
CSS Anchor Positioning Module
Level 1
Editor’s Draft, 22 December 2025

More details about this document

https://drafts.csswg.org/css-anchor-position-1/

https://www.w3.org/TR/css-anchor-position-1/

CSSWG Issues Repository

Inline In Spec

Tab Atkins-Bittner (Google)

Elika J. Etemad / fantasai (Apple)

Ian Kilpatrick (Google)

Jhey Tompkins (Google)

GitHub Editor

Copyright © 2025 World Wide Web Consortium. W3C® liability, trademark and permissive document license rules apply.

This specification defines anchor positioning, where a positioned element can size and position itself

relative to one or more “anchor elements” elsewhere on the page.

CSS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

This version:

Latest published version:

Feedback:

Editors:

Former Editor:

Suggest an Edit for this Spec:

Abstract

Status of this document

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

1 of 68 2026-01-11, 07:05

This is a public copy of the editors’ draft. It is provided for discussion only and may change at any

moment. Its publication here does not imply endorsement of its contents by W3C. Don’t cite this

document other than as work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-anchor-

position” in the title, like this: “[css-anchor-position] …summary of comment…”. All issues and

comments are archived. Alternately, feedback can be sent to the (archived) public mailing list www-

style@w3.org.

This document is governed by the 18 August 2025 W3C Process Document.

Table of Contents

1 Introduction

1.1 Value Definitions

2 Determining the Anchor

2.1 Creating an Anchor: the ‘anchor-name’ property

2.2 Scoping Anchor Names: the ‘anchor-scope’ property

2.3 Finding an Anchor

2.4 Default Anchors: the ‘position-anchor’ property

2.4.1 Implicit Anchor Elements

2.5 Anchor Relevance

3 Anchor-Based Positioning

3.1 The ‘position-area’ Property

3.1.1 Resolving the Position Area Grid

3.1.2 Syntax of <position-area> Values

3.1.3 Computed Value and Serialization of <position-area>

3.2 Anchor-relative Insets: the ‘anchor()’ function

3.2.1 Resolution of ‘anchor()’

3.3 Taking Scroll Into Account

4 Anchor-Based Alignment

4.1 Area-specific Default Alignment

4.2 Centering on the Anchor: the ‘anchor-center’ alignment value

5 Anchor-Based Sizing

5.1 The ‘anchor-size()’ Function

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

2 of 68 2026-01-11, 07:05

5.1.1 Resolution of ‘anchor-size()’

6 Overflow Management

6.1 Giving Fallback Options: the ‘position-try-fallbacks’ property

6.2 Determining Fallback Order: the ‘position-try-order’ property

6.3 The ‘position-try’ Shorthand

6.4 The ‘@position-try’ Rule

6.5 Applying Position Fallback

6.5.1 Maintaining and Clearing Fallback Choices

6.5.1.1 Recording the last successful position option

6.5.1.2 Suspending Fallback During Transitions

6.5.1.3 Suspending Fallback During Animations

6.5.2 Applying Position Options

6.6 Conditional Hiding: the ‘position-visibility’ property

7 Accessibility Implications

8 DOM Interfaces

8.1 The CSSPositionTryRule interface

9 Appendix: Style & Layout Interleaving

10 Security Considerations

11 Privacy Considerations

12 Changes

Conformance

Document conventions

Conformance classes

Partial implementations

Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index

Terms defined by this specification

Terms defined by reference

References

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

3 of 68 2026-01-11, 07:05

CSS absolute positioning allows authors to place boxes anywhere on the page, without regard to the

layout of other boxes besides their containing block. This flexibility can be very useful, but also very

limiting—often you want to position relative to some other box. Anchor positioning (via the

‘position-anchor’ and ‘position-area’ properties and/or the anchor functions ‘anchor()’ and ‘anchor-

size()’) allows authors to achieve this, “anchoring” an absolutely positioned box to one or more other

boxes on the page (its anchor references, while also allowing them to try several possible positions to

find the “best” one that avoids overlap/overflow.

Normative References

Informative References

Property Index

IDL Index

Issues Index

1. Introduction

EXAMPLE 1

For example, an author might want to position a tooltip centered and above the targeted element,

unless that would place the tooltip offscreen, in which case it should be below the targeted

element. This can be done with the following CSS:

.anchor {

anchor-name: --tooltip;

}

.tooltip {

/* Fixpos means we don't need to worry about

 containing block relationships;

 the tooltip can live anywhere in the DOM. */

 position: fixed;

/* All the anchoring behavior will default to

 referring to the --tooltip anchor. */

 position-anchor: --tooltip;

/* Align the tooltip's bottom to the top of the anchor;

 this also defaults to horizontally center-aligning

 the tooltip and the anchor (in horizontal writing modes). */

 position-area: block-start;

/* Automatically swap if this overflows the window

 so the tooltip's top aligns to the anchor's bottom

 instead. */

 position-try: flip-block;

/* Prevent getting too wide */

 max-inline-size: 20em;

}

Note that using the Popover API will automatically set ‘position’ and create the anchoring

relationship without setting ‘anchor-name’ or ‘position-anchor’ value (by defining an implicit

anchor element), so those properties wouldn’t need to be explicitly set again. So with the correct

markup, this example can be simplified to:

.tooltip {

/* Using the popover + popovertarget attributes sets 'position: fixed'

 and creates the necessary position-anchor relationship already. */

 position-area: block-start;

This specification follows the CSS property definition conventions from [CSS2] using the value

definition syntax from [CSS-VALUES-3]. Value types not defined in this specification are defined in

CSS Values & Units [CSS-VALUES-3]. Combination with other CSS modules may expand the

definitions of these value types.

In addition to the property-specific values listed in their definitions, all properties defined in this

specification also accept the CSS-wide keywords as their property value. For readability they have not

been repeated explicitly.

Like most operations in CSS besides selector matching, features in this specification operate over the

flattened element tree.

Several features of this specification refer to the position and size of an anchor box. Unless otherwise

specified, this refers to the border box edge of the principal box of relevant anchor element. In most

cases the relevant anchor element is specified as the default anchor element using the

‘position-anchor’ property, which can refer to an implicit anchor element defined by the host language

or an anchor named via the CSS ‘anchor-name’ and ‘anchor-scope’ properties. (The ‘anchor()’

functions can also reference a named anchor directly.)

The anchor box’s position and size is determined after layout. This position and size includes ‘zoom’

and ‘position’-based adjustments (such as ‘position: relative’ or ‘position: sticky’) as well as

transforms (such as ‘transform’ or ‘offset-path’). In these cases, the axis-aligned bounding rectangle of

the anchor box in the coordinate space of the absolutely positioned element’s containing block is used

instead. Transforms are often optimized onto a different thread, so transform-based updates to an

anchor box’s position may be delayed by a few frames. Authors can avoid this delay by using absolute

or relative positioning instead where practical.

If the anchor box is fragmented, and the containing block of the absolutely positioned box referring to

that anchor box is outside the relevant fragmentation context, the axis-aligned bounding rectangle of

position-try: flip-block;

max-inline-size: 20em;

}

1.1. Value Definitions

its box fragments is used instead. (If the absolutely positioned box is inside the fragmentation context,

it sees the anchor box as unfragmented—and can be itself fragmented by the fragmentation context.)

For performance reasons, scrolling is handled specially, see § 3.3 Taking Scroll Into Account. Other

post-layout effects, such as filters, do not affect the anchor box’s position.

Name: ‘anchor-name’

Value: none | <dashed-ident>#

Initial: none

Applies to: all elements that generate a principal box

Inherited: no

Percentages: n/a

Computed

value:

as specified

Canonical

order:

per grammar

Animation

type:

discrete

The ‘anchor-name’ property declares that an element is an anchor element, whose principal box is an

anchor box, and gives it a list of anchor names to be targeted by. Values are defined as follows:

The property has no effect.

If the element generates a principal box, the element is an anchor element, with a list of anchor

names as specified. Each anchor name is a loosely matched tree-scoped name.

Otherwise, the property has no effect.

Anchor names do not need to be unique. Not all elements are capable of being the target anchor

2.1. Creating an Anchor: the ‘anchor-name’ property

element of a given box. Thus a name can be reused in multiple places if the usages are scoped

appropriately.

Anchor names are not scoped by containment by default; even if an element has style or layout

containment (or any similar sort of containment), the anchor names of its descendants are visible to

elements elsewhere in the page.

Name: ‘anchor-scope’

Value: none | all | <dashed-ident>#

Initial: none

Applies to: all elements

Inherited: no

Percentages: n/a

Computed

value:

as specified

Canonical

order:

per grammar

NOTE: If multiple elements share an anchor name and are all visible to a given positioned box,

the target anchor element will be the last one in DOM order. The ‘anchor-scope’ property can be

used to further limit what names are visible to a given referencing box.

NOTE: While an element is in the skipped contents of another element (due to ‘content-

visibility: hidden’, for instance), it’s not an acceptable anchor element, effectively acting as if it

had no names.

NOTE: Positioned elements in shadow trees can reference anchor names defined in “higher”

trees. Currently, they cannot reference anchor names defined in “lower” shadow trees, though.

2.2. Scoping Anchor Names: the ‘anchor-scope’ property

Animation

type:

discrete

This property scopes the specified anchor names, and lookups for these anchor names, to this

element’s subtree. See § 2 Determining the Anchor.

Values have the following meanings:

No changes in anchor name scope.

Specifies that all anchor names defined by this element or its descendants—whose scope is not

already limited by a descendant using ‘anchor-scope’—to be in scope only for this element’s

descendants; and limits descendants to only match anchor names to anchor elements within this

subtree.

This value only affects anchor names in the same tree scope, as if it were a strictly matched tree-

scoped name. (That is, ‘anchor-scope: all’ acts identically to ‘anchor-scope: --foo, --bar, ...’,

listing all relevant anchor names.)

Specifies that a matching anchor name defined by this element or its descendants—whose scope

is not already limited by a descendant using ‘anchor-scope’—to be in scope only for this

element’s descendants; and limits descendants to only match these anchor names to anchor

elements within this subtree.

The <dashed-ident> represents a strictly matched tree-scoped name, i.e. it can only match against

anchor names in the same shadow tree.[CSS-SCOPING-1]

This property has no effect on implicit anchor elements.

‘none’

‘all’

‘<dashed-ident>’

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

9 of 68 2026-01-11, 07:05

Several things in this specification find a target anchor element, given an anchor specifier, which is

either a <dashed-ident> (and a tree-scoped reference) that should match an ‘anchor-name’ value

elsewhere on the page, or the keyword ‘auto’, or nothing (a missing specifier).

To determine the target anchor element given a querying element query el and an optional anchor

specifier anchor spec:

EXAMPLE 2

When a design pattern is re-used, ‘anchor-scope’ can prevent naming clashes across identical

components. For example, if a list contains positioned elements within each list item, which want

to position themselves relative to the list item they’re in,

li {

anchor-name: --list-item;

anchor-scope: --list-item;

}

li .positioned {

position: absolute;

position-anchor: --list-item;

position-area: inline-start;

}

Without ‘anchor-scope’, all of the elements would be visible to all of the positioned elements,

and so they’d all positioned themselves relative to the final , stacking up on top of each other.

An element possible anchor is an acceptable anchor element for an absolutely positioned element

positioned el if all of the following are true:

1. If query el has an implicit anchor element that is an acceptable anchor element, return that

element.

2. Otherwise, return nothing.

NOTE: Future APIs might also define implicit anchor elements. When they do, they’ll be

explicitly handled in this algorithm, to ensure coordination.

3. Otherwise, anchor spec is a <dashed-ident>. Return the last element el in tree order that satisfies

the following conditions:

If no element satisfies these conditions, return nothing.

el is an anchor element with an anchor name of anchor spec.

el’s anchor name loosely matches anchor spec.

NOTE: The anchor name is a tree-scoped name, while anchor spec is a tree-scoped

reference.

el is an acceptable anchor element for query el.

NOTE: ‘anchor-scope’ can restrict the visibility of certain anchor names, which can affect

what elements can be anchor elements for a given lookup.

NOTE: An ‘anchor-name’ defined by styles in one shadow tree won’t be seen by anchor

functions in styles in a different shadow tree, preserving encapsulation. However, elements in

different shadow trees can still anchor to each other, so long as both the ‘anchor-name’ and anchor

function come from styles in the same tree, such as by using ‘::part()’ to style an element inside a

shadow. (Implicit anchor elements also aren’t intrinsically limited to a single tree, but the details of

that will depend on the API assigning them.)

possible anchor is either an element or a fully styleable tree-abiding pseudo-element.

possible anchor is in scope for positioned el, per the effects of ‘anchor-scope’ on possible anchor

or its ancestors.

possible anchor is laid out strictly before positioned el, aka one of the following is true:

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

11 of 68 2026-01-11, 07:05

possible anchor and positioned el have the same original containing block and either

possible anchor is in a lower top layer than positioned el, or

they both exist in the same top layer, but possible anchor is either not absolutely

positioned or occurs earlier in the flat tree order than positioned el

The element generating possible anchor’s containing block (if one exists) is an acceptable

anchor element for positioned el

If possible anchor is in the skipped contents of another element, then positioned el is in the

skipped contents of that same element.

NOTE: In other words, positioned el can anchor to possible anchor if they’re both in the

same skipped "leaf", but it can’t anchor "across" leafs. This means skipping an element that

contains both of them won’t suddenly cause the positioned el to move to another anchor, but

still prevents positioned elements elsewhere in the page from anchoring to the skipped

element.

2.4. Default Anchors: the ‘position-anchor’ property

Name: ‘position-anchor’

Value: none | auto | <anchor-name>

Initial: none

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed

value:

as specified

Canonical

order:

per grammar

Animation

type:

discrete

The ‘position-anchor’ property specifies the default anchor element, which is used by ‘position-area’,

‘position-try’, and (by default) all anchor functions applied to this element. ‘position-anchor’ is a

reset-only sub-property of ‘position’.

The box has no default anchor element.

Use the implicit anchor element if it exists; otherwise the box has no default anchor element.

The target anchor element selected by the specified <anchor-name> is the box’s default anchor

element.

The principal box of the default anchor element is the box’s default anchor box.

‘none’

‘auto’

‘<anchor-name>’

ISSUE 1 We might want to change the initial value to be slightly more magical, auto-choosing

between ‘none’ and ‘auto’ based on ‘position-area’ being used or not. [Issue #13067]

Some specifications can define that, in certain circumstances, a particular element is an implicit

anchor element for another element.

Implicit anchor elements can be referenced with the ‘auto’ keyword in ‘position-anchor’, or by

omitting the anchor reference in anchor functions.

The implicit anchor element of a pseudo-element is its originating element, unless otherwise specified.

When determining whether an element el is relevant to the user, if a descendant of el is a target anchor

element for a positioned box (which itself is not skipped and whose containing block is not el or a

descendant of el), then el must be considered relevant to the user.

EXAMPLE 3

For example, in the following code both ‘.foo’ and ‘.bar’ elements can use the same positioning

properties, just changing the anchor element they’re referring to:

.anchored {

position: absolute;

top: calc(.5em + anchor(outside));

/* Since no anchor name was specified,

 this automatically refers to the

 default anchor box. */

}

.foo.anchored {

position-anchor: --foo;

}

.bar.anchored {

position-anchor: --bar;

}

An absolutely positioned box can position itself relative to one or more anchor boxes on the page.

The ‘position-area’ property offers a convenient grid-based concept for positioning relative to the

default anchor box; for more complex positioning or positioning relative to multiple boxes, the

‘anchor()’ function can be used in the inset properties to explicitly refer to edges of an anchor box.

Name: ‘position-area’

Value: none | <position-area>

Initial: none

Applies to: positioned boxes with a default anchor box

Inherited: no

Percentages: n/a

Computed

value:

the keyword ‘none’ or a pair of keywords, see § 3.1.3 Computed Value and

Serialization of <position-area>

Canonical

order:

per grammar

Animation

type:

TBD

Most common use-cases of anchor positioning are only concerned with the edges of the positioned

box’s containing block and the edges of the default anchor box. These lines can be thought of as

NOTE: This means that, for example, an anchor in a ‘content-visibility: auto’ subtree will

prevent its subtree from skipping its contents as long as the positioned box relying on it is also not

skipped. (Unless the anchor and the positioned box are both under the same ‘content-visibility:

auto’ element; they can’t cyclicly keep each other visible.)

3. Anchor-Based Positioning

defining a 3×3 grid; ‘position-area’ lets you easily specify what area of this position-area grid to lay

out the positioned box in.

Figure 1 An example of ‘position-area: top left’ positioning in a ‘horizontal-tb’ ‘ltr’ writing mode.

The property has no effect.

If the box does not have a default anchor box, or is not an absolutely positioned box, this value

has no effect.

Otherwise, selects a region of the position-area grid, and makes that the box’s containing block.

Values other than ‘none’ have the following additional effects:

‘none’

‘<position-area>’

NOTE: This means that the inset properties specify offsets from the position-area, and

some property values, like ‘max-height: 100%’, will be relative to the position-area as well.

The scrollable containing block is used in place of the local containing block when the absolute-

position containing block is generated by a scroll container, so that the entire scrollable overflow

area (typically) is available for positioning.

The used value of any ‘auto’ inset properties and ‘auto’ margin properties resolves to ‘0’.

The ‘normal’ value for the self-alignment properties resolves to a corresponding value, see § 4.1

Area-specific Default Alignment.

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

16 of 68 2026-01-11, 07:05

The position-area grid is a 3×3 grid, composed of four grid lines in each axis. In order (using the

writing mode of the containing block):

Positions are specified as a pair of values, which can be expressed in flow-relative or physical terms.

The allowed syntax of a <position-area> value is:

<position-area> = [

 [left | center | right | span-left | span-right

| x-start | x-end | span-x-start | span-x-end

| self-x-start | self-x-end | span-self-x-start | span-self-x-end

| span-all]

||

 [top | center | bottom | span-top | span-bottom

| y-start | y-end | span-y-start | span-y-end

| self-y-start | self-y-end | span-self-y-start | span-self-y-end

| span-all]

|

 [block-start | center | block-end | span-block-start | span-block-end | span-all]

||

 [inline-start | center | inline-end | span-inline-start | span-inline-end

| span-all]

|

 [self-block-start | center | self-block-end | span-self-block-start

| span-self-block-end | span-all]

||

 [self-inline-start | center | self-inline-end | span-self-inline-start

3.1.1. Resolving the Position Area Grid

| span-self-inline-end | span-all]

|

 [start | center | end | span-start | span-end | span-all]{1,2}

|

 [self-start | center | self-end | span-self-start | span-self-end | span-all]{1,2}

]

The <position-area> value selects a region of the position-area grid by specifying the rows and

columns the region occupies as follows:

The single corresponding row or column, depending on which axis this keyword is specifying.

Like in ‘anchor()’, the plain logical keywords (‘start’, ‘end’, etc) refer to the writing mode of the

box’s containing block. The ‘x-start’/etc determine their direction in the same way, but in the

specified physical axis.

The ‘self-*’ logical keywords (‘self-start’, ‘self-x-end’, etc) are identical, but refer to the box’s

own writing mode.

Two adjacent rows or columns, depending on which axis this keyword is specifying: the center

row/column, and the row/column corresponding to the other half of the keyword as per the

single-track keywords.

(For example, ‘span-top’ spans the first two rows—the center row and the top row.)

All three rows or columns, depending on which axis this keyword is specifying.

Some keywords are ambiguous about what axis they refer to: ‘center’, ‘span-all’, and the ‘start’/etc

keywords that don’t specify the block or inline axis explicitly. If the other keyword is unambiguous

about its axis, then the ambiguous keyword is referring to the opposite axis. (For example, in ‘block-

start center’, the ‘center’ keyword is referring to the inline axis.) If both keywords are ambiguous,

however, then the first refers to the block axis of the box’s containing block, and the second to the

‘start’, ‘end’, ‘self-start’, ‘self-end’
‘top’, ‘bottom’, ‘left’, ‘right’
‘y-start’, ‘y-end’, ‘self-y-start’, ‘self-y-end’
‘x-start’, ‘x-end’, ‘self-x-start’, ‘self-x-end’
‘block-start’, ‘block-end’, ‘self-block-start’, ‘self-block-end’
‘inline-start’, ‘inline-end’, ‘self-inline-start’, ‘self-inline-end’
‘center’

‘span-start’, ‘span-end’, ‘span-self-start’, ‘span-self-end’
‘span-top’, ‘span-bottom’, ‘span-left’, ‘span-right’
‘span-y-start’, ‘span-y-end’, ‘span-self-y-start’, ‘span-self-y-end’
‘span-x-start’, ‘span-x-end’, ‘span-self-x-start’, ‘span-self-x-end’
‘span-block-start’, ‘span-block-end’, ‘span-self-block-start’, ‘span-self-block-end’
‘span-inline-start’, ‘span-inline-end’, ‘span-self-inline-start’, ‘span-self-inline-end’

‘span-all’

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

18 of 68 2026-01-11, 07:05

inline axis. (For example, ‘span-all start’ is equivalent to ‘span-all inline-start’.)

If only a single keyword is given, it behaves as if the second keyword is ‘span-all’ if the given

keyword is unambigous about its axis; otherwise, it behaves as if the given keyword was repeated.

(For example, ‘top’ is equivalent to ‘top span-all’, but ‘center’ is equivalent to ‘center center’.)

The computed value of a <position-area> value is the two keywords indicating the selected tracks in

each axis, with the long (‘block-start’) and short (‘start’) logical keywords treated as equivalent. It

serializes in the order given in the grammar (above), with the logical keywords serialized in their short

forms (e.g. ‘start start’ instead of ‘block-start inline-start’).

An absolutely positioned box can use the ‘anchor()’ function as a value in its inset properties to refer

to the position of one or more anchor boxes. The ‘anchor()’ function resolves to a <length>. It is only

allowed in the inset properties (and is otherwise invalid).

Name: ‘top’, ‘left’, ‘right’, ‘bottom’

New

values:

<anchor()>

<anchor()> = anchor(<anchor-name>? && <anchor-side>, <length-percentage>?)

<anchor-name> = <dashed-ident>

<anchor-side> = inside | outside

| top | left | right | bottom

| start | end | self-start | self-end

| <percentage> | center

The ‘anchor()’ function has three arguments:

3.1.3. Computed Value and Serialization of <position-area>

An ‘anchor()’ function representing a resolvable anchor function resolves at computed value time

(using style & layout interleaving) to the <length> that would align the edge of the positioned boxes'

inset-modified containing block corresponding to the property the function appears in with the

specified edge of the target anchor element’s anchor box.

Selects the default anchor element defined for the box, if possible.

See target anchor element for details.

the <anchor-side> value refers to the position of the corresponding side of the target anchor

element. Its possible values are:

Resolves to one of the anchor box’s sides, depending on which inset property it’s used in.

‘inside’ refers to the same side as the inset property (attaching the positioned box to the

"inside" of the anchor box), while ‘outside’ refers to the opposite.

Refers to the specified side of the anchor box.

Refers to one of the sides of the anchor box in the same axis as the inset property it’s used

in, by resolving the keyword against the writing mode of either the positioned box (for ‘self-

start’ and ‘self-end’) or the positioned box’s containing block (for ‘start’ and ‘end’).

Refers to a position a corresponding percentage between the ‘start’ and ‘end’ sides, with

‘0%’ being equivalent to ‘start’ and ‘100%’ being equivalent to ‘end’.

‘center’ is equivalent to ‘50%’.

‘inside’
‘outside’

‘top’
‘right’
‘bottom’
‘left’

NOTE: These are only usable in the inset properties in the matching axis. For

example, ‘left’ is usable in ‘left’, ‘right’, or the logical inset properties that refer to the

horizontal axis.

‘start’
‘end’
‘self-start’
‘self-end’

‘<percentage>’
‘center’

the optional <length-percentage> final argument is a fallback value, specifying what the function

should compute to if it’s an unresolvable anchor function.

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

20 of 68 2026-01-11, 07:05

NOTE: This means that transitions or animations of a property using an anchor function will

work "as expected" for all sorts of possible changes: the anchor box moving, anchor elements

being added or removed from the document, the ‘anchor-name’ property being changed on

anchors, etc.

EXAMPLE 5

For example, in ‘.bar { inset-block-start: anchor(--foo block-start); }’, the ‘anchor()’ will resolve

to the length that’ll line up the .bar element’s block-start edge with the ‘--foo’ anchor’s block-

start edge.

On the other hand, in ‘.bar { inset-block-end: anchor(--foo block-start); }’, it will instead resolve

to the length that’ll line up the .bar element’s block-end edge with the ‘--foo’ anchor’s block-start

edge.

Since ‘inset-block-start’ and ‘inset-block-end’ values specify insets from different edges (the

block-start and block-end of the element’s containing block, respectively), the same ‘anchor()’ will

usually resolve to different lengths in each.

An ‘anchor()’ function is a resolvable anchor function only if all the following conditions are true:

EXAMPLE 6

Because the ‘anchor()’ function resolves to a <length>, it can be used in math functions like any

other length.

For example, the following will set up the element so that its inset-modified containing block is

centered on the anchor box and as wide as possible without overflowing the containing block:

.centered-message {

position: fixed;

max-width: max-content;

justify-self: center;

--center: anchor(--x 50%);

--half-distance: min(

abs(0% - var(--center)),

abs(100% - var(--center))

);

left: calc(var(--center) - var(--half-distance));

right: calc(var(--center) - var(--half-distance));

bottom: anchor(--x top);

}

This might be appropriate for an error message on an <input> element, for example, as the

centering will make it easier to discover which input is being referred to.

If any of these conditions are false, the ‘anchor()’ function computes to its specified fallback value. If

no fallback value is specified, it makes the declaration referencing it invalid at computed-value time.

For performance reasons, implementations usually perform scrolling on a separate

scrolling/"compositing" thread, which has very limited capabilities (simple movement/transforms/etc.,

but no layout or similar expensive operations) and thus can be relied upon to respond to scrolling fast

enough to be considered "instant" to human perception.

If scrolling just causes an anchor-positioned element to move, there is in theory no issue; the

movement can be performed on the scrolling thread so the positioned element moves smoothly with

the scrolling content. However, anchor positioning allows an element to make the positions of its own

opposite edges depend on things in different scrolling contexts, which means scrolling could move just

one edge and cause a size change, and thus perform layout. This can’t be performed on the scrolling

thread!

To compensate for this, while still allowing as much freedom to anchor to various elements as

possible, anchor positioning uses a combination of remembered scroll offsets and compensating for

scroll.

in the function.

3.3. Taking Scroll Into Account

An anchor recalculation point occurs for an absolutely positioned element whenever that element

begins generating boxes (aka switches from ‘display:none’ or ‘display:contents’ to any other ‘display’

value), identical to when it starts running CSS animations.

An anchor recalculation point also occurs for an element when determining position fallback styles for

that element; if it changes fallback styles as a result, it uses the result of the anchor recalculation point

associated with the chosen set of fallback styles.

When an anchor recalculation point occurs for an element abspos, then for every element anchor

referenced by one of abspos’s anchor references, it associates a remembered scroll offset equal to the

current sum of the scroll offsets of all scroll container ancestors of anchor, up to but not including

abspos’s containing block. The remembered scroll offset also accounts for other scroll-dependent

positioning changes, such as ‘position: sticky’. If abspos has a default anchor element, it always

calculates a remembered scroll offset for it, even if abspos doesn’t actually have an anchor reference

to it.

All anchor references are calculated as if all scroll containers were at their initial scroll position, and

then have their associated remembered scroll offset added to them.

The details here are technical, but the gist is:

The end result is that anchor positioning should generally "just work", regardless of what the

element is anchoring to, but it might be limited in how it can respond to scrolling.

When a positioned element is first displayed, or when it changes fallbacks, its position is

correctly calculated according to the up-to-date position of all anchor references.

If these anchor references are in a different scroll context, their total scroll offsets are

memorized, and layout will continue using those memorized offsets, even if those elements

are scrolled later. (Only the scroll offsets are memorized; their actual laid-out positions are

freshly calculated each time and remain accurate.) They’ll only recalculate if the positioned

element stops being displayed and starts again, or changes fallbacks.

The one exception to this is the default anchor element; if it’s scrolled away from its

remembered scroll offset, the positioned element moves with it. Because this is *purely* a

shift in position, the positioned element can’t change size or otherwise require layout in

response.

ISSUE 3 Transforms have the same issue as scrolling, so Anchor Positioning similarly doesn’t

pay attention to them normally. Can we go ahead and incorporate the effects of transforms here?

The above allows a positioned element to respond to the scroll positions of its anchor references once,

but if any of them are scrolled, the positioned element will no longer appear to be anchored to them

(tho it will continue to respond to their non-scrolling movement). While this problem can’t be solved

in general, we can respond to the scrolling of one anchor reference; specifically, the default anchor

element:

An absolutely positioned box abspos compensates for scroll in the horizontal or vertical axis if both

of the following conditions are true:

abspos’s default scroll shift is a pair of lengths for the horizontal and vertical axises, respectively.

Each length is calculated as:

After layout has been performed for abspos, it is additionally shifted by the default scroll shift, as if

affected by a transform (before any other transforms).

abspos has a default anchor box.

abspos has an anchor reference to its default anchor box or at least to something in the same

scrolling context, aka at least one of:

abspos’s used self-alignment property value in that axis is ‘anchor-center’;

abspos has a non-‘none’ value for ‘position-area’

at least one ‘anchor()’ function on abspos’s used inset properties in the axis refers to a target

anchor element with the same nearest scroll container ancestor as abspos’s default anchor

box.

NOTE: If abspos has a position options list, then whether it compensates for scroll in an axis is

also affected by the applied fallback style.

If abspos is compensating for scroll in the axis, then the length is the difference between the

remembered scroll offset of the default anchor element and what its current remembered scroll

offset would be if it were recalculated.

Otherwise, the length is 0.

ISSUE 4 Define the precise timing of the snapshot: updated each frame, before style recalc.

When ‘position-area’ is not ‘none’, the used value of ‘normal’ self-alignment changes depending on

the <position-area> value, to align the box towards the anchor:

However, if only one inset property in the relevant axis is ‘auto’, the default alignment is instead

towards the edge with the non-‘auto’ inset; and this is an ‘unsafe’ alignment.

NOTE: While remembered scroll offsets affect the value of ‘anchor()’ functions, default scroll

shift directly shifts the element, after determining the value of its inset properties, applying

alignment, etc. This is usually indistinguishable, but cases like ‘round(anchor(outside), 50px)’,

which transform the default anchor element’s position in a non-linear fashion, will expose the

difference in behavior.

4. Anchor-Based Alignment

Name: ‘justify-self’, ‘align-self’, ‘justify-items’, ‘align-items’

New

values:

anchor-center

The self-alignment properties allow an absolutely positioned box to align itself within the inset-

modified containing block. The existing values, plus carefully chosen inset properties, are usually

enough for useful alignment, but a common case for anchored positioning—centering over the anchor

box—requires careful and somewhat complex set-up to achieve.

The new ‘anchor-center’ value makes this case extremely simple: if the positioned box has a default

anchor box, then it is centered (insofar as possible) over the default anchor box in the relevant axis.

Additionally:

If the box is not absolutely positioned, or does not have a default anchor box, this value behaves as

‘center’ and has no additional effect on how inset properties resolve.

If the box overflows its inset-modified containing block, but would still fit within its original

containing block, by default it will “shift” to stay within its original containing block, even if that

violates its normal alignment. See CSS Box Alignment 3 § 4.4 Overflow Alignment: the safe and

unsafe keywords and scroll safety limits for details.

This behavior makes it more likely that positioned boxes remain visible and within their intended

bounds, even when their containing block ends up smaller than anticipated.

For example, a ‘position-area: bottom span-right’ value lets the positioned box stretch from its

anchor’s left edge to its containing block’s right edge, and left-aligns it in that space by default.

But if the positioned box is larger than that space (such as if the anchor is very close to the right

edge of the screen), it will shift leftwards to stay visible.

4.2. Centering on the Anchor: the ‘anchor-center’ alignment value

An absolutely positioned box can use the ‘anchor-size()’ function in its sizing properties to refer to the

size of one or more anchor boxes. The ‘anchor-size()’ function resolves to a <length>. It is only

allowed in the accepted @position-try properties (and is otherwise invalid).

Name: ‘width’, ‘height’, ‘min-width’, ‘min-height’, ‘max-width’, ‘max-height’, ‘top’,

‘left’, ‘right’, ‘bottom’, ‘margin-top’, ‘margin-left’, ‘margin-right’, ‘margin-

bottom’

New

values:

<anchor-size()>

anchor-size() = anchor-size([<anchor-name> || <anchor-size>]? , <length-percentage>

<anchor-size> = width | height | block | inline | self-block | self-inline

The ‘anchor-size()’ function is similar to ‘anchor()’, and takes the same arguments, save that the

<anchor-side> keywords are replaced with <anchor-size>, referring to the distance between two

opposing sides.

The physical <anchor-size> keywords (‘width’ and ‘height’) refer to the width and height,

respectively, of the target anchor element. Unlike ‘anchor()’, there is no restriction on having to match

axises; for example, ‘width: anchor-size(--foo height);’ is valid.

The logical <anchor-size> keywords (‘block’, ‘inline’, ‘self-block’, and ‘self-inline’) map to one of

the physical keywords according to either the writing mode of the box (for ‘self-block’ and ‘self-

inline’) or the writing mode of the box’s containing block (for ‘block’ and ‘inline’).

If the <anchor-size> keyword is omitted, it defaults to behaving as whatever keyword matches the axis

of the property that ‘anchor-size()’ is used in. (For example, ‘width: anchor-size()’ is equivalent to

NOTE: When using ‘anchor-center’, by default if the anchor is too close to the edge of the box’s

original containing block, it will “shift” from being purely centered, in order to remain within the

original containing block. See CSS Box Alignment 3 § 4.4 Overflow Alignment: the safe and

unsafe keywords and scroll safety limits for more details.

5. Anchor-Based Sizing

‘width: anchor-size(width)’.)

An ‘anchor-size()’ function representing a resolvable anchor-size function resolves at computed value

time (via style & layout interleaving) to the <length> separating the relevant edges (either left and

right, or top and bottom, whichever is in the specified axis) of the target anchor element’s anchor box.

An ‘anchor-size()’ function is a resolvable anchor-size function only if all the following conditions

are true:

If any of these conditions are false, the ‘anchor-size()’ function resolves to its specified fallback value.

If no fallback value is specified, it makes the declaration referencing it invalid at computed-value

time.

Anchor positioning, while powerful, can also be unpredictable. The anchor box might be anywhere on

the page, so positioning a box in any particular fashion (such as above the anchor, or the right of the

anchor) might result in the positioned box overflowing its containing block or being positioned

partially off screen.

To ameliorate this, an absolutely positioned box can use the ‘position-try-fallbacks’ property to

specify additional position options (variant sets of positioning/alignment properties generated from the

box’s existing styles, or specified in ‘@position-try’ rules) that the UA can try if the box overflows its

initial position. Each is applied to the box, one by one in the order specified by ‘position-try-order’,

and the first that doesn’t cause the box to overflow its containing block is taken as the winner.

Once an option has been chosen, the element keeps those styles until it overflows again, even if an

earlier (and presumably more desirable) option again becomes available without causing overflow.

(See remember or forget the last successful position option.)

5.1.1. Resolution of ‘anchor-size()’

Name: ‘position-try-fallbacks’

Value: none | [[<dashed-ident> || <try-tactic>] | <position-area>]#

Initial: none

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed

value:

as specified

EXAMPLE 8

For example, the following CSS will first attempt to position a "popover" below the element, but if

it doesn’t fit on-screen will switch to being above. It defaults to start-aligning with the anchor, but

will switch to end-aligning if that doesn’t fit. If it doesn’t fit on either side, it will take the whole

horizontal space, while centering on the anchor as much as possible (thanks to § 4.1 Area-specific

Default Alignment).

#myPopover {

position: fixed;

position-anchor: --button;

position-area: bottom span-x-end;

position-try-fallbacks: flip-x, flip-y, flip-x flip-y, bottom, top;

/* The popover is at least as wide as the button */

 min-width: anchor-size(width);

/* The popover is at least as tall as 2 menu items */

 min-height: 6em;

}

Canonical

order:

per grammar

Animation

type:

discrete

This property provides a list of alternate positioning styles to try when the absolutely positioned box

overflows its inset-modified containing block. This position options list initially contains a single

position option generated from the element’s fallback base styles, i.e. the computed styles without

applying ‘position-try-fallbacks’.

Each comma-separated entry in the list is a separate option: either the name of a ‘@position-try’

block, or a <try-tactic> representing an automatic transformation of the box’s existing computed style.

Values have the following meanings:

The property has no effect; the box’s position options list is empty.

If there is a ‘@position-try’ rule with the given name, its associated position option is added to

the position options list.

Otherwise, this value has no effect.

Automatically creates a position option by executing the specified try tactic to the box’s base

styles, then adding the constructed position option to the box’s position options list.

<try-tactic> = flip-block || flip-inline || flip-start || flip-x || flip-y

swaps the values in the block axis (between, for example, ‘margin-block-start’ and

‘margin-block-end’), essentially mirroring across an inline-axis line.

swaps the values in the inline axis, essentially mirroring across a block-axis line.

swaps the values in the horizontal axis (between, for example, ‘margin-left’ and

‘margin-right’), essentially mirroring across a vertical-axis line.

swaps the values in the vertical axis, essentially mirroring across a horizontal-axis line.

‘none’

‘<dashed-ident>’

‘<try-tactic>’

‘flip-block’

‘flip-inline’

‘flip-x’

‘flip-y’

‘flip-start’

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

31 of 68 2026-01-11, 07:05

swaps the values of the start properties with each other, and the end properties with each

other (between, for example, ‘margin-block-start’ and ‘margin-inline-start’), essentially

mirroring across a diagonal drawn from the start-start corner to the end-end corner.

If multiple keywords are given, the transformations are composed in order to produce a single

position option. Logical directions are resolved against the writing mode of the containing block.

Combines the effects of the previous two options: if there is a ‘@position-try’ rule with the given

name, applies its position option to the base style, then transforms it according to the specified

<try-tactic> and adds the result to the box’s position options list.

Otherwise, does nothing.

Automatically creates a position option composed solely of a ‘position-area’ property with the

given value.

Name: ‘position-try-order’

Value: normal | <try-size>

Initial: normal

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed

value:

as specified

Canonical

order:

per grammar

Animation

type:

discrete

This property allows an element to sort its position options by the available space they define, if it’s

‘<dashed-ident> || <try-tactic>’

‘<position-area>’

6.2. Determining Fallback Order: the ‘position-try-order’ property

more important for the box to have as much space as possible rather than strictly following the order

declared in ‘position-try-fallbacks’.

<try-size> = most-width | most-height | most-block-size | most-inline-size

Try the position options in the order specified by ‘position-try-fallbacks’.

For each entry in the position options list, apply that position option to the box, and find the inset-

modified containing block size that results from those styles (treating ‘auto’ ‘inset’ values as

zero). Stably sort the position options list according to this size, with the largest coming first.

Logical directions are resolved against the writing mode of the containing block.

‘normal’

‘most-width’
‘most-height’
‘most-block-size’
‘most-inline-size’

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

33 of 68 2026-01-11, 07:05

Name: ‘position-try’

Value: <'position-try-order'>? <'position-try-fallbacks'>

EXAMPLE 9

For example, the following styles will initially position the popup list either above or below its

anchoring button, depending on which option gives it the most space.

.anchor { anchor-name: --foo; }

.list {

position: fixed;

position-anchor: --foo;

position-area: block-end span-inline-end;

position-try-fallbacks: --bottom-scrollable, flip-block, --top-scrollable;

position-try-order: most-height;

}

@position-try --bottom-scrollable {

align-self: stretch;

}

@position-try --top-scrollable {

position-area: block-start span-inline-end;

align-self: stretch;

}

The base styles and the ‘--bottom-scrollable’ option have the same available height, since in both

cases the inset-modified containing block stretches from the anchor to the edge of the containing

block. Likewise the ‘flip-block’ option and the ‘--top-scrollable’ options have the same available

height. Because ‘position-try-order’ uses a stable sort, these pairs will each retain their relative

positions in the list, with the ‘*-scrollable’ option coming later; and the pair that has the most

space available will come first.

This causes the box to first try to align against the anchor at its natural height on whichever side is

larger (using the base styles or ‘flip-block’ styles) but if that causes overflow, it’ll fall back to just

filling the same space and being scrollable instead (using the matching ‘*-scrollable’ styles), thus

never overflowing and trying to move to the smaller space.

Initial: see individual properties

Applies to: see individual properties

Inherited: see individual properties

Percentages: see individual properties

Computed

value:

see individual properties

Animation

type:

see individual properties

Canonical

order:

per grammar

This shorthand sets both ‘position-try-fallbacks’ and ‘position-try-order’. If <'position-try-order'> is

omitted, it’s set to the property’s initial value.

The ‘@position-try’ rule defines a position option with a given name, specifying one or more sets of

positioning properties that can be applied to a box via ‘position-try-fallbacks’,

The syntax of the ‘@position-try’ rule is:

@position-try <dashed-ident> {

<declaration-list>

}

The <dashed-ident> specified in the prelude is the rule’s name. If multiple ‘@position-try’ rules are

declared with the same name, they cascade the same as ‘@keyframe’ rules do.

The ‘@position-try’ rule only accepts the following properties:

6.4. The ‘@position-try’ Rule

It is invalid to use ‘!important’ on the properties in the <declaration-list>. Doing so causes the

property it is used on to become invalid, but does not invalidate the ‘@property-try’ rule as a whole.

All of the properties in a ‘@position-try’ are applied to the box as part of the Position Fallback

Origin, a new cascade origin that lies between the Author Origin and the Animation Origin.

Similar to the Animation Origin, use of the ‘revert’ value acts as if the property was part of the Author

Origin, so that it instead reverts back to the User Origin. (As with the Animation Origin, however,

‘revert-layer’ has no special behavior and acts as specified.)

When a positioned box (after applying any default scroll shift) overflows its inset-modified containing

block, and has more than one position option in its position options list, it determines position fallback

styles to attempt to find an option that avoids overflow. The resulting styles are applied to the element

via interleaving, so they affect computed values (and can trigger transitions/etc) even though they

depend on layout and used values.

‘position-anchor’

‘position-area’

NOTE: The accepted @position-try properties are the smallest group of properties that affect

just the size and position of the box itself, without otherwise changing its contents or styling. This

significantly simplifies the implementation of position fallback while addressing the fundamental

need to move an anchor-positioned box in response to available space. Since these rules override

normal declarations in the Author Origin, this also limits the poor interactions of ‘@position-try’

declarations with the normal cascading and inheritance of other properties. It is expected that a

future extension to container queries will allow querying an element based on the position fallback

it’s using, enabling the sort of conditional styling not allowed by this restricted list.

NOTE: If multiple elements want to use the same ‘@position-try’ rules, but relative to their

own anchor elements, omit the <anchor-name> in ‘anchor()’ and specify each box’s anchor in

‘position-anchor’ instead.

NOTE: The most common types of fallback positioning (putting the positioned box on one side

of the anchor normally, but flipping to the opposite side if needed) can be done automatically with

keywords in ‘position-try-fallbacks’, without using ‘@position-try’ at all.

6.5. Applying Position Fallback

Implementations may choose to impose an implementation-defined limit on the length of position

options lists, to limit the amount of excess layout work that may be required. This limit must be at

least five.

To determine position fallback styles for an element abspos:

During a full layout pass, once a box has determined its fallback styles (or determined it’s not using

any), laying out later boxes cannot change this decision.

1. Let current styles be the current used styles of abspos (which might be the result of earlier

fallback).

2. For each option in the position options list:

1. If option is currently abspos’s last successful position option, continue.

2. Let adjusted styles be the result of applying a position option option to abspos.

3. Let el rect be the size and position of abspos’s margin box, and cb rect be the size and

position of abspos’s inset-modified containing block, when laid out with adjusted styles.

4. If cb rect was negative-size in either axis and corrected into zero-size, continue.

NOTE: This prevents a zero-size el rect from still being considered "inside" a

negative-size cb rect and getting selected as a successful option.

5. If el rect is not fully contained within cb rect, continue.

6. Return adjusted styles, along with the associated set of remembered scroll offsets that were

hypothetically calculated for them.

3. Assert: The previous step finished without finding a position option that avoids overflow.

4. Return current styles.

NOTE: Descendants overflowing el don’t affect this calculation, only el’s own margin box.

NOTE: Because we purposely skip the position option currently in effect, it doesn’t get its

remembered scroll offsets updated; if none of the other fallbacks work and we stick with the

current styles, all the remembered scroll offsets stay the same.

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

37 of 68 2026-01-11, 07:05

Some changes to a box have a particularly direct effect on determining position fallback styles and

thus trigger special behavior. These fallback-sensitive changes include:

In order to maintain layout stability as much as possible, determining position fallback styles

prioritizes the last successful position option, which is determined as follows:

At the time that ResizeObserver events are determined and delivered, the box must record the last

successful position option as follows:

EXAMPLE 10

For example, say you have two positioned boxes, A and B, with A laid out before B. If B

overflows and causes A’s containing block to gain scrollbars, this does not cause A to go back and

re-determine its fallback styles in an attempt to avoid overflowing. (At best, this can result in

exponential layout costs; at worst, it’s cyclic and will never settle.)

Layout does not "go backward", in other words.

The UA must determine position fallback styles for both the start and end states of a transition (see

[CSS-TRANSITIONS-1]) that includes properties that could cause a fallback-sensitive change.

During a transition for properties that could cause a fallback-sensitive change, however, determining

position fallback styles and recording the last successful position option are suspended.

If an animation (see [CSS-ANIMATIONS-1] and [WEB-ANIMATIONS-1]) affects any properties

that could cause a fallback-sensitive change, then the UA must determine position fallback styles for

the keyframes that contain those properties (only). As fallback determination is order-sensitive, later

keyframes must take into account the result of earlier keyframes.

While animating between these keyframes, however, determining position fallback styles and

recording the last successful position option are suspended.

To apply a position option to a box’s element el, given a position option new styles:

NOTE: The timing of this recording/removal is intentionally identical to the treatment of last

remembered sizes.

ISSUE 7 The following sections attempt to clarify the interaction with transitions and

animations. [Issue #13048]

To execute a try-tactic to a set of styles of a box’s element el, between two directions directions,

returning a set of transformed styles:

0. If directions are opposites along the same axis, they are “opposing”. Otherwise (when they are

specifying different axises), they are “perpendicular”.

1. Determine the specified values of the accepted @position-try properties on el, and let styles be

the result.

2. Substitute variables, ‘env()’ functions, and similar arbitrary substitution functions in styles.

For ‘env()’ functions, if the referenced environment variable is associated with a direction or axis

(such as ‘safe-area-inset-top’), switch the referenced environment variable corresponding to

directions.

EXAMPLE 11

For example, if ‘top: env(safe-area-inset-top);’ is specified, and directions are up and left, the

‘env()’ will resolve as if ‘env(safe-area-inset-left)’ had been specified instead. (And then, in

the next step, will actually swap into the ‘left’ property.)

EXAMPLE 13

For example, if "top" and "left" are being swapped, then ‘margin-top: anchor(bottom)’

will become ‘margin-left: anchor(right)’.

If "top" and "bottom" are being swapped, then ‘margin-top: anchor(20%)’ will become

‘margin-bottom: anchor(80%)’.

Name: ‘position-visibility’

Value: always | [anchors-valid || anchors-visible || no-overflow]

Initial: anchors-visible

Applies to: absolutely positioned boxes

Inherited: no

Percentages: n/a

Computed

value:

as specified

Canonical

order:

per grammar

Animation

type:

discrete

There are some conditions in which it might not make sense to display an absolutely positioned box.

This property allows such boxes to be made conditionally visible, depending on some commonly

needed layout conditions.

This property has no effect. (The box is displayed without regard for its anchors or its

overflowing status.)

If any of the box’s required anchor references do not resolve to a target anchor element, the box’s

‘visibility’ property computes to ‘force-hidden’.

If the box has a default anchor box but that anchor box is invisible or clipped by intervening

boxes, the box’s ‘visibility’ property computes to ‘force-hidden’.

‘always’

‘anchors-valid’

ISSUE 8 What is a required anchor reference? ‘anchor()’ functions that don’t have a

fallback value; the default anchor *sometimes*? Need more detail here.

If the box overflows its inset-modified containing block even after applying ‘position-try’, the

box’s ‘visibility’ property computes to ‘force-hidden’.

An anchor box anchor is clipped by intervening boxes relative to a positioned box abspos relying on it

if anchor’s ink overflow rectangle is fully clipped by a box which is an ancestor of anchor but a

descendant of abspos’s containing block. Clipping in this case refers only to the same clipping effects

that are (by default) checked by IntersectionObserver, i.e. clipping due to ‘clip-path’,

‘overflow’, or other effects (such as paint containment) that clip to the overflow clip edge. If anchor

has non-zero area, it must also have a non-zero intersection area to be considered not fully clipped.

Whether or not anchor is clipped by intervening boxes must be checked after updating content

relevancy for a document (see ‘content-visibility’ in [css-contain-2]) and running any

ResizeObserver, but before running any IntersectionObserver. It may also be checked at

other times to improve responsiveness.

CSS Anchor Positioning does not create, delete, or alter any accessibility bindings between

elements. Authors must use appropriate markup features to control such bindings.

Because it can be used in many different ways for many different use cases, CSS Anchor Positioning

does not automatically establish any semantic relationship between a positioned box and any of its

anchors. For example, the visual anchoring relationship in a design might be between an element and

its semantic anchor, or it might connect the element to an ancestor, sibling, or descendant of the

semantic anchor, depending on the desired visual effect. Siimilarly, a design might opt out of a visual

anchoring relationship even while there is a semantic one, or vice versa.

‘no-overflow’

NOTE: This means that if an abspos is next to its anchor in the DOM, for example, it’ll remain

visible even if its default anchor is scrolled off, since it’s clipped by the same scroller anyway.

ISSUE 10 Make sure this definition of clipped is consistent with View Transitions, which wants

a similar concept.

Authors must not rely on the visual connections implied by CSS positioning to link elements together

semantically. Without appropriate markup, the elements linked visually have no meaningful DOM

relationship—which if there is a meaningful relationship, can make them difficult or impossible to use

in non-visual user agents, like screen readers, or in non-graphical navigation modes, such as tab

navigation.

Many features on the web platform, both existing and upcoming, allow establishing semantic

connections explicitly, so that non-visual user agents can also benefit. For example, the Popover API

in HTML automatically links the invoker button to the popover element, including automatically

adjusting tabbing order; it also establishes the invoker button as the implicit anchor element for the

popover, making it easy to use Anchor Positioning as well.

In more general cases, ARIA features such as the aria-details or aria-describedby attributes on

an anchor element can create connections in a slightly more manual fashion. In concert with the role

attribute on the positioned element, it allows non-visual user agents to tell their users about the

relationship between the elements and let them automatically navigate between them.

However, authors should not overuse such features either, since overburdening the page with extra,

unnecessary semantic connections can also make the page difficult to comprehend.

The CSSPositionTryRule interface represents the ‘@position-try’ rule:

[Exposed=Window]

interface CSSPositionTryRule : CSSRule {

readonly attribute CSSOMString name;

 [SameObject, PutForwards=cssText] readonly attribute CSSPositionTryDescriptors

};

[Exposed=Window]

interface CSSPositionTryDescriptors : CSSStyleDeclaration {

ISSUE 11 Add a popover example.

attribute CSSOMString margin;

attribute CSSOMString marginTop;

attribute CSSOMString marginRight;

attribute CSSOMString marginBottom;

attribute CSSOMString marginLeft;

attribute CSSOMString marginBlock;

attribute CSSOMString marginBlockStart;

attribute CSSOMString marginBlockEnd;

attribute CSSOMString marginInline;

attribute CSSOMString marginInlineStart;

attribute CSSOMString marginInlineEnd;

attribute CSSOMString margin-top;

attribute CSSOMString margin-right;

attribute CSSOMString margin-bottom;

attribute CSSOMString margin-left;

attribute CSSOMString margin-block;

attribute CSSOMString margin-block-start;

attribute CSSOMString margin-block-end;

attribute CSSOMString margin-inline;

attribute CSSOMString margin-inline-start;

attribute CSSOMString margin-inline-end;

attribute CSSOMString inset;

attribute CSSOMString insetBlock;

attribute CSSOMString insetBlockStart;

attribute CSSOMString insetBlockEnd;

attribute CSSOMString insetInline;

attribute CSSOMString insetInlineStart;

attribute CSSOMString insetInlineEnd;

attribute CSSOMString top;

attribute CSSOMString left;

attribute CSSOMString right;

attribute CSSOMString bottom;

attribute CSSOMString inset-block;

attribute CSSOMString inset-block-start;

attribute CSSOMString inset-block-end;

attribute CSSOMString inset-inline;

attribute CSSOMString inset-inline-start;

attribute CSSOMString inset-inline-end;

attribute CSSOMString width;

attribute CSSOMString minWidth;

attribute CSSOMString maxWidth;

attribute CSSOMString height;

attribute CSSOMString minHeight;

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

45 of 68 2026-01-11, 07:05

attribute CSSOMString maxHeight;

attribute CSSOMString blockSize;

attribute CSSOMString minBlockSize;

attribute CSSOMString maxBlockSize;

attribute CSSOMString inlineSize;

attribute CSSOMString minInlineSize;

attribute CSSOMString maxInlineSize;

attribute CSSOMString min-width;

attribute CSSOMString max-width;

attribute CSSOMString min-height;

attribute CSSOMString max-height;

attribute CSSOMString block-size;

attribute CSSOMString min-block-size;

attribute CSSOMString max-block-size;

attribute CSSOMString inline-size;

attribute CSSOMString min-inline-size;

attribute CSSOMString max-inline-size;

attribute CSSOMString placeSelf;

attribute CSSOMString alignSelf;

attribute CSSOMString justifySelf;

attribute CSSOMString place-self;

attribute CSSOMString align-self;

attribute CSSOMString justify-self;

attribute CSSOMString positionAnchor;

attribute CSSOMString position-anchor;

attribute CSSOMString positionArea;

attribute CSSOMString position-area;

};

Its name attribute represents the name declared in the rule’s prelude.

Its style attribute represents the properties declared in the rule’s body, in the specified order. On

getting, it must return a CSSPositionTryDescriptors object for the ‘@position-try’ at-rule, with

the following properties:

Unset

Unset

The declared descriptors in the rule, in specified order.

computed flag

readonly flag

declarations

parent CSS rule

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

46 of 68 2026-01-11, 07:05

The context object

Null

Style & layout interleaving is a technique where a style update can occur on a subtree during the

layout process, resulting in retroactive updates to elements’ computed styles.

The accepted @position-try properties are also interleaved when resolving fallback (see

‘position-try’).

No Security issues have been raised against this document.

No Privacy issues have been raised against this document.

owner node

9. Appendix: Style & Layout Interleaving

Significant changes since the 22 December 2025 Working Draft:

Significant changes since the 7 October 2025 Working Draft:

Clarify positoin fallback interaction with transitions and animation. (Issue 13048)

Clarify that intersection must be non-zero (when anchor box is non-zero) for ‘anchors-visible’.

(Issue 13176)

Add ‘flip-x’ and ‘flip-y’ to ‘position-try-fallbacks’. (Issue 12869)

Define ‘anchor-center’ to also use the scrollable containing block so that it doesn’t trigger

overflow alignment when positioned outside the local containing block. (Issue 12952)

Resolve ‘auto’ margins to zero when ‘position-area’ or ‘anchor-center’ is in effect, due to the ill-

considered HTML UA default stylesheet rules for popovers. Also drop the ‘dialog’ alignment

value which was the previous attempt to address this problem. (Issue 10258)

Add ‘none’ value to ‘position-anchor’ and make it the initial value to avoid switching all

absolutely positioned boxes that have an implicit anchor element to using the scrollable

containing block. Note the initial value may change again, as the discussion is still open... (Issue

13067)

Clarify that ‘flip-block’, ‘flip-inline’, and ‘flip-start’ use the writing mode of the containing

block. (Issue 12869, Issue 13076)

Clarify that ‘auto’ ‘inset’ values are treated as zero when finding the inset-modified containing

block size for comparing position options in ‘position-try-order’. (Issue 12942)

Add ‘clip-path’ to the list of clipping effects considered for ‘anchors-visible’ and clarify the

timing of its checks. (Issue 12732)

Fix error where base styles were accidentally left out of the position options list. (Issue 12890)

Clarify timing of ‘anchors-visible’ checks. (Issue 12732)

Clarify that the ‘normal’ alignment resolution based on the ‘position-area’ value affects the used

value (which then keys into how overflow is handled per [CSS-ALIGN-3]).

Fix algorithm error requiring matching tree roots for anchor name matching, since it is sometimes

possible to match across shadow tree boundaries. (Issue 12941)

Clarify that ‘auto’ ‘inset’ values are treated as zero when finding the inset-modified containing

block size for ‘position-try-order’. (Issue 12942)

Reorganize prose in § 6 Overflow Management and § 2 Determining the Anchor for better

readability. (Issue 12818, Issue 11022)

Improve guidance in § 7 Accessibility Implications and clarify UA requirements. (Issue 10311)

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

48 of 68 2026-01-11, 07:05

See also Previous Changes.

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119

terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative

parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,

examples, and notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

Improve examples.

Conformance

TESTS

Tests relating to the content of this specification may be documented in “Tests” blocks like this

one. Any such block is non-normative.

Conformance to this specification is defined for three conformance classes:

A CSS style sheet.

A UA that interprets the semantics of a style sheet and renders documents that use them.

A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this

module are valid according to the generic CSS grammar and the individual grammars of each feature

defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined

by the appropriate specifications, it supports all the features defined by this specification by parsing

them correctly and rendering the document accordingly. However, the inability of a UA to correctly

render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically

correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,

user agents must not selectively ignore unsupported component values and honor supported values in

a single multi-value property declaration: if any value is considered invalid (as unsupported values

Conformance classes

must be), CSS requires that the entire declaration be ignored.

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprietary extensions to CSS.

Once a specification reaches the Candidate Recommendation stage, non-experimental

implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working

Group requests that non-experimental CSS renderers submit an implementation report (and, if

necessary, the testcases used for that implementation report) to the W3C before releasing an

unprefixed implementation of any CSS features. Testcases submitted to W3C are subject to review and

correction by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS

Working Group’s website at http://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

Implementations of Unstable and Proprietary Features

<anchor-name>

(type), in § 3.2

value for position-anchor, in § 2.4

anchor name, in § 2.1

anchor-name, in § 2.1

Anchor positioning, in § 1

anchor recalculation point, in § 3.3

anchor reference, in § 1

anchor-scope, in § 2.2

<anchor-side>, in § 3.2

<anchor-size>, in § 5.1

anchor-size(), in § 5

anchor specifier, in § 2.3

anchors-valid, in § 6.6

anchors-visible, in § 6.6

apply a position option, in § 6.5.2

auto, in § 2.4

base style, in § 6.1

block, in § 5.1

block-end, in § 3.1.2

block-size, in § 8.1

blockSize, in § 8.1

block-start, in § 3.1.2

bottom

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

center

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

clipped by intervening boxes, in § 6.6

compensate for scroll, in § 3.3

CSSPositionTryDescriptors, in § 8.1

CSSPositionTryRule, in § 8.1

<dashed-ident>

value for anchor(), in § 3.2

value for anchor-scope, in § 2.2

value for position-try-fallbacks, in § 6.1

<dashed-ident>#, in § 2.1

<dashed-ident> || <try-tactic>, in § 6.1

default anchor box, in § 2.4

default anchor element, in § 2.4

default scroll shift, in § 3.3

determine position fallback styles, in § 6.5

end

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

execute a try-tactic, in § 6.5.2

fallback base styles, in § 6.1

fallback-sensitive changes, in § 6.5.1

flip-block, in § 6.1

flip-inline, in § 6.1

flip-start, in § 6.1

flip-x, in § 6.1

flip-y, in § 6.1

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

52 of 68 2026-01-11, 07:05

height

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor-size(), in § 5.1

implicit anchor element, in § 2.4.1

inline, in § 5.1

inline-end, in § 3.1.2

inline-size, in § 8.1

inlineSize, in § 8.1

inline-start, in § 3.1.2

inset, in § 8.1

inset-block, in § 8.1

insetBlock, in § 8.1

inset-block-end, in § 8.1

insetBlockEnd, in § 8.1

inset-block-start, in § 8.1

insetBlockStart, in § 8.1

inset-inline, in § 8.1

insetInline, in § 8.1

inset-inline-end, in § 8.1

insetInlineEnd, in § 8.1

inset-inline-start, in § 8.1

insetInlineStart, in § 8.1

inside, in § 3.2

interleave, in § 9

justify-items, in § 4.2

justify-self

(property), in § 4.2

attribute for CSSPositionTryDescriptors, in § 8.1

justifySelf, in § 8.1

last successful position option, in § 6.5.1.1

left

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

margin, in § 8.1

margin-block, in § 8.1

marginBlock, in § 8.1

margin-block-end, in § 8.1

marginBlockEnd, in § 8.1

margin-block-start, in § 8.1

marginBlockStart, in § 8.1

margin-bottom, in § 8.1

marginBottom, in § 8.1

margin-inline, in § 8.1

marginInline, in § 8.1

margin-inline-end, in § 8.1

marginInlineEnd, in § 8.1

margin-inline-start, in § 8.1

marginInlineStart, in § 8.1

margin-left, in § 8.1

marginLeft, in § 8.1

margin-right, in § 8.1

marginRight, in § 8.1

margin-top, in § 8.1

marginTop, in § 8.1

max-block-size, in § 8.1

maxBlockSize, in § 8.1

max-height, in § 8.1

maxHeight, in § 8.1

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

53 of 68 2026-01-11, 07:05

max-inline-size, in § 8.1

maxInlineSize, in § 8.1

max-width, in § 8.1

maxWidth, in § 8.1

min-block-size, in § 8.1

minBlockSize, in § 8.1

min-height, in § 8.1

minHeight, in § 8.1

min-inline-size, in § 8.1

minInlineSize, in § 8.1

min-width, in § 8.1

minWidth, in § 8.1

most-block-size, in § 6.2

most-height, in § 6.2

most-inline-size, in § 6.2

most-width, in § 6.2

name, in § 8.1

none

value for anchor-name, in § 2.1

value for anchor-scope, in § 2.2

value for position-anchor, in § 2.4

value for position-area, in § 3.1

value for position-try-fallbacks, in § 6.1

no-overflow, in § 6.6

normal, in § 6.2

outside, in § 3.2

<percentage>, in § 3.2

place-self, in § 8.1

placeSelf, in § 8.1

position-anchor

(property), in § 2.4

attribute for CSSPositionTryDescriptors, in § 8.1

positionAnchor, in § 8.1

<position-area>

(type), in § 3.1.2

value for position-area, in § 3.1

value for position-try-fallbacks, in § 6.1

position-area

(property), in § 3.1

attribute for CSSPositionTryDescriptors, in § 8.1

positionArea, in § 8.1

position-area grid, in § 3.1.1

Position Fallback Origin, in § 6.4

position option, in § 6.4

position options list, in § 6.1

@position-try, in § 6.4

position-try, in § 6.3

position-try-fallbacks, in § 6.1

position-try-order, in § 6.2

position-visibility, in § 6.6

record the last successful position option, in

§ 6.5.1.1

remembered scroll offset, in § 3.3

required anchor reference, in § 6.6

resolvable anchor function, in § 3.2.1

resolvable anchor-size function, in § 5.1.1

right

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

54 of 68 2026-01-11, 07:05

self-block, in § 5.1

self-block-end, in § 3.1.2

self-block-start, in § 3.1.2

self-end

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

self-inline, in § 5.1

self-inline-end, in § 3.1.2

self-inline-start, in § 3.1.2

self-start

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

self-x-end, in § 3.1.2

self-x-start, in § 3.1.2

self-y-end, in § 3.1.2

self-y-start, in § 3.1.2

span-all, in § 3.1.2

span-block-end, in § 3.1.2

span-block-start, in § 3.1.2

span-bottom, in § 3.1.2

span-end, in § 3.1.2

span-inline-end, in § 3.1.2

span-inline-start, in § 3.1.2

span-left, in § 3.1.2

span-right, in § 3.1.2

span-self-block-end, in § 3.1.2

span-self-block-start, in § 3.1.2

span-self-end, in § 3.1.2

span-self-inline-end, in § 3.1.2

span-self-inline-start, in § 3.1.2

span-self-start, in § 3.1.2

span-self-x-end, in § 3.1.2

span-self-x-start, in § 3.1.2

span-self-y-end, in § 3.1.2

span-self-y-start, in § 3.1.2

span-start, in § 3.1.2

span-top, in § 3.1.2

span-x-end, in § 3.1.2

span-x-start, in § 3.1.2

span-y-end, in § 3.1.2

span-y-start, in § 3.1.2

start

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

style, in § 8.1

style & layout interleave, in § 9

target anchor element, in § 2.3

top

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor(), in § 3.2

value for position-area, <position-area>, in

§ 3.1.2

<try-size>, in § 6.2

<try-tactic>

type for position-try-fallbacks, in § 6.1

value for position-try-fallbacks, in § 6.1

unresolvable anchor function, in § 3.2.1

unresolvable anchor-size function, in § 5.1.1

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

55 of 68 2026-01-11, 07:05

width

attribute for CSSPositionTryDescriptors, in § 8.1

value for anchor-size(), in § 5.1

x-end, in § 3.1.2

x-start, in § 3.1.2

y-end, in § 3.1.2

y-start, in § 3.1.2

Terms defined by reference

[CSS-CONTAIN-2] defines the following

terms:

containment

content-visibility

layout containment

paint containment

relevant to the user

skipped contents

skipping its contents

style containment

update content relevancy for a document

[CSS-DISPLAY-3] defines the following

terms:

element

invisible

[CSS-DISPLAY-4] defines the following

terms:

containing block

display

force-hidden

principal box

visibility

[CSS-ENV-1] defines the following terms:

env()

environment variable

safe-area-inset-top

[CSS-LOGICAL-1] defines the following

terms:

inset properties

margin-block-end

margin-block-start

margin-inline-start

[CSS-MASKING-1] defines the following

terms:

clip-path

[CSS-OVERFLOW-3] defines the following

terms:

initial scroll position

ink overflow rectangle

overflow

scroll container

scroll offset

scrollable overflow area

[CSS-OVERFLOW-4] defines the following

terms:

overflow clip edge

[CSS-POSITION-3] defines the following

terms:

absolute position

absolute-position containing block

absolutely position

absolutely positioned box

absolutely positioned element

auto

bottom

inset

inset-block-end

inset-block-start

inset-modified containing block

left

original containing block

position

right

top

[CSS-POSITION-4] defines the following

terms:

in a lower top layer

local containing block

scrollable containing block

top layer

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

57 of 68 2026-01-11, 07:05

[CSS-PSEUDO-4] defines the following terms:

tree-abiding pseudo-elements

[CSS-SCOPING-1] defines the following

terms:

flat tree

flattened element tree

loosely matched

strictly matched

tree-scoped name

tree-scoped reference

[CSS-SHADOW-PARTS-1] defines the

following terms:

::part()

[CSS-SIZING-3] defines the following terms:

height

max-height

max-width

min-height

min-width

sizing property

width

[CSS-SIZING-4] defines the following terms:

last remembered size

[CSS-SYNTAX-3] defines the following terms:

<declaration-list>

[CSS-TRANSFORMS-1] defines the following

terms:

transform

[CSS-TRANSITIONS-1] defines the following

terms:

transitions

[CSS-VALUES-4] defines the following terms:

#

&&

,

<dashed-ident>

<length-percentage>

<length>

<percentage>

?

computed length

CSS-wide keywords

math function

{A,B}

|

||

[CSS-VALUES-5] defines the following terms:

arbitrary substitution function

invalid at computed-value time

[CSS-VARIABLES-1] defines the following

terms:

substitute a var()

[CSS-VIEWPORT-1] defines the following

terms:

zoom

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

58 of 68 2026-01-11, 07:05

[CSS-WRITING-MODES-4] defines the

following terms:

block axis

block-axis

block-end

block-start

end

flow-relative

horizontal axis

horizontal-axis

horizontal-tb

inline axis

inline-axis

inline-end

inline-start

physical

start

vertical axis

vertical-axis

writing mode

[CSSOM-1] defines the following terms:

CSSOMString

CSSRule

CSSStyleDeclaration

computed flag

declarations

owner node

parent CSS rule

readonly flag

specified order

[DOM] defines the following terms:

shadow tree

[HTML] defines the following terms:

input

li

[INFRA] defines the following terms:

continue

for each

[INTERSECTION-OBSERVER] defines the

following terms:

IntersectionObserver

[MOTION-1] defines the following terms:

offset-path

[RESIZE-OBSERVER-1] defines the

following terms:

ResizeObserver

[SELECTORS-4] defines the following terms:

originating element

pseudo-element

[STREAMS] defines the following terms:

transform

[WEB-ANIMATIONS-1] defines the following

terms:

animation

[WEBIDL] defines the following terms:

Exposed

PutForwards

SameObject

References

Elika Etemad; Tab Atkins Jr.. CSS Box Alignment Module Level 3. URL: https://drafts.csswg.org/

css-align/

Elika Etemad. CSS Box Model Module Level 4. URL: https://drafts.csswg.org/css-box-4/

Rossen Atanassov; Elika Etemad. CSS Fragmentation Module Level 4. URL: https://

drafts.csswg.org/css-break-4/

Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 5. URL:

https://drafts.csswg.org/css-cascade-5/

Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 6. URL:

https://drafts.csswg.org/css-cascade-6/

Tab Atkins Jr.; Florian Rivoal; Vladimir Levin. CSS Containment Module Level 2. URL: https://

drafts.csswg.org/css-contain-2/

Elika Etemad; Tab Atkins Jr.. CSS Display Module Level 3. URL: https://drafts.csswg.org/css-

display/

Elika Etemad; Tab Atkins Jr.. CSS Display Module Level 4. URL: https://drafts.csswg.org/css-

display-4/

CSS Environment Variables Module Level 1. URL: https://drafts.csswg.org/css-env-1/

Elika Etemad; Rossen Atanassov. CSS Logical Properties and Values Module Level 1. URL:

https://drafts.csswg.org/css-logical-1/

Dirk Schulze; Brian Birtles; Tab Atkins Jr.. CSS Masking Module Level 1. URL: https://

drafts.csswg.org/css-masking-1/

Elika Etemad; Florian Rivoal. CSS Overflow Module Level 3. URL: https://drafts.csswg.org/css-

overflow-3/

David Baron; Florian Rivoal; Elika Etemad. CSS Overflow Module Level 4. URL: https://

drafts.csswg.org/css-overflow-4/

[CSS-ALIGN-3]

[CSS-BOX-4]

[CSS-BREAK-4]

[CSS-CASCADE-5]

[CSS-CASCADE-6]

[CSS-CONTAIN-2]

[CSS-DISPLAY-3]

[CSS-DISPLAY-4]

[CSS-ENV-1]

[CSS-LOGICAL-1]

[CSS-MASKING-1]

[CSS-OVERFLOW-3]

[CSS-OVERFLOW-4]

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

60 of 68 2026-01-11, 07:05

Elika Etemad; Tab Atkins Jr.. CSS Positioned Layout Module Level 3. URL: https://

drafts.csswg.org/css-position-3/

Elika Etemad; Tab Atkins Jr.. CSS Positioned Layout Module Level 4. URL: https://

drafts.csswg.org/css-position-4/

Elika Etemad; Alan Stearns. CSS Pseudo-Elements Module Level 4. URL: https://

drafts.csswg.org/css-pseudo-4/

Tab Atkins Jr.; Elika Etemad. CSS Scoping Module Level 1. URL: https://drafts.csswg.org/css-

scoping/

Tab Atkins Jr.; Elika Etemad. CSS Box Sizing Module Level 3. URL: https://drafts.csswg.org/css-

sizing-3/

Tab Atkins Jr.; Simon Sapin. CSS Syntax Module Level 3. URL: https://drafts.csswg.org/css-

syntax/

Simon Fraser; et al. CSS Transforms Module Level 1. URL: https://drafts.csswg.org/css-

transforms/

David Baron; et al. CSS Transitions. URL: https://drafts.csswg.org/css-transitions/

Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. URL: https://

drafts.csswg.org/css-values-3/

Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. URL: https://

drafts.csswg.org/css-values-4/

Tab Atkins Jr.; Elika Etemad; Miriam Suzanne. CSS Values and Units Module Level 5. URL:

https://drafts.csswg.org/css-values-5/

Tab Atkins Jr.. CSS Custom Properties for Cascading Variables Module Level 1. URL: https://

drafts.csswg.org/css-variables/

Florian Rivoal; Emilio Cobos Álvarez. CSS Viewport Module Level 1. URL: https://

[CSS-POSITION-3]

[CSS-POSITION-4]

[CSS-PSEUDO-4]

[CSS-SCOPING-1]

[CSS-SIZING-3]

[CSS-SYNTAX-3]

[CSS-TRANSFORMS-1]

[CSS-TRANSITIONS-1]

[CSS-VALUES-3]

[CSS-VALUES-4]

[CSS-VALUES-5]

[CSS-VARIABLES-1]

[CSS-VIEWPORT-1]

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

61 of 68 2026-01-11, 07:05

drafts.csswg.org/css-viewport/

Elika Etemad; Koji Ishii. CSS Writing Modes Level 4. URL: https://drafts.csswg.org/css-writing-

modes-4/

Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. URL: https://

drafts.csswg.org/css2/

Daniel Glazman; Emilio Cobos Álvarez. CSS Object Model (CSSOM). URL: https://

drafts.csswg.org/cssom/

Anne van Kesteren; et al. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org/

multipage/

Anne van Kesteren; Domenic Denicola. Infra Standard. Living Standard. URL: https://

infra.spec.whatwg.org/

Stefan Zager; Emilio Cobos Álvarez; Traian Captan. Intersection Observer. URL: https://

w3c.github.io/IntersectionObserver/

Tab Atkins Jr.; Dirk Schulze; Jihye Hong. Motion Path Module Level 1. URL: https://

drafts.csswg.org/motion-1/

Aleks Totic; Greg Whitworth. Resize Observer. URL: https://drafts.csswg.org/resize-observer/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current

Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

Elika Etemad; Tab Atkins Jr.. Selectors Level 4. URL: https://drafts.csswg.org/selectors/

Adam Rice; et al. Streams Standard. Living Standard. URL: https://streams.spec.whatwg.org/

Brian Birtles; et al. Web Animations. URL: https://drafts.csswg.org/web-animations-1/

Edgar Chen; Timothy Gu. Web IDL Standard. Living Standard. URL: https://

webidl.spec.whatwg.org/

[CSS-WRITING-MODES-4]

[CSS2]

[CSSOM-1]

[HTML]

[INFRA]

[INTERSECTION-OBSERVER]

[MOTION-1]

[RESIZE-OBSERVER-1]

[RFC2119]

[SELECTORS-4]

[STREAMS]

[WEB-ANIMATIONS-1]

[WEBIDL]

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

62 of 68 2026-01-11, 07:05

David Baron; et al. CSS Animations Level 1. URL: https://drafts.csswg.org/css-animations/

Chris Lilley; et al. CSS Conditional Rules Module Level 5. URL: https://drafts.csswg.org/css-

conditional-5/

Tab Atkins Jr.; Fergal Daly. CSS Shadow Parts Module Level 1. URL: https://drafts.csswg.org/

css-shadow-parts/

Tab Atkins Jr.; Elika Etemad; Jen Simmons. CSS Box Sizing Module Level 4. URL: https://

drafts.csswg.org/css-sizing-4/

Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

Name Value Initial Applies to Inh. %ages

Anim‐

ation

type

Canonical

order

Com‐

puted

value

New

values

‘align-

items’

anchor-

center

‘align-

self’

anchor-

center

‘anchor-

name’

none |

<dashed-

ident>#

none

all

elements

that

generate a

principal

box

no n/a discrete
per

grammar

as

specified

‘anchor-

scope’

none | all |

<dashed-

ident>#

none
all

elements
no n/a discrete

per

grammar

as

specified

‘justify-

items’

anchor-

center

‘justify-

self’

anchor-

center

Informative References

Name Value Initial Applies to Inh. %ages

Anim‐

ation

type

Canonical

order

Com‐

puted

value

New

values

‘position-

anchor’

none | auto

| <anchor-

name>

none

absolutely

positioned

boxes

no n/a discrete
per

grammar

as

specified

‘position-

area’

none |

<position-

area>

none

positioned

boxes with

a default

anchor

box

no n/a TBD
per

grammar

the

keyword

none or a

pair of

keywords,

see

‘position-

try’

<'position-

try-

order'>?

<'position-

try-

fallbacks'>

see

individual

properties

see

individual

properties

see

individual

properties

see

individual

properties

see

individual

properties

per

grammar

see

individual

properties

‘position-

try-

fallbacks’

none | [

[<dashed-

ident> ||

<try-

tactic>] |

<position-

area>]#

none

absolutely

positioned

boxes

no n/a discrete
per

grammar

as

specified

‘position-

try-

order’

normal |

<try-size>
normal

absolutely

positioned

boxes

no n/a discrete
per

grammar

as

specified

‘position-

visibility’

always | [

anchors-

valid ||

anchors-

visible ||

no-

overflow]

anchors-

visible

absolutely

positioned

boxes

no n/a discrete
per

grammar

as

specified

[Exposed=Window]

interface CSSPositionTryRule : CSSRule {

readonly attribute CSSOMString name;

IDL Index

 [SameObject, PutForwards=cssText] readonly attribute CSSPositionTryDescriptors

};

[Exposed=Window]

interface CSSPositionTryDescriptors : CSSStyleDeclaration {

attribute CSSOMString margin;

attribute CSSOMString marginTop;

attribute CSSOMString marginRight;

attribute CSSOMString marginBottom;

attribute CSSOMString marginLeft;

attribute CSSOMString marginBlock;

attribute CSSOMString marginBlockStart;

attribute CSSOMString marginBlockEnd;

attribute CSSOMString marginInline;

attribute CSSOMString marginInlineStart;

attribute CSSOMString marginInlineEnd;

attribute CSSOMString margin-top;

attribute CSSOMString margin-right;

attribute CSSOMString margin-bottom;

attribute CSSOMString margin-left;

attribute CSSOMString margin-block;

attribute CSSOMString margin-block-start;

attribute CSSOMString margin-block-end;

attribute CSSOMString margin-inline;

attribute CSSOMString margin-inline-start;

attribute CSSOMString margin-inline-end;

attribute CSSOMString inset;

attribute CSSOMString insetBlock;

attribute CSSOMString insetBlockStart;

attribute CSSOMString insetBlockEnd;

attribute CSSOMString insetInline;

attribute CSSOMString insetInlineStart;

attribute CSSOMString insetInlineEnd;

attribute CSSOMString top;

attribute CSSOMString left;

attribute CSSOMString right;

attribute CSSOMString bottom;

attribute CSSOMString inset-block;

attribute CSSOMString inset-block-start;

attribute CSSOMString inset-block-end;

attribute CSSOMString inset-inline;

attribute CSSOMString inset-inline-start;

attribute CSSOMString inset-inline-end;

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

65 of 68 2026-01-11, 07:05

attribute CSSOMString width;

attribute CSSOMString minWidth;

attribute CSSOMString maxWidth;

attribute CSSOMString height;

attribute CSSOMString minHeight;

attribute CSSOMString maxHeight;

attribute CSSOMString blockSize;

attribute CSSOMString minBlockSize;

attribute CSSOMString maxBlockSize;

attribute CSSOMString inlineSize;

attribute CSSOMString minInlineSize;

attribute CSSOMString maxInlineSize;

attribute CSSOMString min-width;

attribute CSSOMString max-width;

attribute CSSOMString min-height;

attribute CSSOMString max-height;

attribute CSSOMString block-size;

attribute CSSOMString min-block-size;

attribute CSSOMString max-block-size;

attribute CSSOMString inline-size;

attribute CSSOMString min-inline-size;

attribute CSSOMString max-inline-size;

attribute CSSOMString placeSelf;

attribute CSSOMString alignSelf;

attribute CSSOMString justifySelf;

attribute CSSOMString place-self;

attribute CSSOMString align-self;

attribute CSSOMString justify-self;

attribute CSSOMString positionAnchor;

attribute CSSOMString position-anchor;

attribute CSSOMString positionArea;

attribute CSSOMString position-area;

};

Issues Index

↵
ISSUE 2 Add a better example; this one can be accomplished easily with ‘anchor-center’. [Issue

#10776]

↵
ISSUE 3 Transforms have the same issue as scrolling, so Anchor Positioning similarly doesn’t

pay attention to them normally. Can we go ahead and incorporate the effects of transforms here?

↵ISSUE 4 Define the precise timing of the snapshot: updated each frame, before style recalc.

↵
ISSUE 5 Similar to remembered scroll offset, can we pay attention to transforms on the default

anchor element?

↵ISSUE 6 Add a picture!

↵
ISSUE 7 The following sections attempt to clarify the interaction with transitions and

animations. [Issue #13048]

↵
ISSUE 8 What is a required anchor reference? ‘anchor()’ functions that don’t have a fallback

value; the default anchor *sometimes*? Need more detail here.

↵
ISSUE 9 Any anchors are missing, or all anchors are missing? I can see use-cases for either,

potentially. Do we want to make a decision here, or make it controllable somehow?

↵
ISSUE 10 Make sure this definition of clipped is consistent with View Transitions, which wants

a similar concept.

↵ISSUE 11 Add a popover example.

↵
ISSUE 12 Suggestions for ways to improve this section, especially author guidance and

examples of best practices for common use cases, is welcome. [Issue #10311]

↵
ISSUE 13 This is not the correct spec for this concept, it should probably go in Cascade, but I

need a sketch of it to refer to.

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

67 of 68 2026-01-11, 07:05

↵

ISSUE 14 Obviously this needs way more details filled in, but for now "act like you already do

for container queries" suffices. That behavior is also undefined, but at least it’s interoperable (to

some extent?).

CSS Anchor Positioning Module Level 1 https://drafts.csswg.org/css-anchor-position-1/

68 of 68 2026-01-11, 07:05

