor name, in § 2.1
anchor-name, in § 2.1

Anchor positioning, in § 1

anchor recalculation point, in § 3.3

anchor reference, in § 1

anchor-scope, in § 2.2
<anchor-side>, in § 3.2
<anchor-size>, in § 5.1
anchor-size(), in § 5

anchor specifier, in § 2.3

anchors-valid, in § 6.6

anchors-visible, in § 6.6

apply a position option, in § 6.5.2

auto, in § 2.4

base style, in § 6.1
block, in § 5.1
block-end, in § 3.1.2
block-size, in § 8.1
blockSize, in § 8.1
block-start, in § 3.1.2

bottom

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

https://drafts.csswg.org/css-

center

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

clipped by intervening boxes, in § 6.6

compensate for scroll, in § 3.3

CSSPositionTryDescriptors, in § 8.1

CSSPositionTryRule, in § 8.1

<dashed-ident>

value for anchor(), in § 3.2

value for anchor-scope, in § 2.2

value for position-try-fallbacks, in § 6.1

<dashed-ident>#, in § 2.1

<dashed-ident> || <try-tactic>, in § 6.1

default anchor box, in § 2.4

default anchor element, in § 2.4

default scroll shift, in § 3.3

determine position fallback styles, in § 6.5

end

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

execute a try-tactic, in § 6.5.2

fallback base styles, in § 6.1

fallback-sensitive changes, in § 6.5.1

flip-block, in § 6.1
flip-inline, in § 6.1
flip-start, in § 6.1
flip-x, in § 6.1
flip-y, in § 6.1

anchor-position-1/

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

53 of 68

height

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor-size(), in § 5.1

implicit anchor element, in § 2.4.1

inline, in § 5.1
inline-end, in § 3.1.2
inline-size, in § 8.1
inlineSize, in § 8.1
inline-start, in § 3.1.2
inset, in § 8.1
inset-block, in § 8.1
insetBlock, in § 8.1

inset-block-end, in § 8.1

insetBlockEnd, in § 8.1

inset-block-start, in § 8.1

insetBlockStart, in § 8.1

inset-inline, in § 8.1
insetInline, in § 8.1

inset-inline-end, in § 8.1

insetInlineEnd, in § 8.1

inset-inline-start, in § 8.1

insetInlineStart, in § 8.1

inside, in § 3.2
interleave, in § 9
justify-items, in § 4.2
justify-self

(property), in § 4.2

attribute for CSSPositionTryDescriptors, in § 8.1

justifySelf, in § 8.1

last successful position option, in § 6.5.1.1

https://drafts.csswg.org/css-anchor-position-1/

left

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

margin, in § 8.1
margin-block, in § 8.1
marginBlock, in § 8.1

margin-block-end, in § 8.1

marginBlockEnd, in § 8.1

margin-block-start, in § 8.1

marginBlockStart, in § 8.1

margin-bottom, in § 8.1

marginBottom, in § 8.1
margin-inline, in § 8.1
marginlnline, in § 8.1

margin-inline-end, in § 8.1

marginlnlineEnd, in § 8.1

margin-inline-start, in § 8.1

marginlnlineStart, in § 8.1

margin-left, in § 8.1
marginLeft, in § 8.1
margin-right, in § 8.1
marginRight, in § 8.1
margin-top, in § 8.1
marginTop, in § 8.1

max-block-size, in § 8.1

maxBlockSize, in § 8.1
max-height, in § 8.1
maxHeight, in § 8.1

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

max-inline-size, in § 8.1

maxInlineSize, in § 8.1
max-width, in § 8.1
maxWidth, in § 8.1

min-block-size, in § 8.1

minBlockSize, in § 8.1
min-height, in § 8.1
minHeight, in § 8.1

min-inline-size, in § 8.1

https://drafts.csswg.org/css-anchor-position-1/

position-anchor
(property), in § 2.4

attribute for CSSPositionTryDescriptors, in § 8.1

positionAnchor, in § 8.1

<position-area>
(type), in § 3.1.2

value for position-area, in § 3.1

value for position-try-fallbacks, in § 6.1

position-area

(property), in § 3.1

attribute for CSSPositionTryDescriptors, in § 8.1

minlnlineSize, in § 8.1

positionArea, in § 8.1
min-width, in § 8.1

position-area grid, in § 3.1.1

minWidth, in § 8.1
Position Fallback Origin, in § 6.4

most-block-size, in § 6.2

position option, in § 6.4

most-height, in § 6.2
position options list, in § 6.1

(@position-try, in § 6.4
position-try, in § 6.3

most-inline-size, in § 6.2

most-width, in § 6.2

name, in § 8.1
position-try-fallbacks, in § 6.1

none
position-try-order, in § 6.2

value for anchor-name, in § 2.1

value for anchor-scope, in § 2.2 position-visibility, in § 6.6

value for position-anchor, in § 2.4

record the last successful position option, in

value for position-area, in § 3.1 §6.5.1.1

value for position-try-fallbacks, in § 6.1 remembered scroll offset, in § 3.3

no-overflow, in § 6.6

required anchor reference, in § 6.6

normal, in § 6.2 resolvable anchor function, in § 3.2.1

outside, in § 3.2 resolvable anchor-size function, in § 5.1.1

<percentage>, in § 3.2 right

place-self, in § 8.1 attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

placeSelf, in § 8.1

value for position-area, <position-area>, in
§3.1.2

54 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

55 of 68

self-block, in § 5.1
self-block-end, in § 3.1.2

self-block-start, in § 3.1.2

self-end

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

self-inline, in § 5.1

self-inline-end, in § 3.1.2

self-inline-start, in § 3.1.2

self-start

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

self-x-end, in § 3.1.2
self-x-start, in § 3.1.2
self-y-end, in § 3.1.2
self-y-start, in § 3.1.2
span-all, in § 3.1.2
span-block-end, in § 3.1.2

span-block-start, in § 3.1.2

span-bottom, in § 3.1.2
span-end, in § 3.1.2

span-inline-end, in § 3.1.2

span-inline-start, in § 3.1.2

span-left, in § 3.1.2
span-right, in § 3.1.2
span-self-block-end, in § 3.1.2

span-self-block-start, in § 3.1.2

span-self-end, in § 3.1.2

span-self-inline-end, in § 3.1.2

https://drafts.csswg.org/css-anchor-position-1/

span-self-inline-start, in § 3.1.2

span-self-start, in § 3.1.2

span-self-x-end, in § 3.1.2

span-self-x-start, in § 3.1.2

span-self-y-end, in § 3.1.2

span-self-y-start, in § 3.1.2

span-start, in § 3.1.2
span-top, in § 3.1.2
span-x-end, in § 3.1.2
span-x-start, in § 3.1.2
span-y-end, in § 3.1.2
span-y-start, in § 3.1.2

start

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

style, in § 8.1

style & layout interleave, in § 9

target anchor element, in § 2.3

top

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in
§3.1.2

<try-size>, in § 6.2
<try-tactic>

type for position-try-fallbacks, in § 6.1

value for position-try-fallbacks, in § 6.1

unresolvable anchor function, in § 3.2.1

unresolvable anchor-size function, in § 5.1.1

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

width

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor-size(), in § 5.1

x-end, in § 3.1.2

8 Terms defined by reference

x-start, in § 3.1.2
y-end, in § 3.1.2
y-start, in § 3.1.2

https://drafts.csswg.org/css-anchor-position-1/

56 of 68

[ARIA-1.3] defines the following terms:

role

[CSS-ALIGN-3] defines the following terms:

<baseline-position>
<self-position>
center

end

normal
self-alignment

self-alignment properties

[CSS-BOX-4] defines the following terms:

border box
margin box
margin edge
margin properties
margin-bottom
margin-left
margin-right

margin-top

[CSS-BREAK-4] defines the following terms:

box fragment
fragment

fragmentation context

[CSS-CASCADE-5] defines the following

terms:
Animation Origin
author origin
computed value
longhand property
property
reset-only sub-property
revert
revert-layer
used value

user origin

[CSS-CASCADE-6] defines the following

terms:

cascade

cascade origin

[CSS-CONDITIONAL-5] defines the

following terms:

container query

container query length

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

[CSS-CONTAIN-2] defines the following [CSS-OVERFLOW-3] defines the following
terms: terms:
containment initial scroll position

content-visibility
layout containment
paint containment

relevant to the user

ink overflow rectangle
overflow
scroll container

scroll offset

skipped contents scrollable overflow area
skipping its contents [CSS-OVERFLOW-4] defines the following
style containment terms:
update content relevancy for a document overflow clip edge
[CSS-DISPLAY-3] defines the following [CSS-POSITION-3] defines the following
terms: terms:
element absolute position
invisible absolute-position containing block

[CSS-DISPLAY-4] defines the following
terms:
containing block
display
force-hidden
principal box
visibility
[CSS-ENV-1] defines the following terms:
env()
environment variable
safe-area-inset-top
[CSS-LOGICAL-1] defines the following
terms:
inset properties
margin-block-end
margin-block-start
margin-inline-start
[CSS-MASKING-1] defines the following
terms:

clip-path

57 of 68

absolutely position

absolutely positioned box
absolutely positioned element
auto

bottom

inset

inset-block-end
inset-block-start
inset-modified containing block
left

original containing block
position

right

top

[CSS-POSITION-4] defines the following

terms:

in a lower top layer
local containing block
scrollable containing block

top layer

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

[CSS-PSEUDO-4] defines the following terms:

tree-abiding pseudo-elements

[CSS-SCOPING-1] defines the following
terms:

flat tree

flattened element tree
loosely matched
strictly matched
tree-scoped name
tree-scoped reference

[CSS-SHADOW-PARTS-1] defines the

following terms:

https://drafts.csswg.org/css-anchor-position-1/

[CSS-VALUES-4] defines the following terms:

#

&&

<dashed-ident>
<length-percentage>
<length>
<percentage>

?

computed length
CSS-wide keywords

math function

::part() {A,B}
[CSS-SIZING-3] defines the following terms: |
height I
max-height [CSS-VALUES-5] defines the following terms:
max-width arbitrary substitution function
min-height invalid at computed-value time
min-width [CSS-VARIABLES-1] defines the following
sizing property terms:
width substitute a var()

[CSS-SIZING-4] defines the following terms: [CSS-VIEWPORT-1] defines the following

last remembered size terms:

[CSS-SYNTAX-3] defines the following terms: zoom

<declaration-list>

[CSS-TRANSFORMS-1] defines the following
terms:

transform

[CSS-TRANSITIONS-1] defines the following
terms:

transitions

58 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

[CSS-WRITING-MODES-4] defines the [DOM] defines the following terms:
following terms: shadow tree
block axis [HTML] defines the following terms:
block-axis input
block-end i

blocke it [INFRA] defines the following terms:

end .
continue

flow-relative for each

horizontal axis

[INTERSECTION-OBSERVER] defines the

horizontal-axis following terms:

horizontal-tb IntersectionObserver

inline axis

[MOTION-1] defines the following terms:

o O
inline-axis offset-path

inline-end

[RESIZE-OBSERVER-1] defines the

inline-start .
following terms:

physieal ResizeObserver

start

[SELECTORS-4] defines the following terms:

vertical axis L
originating element

vertical-axis
pseudo-element

writing mode

[STREAMS] defines the following terms:
[CSSOM-1] defines the following terms:

transform
CSSOMString .
[WEB-ANIMATIONS-1] defines the following
CSSRule
terms:
CSSStyleDeclaration L
animation
computed flag .
[WEBIDL] defines the following terms:
declarations
Exposed
owner node
PutForwards
parent CSS rule .
SameObject
readonly flag

specified order

§ References

§ Normative References

59 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

[CSS-ALIGN-3]
Elika Etemad; Tab Atkins Jr.. CSS Box Alienment Module Level 3. URL: https://drafts.csswg.org/

css-align/
[CSS-BOX-4]
Elika Etemad. CSS Box Model Module Level 4. URL: https://drafts.csswg.ore/css-box-4/

[CSS-BREAK-4]
Rossen Atanassov; Elika Etemad. CSS Fragmentation Module Level 4. URL: https://

drafts.cssweg.org/css-break-4/

[CSS-CASCADE-5]
Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 5. URL:

https://drafts.csswg.org/css-cascade-5/

[CSS-CASCADE-6]
Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 6. URL:

https://drafts.csswg.org/css-cascade-6/

[CSS-CONTAIN-2]
Tab Atkins Jr.; Florian Rivoal; Vladimir Levin. CSS Containment Module Level 2. URL: https://

drafts.csswe.org/css-contain-2/

[CSS-DISPLAY-3]
Elika Etemad; Tab Atkins Jr.. CSS Display Module Level 3. URL: https://drafts.csswg.org/css-
display/

[CSS-DISPLAY-4]
Elika Etemad; Tab Atkins Jr.. CSS Display Module Level 4. URL: https://drafts.csswg.org/css-

display-4/
[CSS-ENV-1]
CSS Environment Variables Module Level 1. URL: https://drafts.csswg.org/css-env-1/

[CSS-LOGICAL-1]
Elika Etemad; Rossen Atanassov. CSS Logical Properties and Values Module Level 1. URL:
https://drafts.csswg.org/css-logical-1/

[CSS-MASKING-1]
Dirk Schulze; Brian Birtles; Tab Atkins Jr.. CSS Masking Module Level 1. URL: https://
drafts.csswg.org/css-masking-1/

[CSS-OVERFLOW-3]
Elika Etemad; Florian Rivoal. CSS Overflow Module Level 3. URL: https://drafts.csswg.org/css-
overflow-3/

[CSS-OVERFLOW-4]
David Baron; Florian Rivoal; Elika Etemad. CSS Overflow Module Level 4. URL: https://

drafts.cssweg.org/css-overflow-4/

60 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

[CSS-POSITION-3]
Elika Etemad; Tab Atkins Jr.. CSS Positioned Layout Module Level 3. URL: https://

drafts.cssweg.org/css-position-3/

[CSS-POSITION-4]
Elika Etemad; Tab Atkins Jr.. CSS Positioned Layout Module Level 4. URL: https://

drafts.csswe.org/css-position-4/

[CSS-PSEUDO-4|
Elika Etemad; Alan Stearns. CSS Pseudo-Elements Module Level 4. URL: https://

drafts.cssweg.org/css-pseudo-4/

[CSS-SCOPING-1]
Tab Atkins Jr.; Elika Etemad. CSS Scoping Module Level 1. URL: https://drafts.csswg.org/css-

scoping/

[CSS-SIZING-3]
Tab Atkins Jr.; Elika Etemad. CSS Box Sizing Module Level 3. URL: https://drafts.csswg.org/css-

sizing-3/

[CSS-SYNTAX-3]
Tab Atkins Jr.; Simon Sapin. CSS Syntax Module Level 3. URL: https://drafts.csswg.org/css-

syntax/

[CSS-TRANSFORMS-1]
Simon Fraser; et al. CSS Transforms Module Level 1. URL: https://drafts.csswg.org/css-

transforms/

[CSS-TRANSITIONS-1]
David Baron; et al. CSS Transitions. URL: https://drafts.csswg.org/css-transitions/

[CSS-VALUES-3]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. URL: https://
drafts.csswe.org/css-values-3/

[CSS-VALUES-4]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. URL: https://
drafts.csswe.org/css-values-4/

[CSS-VALUES-5]
Tab Atkins Jr.; Elika Etemad; Miriam Suzanne. CSS Values and Units Module Level 5. URL:
https://drafts.csswg.org/css-values-5/

[CSS-VARIABLES-1]
Tab Atkins Jr.. CSS Custom Properties for Cascading Variables Module Level 1. URL: https://
drafts.csswe.org/css-variables/

[CSS-VIEWPORT-1]
Florian Rivoal; Emilio Cobos Alvarez. CSS Viewport Module Level 1. URL: https://

61 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

drafts.csswe.org/css-viewport/

[CSS-WRITING-MODES-4]
Elika Etemad; Koji Ishii. CSS Writing Modes Level 4. URL: https://drafts.csswg.org/css-writing-

modes-4/

[CSS2]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. URL: https://

drafts.csswe.org/css2/

[CSSOM-1]
Daniel Glazman; Emilio Cobos Alvarez. CSS Object Model (CSSOM). URL: https://

drafts.csswg.org/cssom/

[HTML]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org/
multipage/

[INFRA]
Anne van Kesteren; Domenic Denicola. /nfra Standard. Living Standard. URL: https://

infra.spec.whatwg.org/

[INTERSECTION-OBSERVER]
Stefan Zager; Emilio Cobos Alvarez; Traian Captan. Intersection Observer. URL: https://

w3c.github.io/IntersectionObserver/

[MOTION-1]
Tab Atkins Jr.; Dirk Schulze; Jihye Hong. Motion Path Module Level 1. URL: https://
drafts.csswe.org/motion-1/

[RESIZE-OBSERVER-1]
Aleks Totic; Greg Whitworth. Resize Observer. URL: https://drafts.csswg.org/resize-observer/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current
Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

[SELECTORS-4]
Elika Etemad; Tab Atkins Jr.. Selectors Level 4. URL: https://drafts.csswg.org/selectors/

[STREAMS]
Adam Rice; et al. Streams Standard. Living Standard. URL: https://streams.spec.whatwg.org/

[WEB-ANIMATIONS-1]
Brian Birtles; et al. Web Animations. URL: https://drafts.csswg.org/web-animations-1/

[WEBIDL]
Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://

webidl.spec.whatwg.org/

62 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

» Informative References

[CSS-ANIMATIONS-1]
David Baron; et al. CSS Animations Level 1. URL: https://drafts.csswg.org/css-animations/

[CSS-CONDITIONAL-5]
Chris Lilley; et al. CSS Conditional Rules Module Level 5. URL: https://drafts.csswg.org/css-

conditional-5/

[CSS-SHADOW-PARTS-1]
Tab Atkins Jr.; Fergal Daly. CSS Shadow Parts Module Level 1. URL: https://drafts.csswg.org/

css-shadow-parts/

[CSS-SIZING-4]
Tab Atkins Jr.; Elika Etemad; Jen Simmons. CSS Box Sizing Module Level 4. URL: https://

drafts.csswg.org/css-sizing-4/

[DOM]
Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

S Property Index
Anim- . Com-
. . . Canonical New
Name Value Initial Applies to Inh. %ages ation puted
order values
type value
‘align- anchor-
items’ center
‘align- anchor-
self’ center
all
elements
none |
‘anchor- that . per as
- <dashed- none no n/a discrete)
name’) generate a grammar specified
ident># ..
principal
box
none | all |
‘anchor- all . per as
<dashed- none no n/a discrete)
scope’) elements grammar specified
ident>#
‘justify- anchor-
items’ center
‘justify- anchor-
self’ center

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

https://drafts.csswg.org/css-anchor-position-1/

Anim- . Com-
. . . Canonical New
Name Value Initial Applies to Inh. %ages ation puted
order values
type value
. none | auto absolutely
‘position- .) per as
| <anchor- none positioned no n/a discrete .
anchor’ grammar specified
name> boxes
.. the
positioned
. keyword
‘ositi none | boxes with
position- er none or a
<position- none a default no n/a TBD P)
area’ grammar pair of
area> anchor
keywords,
box
see
<'position-
try-
‘ositi der'>? see see see see see see
position- order™? er
L individual individual individual individual individual P individual
try’ <'position-)) . . . grammar .
" properties properties properties properties properties properties
I'y_
fallbacks"™
none | [
[<dashed-
‘position- ident> || absolutely
er as
try- <try- none positioned no n/a discrete P .
) grammar specified
fallbacks’ tactic>] | boxes
<position-
area> |#
‘position- absolutely
normal | .) per as
try-] normal positioned no n/a discrete .
<try-size> grammar specified
order’ boxes
always | [
anchors-
. valid || absolutely
‘position- anchors- . . per as
g anchors- . positioned no n/a discrete .
visibility’ . visible grammar specified
visible || boxes
no-
overflow]
& IDL Index
[Exposed=Window]
interface CSSPositionTryRule : CSSRule {

readonly attribute CSSOMString name;

64 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

65 of 68

https://drafts.csswg.org/css-anchor-position-1/

[SameObject, PutForwards=cssText] readonly attribute CSSPositionTryDescriptors

}s

[Exposed=Window]

interface CSSPositionTryDescriptors

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

CSSOMString

margin;

CSSOMString

marginTop;

CSSOMString

marginRight;

CSSOMString

marginBottom;

CSSOMString

marginlLeft;

CSSOMString

marginBlock;

CSSOMString

marginBlockStart;

CSSOMString

marginBlockEnd;

CSSOMString

marginInline;

CSSOMString

marginInlineStart;

CSSOMString

marginInlineEnd;

CSSOMString

margin-top;

CSSOMString

margin-right;

CSSOMString

margin-bottom;

CSSOMString

margin-left;

CSSOMString

margin-block;

CSSOMString

margin-block-start;

CSSOMString

margin-block-end;

CSSOMString

margin-inline;

CSSOMString

margin-inline-start;

CSSOMString

margin-inline-end;

CSSOMString

inset;

CSSOMString

insetBlock;

CSSOMString

insetBlockStart;

CSSOMString

insetBlockEnd;

CSSOMString

insetInline;

CSSOMString

insetInlineStart;

CSSOMString

insetInlineEnd;

CSSOMString
CSSOMString

top;
left;

CSSOMString

right;

CSSOMString

bottom;

CSSOMString

inset-block;

CSSOMString

inset-block-start;

CSSOMString

inset-block-end;

CSSOMString

inset-inline;

CSSOMString

inset-inline-start;

CSSOMString

inset-inline-end;

: CSSStyleDeclaration {

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1

66 of 68

attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString
attribute CSSOMString

};

width;

minWidth;

maxWidth;

height;

minHeight;

maxHeight;

blockSize;

minBlockSize;

maxBlockSize;

inlineSize;

minInlineSize;

maxInlineSize;

min-width;

max-width;

min-height;

max-height;

block-size;

min-block-size;

max-block-size;

inline-size;

min-inline-size;

max-inline-size;

placeSelf;

alignSelf;

justifySelf;

place-self;

align-self;

justify-self;

positionAnchor;

position-anchor;

positionArea;

position-area;

§ Issues Index

https://drafts.csswg.org/css-anchor-position-1/

ISSUE 1

between ‘none’ and ‘auto’ based on ‘position-area’ being used or not. [Issue #13067

We might want to change the initial value to be slightly more magical, auto-choosing

d

2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

ISSUE 2 Add a better example; this one can be accomplished easily with ‘anchor-center’. [Issue

#10776] d

ISSUE 3 Transforms have the same issue as scrolling, so Anchor Positioning similarly doesn’t

pay attention to them normally. Can we go ahead and incorporate the effects of transforms here? «

ISSUE 4 Define the precise timing of the snapshot: updated each frame, before style recalc. «

ISSUE 5 Similar to remembered scroll offset, can we pay attention to transforms on the default

anchor element? d

ISSUE 6 Add a picture! d

ISSUE 7 The following sections attempt to clarify the interaction with transitions and

animations. [Issue #13048] d

ISSUE 8 What is a required anchor reference? ‘“anchor()’ functions that don’t have a fallback
value; the default anchor *sometimes*? Need more detail here. d

ISSUE 9 Any anchors are missing, or a/l/ anchors are missing? I can see use-cases for either,

potentially. Do we want to make a decision here, or make it controllable somehow? 4

ISSUE 10 Make sure this definition of clipped is consistent with View Transitions, which wants

a similar concept. d

ISSUE 11 Add a popover example. 4

ISSUE 12 Suggestions for ways to improve this section, especially author guidance and

examples of best practices for common use cases, is welcome. [Issue #10311] 4

ISSUE 13 This is not the correct spec for this concept, it should probably go in Cascade, but I
need a sketch of it to refer to. d

67 of 68 2026-01-11, 07:05

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

ISSUE 14 Obviously this needs way more details filled in, but for now "act like you already do
for container queries" suffices. That behavior is also undefined, but at least it’s interoperable (to

some extent?). 4

68 of 68 2026-01-11, 07:05

