CSS Basic User Interface Module
Level 4

W3C Working Draft, 16 March 2021

This version:
https://www.w3.org/TR/2021/WD-css-ui-4-20210316/

Latest published version:
https://www.w3.org/TR/css-ui-4/

Editor's Draft:
https://drafts.csswg.org/css-ui-4/

Previous Versions:
https://www.w3.org/TR/2020/WD-css-ui-4-20200124/

https://www.w3.org/TR/2020/WD-css-ui-4-20200102/
https:/www.w3.org/TR/2017/WD-css-ui-4-20171222/
https://www.w3.org/TR/2015/WD-css-ui-4-20150922/

Test Suite:
http://test.csswg.org/suites/css-ui-4_dev/nightly-unstable/

Issue Tracking:
CSSWG Issues Repository

Inline In Spec

Editor:
Florian Rivoal (On behalf of Bloomberg)

Suggest an Edit for this Spec:
GitHub Editor

Copyright © 2021 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules
apply.

Abstract

This specification describes user interface related properties and values to style HTML and XML
(including XHTML). It includes and extends user interface related features from the properties and
values of previous CSS levels. It uses various properties and values to style basic user interface

elements in a document.

CSS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This document was published by the CSS Working Group as a Working Draft. Publication as a
Working Draft does not imply endorsement by the W3C Membership.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It

is inappropriate to cite this document as other than work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-ui” in the
title, like this: “[css-ui] ...summary of comment...”. All issues and comments are archived. Alternately,

feedback can be sent to the (archived) public mailing list www-style@w3.org.

This document is governed by the 15 September 2020 W3C Process Document.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page
also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

This specification will include and extend CSS Basic User Interface Module Level 3. [CSS-UI-3]
The following features are at-risk, and may be dropped during the CR period:

e Applicability of ‘user-select’ to ‘::before’ and ‘::after’

“At-risk” is a W3C Process term-of-art, and does not necessarily imply that the feature is in danger of
being dropped or delayed. It means that the WG believes the feature may have difficulty being
interoperably implemented in a timely manner, and marking it as such allows the WG to drop the
feature if necessary when transitioning to the Proposed Rec stage, without having to publish a new
Candidate Rec without the feature first.

Table of Contents

1 Introduction

1.1 Purpose

Module Interactions

2.1 Value Definitions

3 Outline properties

3.1 Outlines Shorthand: the ‘outline” property

3.2 Outline Thickness: the ‘outline-width’ property

33 Outline Patterns: the ‘outline-style” property

3.4 Outline Colors: the ‘outline-color’ property

3.5 Offsetting the Outline: the ‘outline-offset” property
Resizing

4.1 Resizing Boxes: the ‘resize’ property

5 Pointing Devices and Keyboards

5.1 Pointer interaction

5.1.1 Styling the Cursor: the ‘cursor’ property

5.1.1.1 Cursor of the canvas

5.2 Insertion caret

5.2.1 Coloring the Insertion Caret: the ‘caret-color’ property

522 Shape of the insertion caret: ‘caret-shape’

523 Insertion caret shorthand: ‘caret’

53 Keyboard control

5.3.1 Directional Focus Navigation: the ‘nav-up’, ‘nav-right’, ‘nav-down’, ‘nav-left” properties

53.1.1 Example: positioned buttons

53.12 Example: moving focus to inside a frame

5.3.2 Obsolete: the ime-mode property

User Interaction

6.1 Controlling content selection

7 Styling Widgets

7.1 Widget Accent Colors: the ‘accent-color’ property

7.2 Switching appearance: the ‘appearance’ property

7.2.1 Effects of ‘appearance’ on Decorative Aspects of Elements
7.2.2 Effects of ‘appearance’ on Semantic Aspects of Elements

7.3 Control Specific Rules

7.3.1 Single-Line Text Input Controls
Appendix A. Acknowledgments

Appendix B. Changes

Changes from the 24 January 2020 Working Draft
Changes from the 2 January 2020 Working Draft

Changes from the 22 December 2017 Working Draft
Changes from the 22 Sep 2015 First Public Working Draft

Appendix C. Considerations for Security and Privacy
Appendix D. Default style sheet additions for HTML

Conformance
Document conventions
Conformance classes
Partial implementations
Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index
Terms defined by this specification

Terms defined by reference

References
Normative References

Informative References
Property Index

Issues Index

1. Introduction

This module describes CSS properties which enable authors to style user interface related properties

and values.

Section 2.1 of CSS1 [CSS1] and Chapter 18 of CSS2 [CSS21] introduced several user interface related

properties and values. User Interface for CSS3 (16 February 2000) introduced several new user
interface related features.

[CSS-UI-3] was later introduced to incorporate, extend, and supersede these. This specification
continues this work, and in turn replaces [CSS-UI-3].

1.1. Purpose

The purpose of this specification is to achieve the following objectives:

e Extend the user interface features in [CSS21] and [CSS-UI-3]

¢ Provide additional CSS mechanisms to augment or replace other dynamic presentation related
features in HTML.

¢ Introduce directional navigation properties to assist in the construction of user interfaces which

make use of a directional navigation model.

2. Module Interactions

This document defines new features not present in earlier specifications. In addition, it replaces and
supersedes [CSS-UI-3], which itself replaced and superseded the following:

e Section 18.1, section 18.4, and Information on the stacking of outlines defined in Appendix E of
Cascading Style Sheets, level 2, revision 1 [CSS21]

e User Interface for CSS3 (16 February 2000) [CSS-UI-3]

Note: The ‘box-sizing’ property was previously defined in this section of the specification, but has
been moved to CSS Sizing 3 §3.3 Box Edges for Sizing: the box-sizing property.

Note: The ‘text-overflow’ property was previously defined in this section of the specification, but

has been moved to CSS Overflow 3 §4.1 Overflow Ellipsis: the text-overflow property.

2.1. Value Definitions

This specification follows the CSS property definition conventions from [CSS21] using the value

definition syntax from [CSS-VALUES-3]. Value types not defined in this specification are defined in

CSS Values & Units [CSS-VALUES-3]. Combination with other CSS modules may expand the

definitions of these value types.

In addition to the property-specific values listed in their definitions, all properties defined in this

specification also accept the CSS-wide keywords as their property value. For readability they have not

been repeated explicitly.

3. Outline properties

At times, style sheet authors may want to create outlines around visual objects such as buttons, active
form fields, image maps, etc., to make them stand out. Outlines differ from borders in the following
ways:

1. Outlines do not take up space.

2. Outlines may be non-rectangular.

3. UAs often render outlines on elements in the ‘:focus’ state.

The outline properties control the style of these dynamic outlines.

The stacking of the rendering of these outlines is explicitly left up to implementations to provide a
better user experience per platform. This supersedes the stacking of outlines as defined in Appendix E
of CSS 2.1 [CSS21].

Keyboard users, in particular people with disabilities who may not be able to interact with
the page in any other fashion, depend on the outline being visible on elements in the ‘:focus’
state, thus authors must not make the outline invisible on such elements without making

sure an alternative highlighting mechanism is provided.

The rendering of applying transforms to outlines is left explicitly undefined in CSS3-UI.

3.1. Outlines Shorthand: the ‘outline’ property

Name: ‘outline’

Value: [<'outline-color"™ || <'outline-style™ || <'outline-width"™]

Initial: see individual properties

Applies to: all elements
Inherited: no

Percentages: N/A

Computed see individual properties

value:

Animation see individual properties
type:

Canonical per grammar

order:

8 3.2. Outline Thickness: the ‘outline-width’ property

Name: ‘outline-width’
Value: <line-width>
Initial: medium
Applies to: all elements
Inherited: no

Percentages: N/A

Computed absolute length; ‘0’ if the outline style is ‘none’.

value:

Canonical per grammar
order:

Animation by computed value
type:

8 3.3. Outline Patterns: the ‘outline-style’ property

Name: ‘outline-style’

Value: auto | <outline-line-style>
Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Computed specified keyword

value:

Canonical per grammar
order:

Animation by computed value
type:

Q

8 3.4. Outline Colors: the ‘outline-color’ property

Name: ‘outline-color’
Value: <color> | invert
Initial: invert

Applies to: all elements
Inherited: no

Percentages: N/A

Computed The computed value for ‘invert’ is ‘invert’. For <color> values, see [[!CSS-
value: COLOR-4#resolving-color-values]] in [CSS-COLOR-4].
Canonical per grammar

order:

Animation by computed value

type:

The outline created with the outline properties is drawn "over" a box, i.e., the outline is always on top
and doesn’t influence the position or size of the box, or of any other boxes. Therefore, displaying or

suppressing outlines does not cause reflow.

Outlines may be non-rectangular. For example, if the element is broken across several lines, the

outline should be an outline or minimum set of outlines that encloses all the element’s boxes.

Each part of the outline should be fully connected rather than open on some sides (as borders on inline

elements are when lines are broken).

The parts of the outline are not required to be rectangular. To the extent that the outline follows the

border edge, it should follow the ‘border-radius’ curve.
The position of the outline may be affected by descendant boxes.

User agents should use an algorithm for determining the outline that encloses a region appropriate for

conveying the concept of focus to the user.

Note: This specification does not define the exact position or shape of the outline, but it is typically

drawn immediately outside the border box.

The ‘outline-width’ property accepts the same values as ‘border-width’ (CSS Backgrounds 3 §3.3 Line
Thickness: the border-width properties).

‘<outline-line-style>’ accepts the same values as <line-style> (CSS Backgrounds 3 §3.2 Line Patterns:

the border-style properties) with the same meaning, except that ‘hidden’ is not a legal outline style. In

addition, the ‘outline-style’ property accepts the value ‘auto’. The ‘auto’ value permits the user agent
to render a custom outline style, typically a style which is either a user interface default for the
platform, or perhaps a style that is richer than can be described in detail in CSS, e.g. a rounded edge
outline with semi-translucent outer pixels that appears to glow. As such, this specification does not

define how the ‘outline-color’ and ‘outline-width’ are incorporated or used (if at all) when rendering

‘auto’ style outlines. User agents may treat ‘auto’ as ‘solid’.

The ‘outline-color’ property accepts all colors, as well as the keyword ‘invert’. ‘invert’ is expected to
perform a color inversion on the pixels on the screen. This is a common trick to ensure the focus

border is visible, regardless of color background.

Conformant UAs may ignore the ‘invert’ value on platforms that do not support color inversion of the

pixels on the screen.

If the UA does not support the ‘invert’ value, then it must reject that value at parse-time, and the initial

value of the ‘outline-color’ property is the ‘currentColor’ keyword.

The ‘outline’ property is a shorthand property and sets all three of ‘outline-style’, ‘outline-width’, and

‘outline-color’.

Note: The outline is the same on all sides. In contrast to borders, there are no ‘outline-top’,

‘outline-left’, etc. properties.

This specification does not define how multiple overlapping outlines are drawn or how outlines are

drawn for boxes that are partially obscured behind other elements.

EXAMPLE 1
Here’s an example of drawing a thick outline around a BUTTON element:

button { outline: thick solid }

Graphical user interfaces may use outlines around elements to tell the user which element on the page
has the focus. These outlines are shown in addition to any borders, and switching outlines on and off
should not cause the document to reflow. The focus is the subject of user interaction in a document

(e.g. for entering text or selecting a button).

EXAMPLE 2
For example, to draw a thick black line around an element when it has the focus, and a thick red

line when it is active, the following rules can be used:
:focus { outline: thick solid black }

:active { outline: thick solid red }

Note: Since the outline does not affect formatting (i.e., no space is left for it in the box model), it

may well overlap other elements on the page.

3.5. Offsetting the Outline: the ‘outline-offset’ property

By default, the outline is drawn starting just outside the border edge. However, it is possible to offset
the outline and draw it beyond the border edge.

Name: ‘outline-offset’
Value: <length>
Initial: 0

Applies to: all elements
Inherited: no

Percentages: N/A

Computed absolute length

value:

Canonical per grammar
order:

Animation by computed value
type:

If the computed value of ‘outline-offset’ is anything other than 0, then the outline is outset from the

border edge by that amount.

EXAMPLE 3
For example, to leave 2 pixels of space between a focus outline and the element that has the focus

or is active, the following rule can be used:

:focus, :active { outline-offset: 2px }

Negative values must cause the outline to shrink into the border box. Both the height and the width of
the outside of the shape drawn by the outline should not become smaller than twice the computed

value of the ‘outline-width’ property to make sure that an outline can be rendered even with large

negative values. User agents should apply this constraint independently in each dimension. If the

outline is drawn as multiple disconnected shapes, this constraint applies to each shape separately.

4. Resizing

CSS2.1 provides a mechanism for controlling the appearance of a scrolling mechanism (e.g.
scrollbars) on block container elements. This specification adds a mechanism to that for controlling

user resizability of elements as well as the ability to specify text overflow behavior.

4.1. Resizing Boxes: the ‘resize’ property

The ‘resize’ property allows the author to specify whether or not an element is resizable by the user,

and if so, along which axis/axes.

Name: ‘resize’

Value: none | both | horizontal | vertical | block | inline

Initial: none

Applies to: elements with ‘overflow’ other than visible, and optionally replaced elements

such as images, videos, and iframes
Inherited: no

Percentages: N/A

Computed specified keyword

value:

Canonical per grammar

order:

Animation discrete

type:

none
The UA does not present a resizing mechanism on the element, and the user is given no direct

manipulation mechanism to resize the element.

both
The UA presents a bidirectional resizing mechanism to allow the user to adjust both the height
and the width of the element.

horizontal
The UA presents a unidirectional horizontal resizing mechanism to allow the user to adjust only
the width of the element.

vertical
The UA presents a unidirectional vertical resizing mechanism to allow the user to adjust only the
height of the element.

block
The UA presents a unidirectional block-axis resizing mechanism to allow the user to adjust only
the block size of the element.

inline
The UA presents a unidirectional inline-axis resizing mechanism to allow the user to adjust only

the inline size of the element.

Currently it is possible to control the appearance of the scrolling mechanism (if any) on an element
using the ‘overflow’ property (e.g. overflow: scroll vs. overflow: hidden etc.). The purpose of
the ‘resize’ property is to allow control over the appearance and function of the resizing mechanism

(e.g. aresize box or widget) on the element.

Note: The resizing mechanism is NOT the same as the scrolling mechanism, nor is it related to any
UA mechanism for zooming. The scrolling mechanism allows the user to determine which portion
of the contents of an element is shown. The resizing mechanism allows the user to determine the

size of the element.

The ‘resize’ property applies to elements whose computed ‘overflow’ value is something other than

‘visible’. UAs may also apply it, regardless of the value of the ‘overflow’ property, to:

¢ Replaced elements representing images or videos, such as , <video>, <picture>, <svg>,

<object>, Or <canvas>.

e The <iframe> element.

The effect of the ‘resize’ property on generated content is undefined. Implementations should not

apply the ‘resize’ property to generated content.

Note: the ‘resize’ property may apply to generated content in the future if there is implementation
of Interface CSSPseudoElement.

When an element is resized by the user, the user agent sets the ‘width’ and ‘height’ properties to px

unit length values of the size indicated by the user, in the element’s style attribute DOM, replacing
existing property declaration(s), if any, without ‘!important’, if any.

If an element is resized in only one dimension, only the corresponding property is set, not both.

The precise direction of resizing (i.e. altering the top-left of the element or altering the bottom-right)
may depend on a number of CSS layout factors including whether the element is absolutely

positioned, whether it is positioned using the ‘right’ and ‘bottom’ properties, whether the language of

the element is right-to-left etc. The UA should consider the direction of resizing (as determined by
CSS layout), as well as platform conventions and constraints when deciding how to convey the

resizing mechanism to the user.

The user agent must allow the user to resize the element with no other constraints than what is

imposed by ‘min-width’, ‘max-width’, ‘min-height’, and ‘max-height’.

Note: There may be situations in which user attempts to resize an element appear to be overridden
or ignored, e.g. because of ‘!important’ cascading declarations that supersede that element’s style
attribute ‘width’ and ‘height’ properties in the DOM.

Changes to the computed value of an element’s ‘resize’ property do not reset changes to the style

attribute made due to user resizing of that element.

EXAMPLE 4

For example, to make iframes scrollable and resizable, the following rule can be used:

iframe,object[typer="text/"],
object[type$="+xml"],object[type="application/xml"]
{

overflow:auto;
resize:both;

5. Pointing Devices and Keyboards

5.1. Pointer interaction

5.1.1. Styling the Cursor: the ‘cursor’ property

Name:

Value:

Initial:
Applies to:

Inherited:

Percentages:

Computed
value:

Canonical

order:

Animation

Lype:

‘cursor’

[[Surl> [<x> <y>]2,]*

[auto | default | none |

context-menu | help | pointer | progress | wait |

cell | crosshair | text | vertical-text |

alias | copy | move | no-drop | not-allowed | grab | grabbing |

e-resize | n-resize | ne-resize | nw-resize | s-resize | se-resize | sw-resize | w-
resize | ew-resize | ns-resize | nesw-resize | nwse-resize | col-resize | row-
resize | all-scroll |

Zoom-in | zoom-out

1]

auto

all elements
yes

N/A

as specified, except with any relative URLs converted to absolute

per grammar

discrete

This property specifies the type of cursor to be displayed for the pointing device when the cursor’s

hotspot is within the element’s border edge.

Note: As per CSS Backgrounds 3 §4.1 Curve Radii: the border-radius properties, the border edge

is affected by ‘border-radius’.

In the case of overlapping elements, which element determines the type of cursor is based on hit

testing: the element determining the cursor is the one that would receive a click initiated from this

position.

Note: The specifics of hit testing are out of scope of this specification. Hit testing will hopefully be
defined in a future revision of CSS or HTML.

User agents may ignore the cursor property over native user agent controls such as scrollbars, resizers,

or other native Ul widgets e.g. those that may be used inside some user agent specific implementations

of form elements. User agents may also ignore the ‘cursor’ property and display a cursor of their

choice to indicate various states of the UA’s user interface, such as a busy cursor when the page is not

responding, or a text cursor when the user is performing text selection.

Note: [HTML] defines special handling of image maps for the ‘cursor’ property.

Values have the following meanings:

image cursors

<url>

The user agent retrieves the cursor from the resource designated by the URI. If the user
agent cannot handle the first cursor of a list of cursors, it must attempt to handle the second,
etc. If the user agent cannot handle any user-defined cursor, it must use the cursor keyword

at the end of the list. Conforming User Agents may, instead of <url>, support <image>

which is a superset.
The UA must support the following image file formats:

¢ PNG, as defined in [PNG]

e SVQG, as defined in [SVG11], in secure static mode [SVG2], if it has a natural size.

¢ any other non-animated image file format that they support for <image> in other

properties, such as the ‘background-image’ property
In addition, the UA should support the following image file formats:

e SVG, as defined in [SVG11], in secure animated mode [SVG2], if it has a natural size.

e any other animated image file format that they support for <image> in other properties,
such as the ‘background-image’ property

The UA may also support additional file formats, including SVG, as defined in [SVG11], in

secure static mode or secure animated mode [SVG2], even if it does not have a natural size.

Note: The CSS Working Group initially intended support for all SVG, naturally sized or
not. Support for non-naturally sized SVG was downgraded from mandatory to optional

due to lack of implementations.

Note: At the time of writing this specification (spring 2015), the only file formats
supported for cursors in common desktop browsers are the .ico and .cur file formats, as
designed by Microsoft. For compatibility with legacy content, UAs are encouraged to
support these, even though the lack of an open specification makes it impossible to have
a normative requirement about these formats. Some information on these formats can be

found on Wikipedia.

The default object size for cursor images is a UA-defined size that should be based on the

size of a typical cursor on the UA’s operating system.

The concrete object size is determined using the default sizing algorithm. If an operating

system is incapable of rendering a cursor above a given size, cursors larger than that size
must be shrunk to within the OS-supported size bounds, while maintaining the cursor

image’s natural aspect ratio, if any.

The optional <x> and <y> coordinates identify the exact position within the image which is

the pointer position (i.e., the hotspot).

<x>

<y>
Each is a <number>. The x-coordinate and y-coordinate of the position in the cursor’s
coordinate system (left/top relative) which represents the precise position that is being

pointed to.

Note: This specification does not define how the coordinate systems of the various types
of <image> are established, and defers these definitions to [CSS4-IMAGES].

If the values are unspecified, then the natural hotspot defined inside the image resource itself
is used. If both the values are unspecific and the referenced cursor has no defined hotspot,

the effect is as if a value of "0 0" was specified.

If the coordinates of the hotspot, as specified either inside the image resource or by <x> and

<y> values, fall outside of the cursor image, they must be clamped (independently) to fit.
general purpose cursors

‘auto’

The UA determines the cursor to display based on the current context. Specifically, ‘auto’

behaves as ‘text’ over selectable text or editable elements, and ‘default’ otherwise.

Note: When over selectable text or editable elements, as it does with ‘text’, the UA must
use a vertical or horizontal text cursor, as appropriate for the writing mode of the

element, and may take transforms and other visual effects into account as well.

‘default’
The platform-dependent default cursor. Often rendered as an arrow.

‘none’
No cursor is rendered for the element.

links and status cursors

‘context-menu’
A context menu is available for the object under the cursor. Often rendered as an arrow with

a small menu-like graphic next to it.
‘hel]’ s
Help is available for the object under the cursor. Often rendered as a question mark or a
balloon.
‘pointer’
The cursor is a pointer that indicates a link. Often rendered as the backside of a hand with

the index finger extended.

Unless otherwise specified, UAs must apply ‘cursor: pointer’ to hyperlinks for all supported

document formats via the UA stylesheet, using a normal (i.e. not ‘!important’) declaration.
Authors should use pointer on links and may use on other interactive elements.

‘progress’
A progress indicator. The program is performing some processing, but is different from

‘wait’ in that the user may still interact with the program. Often rendered as a spinning beach
ball, or an arrow with a watch or hourglass.

‘wait’
Indicates that the program is busy and the user should wait. Often rendered as a watch or

hourglass.

selection cursors

‘cell’

Indicates that a cell or set of cells may be selected. Often rendered as a thick plus-sign with a
dot in the middle.

‘crosshair’
A simple crosshair (e.g., short line segments resembling a "+" sign). Often used to indicate a

two dimensional bitmap selection mode.

‘text’
Indicates text that may be selected. Often rendered as an I-beam. User Agents must

automatically display a vertical I-beam/cursor over elements with a horizontal writing mode,
and a horizontal [-beam/cursor (e.g. same as the ‘vertical-text’ keyword) over elements in a
vertical writing mode. Additionally, User Agents may take transforms (see
[CSS-TRANSFORMS-1]) or other visual effects such as text on a path (See SVG 2 §11.8

Text on a path), when choosing between the horizontal or vertical text cursor, and may

display any angle of I-beam/cursor for text that is rendered at any particular angle.

‘vertical-text’
Indicates vertical-text that may be selected. Often rendered as a horizontal I-beam.

drag and drop cursors

‘alias’
Indicates an alias of/shortcut to something is to be created. Often rendered as an arrow with
a small curved arrow next to it.

‘copy’
Indicates something is to be copied. Often rendered as an arrow with a small plus sign next

to it.

‘move’
Indicates something is to be moved.

‘no-drop’
Indicates that the dragged item cannot be dropped at the current cursor location. Often

rendered as a hand or pointer with a small circle with a line through it.

‘not-allowed’
Indicates that the requested action will not be carried out. Often rendered as a circle with a

line through it.

‘grab’
Indicates that something can be grabbed (dragged to be moved). Often rendered as the

backside of an open hand.

‘grabbing’
Indicates that something is being grabbed (dragged to be moved). Often rendered as the

backside of a hand with fingers closed mostly out of view.

resizing and scrolling cursors

‘e-resize’, ‘n-resize’, ‘ne-resize’, ‘nw-resize’, ‘s-resize’, ‘se-resize’, ‘sw-resize’, ‘w-resize’

Indicates that some edge is to be moved. For example, the ‘se-resize’ cursor is used when
the movement starts from the south-east corner of the box.

‘ew-resize’, ‘ns-resize’, ‘nesw-resize’, ‘nwse-resize’
Indicates a bidirectional resize cursor.

‘col-resize’
Indicates that the item/column can be resized horizontally. Often rendered as arrows pointing
left and right with a vertical bar separating them.

‘row-resize’
Indicates that the item/row can be resized vertically. Often rendered as arrows pointing up

and down with a horizontal bar separating them.

‘all-scroll’
Indicates that the something can be scrolled in any direction. Often rendered as arrows

pointing up, down, left, and right with a dot in the middle.

zooming cursors

‘zoom-in’, ‘zoom-out’
Indicates that something can be zoomed (magnified) in or out, and often rendered as a

nn

magnifying glass with a "+" or "-" in the center of the glass, for ‘zoom-in’ and ‘zoom-out’

respectively.

EXAMPLE 5

Here is an example of using several cursor values.

:link, :visited {
cursor: url(example.svg#linkcursor),
url(hyper.cur),
url(hyper.png) 2 3,
pointer

This example sets the cursor on all hyperlinks (whether visited or not) to an external SVG
<cursor>. User agents that don’t support SVG cursors would simply skip to the next value and
attempt to use the "hyper.cur" cursor. If that cursor format was also not supported, the UA could
attempt to use the "hyper.png" cursor with the explicit hotspot. Finally if the UA does not support
any of those image cursor formats, the UA would skip to the last value and render the ‘pointer’

Cursor.

5.1.1.1. Cursor of the canvas

The document canvas is the infinite surface over which the document is rendered [CSS21]. Since no

element corresponds to the canvas, in order to allow styling of the cursor when not over any element,
the canvas cursor re-uses the root element’s cursor. However, if no boxes are generated for the root

element (for example, if the root element has ‘display: none’), then the canvas cursor is the platform-

dependent default cursor.

Note: An element might be invisible but still generate boxes. For example, if the element has

‘visibility: hidden’ but not ‘display: none’, boxes are generated for it and its cursor is used for the

canvas.

5.2. Insertion caret

5.2.1. Coloring the Insertion Caret: the ‘caret-color’ property

Name: ‘caret-color’
Value: auto | <color>
Initial: auto

Applies to: all elements
Inherited: yes

Percentages: N/A

Computed The computed value for ‘auto’ is ‘auto’. For <color> values, see [[!CSS-

value: COLOR-4#resolving-color-values]] in [CSS-COLOR-4].
Canonical per grammar

order:

Animation by computed value

type:

auto
User agents should use ‘currentColor’. User agents may automatically adjust the color of caret to

ensure good visibility and contrast with the surrounding content, possibly based on the

currentColor, background, shadows, etc.

Note: When ‘caret-shape’ is ‘block’, ensuring good visibility and contrast is best achieved

with a UA determined color other than ‘currentColor’.

<color>
The insertion caret is colored with the specified color.

The caret is a visible indicator of the insertion point in an element where text (and potentially other

content) is inserted by the user. This property controls the color of that visible indicator.

Note: UAs might have additional things that count as “carets”. For example, some UAs can show a
“navigation caret”, which acts similarly to an insertion caret but can be moved around in non-

editable text and is functionally a caret. On the other hand, the cursor image shown when hovering

over text when the ‘cursor’ property is ‘auto’, or when hovering over an element where the

‘cursor’ property is ‘text’ or ‘vertical-text’, though it sometimes resembles a caret, is not a caret

(it’s a cursor).

EXAMPLE 6

caret-color:#00aacc
Example: a textarea with caret-color:#080aacc;

5.2.2. Shape of the insertion caret: ‘caret-shape’

Name: ‘caret-shape’
Value: auto | bar | block | underscore
Initial: auto

Applies to: elements that accept input
Inherited: yes

Percentages: N/A

Computed specified keyword

value:

Canonical per grammar

order:

Animation by computed value

lype:

This property allows authors to specify the desired shape of the text insertion caret.

Within the context of this definition, character is to be understood as extended grapheme cluster, as

defined in [UAX29], and visible character means a character with a non-zero advance measure.

‘auto’
The UA determines the shape of the caret. It should match platform conventions, and may be

adjusted based on context. For example, if a UA switches between insert mode and overtype
mode when the user presses the insert key on their keyboard, it may show a ‘bar’ caret in insert
mode, and a ‘block’ caret in overtype mode.

‘bar’
The UA must render the text insertion caret as a thin bar placed at the insertion point. This means
it is between, before, or after characters, not over them. It should be perpendicular to the inline

progression direction, although UAs may render it slanted when inserting italic or oblique text.

‘block’
The UA must render the text insertion caret as a rectangle overlapping the next visible character

following the insertion point. If there is no visible character after the insertion point, the UA must
render the caret after the last visible character. UAs may render it as a slanted rectangle when

inserting italic or oblique text.

‘underscore’
The UA must render the text insertion caret as a thin line under (as defined in

[CSS-WRITING-MODES-3] the next visible character following the insertion point. If there is

no visible character after the insertion point, the UA must render the caret after the last visible

character.

The width of the ‘block’ and ‘underscore’ carets should be the advance measure of the next visible

character after the insertion point, or ‘Ich’ if there is no next visible character or if this information is

impractical to determine.

When determining the orientation and appearance of the caret, UAs must take into account the writing
mode [CSS-WRITING-MODES-3] and must apply transformations [CSS-TRANSFORMS-1]. If the
edited text is laid out on a path, for instance by using the SVG <textPath> element, UAs should also

account for this.

The thickness of ‘bar’ and ‘underscore’ carets—as well as that of ‘auto’ carets with a similar rendering

—is determined by the user agent. When practical, the user agent should choose a thickness that
ensures the caret remains visible even if it has been scaled down via means such as transformations
[CSS-TRANSFORMS-1].

The stacking position of the caret is left undefined within the following constraints:

¢ The caret must not be obscured by the background of the element.

e UAs must render ‘block’ carets so that the character it overlaps with is not obscured by the caret.

EXAMPLE 7
This illustrates the typical appearance of the various caret shapes. In each of the sample renderings

below, the insertion point is between the letters u and m.

. |[Your browser
‘caret-shape’((Sample rendering
(focus each cell to see the caret)

‘bar’ Lorem ipsdm Lorem Ipsum

‘block’ Lorem ipsum Lorem Ipsum

‘underscore’ ||Lorem ispum Lorem Ipsum

EXAMPLE 8
‘underscore’ or ‘block’ carets are commonly used in terminals and command lines, as in this

example.

.console {
caret-shape: underscore;
background: black;
color: white;
font-family: monospace;
padding: 1lex;

The simulated rendering below illustrates how this should look.

Focus the element below to see how your browser renders it.

5.2.3. Insertion caret shorthand: ‘caret’

Name: ‘caret’

Value: <'caret-color™ || <'caret-shape'™
Initial: auto

Applies to: elements that accept input

Inherited: yes

Percentages: N/A

Computed see individual properties

value:

Animation see individual properties
type:

Canonical per grammar

order:

This property is a shorthand for setting ‘caret-color’ and ‘caret-shape’ in one declaration. Omitted

values are set to their initial values.

5.3. Keyboard control

5.3.1. Directional Focus Navigation: the ‘nav-up’, ‘nav-right’, ‘nav-down’, ‘nav-left’ properties

Name: ‘nav-up’, ‘nav-right’, ‘nav-down’, ‘nav-left’
Value: auto | <id> [current | root | <target-name> |?
Initial: auto

Applies to: all enabled elements
Inherited: no

Percentages: N/A

Computed as specified

value:

Canonical per grammar
order:

Animation discrete
type:

auto
The user agent automatically determines which element to navigate the focus to in response to

directional navigational input.

‘<l'd>’

The <id> value is an ID selector [SELECT]. In response to directional navigation input
corresponding to the property, the focus is navigated to the first element in tree order matching

the selector.

If this refers to the currently focused element, the directional navigation input respective to the

nav- property is ignored — there is no need to refocus the same element.

If no element matches the selector, the user agent automatically determines which element to

navigate the focus to.

If the focus is navigated to an element that was not otherwise focusable, it becomes focusable
only as the result of this directional navigation, and the ‘:focus’ pseudo-class matches the element

while it is focused as such.

Note: there were other options under consideration for such "not otherwise focusable"
elements, including focus to the next otherwise focusable element in the document tree
(including descendants of such a not otherwise focusable element). Input on such other
options is welcome and explicitly solicited, especially from implementation experiences and

author experience using the directional navigation properties in their content.

‘<target-name>’

The <target-name> parameter indicates the target frame for the focus navigation. It is a <string>
and it MUST NOT start with the underscore " " character. Error handling: if it does start with an

'

underscore, "_parent" navigates to the parent frame, " root" is treated as ‘root’, and other values
navigate to a frame by that name if it exists. If the specified target frame does not exist, the
parameter will be treated as the keyword ‘current’, which means to simply use the frame that the

element is in. The keyword ‘root’ indicates that the user agent should target the full window.

User agents for devices with directional navigation keys respond by navigating the focus according to
four respective nav-* directional navigation properties (nav-up, nav-right, nav-down, nav-left). This

specification does not define which keys of a device are directional navigational keys.

Note: Typical personal computers have keyboards with four arrow keys. One possible
implementation would be to use those four arrow keys for directional navigation. For accessibility
and user convenience, user agents should allow configuration of which keys on a keyboard are

used for directional navigation.

EXAMPLE 9

5.3.1.1. Example: positioned buttons

Here is an example of buttons positioned in a diamond shape whose directional focus navigation is
set in such a way to navigate the focus clockwise (or counter-clockwise) around the diamond shape
when the user chooses to navigate directionally.

button { position:absolute }

button#bl {
top:0; left:50%;
nav-right:#b2; nav-left:#b4;
nav-down:#b2; nav-up:#b4;

button#b2 {
top:50%; left:100%;
nav-right:#b3; nav-left:#bl;
nav-down:#b3; nav-up:#bil;

button#b3 {
top:100%; left:50%;
nav-right:#b4; nav-left:#b2;
nav-down:#b4; nav-up:#b2;

button#b4d {
top:50%; left:0;
nav-right:#bl; nav-left:#b3;

nav-down:#bl; nav-up:#b3;

Whatever markup sequence the buttons may have (which is not specified in this example) is
irrelevant in this case because they are positioned, and yet, it is still important to ensure focus

navigation behaviors which relate reasonably to the specified layout.

EXAMPLE 10

5.3.1.2. Example: moving focus to inside a frame

Moving the focus to an element in a specific frame requires both the element’s id and the frame’s

name.

This example shows how to make navigating left from the button with id "foo" move the focus to

the element with id "bar" within the frame named "sidebar".

button#foo { nav-left: #bar "sidebar"; }

5.3.2. Obsolete: the ime-mode property

‘ime-mode’ is a property somewhat implemented in some browsers, that is problematic and officially
obsoleted by this specification and its predecessor [CSS-UI-3].

There is documentation of non-interoperability of these implementations.

User agents should not support the ‘ime-mode’ property.
Authors must not use the ime-mode property.

Users may use the ime-mode property only for repair use-cases where they have to work around bad

sites and legacy implementations, e.g. with a user style sheet rule like:

EXAMPLE 11

Example: user preference

input[type=password] { ime-mode: auto !important;

}

This example CSS may be placed into a user style sheet file to force password input fields to behave in

a default manner.

This specification deliberately does not attempt to document the functionality of legacy ime-mode
implementations nor what they specifically support because it does not make sense to pursue or

recommend any such path.

Note: there are several [HTMLS5] features which authors should use to provide information to user

agents that allow them to provide a better input user experience:

e The global 1ang attribute

e The inputmode, pattern, and type attributes of the input element

6. User Interaction

6.1. Controlling content selection

The ‘user-select’ property enables authors to specify which elements in the document can be selected
by the user and how. This allows for easier interactions when not all elements are equally useful to

select, avoiding accidental selections of neighboring content.

Name: ‘user-select’

Value: auto | text | none | contain | all

Initial: auto

Applies to: all elements, and optionally to the ‘::before’ and ‘::after’ pseudo-elements
Inherited: no

Percentages: n/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete

lype:

User agents must not apply the ‘user-select’ property to the ‘::first-line’ and °::first-letter’ pseudo-

elements.

Note: The UA may apply this property to the ‘::before’ and ‘::after’ pseudo-elements. If it does,

the ‘auto’ value maps to a used value of ‘none’ on these pseudos, but other values can be specified.

This preserves the legacy behavior of generated content not being selectable or copyable, which is
appropriate when these pseudos are used for decorative purposes. However, this property allows
them to become selectable and copyable, as the user would expect in cases where they are used to

generate parts of the content, such as the issue numbers in this document.

To the extent possible, authors should avoid using generated content for non-decorative

purposes, and should prefer including all the content in the DOM.

This feature is at risk.

ISSUE I if we allow user-select to change to a value other than ‘none’, we need to figure out
what this means for copyability, and DOM APIs.

When generated content in pseudo-elements becomes selectable through this mechanism, UAs should

also make this content findable through their search function.

ISSUE 2 Should it also apply to ‘::marker’? To page-margin boxes? Should the used value of

‘auto’ also be ‘none’, or would ‘text’ be more appropriate?

The used value is the same as the computed value, except:

1. on editable elements where the used value is always ‘contain’ regardless of the computed value

2. when the computed value is ‘auto’, in which case the used value one of the other values as
defined below

For the purpose of this specification, an editable element is either an editing host or a mutable form

control with textual content, such as <textarea>.

ISSUE 3 Should there be constraints on what happens to the used value on elements that are
editable descendants of editing hosts? The semantics are not obvious. Maybe ‘none’ should map to

‘text’, or maybe all values should map to ‘text’.

‘auto’
The used value of ‘auto’ is determined as follows:

¢ On the ‘::before’ and ‘::after’ pseudo-elements, the used value is ‘none’

o Ifthe element is an editable element, the used value is ‘contain’

o Otherwise, if the used value of ‘user-select’ on the parent of this element is ‘all’, the used

value is ‘all’

e Otherwise, if the used value of ‘user-select’ on the parent of this element is ‘none’, the used

value is ‘none’

e Otherwise, the used value is ‘text’

Note: This unusual combination of a non-inherited property with an initial value of ‘auto’
whose used value depends on the parent element makes it possible to create what is
effectively selective inheritance. This was initially proposed by Microsoft in IE to introduce a

behavior similar to inheritance except that the ‘contain’ value does not inherit.

‘text’
The element imposes no constraint on the selection.

‘none’
The UA must not allow selections to be started in this element.

A selection started outside of this element must not end in this element. If the user attempts to

create such a selection, the UA must instead end the selection range at the element boundary.

Note: As of the time of writing, experimental implementations do not all behave like this.
Firefox does. Chrome and Safari almost do: for a selection started after the element and trying
to go backwards into the element they behave as specitfied here, but for a selection started
before the element and trying to go into the element they behave as if the element has ‘all’
and select it entirely. IE does not restrict selections started outside of the element from going
into it at all. Another difference is that in Chrome and Safari, if the user attempts to start a

selection inside a ‘user-select: none’, and to end the selection out of it, a selection will be

created from the boundary of the element to the user-designated end-point. Firefox and

Internet explorer behave as prescribed in this specification and do not create a selection at all.

However, if this element has descendants on which the used value of ‘user-select’ is not ‘none’,

selections that start and end within these descendants are allowed.

The UA must allow selections to extend across this element, and must exclude this element from
such a selection. An exception is made for UAs which do not support multiple ranges per
selection, and they may include this element. If the element has descendants on which the used

value of ‘user-select’ is not ‘none’, these descendants must be included in a selection extending

across the element. | This specification makes no normative requirement about the behavior of

the clipboard. however, UAs are encouraged to keep the visual selection consistent with what
would get copied to the clipboard when copying. Copying text that does not appear to be selected,

or vice versa, is highly confusing to users.

Attempting to start a selection in an element where ‘user-select’ is ‘none’, such as by clicking in

it or starting a drag in it, must not cause a pre-existing selection to become unselected or to be
affected in any way.

As ‘user-select’ is a Ul convenience mechanism, not a copy protection mechanism, the UA may
provide an alternative way for the user to explicitly select the text even when ‘user-select’ is

‘none’.

Note: ‘none’ is not a copy protection mechanism, and using it as such is ineffective: User
Agents are allowed to provide ways to bypass it, it will have no effect on legacy User Agents
that do not support it, and the user can disable it through the user style sheet or equivalent
mechanisms on UAs that do anyway. Instead, ‘none’ is meant to make it easier for the user to
select the content they want, by letting the author disable selection on Ul elements that are not
useful to select. Tools such as CSS validators, linters or in-browser developer tools are
encouraged to use heuristics to detect and warn against incorrect or abusive usage that would

hamper usability or violate common user expectations.

Authors should be careful about not constraining the user unnecessarily. For example, setting

‘user-select: none’ on the root element, and relaxing that restriction on a handful of elements

the author judges useful to select can be frustrating to users:

Clicking in empty areas to undo the current selection will no longer be effective
e The author may have overlooked some areas which should be selectable
e Arcas may be added later to the page without remembering to make them selectable

¢ The user may want to select pieces of text other than the main content, for instance to
look them up in a dictionary or in some translation tool, or to look for warnings and error

messages in a search engine...

Instead, a good practice is for authors is to selectively apply ‘user-select: none’ to elements

which seem likely to be accidentally selected when doing so would interfere with the more
likely intended action. Accidentally leaving parts of the page that are unlikely to be interacted

with selectable will likely cause much less frustration to users than the opposite.

‘contain’

UAs must not allow a selection which is started in this element to be extended outside of this
element.
A selection started outside of this element must not end in this element. If the user attempts to

create such a selection, the UA must instead end the selection range at the element boundary.

The UA must allow selections to extend across this element, and such selections must include the
content of the element.

Note: At the time of writing, experimental implementations behave differently from each
other about selections started outside and selections going into the element. The behavior can
be observed even on browsers that do not explicitly support ‘contain’ by trying to select into a

<textarea> or a contenteditable element.

Note: This was initially introduced as an experimental feature in Internet Explorer, under the

name user-select: element.

‘all’
The content of the element must be selected atomically: If a selection would contain part of the
element, then the selection must contain the entire element including all its descendants. If the

element is selected and the used value of ‘user-select’ on its parent is ‘all’, then the parent must

be included in the selection, recursively.

If this element has descendants on which the used value of ‘user-select’ is not ‘all’ and if a

selection is entirely contained in these descendants, then the selection is not extended to include
this whole element.

Note: Selections can include more than just text and extend over images, tables, videos, etc. The

behavior when copying and pasting a such selections is out of scope for this specification.

The following additions are made to the UA stylesheet for HTML.:

button, meter, progress, select { user-select: none; }

ISSUE 4 the list above is incomplete and needs to include at least the various button-like

variants of <input>.

For compatibility with legacy content, UAs that support ‘user-select’ must also support ‘-webkit-user-

select’ as an alias.

Note: The details of the aliasing mechanism is intentionally left up to the UA. Making ‘-webkit-
user-select’ a shorthand property of ‘user-select’ is known to be an effective approach, and new
implementers should consider it. However, UAs supporting ‘-webkit-user-select” as an alias of
‘user-select” through other means exist, without adverse consequences to compatibility, so this
specification allows flexibility.

7. Styling Widgets

7.1. Widget Accent Colors: the ‘accent-color’ property

Name: ‘accent-color’
Value: auto | <color>
Initial: ‘auto’

Applies to: all elements

Inherited: yes

Percentages: N/A

Computed the keyword ‘auto’ or a computed color

value:

Canonical per grammar

order:

Animation by computed value type
type:

User interface controls on any given platform are typically designed as a cohesive set, under a single,
cohesive visual style. On many platforms (though not all), the visual style includes the use of an
accent color, a typically bright color that contrasts markedly with the more utilitarian background and
foreground colors. Not every control uses the accent color in every state, but it is nonetheless a core
part of the controls’ color scheme.

The ‘accent-color’ CSS property allows the author to specify the accent color for user-interface

controls generated by the element. Values have the following meanings:

‘auto’
Represents a UA-chosen color, which should match the accent color of the platform, if any.

‘<color>’
Specifies the color to be used as the accent color.

The UA should use the specified ‘accent-color’ to draw whichever parts of the element’s control(s)
would have otherwise been styled with an accent color. The UA must maintain contrast for legibility
of the control, and in order to do so may adjust the luminance or brightness of the color or make color
substitutions in other parts of the control (e.g. switching an overlaid glyph from using ‘color’ to using
‘background-color’). It may also generate variations of the color for gradients etc. to match the control

to platform conventions for the use of the accent color.

EXAMPLE 12
A radio button is typically composed of a circle, potentially overlaid by a “dot” representing the
checked state. Certain visual styles use an accent color for the checked state: some of these use it

for the background of the circle, others for its foreground.

In both cases, the ‘accent-color’ property styles the affected parts of the control. For visual styles

that do not use an accent color for radio buttons, ‘accent-color’ will have no effect.

The following are all examples of radio buttons conformantly rendered with a blue ‘accent-color’:

Platform Sample Notes
Firefox 79 / ~ 7
) L) I_i:i No use of accent color.
Win i
Chrome 81 /
: @ No use of accent color.
Win
Safari / Snow ~ Accent color used to generate checked-state
Leopard b “background” gradient.
Safari 13/
. o Accent color as checked-state “foreground”.
Mac / Light
Safari 13/
Accent color as checked-state “foreground”.
Mac / Dark
Chrome 83 / =
]) L) Accent color as checked-state “foreground”.
Win / Light '
Chrome 83 / . @ Accent color as checked-state “foreground”, contrast-
Win / Dark adjusted for dark mode backgrounds.

7.2. Switching appearance: the ‘appearance’ property

Name: ‘appearance’

Value: none | auto | textfield | menulist-button | <compat-auto>

Initial: none
Applies to: all elements
Inherited.: no

Percentages: mn/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete
type:

While the way most elements in a document look can be fully controlled by CSS, widgets are typically
rendered by UAs using native Ul controls of the host operating system, which can neither be replicated
nor styled using CSS.

The term widget in this specification denotes elements that can have native appearance, meaning that
they are rendered like analogous native widgets or controls of the host operating system or platform, or
with a look and feel not otherwise expressible in CSS. It is up to the host language (e.g., HTML
[HTML]) to define which elements can have native appearance.

This specification introduces the ‘appearance’ property to provide some control over this behavior. In
particular, using ‘appearance: none’ allows authors to suppress the native appearance of widgets, so
that CSS can be used to restyle them.

» Note on the history of this feature

‘none’
The element is rendered following the usual rules of CSS. Replaced elements other than widgets
are not affected by this and remain replaced elements. Widgets must not have their native

appearance. See § 7.2.1 Effects of appearance on Decorative Aspects of Elements and § 7.2.2

Effects of appearance on Semantic Aspects of Elements for details.

‘auto’
Widgets may have their native appearance.

Elements other than widgets must be rendered as if ‘none’ had been specified.

‘textfield’
For <input> elements where the type attribute is in the Scarch state, the element is rendered as a

"normal" text entry widget, similar to an <input> element where the type attribute is in the Text
state.

For all other elements, this value has the same effect as ‘auto’.

‘menulist-button’

For drop-down box <select> elements, the element is rendered as a drop-down box, including a

"drop-down button", but not necessarily using a native control of the host operating system. For

such elements, CSS properties such as ‘color’, ‘background-color’, and ‘border’ (that can be

disregarded for ‘auto’) should not be disregarded.

For all other elements, this value has the same effect as ‘auto’.

‘<compat-auto>’
These values exist for compatibility of content developed for earlier non-standard versions of this

property. They all have the same effect as ‘auto’.

<compat-auto> = searchfield | textarea | push-button | slider-horizontal |

checkbox | radio | square-button | menulist | Listbox | meter | progress-bar |
button

I ISSUE 5 When ‘auto’ is widely supported, recommend using it instead.

ISSUE 6 If any of these values are not needed for web compat, they should be dropped
from this list; conversely, any value needed for compat not included in this list should be
added.

ISSUE 7 It s possible that for compat reasons some of these values need to be promoted to
being full blown values with effects on arbitrary elements, or that some of these values need
to have some side effects on some widgets.

ISSUE 8 The values slider-vertical and sliderthumb-vertical are supported in some user
agents to change the orientation of <input type=range> elements. These values are not specified
because changing the orientation of this control is better done with a separate mechanism. See
issue whatwg/html#4177.

EXAMPLE 13

An author wanting to customize the look and feel of check boxes in HTML could use the
following:

input[type=checkbox] {
all: unset; /* this shorthand includes resetting appearance to none */
width: 1lem;
height: lem;
display: inline-block;
background: red;

}

input[type=checkbox]:checked {
border-radius: 50%;
background: green;

}

input[type=checkbox]:focus-visible {
outline: auto;

<input type="checkbox"> would be rendered as , while <input type="checkbox"
checked> would be rendered as , and activating (for example by clicking) the element would

toggle the state as usual.

On widgets where the computed value is ‘auto’, ‘textfield’, ‘menulist-button’, or one of the <compat-
auto> values, UAs may disregard some CSS properties to ensure that the intended appearance is
preserved, or because these properties may not be meaningful for the chosen appearance. However, the
following properties must not be disregarded:

e ‘appearance’

e ‘display’ (the inner display type may be ignored)

e ‘visibility’

e ‘position’

o ‘float’

e ‘clear’

e ‘margin’ and related long-hand properties
e ‘unicode-bidi’

e ‘direction’

e ‘cursor’

e ‘z-index’

ISSUE 9 Are there more properties that should be included in this list? Should we remove
some? Should we whitelist the properties that are ok to ignore instead of blacklisting those that are
not? Either way, UAs do ignore some properties when rendering widgets, so this specification

needs to say something about this.

For compatibility with legacy content, UAs must also support ‘-webkit-appearance’ as a legacy name

alias of ‘appearance’.

7.2.1. Effects of ‘appearance’ on Decorative Aspects of Elements

All decorative visual aspects of a widget which are not caused by a CSS style rule must be suppressed
when the appearance is changed using ‘appearance’, even if the UA’s internal representation for this

element was composed of multiple elements or pseudo-elements combined together.

EXAMPLE 14

For example, the [HTML] <select> element is often rendered with an arrow on the right side

indicating that the list will be expanded if the element is clicked. If the computed value of

‘appearance’ on a <select> element is ‘none’ this must disappear.

UAs should include in their user agent stylesheet style rules to give widgets a recognizable shape

when ‘appearance’ is ‘none’.

Note: Authors may therefore need to override these UA style rules to get the styling they intended.

Authors may find it convenient to use ‘all: unset’, to get fully unstyled widgets, which they can

then style as they want without interference from the user agent’s stylesheet. However, this also

suppresses the focus indicators provided by the same UA stylesheet. In order to avoid damaging
accessibility, authors who do so should restore a focus indicator, for instance by using ‘:focus-

visible { outline: auto; }’.

7.2.2. Effects of ‘appearance’ on Semantic Aspects of Elements

UAs must preserve aspects of the widget which are necessary to operate the widget with its original
semantics. The UA may however give them a different look and feel as long as it remains possible to
operate the widget. Aspects of a widget which are merely needed to observe the state the widget is in
and are not needed to operate it should be suppressed as well when the same information can be
conveyed using ordinary CSS. Document languages should specify for each widget that they define

what needs to be preserved.

EXAMPLE 15
For example, the slider of an <input type=range> is preserved (or replaced by an equivalent

mechanism) even if ‘appearance’ is ‘none’, as it would otherwise not be possible to change the

value of the range with the mouse or touchscreen.

On the other hand, the check mark in an <input type=checkbox checked> must be suppressed,
as it merely indicates the state the element is in, which can be styled in different ways using the

‘:checked’ selector.

The behavior and semantics of elements remain defined by the document language, and are not

influenced by this property.

EXAMPLE 16
For example, regardless of the computed value of ‘appearance’:

¢ Elements which can be in different states keep this ability, and the relevant pseudo-classes
match as usual.

e Ifa<select> element is activated, the UI to choose one of the associated <option> elements is

shown (although it may look different).

¢ Event handlers attached to the element trigger as usual.

Conversely, changing the appearance of an element must not cause it to acquire the semantics, pseudo-

classes, event handlers, etc. that are typical of the element whose appearance it acquires.

EXAMPLE 17

For example, neither ‘:enabled’ nor ‘:disabled’ match on a <div> styled with ‘appearance: button’.

The ability for an element to be focused is also not changed by the ‘appearance’ property.

7.3. Control Specific Rules

ISSUE 10 Maybe some or all of this section should be moved to the [HTML] spec. at some

point.

ISSUE 11 On some elements, setting some properties inhibits ‘appearance: auto’. For instance,

even if ‘appearance’ is ‘auto’, buttons lose their native appearance when a ‘border’ is set. This is
not in contradiction with the definition of ‘auto’, since ‘appearance: auto’ only means UAs may
use a native appearance, but for greater interoperability, it would be good to document which

properties on which elements have this effect.

I ISSUE 12 Documenting what UAs need to put in their UA stylesheet would be good.

7.3.1. Single-Line Text Input Controls

When ‘appearance’ is ‘auto’, single-line text input controls such as [HTML] <input type=text>

must be rendered so that:

e The content is clipped in the inline direction to the content edge
¢ The content is clipped in the block direction to the padding edge
¢ The content is vertically centered

e The content does not wrap

e The ‘text-overflow’ property applies regardless of the value of the ‘overflow’ property

&+ 4

Appendix A. Acknowledgments

This appendix is informative.

This specification builds upon [CSS-UI-3], which was edited and written for the most part by Tantek
Celik from 1999 to the present, first while representing Microsoft, then as an Invited Expert, and most

recently while representing Mozilla.

Thanks to feedback and contributions from Rossen Atanassov, Tab Atkins, L. David Baron, Bert Bos,
Matthew Brealey, Rick Byers, Ada Chan, James Craig, Michael Cooper, Axel Dahmen, Michael Day,
Micah Dubinko, Elika E., Steve Falkenburg, Andrew Fedoniouk, Al Gilman, lan Hickson, Bjoern
Hoehrmann, Alan Hogan, David Hyatt, Richard Ishida, Sho Kuwamoto, Yves Lafon, Stuart Langridge,
Susan Lesch, Peter Linss, Kang-Hao Lu, Masayuki Nakano, Mats Palmgren, Brad Pettit, Chris Rebert,
Francois Remy, Andrey Rybka, Simon Sapin, Alexander Savenkov, Sebastian Schnitzenbaumer, Lea
Verou, Etan Wexler, David Woolley, Frank Yan, Boris Zbarsky, and Domel.

Appendix B. Changes

This appendix is informative.

Changes from the 24 January 2020 Working Draft

In addition to a number of editorial adjustments, the following normative changes have been made:

Changed appearance: button to only apply to buttons.

Outline-width may be ignored if outline-style is auto.

Ensured caret visibility despite transforms.

Moved ‘resize: block’ and ‘resize: inline’ from css-logical-1 to this specification.

Introduced the ‘accent-color’ property.

Changes from the 2 January 2020 Working Draft

In addition to a number of editorial adjustments, the following normative changes have been made:

¢ Defined user-select to be discretely animatable, rather than not.

¢ Restricted the applicability of ‘appearance: button’ so that it can no longer give a buttony

appearance to widgets that aren’t buttons to start with.

e Add a clause to preserve visibility of carets even when scaled down via transforms.

Changes from the 22 December 2017 Working Draft

In addition to a number of editorial adjustments, the following normative changes have been made:

e Added details about form control specific rendering rules
¢ Clarify interaction between text-overflow and anonymous block containers
e Require the ‘pointer’ cursor for hyperlinks in all document formats

¢ Moved the ‘box-sizing’ and ‘text-overflow’ properties to [CSS-SIZING-3] and
[CSS-OVERFLOW-4] respectively.

¢ Changed the requirement that the ‘text’ cursor matches the writing mode from MAY to MUST

¢ The definition of the appearance property has been significantly reworked to make the design
compatible with existing web content

e The logic that mapped ‘user-select: auto’ to various values at computed value time has been

changed to used value time

e Clarify Author requirements on the ‘cursor: pointer’ value

Changes from the 22 Sep 2015 First Public Working Draft

In addition to a number of editorial adjustments, the following normative changes have been made:
¢ The caret-animation property have been removed. It may be reintroduced later given sufficient
evidence for use cases.

e The ‘resize’ property now also applies to replaced elements representing images or videos, and to

iframes.

¢ The string values and dual values of the text-overflow property were moved to this specification
from level 3.

¢ Move directional focus navigation properties from level 3 to level 4

¢ Content from the now stable [CSS-UI-3] has been merged in.

Appendix C. Considerations for Security and Privacy

This appendix is informative.

The W3C TAG is developing a Self-Review Questionnaire: Security and Privacy for editors of

specifications to informatively answer.

Per the Questions to Consider

Does this specification deal with personally-identifiable information?
No.

Does this specification deal with high-value data?
No.

Does this specification introduce new state for an origin that persists across browsing sessions?
No.

Does this specification expose persistent, cross-origin state to the web?
No.

Does this specification expose any other data to an origin that it doesn’t currently have access
to?
No.

Does this specification enable new script execution/loading mechanisms?
Yes to loading, but not to execution.

The ‘cursor’ property accepts <image> values which may include URLSs to be loaded. These may

be SVG documents which may contain scripts, but this specification requires that scripts must not

be run.

Does this specification allow an origin access to a user’s location?
No.

Does this specification allow an origin access to sensors on a user’s device?
Yes.
The directional focus navigation properties indirectly allow access to the device’s keyboard

navigation input mechanism such as arrow keys.

Does this specification allow an origin access to aspects of a user’s local computing environment?
No.

Does this specification allow an origin access to other devices?
No.

Does this specification allow an origin some measure of control over a user agent’s native UI?
Yes.

The ‘cursor’ and ‘caret’ property and sub-properties enable the page to change the display of the

cursor and text insertion caret of the user agent’s native Ul. In addition the ‘outline-style’
property’s ‘auto’ value (and thus ‘outline’ shorthand) enable the page to potentially display a

native focused element outline presentation around any element.

The ‘appearance’ property also allows author to turn off native styling and replace it with css
based styling.

Does this specification expose temporary identifiers to the web?
No.

Does this specification distinguish between behavior in first-party and third-party contexts?
No.

How should this specification work in the context of a user agent’s "incognito' mode?
No differently.

Does this specification persist data to a user’s local device?
No.

Does this specification have a "Security Considerations' and '"Privacy Considerations' section?
Yes.

Does this specification allow downgrading default security characteristics?
No.

Appendix D. Default style sheet additions for HTML

This appendix is informative.

Potential additions to the base style sheet to express HTML form controls, and a few dynamic

presentation attributes:

:enabled:focus {
outline: 2px inset;

button,
input[type=button],
input[type=reset],
input[type=submit],
input[type=checkbox],

input[type=radio],

textarea,

input,

input[type=text],

input[type=password],

input[type=image] {
display: inline-block;

input[type=button],
input[type=reset],
input[type=submit],
input[type=checkbox],
input[type=radio],
input,
input[type=text],
input[type=password],
input[type=image] {
white-space: nowrap;

button {
/* white space handling of BUTTON tags in particular */
white-space:normal;

input[type=reset]:lang(en) {
/* default content of HTML input type=reset button, per language */
content: "Reset";

input[type=submit]:lang(en) {
/* default content of HTML input type=submit button, per language */
content: "Submit";

/* UAs should use language-specific Reset/Submit rules for others. */

input[type=button],

input[type=reset][value],

input[type=submit][value] {
/* text content/labels of HTML "input" buttons */
content: attr(value);

textarea {
/* white space handling of TEXTAREA tags in particular */
white-space:pre-wrap;
resize: both;

input[type=hidden] {
/* appearance of the HTML hidden text field in particular */
display: none !important;

input[type=image] {
content: attr(src,url);
border: none;

select[size] {
/* HTML4/XHTML1 <select> w/ size more than 1 - appearance of list */
display: inline-block;
height: attr(size,em);

select,select[size=1] {
/* HTML4/XHTML1 <select> without size, or size=1 - popup-menu */
display: inline-block;
height: lem;
overflow: hidden;

select[size]:active {
/* active HTML <select> w/ size more than 1 - appearance of active list */
display: inline-block;

optgroup, option {
display: block;

white-space: nowrap;

optgroup[label],option[label] {
content: attr(label);

option[selected]::before {
display: inline;
content: check;

/* Though FRAME resizing is not directly addressed by this specification,

the following rules may provide an approximation of reasonable behavior. *,
/*

frame { resize:both }

frame[noresize] { resize:none }

*/

Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119
terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative
parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,
examples, and notes. [RFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

EXAMPLE 18

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.

renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool
A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this
module are valid according to the generic CSS grammar and the individual grammars of each feature

defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined
by the appropriate specifications, it supports all the features defined by this specification by parsing
them correctly and rendering the document accordingly. However, the inability of a UA to correctly
render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically
correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

Partial implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,

user agents must not selectively ignore unsupported component values and honor supported values in

a single multi-value property declaration: if any value is considered invalid (as unsupported values

must be), CSS requires that the entire declaration be ignored.

Implementations of Unstable and Proprietary Features

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprietary extensions to CSS.

Non-experimental implementations

Once a specification reaches the Candidate Recommendation stage, non-experimental
implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group
requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the
testcases used for that implementation report) to the W3C before releasing an unprefixed
implementation of any CSS features. Testcases submitted to W3C are subject to review and correction
by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS
Working Group’s website at https:// www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

Index

Terms defined by this specification

accent color, in §7.1 auto

value for accent-color, in §7.1

accent-color, in §7.1
value for appearance, in §7.2

alias, in §5.1.1 .
3 value for caret-shape, in §5.2.2

all, in §6.1 value for cursor, in §5.1.1
all-scroll, in §5.1.1 value for user-select, in §6.1
appearance, in §7.2 bar, in §5.2.2

block, in §5.2.2

button, in §7.2

caret, in §5.2.3
caret-color, in §5.2.1
caret-shape, in §5.2.2
cell, in §5.1.1
character, in §5.2.2
checkbox, in §7.2
<color>, in §7.1
col-resize, in §5.1.1

<compat-auto>, in §7.2

contain, in §6.1
context-menu, in §5.1.1
copy, in §5.1.1
crosshair, in §5.1.1
cursor, in §5.1.1
default, in §5.1.1

editable element, in §6.1

e-resize, in §5.1.1
ew-resize, in §5.1.1
grab, in §5.1.1
grabbing, in §5.1.1
help, in §5.1.1
<id>, in §5.3.1

invert, in §3.4
listbox, in §7.2

menulist, in §7.2

menulist-button, in §7.2
meter, in §7.2

move, in §5.1.1

native appearance, in §7.2

nav-down, in §5.3.1
nav-left, in §5.3.1
nav-right, in §5.3.1
nav-up, in §5.3.1
ne-resize, in §5.1.1
nesw-resize, in §5.1.1
no-drop, in §5.1.1

none

value for appearance, in §7.2

value for cursor, in §5.1.1

value for user-select, in §6.1

not-allowed, in §5.1.1
n-resize, in §5.1.1
ns-resize, in §5.1.1
nw-resize, in §5.1.1
nwse-resize, in §5.1.1
outline, in §3.1
outline-color, in §3.4

<outline-line-style>, in §3.4

outline-offset, in §3.5
outline-style, in §3.3
outline-width, in §3.2
pointer, in §5.1.1
progress, in §5.1.1
progress-bar, in §7.2
push-button, in §7.2
radio, in §7.2

resize, in §4.1

row-resize, in §5.1.1

searchfield, in §7.2
se-resize, in §5.1.1

slider-horizontal, in §7.2

square-button, in §7.2
s-resize, in §5.1.1
sw-resize, in §5.1.1
<target-name>, in §5.3.1

text

value for cursor, in §5.1.1

value for user-select, in §6.1

textarea, in §7.2

textfield, in §7.2

Terms defined by reference

[css-backgrounds-3] defines the following
terms:
<line-style>
<line-width>
background-color
background-image
border
border-radius
border-width
none
[css-box-4] defines the following terms:
border edge
content edge
margin

padding edge

underscore, in §5.2.2
user-select, in §6.1
vertical-text, in §5.1.1

visible character, in §5.2.2

wait, in §5.1.1

-webkit-appearance, in §7.2

-webkit-user-select, in §6.1

widget, in §7.2
w-resize, in §5.1.1
zoom-in, in §5.1.1

zoom-out, in §5.1.1

[css-cascade-5] defines the following terms:
all

computed value
legacy name alias
sub-property
used value
user-agent origin
[css-color-3] defines the following terms:

<color>

[CSS-COLOR-4] defines the following terms:

color
currentcolor
[css-display-3] defines the following terms:
display
inner display type

[css-images-3] defines the following terms: [css-values-4] defines the following terms:
<image> *
concrete object size ,
default object size ?
default sizing algorithm css-wide keywords
natural aspect ratio |

natural size Il

[css-overflow-3] defines the following terms: [CSS-WRITING-MODES-3] defines the

overflow following terms:
visible direction
[CSS-OVERFLOW-4] defines the following unicode-bids
terms: [css-writing-modes-4] defines the following
text-overflow terms:
block size

[css-page-3] defines the following terms:

page-margin boxes block-axis

[css-position-3] defines the following terms: inline size

left inline-axis

. under
position

. " 4
[css-pseudo-4] defines the following terms: wrling mode

::after [CSS21] defines the following terms:
:before bottom
::first-letter clear
::first-line float
::marker max-height
. max-width
[CSS-SIZING-3] defines the following terms:
box-sizing min-height
height min-width
width right
top
[CSS-UI-3] defines the following terms:
‘ visibility
auto
z-index

[CSS-VALUES-3] defines the following terms:
<length>
<number>
<string>

<url>

[HTML] defines the following terms: [selectors-4] defines the following terms:

canvas :checked
div :disabled
drop-down box :enabled
iframe :focus
img [SVG11] defines the following terms:
input cursor
mutable [SVG2] defines the following terms:
object svg
option textpath
picture
select
textarea
type
video
References

Normative References

[CSS-BACKGROUNDS-3]
Bert Bos; Elika Etemad; Brad Kemper. CSS Backgrounds and Borders Module Level 3. 22

December 2020. CR. URL: https://www.w3.org/TR/css-backgrounds-3/
[CSS-BOX-4]

Elika Etemad. CSS Box Model Module Level 4. 21 April 2020. WD. URL:

https://www.w3.org/TR/css-box-4/

[CSS-CASCADE-5]
Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 5. 19

January 2021. WD. URL: https://www.w3.org/TR/css-cascade-5/

[CSS-COLOR-3]
Tantek Celik; Chris Lilley; David Baron. CSS Color Module Level 3. 19 June 2018. REC. URL.:
https://www.w3.org/TR/css-color-3/

[CSS-COLOR-4]
Tab Atkins Jr.; Chris Lilley. CSS Color Module Level 4. 12 November 2020. WD. URL:
https://www.w3.org/TR/css-color-4/

[CSS-DISPLAY-3]

Tab Atkins Jr.; Elika Etemad. CSS Display Module Level 3. 18 December 2020. CR. URL:
https://www.w3.org/TR/css-display-3/

[CSS-IMAGES-3]
Tab Atkins Jr.; Elika Etemad; Lea Verou. CSS Images Module Level 3. 17 December 2020. CR.
URL: https://www.w3.org/TR/css-images-3/

[CSS-OVERFLOW-3]
David Baron; Elika Etemad; Florian Rivoal. CSS Overflow Module Level 3. 3 June 2020. WD.
URL: https://www.w3.org/TR/css-overflow-3/

[CSS-OVERFLOW-4]
David Baron; Florian Rivoal. CSS Overflow Module Level 4. 13 June 2017. WD. URL.:

https://www.w3.org/TR/css-overflow-4/

[CSS-PAGE-3]
Elika Etemad; Simon Sapin. CSS Paged Media Module Level 3. 18 October 2018. WD. URL.:
https://www.w3.org/TR/css-page-3/

[CSS-POSITION-3]
Elika Etemad; et al. CSS Positioned Layout Module Level 3. 19 May 2020. WD. URL:
https://www.w3.org/TR/css-position-3/

[CSS-PSEUDO-4]
Daniel Glazman; Elika Etemad; Alan Stearns. CSS Pseudo-Elements Module Level 4. 31
December 2020. WD. URL: https://www.w3.org/TR/css-pseudo-4/

[CSS-SIZING-3]
Tab Atkins Jr.; Elika Etemad. CSS Box Sizing Module Level 3. 18 December 2020. WD. URL:
https://www.w3.org/TR/css-sizing-3/

[CSS-TRANSFORMS-1]
Simon Fraser; et al. CSS Transforms Module Level 1. 14 February 2019. CR. URL:
https://www.w3.org/TR/css-transforms-1/

[CSS-UI-3]
Tantek Celik; Florian Rivoal. CSS Basic User Interface Module Level 3 (CSS3 UI). 21 June
2018. REC. URL.: https://www.w3.org/TR/css-ui-3/

[CSS-VALUES-3]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. 6 June 2019. CR. URL.:
https://www.w3.org/TR/css-values-3/

[CSS-VALUES-4]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. 11 November 2020. WD.
URL.: https://www.w3.org/TR/css-values-4/

[CSS-WRITING-MODES-3]

Elika Etemad; Koji Ishii. CSS Writing Modes Level 3. 10 December 2019. REC. URL:
https://www.w3.org/TR/css-writing-modes-3/

[CSS-WRITING-MODES-4]
Elika Etemad; Koji Ishii. CSS Writing Modes Level 4. 30 July 2019. CR. URL:

https://www.w3.org/TR/css-writing-modes-4/

[CSS21]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011.

REC. URL: https://www.w3.org/TR/CSS21/

[HTML]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL:
https://html.spec.whatwg.org/multipage/

[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November
2003. REC. URL: https://www.w3.org/TR/PNG/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

[SELECTORS-4]
Elika Etemad; Tab Atkins Jr.. Selectors Level 4. 21 November 2018. WD. URL:
https://www.w3.org/TR/selectors-4/

[SVG11]
Erik Dahlstrom; et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011.

REC. URL: https://www.w3.0org/TR/SVGI11/

[SVG2]
Amelia Bellamy-Royds; et al. Scalable Vector Graphics (SVG) 2. 4 October 2018. CR. URL:

https:/ www.w3.org/TR/SVG2/

[UAX29]
Mark Davis; Christopher Chapman. Unicode Text Segmentation. 19 February 2020. Unicode

Standard Annex #29. URL: https://www.unicode.org/reports/tr29/tr29-37.html

8 Informative References

[CSS1]
Hékon Wium Lie; Bert Bos. Cascading Style Sheets, level 1. 13 September 2018. REC. URL:

https://www.w3.org/TR/CSS1/

[CSS4-IMAGES]

Tab Atkins Jr.; Elika Etemad; Lea Verou. CSS Image Values and Replaced Content Module Level
4. 13 April 2017. WD. URL: https://www.w3.org/TR/css-images-4/

[HTMLS]

Ian Hickson; et al. HTMLS. 27 March 2018. REC. URL: https://www.w3.org/TR/html5/

[SELECT]

Tantek Celik; et al. Selectors Level 3. 6 November 2018. REC. URL:
https://www.w3.org/TR/selectors-3/

Property Index

Anim-
. . . Canonical Computed
Name Value Initial Applies to Inh. %ages ation
order value
type
by the keyword
‘accent- all computed per auto or a
auto | <color> auto yes N/A
color’ elements value grammar computed
type color
none | auto | textfield | .
. all . per specified
‘appearance’ | menulist-button | none no nl/a discrete
elements grammar keyword
<compat-auto>
<caret-color’> || <'caret elements see see
caret-color caret- C er T
‘caret’ auto that accept yes N/A individual P individual
shape'™ . . grammar)
nput properties properties
The
computed
value for
auto is auto.
For <color>
by values, see
all per
‘caret-color’ auto | <color> auto yes N/A computed [[!CSS-
elements grammar
value COLOR-
4#tresolving-
color-
values]] in
[CSS-
COLOR-4].
elements by .
auto | bar | block | per specified
‘caret-shape’ auto that accept yes N/A computed
underscore . grammar keyword
input value

Anim-

Canonical Computed

Name Value Initial Applies to Inh. %ages ation
order value
type
[[<url> [<x><y>]2,]* [
auto | default | none |
context-menu | help |
pointer | progress | wait |
cell | crosshair | text |
vertical-text | alias | copy .
as specified,
| move | no-drop | not- .
. except with
allowed | grab | grabbing .
.) all . per any relative
‘cursor’ | e-resize | n-resize | ne- auto yes N/A discrete
. . elements grammar URLs
resize | nw-resize | s-
. . converted to
resize | se-resize | sw-
. . absolute
resize | w-resize | ew-
resize | ns-resize | nesw-
resize | nwse-resize | col-
resize | row-resize | all-
scroll | zoom-in | zoom-
out]]
. , auto | <id> [current | all enabled } per)
nav-down auto no N/A discrete as specified
root | <target-name>]? elements grammar
auto | <id> [current all enabled . er .
‘nav-left’ | [| auto no N/A discrete P as specified
root | <target-name>]? elements grammar
auto | <id> [current all enabled) er .
‘nav-right’ | [| auto no N/A discrete P as specified
root | <target-name>]? elements grammar
auto | <id> [current all enabled) er)
‘nav-up’ | [| auto no N/A discrete P as specified
root | <target-name>]? elements grammar
[<'outline-color™ || see 1 see see
. C g . a C g . cr C g
‘outline’ <'outline-style"™ || individual no N/A individual P individual
. i . elements . grammar .
<'outline-width™] properties properties properties

Anim-

C ical C ted
Name Value Initial Applies to Inh. %ages ation anomica ompute
order value
type
The
computed
value for
invert is
invert. For
<color>
. by
‘outline- . . all values, see
<color> | invert invert no N/A computed
color’ elements grammar [[!CSS-
value
COLOR-
4#resolving-
color-
values]] in
[CSS-
COLOR-4].
‘outline- all oy er absolute
<length> 0 no N/A computed P
offset’ elements grammar length
value
. o by .
‘outline- auto | <outline-line- all per specified
none no N/A computed
style’ style> elements grammar keyword
value
absolute
X by length; 0 if
‘outline- . . . all per .
R <line-width> medium no N/A computed the outline
width’ elements grammar .
value style is
none.
elements
with
overflow
other than
visible,
and
‘resize’ none.: | both | hOI’i.ZOTltal | none optionally N/A discrete per specified
vertical | block | inline replaced grammar keyword
elements
such as
images,
videos,
and

iframes

Anim-
Canonical Computed

Name Value Initial Applies to Inh. %ages ation

order value

type

all
elements,
and

. optionally .
auto | text | none | contain per specified

‘user-select’ auto to the no n/a discrete

| all bef. grammar keyword
::before

and ::after
pseudo-

elements

Issues Index

ISSUE 1 if we allow user-select to change to a value other than ‘none’, we need to figure out
what this means for copyability, and DOM APIs. ¢

ISSUE 2 Should it also apply to ‘::marker’? To page-margin boxes? Should the used value of

‘auto’ also be ‘none’, or would ‘text’ be more appropriate? ¢

ISSUE 3 Should there be constraints on what happens to the used value on elements that are
editable descendants of editing hosts? The semantics are not obvious. Maybe ‘none’ should map to

‘text’, or maybe all values should map to ‘text’. ¢

ISSUE 4 the list above is incomplete and needs to include at least the various button-like

variants of <input>. ¢

ISSUE 5 When ‘auto’ is widely supported, recommend using it instead. ¢

ISSUE 6 If any of these values are not needed for web compat, they should be dropped from this
list; conversely, any value needed for compat not included in this list should be added. ¢

ISSUE 7 It is possible that for compat reasons some of these values need to be promoted to
being full blown values with effects on arbitrary elements, or that some of these values need to

have some side effects on some widgets. ¢

ISSUE 8 The values slider-vertical and sliderthumb-vertical are supported in some user
agents to change the orientation of <input type=range> elements. These values are not specified
because changing the orientation of this control is better done with a separate mechanism. See
issue whatwg/html#4177. ¢

ISSUE 9 Are there more properties that should be included in this list? Should we remove
some? Should we whitelist the properties that are ok to ignore instead of blacklisting those that are
not? Either way, UAs do ignore some properties when rendering widgets, so this specification

needs to say something about this. ¢

ISSUE 10 Maybe some or all of this section should be moved to the [HTML] spec. at some
point. ¢

ISSUE Il On some elements, setting some properties inhibits ‘appearance: auto’. For instance,

even if ‘appearance’ is ‘auto’, buttons lose their native appearance when a ‘border”’ is set. This is
not in contradiction with the definition of ‘auto’, since ‘appearance: auto’ only means UAs may
use a native appearance, but for greater interoperability, it would be good to document which

properties on which elements have this effect. ¢

ISSUE 12 Documenting what UAs need to put in their UA stylesheet would be good. ¢

