Filter Effects Module Level 1
W3C Working Draft, 18 December 2018

This version:
https://www.w3.org/TR/2018/WD-filter-effects-1-20181218/

Latest published version:
https://www.w3.org/TR/filter-effects-1/

Editor's Draft:
https://drafts.fxtf.org/filter-effects-1/

Previous Versions:

https://www.w3.org/TR/2018/WD-filter-effects-1-20181124/
https://www.w3.org/TR/2014/WD-filter-effects-1-20141125/
https://www.w3.org/TR/2013/WD-filter-effects-1-20131126/
https://www.w3.org/TR/2013/WD-filter-effects-20130523/
https://www.w3.org/TR/2012/WD-filter-effects-20121025/

Test Suite:
http://test.csswg.org/suites/filter-effects/nightly-unstable/
Issue Tracking:

Inline In Spec
GitHub Issues

Editors:

Dirk Schulze (Adobe Inc.)
Dean Jackson (Apple Inc.)

Former Editors:

Vincent Hardy
Erik Dahlstrom (Invited Expert)

Suggest an Edit for this Spec:
GitHub Editor

Copyright © 2018 Keio, Beihang). W3C liability, trademark and permissive document license rules apply.

Abstract

Filter effects are a way of processing an element’s rendering before it is displayed in the document. Typically, rendering an
element via CSS or SVG can conceptually be described as if the element, including its children, are drawn into a buffer
(such as a raster image) and then that buffer is composited into the elements parent. Filters apply an effect before the

compositing stage. Examples of such effects are blurring, changing color intensity and warping the image.

Although originally designed for use in SVG, filter effects are a set of operations to apply on an image buffer and therefore
can be applied to nearly any presentational environment, including CSS. They are triggered by a style instruction (the ‘filter’
property). This specification describes filters in a manner that allows them to be used in content styled by CSS, such as
HTML and SVG. It also defines a CSS property value function that produces a CSS <image> value.

CSS is a language for describing the rendering of structured documents (such as HTML and XML) on screen, on paper, etc.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C

technical reports index at https://www.w3.org/TR/.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be
updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in

progress.

GitHub Issues are preferred for discussion of this specification. When filing an issue, please put the text “filter-effects” in
the title, preferably like this: “[filter-effects] ...summary of comment...”. All issues and comments are archived, and there is

also a historical archive.

This document was produced by the CSS Working Group (part of the Style Activity).

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must
disclose the information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 1 February 2018 W3C Process Document.

Table of Contents

1 Introduction

2 Module interactions

3 Values

4 Terminology

5 Graphic filters: the ‘filter’ property
6 Filter Functions

6.1 Supported Filter Functions

6.2 Computed Values of Filter Functions
6.3 Serialization of Filter Functions

6.4 Interpolation of Filter Functions

7 SVG Filter Sources: the filter element
8 Filter Region

9 Filter primitives

9.1 Overview

9.2 Common filter primitive attributes
9.3 Filter primitive tree

9.4 Filter primitive subregion

9.5 Filter primitive feBlend

9.6 Filter primitive feColorMatrix

9.7 Filter primitive feComponentTransfer
9.7.1 Transfer function feFuncR

9.7.2 Transfer function feFuncG

9.7.3 Transfer function feFuncB

9.7.4 Transfer function feFuncA

9.8 Filter primitive feComposite

9.9 Filter primitive feConvolveMatrix
9.10 Filter primitive feDiffuseLighting
9.11 Filter primitive feDisplacementMap
9.12 Filter primitive feDropShadow

9.13 Filter primitive feFlood

9.13.1 The “flood-color’ property

9.13.2 The “flood-opacity’ property
9.14 Filter primitive feGaussianBlur

9.15 Filter primitive felmage

9.16 Filter primitive feMerge

9.16.1 Merge node feMergeNode

9.17 Filter primitive feMorphology

9.18 Filter primitive feOffset

9.19 Filter primitive feSpecularLighting
9.20 Filter primitive feTile

9.21 Filter primitive feTurbulence

10 The ‘color-interpolation-filters’ property

11 Light source elements and properties
11.1 Introduction

11.2 Light source feDistantLight

11.3 Light source fePointLight

11.4 Light source feSpotLight

11.5 The ‘lighting-color’ property

12 Filter CSS <image> values

12.1 Interpolating filter()

13 Shorthands defined in terms of the filter element
13.1 Filter primitive representation

13.1.1 grayscale

13.1.2 sepia

13.1.3 saturate

13.1.4 hue-rotate

13.1.5 invert

13.1.6 opacity

13.1.7 brightness

13.1.8 contrast

13.1.9 blur

13.1.10 drop-shadow

132 Filter region for shorthands

14 Animation of Filters

14.1 Interpolation of Filter Function Lists
14.2 Addition

14.3 Accumulation

15 Privacy and Security Considerations
15.1 Tainted Filter Primitives

15.2 feDisplacementMap Restrictions

15.3 Origin Restrictions

15.4 Timing Attacks

Appendix A: The deprecated ‘enable-background’ property

Appendix B: DOM interfaces

Interface SVGFilterElement

Interface SVGFilterPrimitiveStandardAttributes
Interface SVGFEBIlendElement

Interface SVGFEColorMatrixElement

Interface SVGFEComponentTransferElement
Interface SVGComponentTransferFunctionElement
Interface SVGFEFuncRElement

Interface SVGFEFuncGElement

Interface SVGFEFuncBElement

Interface SVGFEFuncAElement

Interface SVGFECompositeElement

Interface SVGFEConvolveMatrixElement
Interface SVGFEDiffuseLightingElement
Interface SVGFEDistantLightElement

Interface SVGFEPointLightElement

Interface SVGFESpotLightElement

Interface SVGFEDisplacementMapElement
Interface SVGFEDropShadowElement

Interface SVGFEFloodElement

Interface SVGFEGaussianBlurElement
Interface SVGFEImageElement

Interface SVGFEMergeElement

Interface SVGFEMergeNodeElement
Interface SVGFEMorphologyElement
Interface SVGFEOffsetElement

Interface SVGFESpecularLightingElement
Interface SVGFETileElement

Interface SVGFETurbulenceElement

Changes
Acknowledgments

Conformance

Document conventions

Conformance classes

Requirements for Responsible Implementation of CSS
Partial Implementations
Implementations of Unstable and Proprietary Features

Implementations of CR-level Features

Index
Terms defined by this specification
Terms defined by reference

References
Normative References

Informative References
Property Index
IDL Index

Issues Index

1. Introduction

This section is not normative

A filter effect is a graphical operation that is applied to an element as it is drawn into the document. It is an image-based
effect, in that it takes zero or more images as input, a number of parameters specific to the effect, and then produces an
image as output. The output image is either rendered into the document instead of the original element, used as an input

image to another filter effect, or provided as a CSS image value.

A simple example of a filter effect is a “flood”. It takes no image inputs but has a parameter defining a color. The effect
produces an output image that is completely filled with the given color. A slightly more complex example is an “inversion”
which takes a single image input (typically an image of the element as it would normally be rendered into its parent) and

adjusts each pixel such that they have the opposite color values.
Filter effects are exposed with two levels of complexity:

1. A small set of canned filter functions that are given by name. While not particularly powerful, these are convenient and
easily understood and provide a simple approach to achieving common effects, such as blurring. The canned filters can
also be animated by [CSS3-ANIMATIONS].

2. A graph of individual filter effects described in markup that define an overall effect. The graph is agnostic to its input
in that the effect can be applied to any content. While such graphs are the combination of effects that may be simple in

isolation, the graph as a whole can produce complex effects. An example is given below.

EXAMPLE 1

In this example, an image is filtered with the <grayscale()> filter function.

#image {
filter: grayscale(100%);

object object with filter applied

Figure 1. An image without filter (left) and the same filter with a 100% grayscale filter (right).

EXAMPLE 2

The following shows an example of graph of individual filter effects.

Figure 2. Initial example for a filtered object.

View this example as SVG

The filter effect used in the example above is repeated here with reference numbers in the left column before each of the
six filter primitives:

<filter id="MyFilter" filterUnits="userSpaceOnUse" x="@" y="0" width="200" height="120">
<desc>Produces a 3D lighting effect.</desc>

5 <feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>

<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>

—_

3 <feSpecularLighting in="blur" surfaceScale="5" specularConstant=".75"
specularExponent="20" lighting-color="#bbbbbb"
result="specOut">

<fePointLight x="-5000" y="-10000" z="20000"/>
</feSpecularLighting>
4 <feComposite in="specOut" in2="SourceAlpha" operator="in" result="specOut"/>
5 <feComposite in="SourceGraphic" in2="specOut" operator="arithmetic"

ki="@" k2="1" k3="1" k4="@" result="1litPaint"/>
<feMerge>
<feMergeNode in="offsetBlur"/>
<feMergeNode in="1litPaint"/>
</feMerge>
</filter>

The following pictures show the intermediate image results from each of the six filter elements:

SVG

Source graphic After filter primitive 1 After filter primitive 2 After filter primitive 3

After filter primitive 4 After filter primitive 5 After filter primitive 6

1. Filter primitive <feGaussianBlur> takes input SourceAlpha, which is the alpha channel of the source graphic. The
result is stored in a temporary buffer named "blur". Note that "blur" is used as input to both filter primitives 2 and 3.

2. Filter primitive <feOffset> takes buffer "blur", shifts the result in a positive direction in both x and y, and creates a
new buffer named "offsetBlur". The effect is that of a drop shadow.

3. Filter primitive <feSpecularLighting>, uses buffer "blur" as a model of a surface elevation and generates a
lighting effect from a single point source. The result is stored in buffer "specOut".

4. Filter primitive <feComposite> masks out the result of filter primitive 3 by the original source graphics alpha
channel so that the intermediate result is no bigger than the original source graphic.

5. Filter primitive <feComposite> composites the result of the specular lighting with the original source graphic.

6. Filter primitive <feMerge> composites two layers together. The lower layer consists of the drop shadow result from
filter primitive 2. The upper layer consists of the specular lighting result from filter primitive 5.

2. Module interactions

This specification defines a set of CSS properties that affect the visual rendering of elements to which those properties are
applied; these effects are applied after elements have been sized and positioned according to the Visual formatting model
from [CSS21]. Some values of these properties result in the creation of a containing block, and/or the creation of a stacking

context.

The compositing model follows the SVG compositing model [SVG11]: first any filter effect is applied, then any clipping,
masking and opacity [CSS3COLOR]. These effects all apply after any other CSS effects such as ‘border’ [CSS3BG].

Some property and element definitions in this specification require an SVG 1.1 implementation [SVG11]. UAs without
support for SVG must not implement the ‘color-interpolation-filters’, ‘flood-color’, ‘flood-opacity’ and ‘lighting-color’
properties as well as the <filter> element, the <feMergeNode> element, the transfer function elements and the filter

primitive elements.

3. Values

This specification follows the CSS property definition conventions from [CSS21]. Value types not defined in these
specifications are defined in CSS Values and Units Module Level 3 [CSS3VAL].

In addition to the property-specific values listed in their definitions, all properties defined in this specification also accept

the inherit keyword as their property value. For readability it has not been repeated explicitly.

4. Terminology

When used in this specification, terms have the meanings assigned in this section.

filter primitive, filter-primitive
The set of elements that control the output of a <filter> element, particularly: <feSpotLight>, <feBlend>,
<feColorMatrix>, <feComponentTransfer>, <feComposite>, <feConvolveMatrix>, <feDiffuseLighting>,
<feDisplacementMap>, <feDropShadow>, <feFlood>, <feGaussianBlur>, <feImage>, <feMerge>, <feMorphology>,
<feOffset>, <feSpecularLighting>, <feTile>, <feTurbulence>.

pass through filter
The pass through filter output is equal to the primary input of the filter primitive.

5. Graphic filters: the ‘filter’ property

The description of the ‘filter’ property is as follows:

Name: filter’

Value: none | <filter-value-list>
Initial: none
Applies to: All elements. In SVG, it applies to container elements without the <defs> element, all

graphics elements and the <use> element.

Inherited: no

Percentages: n/a

Computed value: as specified

Canonical order: per grammar

Media: visual

Animatable: See prose in Animation of Filters.

<filter-value-list> = [<filter-function> | <url>]+

‘<url>’
A filter reference to a <filter> element. For example ‘url(commonfilters.svg#filter)’. If the filter references a non-
existent object or the referenced object is not a filter element, then the whole filter chain is ignored. No filter is applied
to the object.

<filter-function>
See Filter Functions.

none
No filter effect gets applied.

A value other than ‘none’ for the “filter’ property results in the creation of a containing block for absolute and fixed
positioned descendants unless the element it applies to is a document root element in the current browsing context. The list
of functions are applied in the order provided.

The first filter function or <filter> reference in the list takes the element (SourceGraphic) as the input image. Subsequent
operations take the output from the previous filter function or filter reference as the input image. filter element reference
functions can specify an alternate input, but still uses the previous output as its SourceGraphic.

‘color-interpolation-filters” has no affect for Filter Functions. Filter Functions must operate in the SRGB color space.

A computed value of other than ‘none’ results in the creation of a stacking context [CSS21] the same way that CSS ‘opacity’
does. All the elements descendants are rendered together as a group with the filter effect applied to the group as a whole.

The ‘filter’ property has no effect on the geometry of the target element’s CSS boxes, even though ‘filter’ can cause painting

outside of an element’s border box.

Conceptually, any parts of the drawing are effected by filter operations. This includes any content, background, borders, text
decoration, outline and visible scrolling mechanism of the element to which the filter is applied, and those of its
descendants. The filter operations are applied in the element’s local coordinate system.

The compositing model follows the SVG compositing model [SVG11]: first any filter effect is applied, then any clipping,
masking and opacity. As per SVG, the application of ‘filter’ has no effect on hit-testing.

The ‘“filter’ property is a presentation attribute for SVG elements.

I ISSUE 1 How does filter behave on fixed background images? <https://github.com/w3c/csswg-drafts/issues/238>

6. Filter Functions

6.1. Supported Filter Functions

<filter-functions> = <blur()> | <brightness()> | <contrast()> | <drop-shadow()> |
<grayscale()> | <hue-rotate()> | <invert()> | <opacity()> | <sepia()> | <saturate()>

Unless defined otherwise, omitted values default to the initial value for interpolation.

Note: For some filter functions the default value for omitted values differes from their initial value for interpolation. For
the convenience of content creators, the default value for omitted values for <grayscale()>, <sepia()> and <invert()> is
‘1 (apply the effect to 100%) while the initial value for interpolation is 0 (no effect).

blur() = blur(<length>?) s
Applies a Gaussian blur to the input image. The passed parameter defines the value of the standard deviation to the

Gaussian function. The parameter is specified a CSS length, but does not accept percentage values. The markup

equivalent of this function is given below.
Negative values are not allowed.
Default value when omitted is ‘Opx’.

The initial value for interpolation is ‘Opx’.

Note: Standard deviation is different to ‘box-shadow’ s blur radius.

brightness() = brightness(<number-percentage>?) =
Applies a linear multiplier to input image, making it appear more or less bright. A value of ‘0%’ will create an image
that is completely black. A value of *100%" leaves the input unchanged. Other values are linear multipliers on the
effect. Values of amount over 100% are allowed, providing brighter results. The markup equivalent of this function is

given below.
Negative values are not allowed.
Default value when omitted is “1°.

The initial value for interpolation is ‘1’

contrast() = contrast(<number-percentage>?) S
Adjusts the contrast of the input. A value of ‘0%’ will create an image that is completely gray. A value of “100%’
leaves the input unchanged. Values of amount over 100% are allowed, providing results with more contrast. The

markup equivalent of this function is given below.
Negative values are not allowed.
Default value when omitted is “1°.

The initial value for interpolation is “1°.

drop-shadow() = drop-shadow(<color>? &% <length>{2,3}) =
Applies a drop shadow effect to the input image. A drop shadow is effectively a blurred, offset version of the input
image’s alpha mask drawn in a particular color, composited below the image. Values are interpreted as for
‘box-shadow’ [CSS3BG] but with the optional 3rd <length> value being the standard deviation instead of blur radius.
The markup equivalent of this function is given below.

The default value for omitted values is missing length values set to ‘0" and the missing used color is taken from the

color property.

The initial value for interpolation is all length values set to ‘0’ and the used color set to ‘transparent’.

Note: Spread values or multiple shadows are not accepted for this level of the specification.

Note: Standard deviation is different to ‘box-shadow’ s blur radius.

grayscale() = grayscale(<number-percentage>?) =
Converts the input image to grayscale. The passed parameter defines the proportion of the conversion. A value of

‘100%’ is completely grayscale. A value of ‘0%’ leaves the input unchanged. Values between ‘0%’ and *100%’ are
linear multipliers on the effect. Values of amount over “100%" are allowed but UAs must clamp the values to ‘1. The

markup equivalent of this function is given below.

Negative values are not allowed.
Default value when omitted is “1°.

The initial value for interpolation is ‘0’.

hue-rotate() = hue-rotate([<angle> | <zero>]?) S
Applies a hue rotation on the input image. The passed parameter defines the number of degrees around the color circle
the input samples will be adjusted. A value of ‘Odeg’ leaves the input unchanged. Implementations must not normalize
this value in order to allow animations beyond 360deg’. The markup equivalent of this function is given below.

The unit identifier may be omitted if the <angle> is zero.
Default value when omitted is ‘Odeg’.

The initial value for interpolation is ‘Odeg’.

invert() = invert(<number-percentage>?) =
Inverts the samples in the input image. The passed parameter defines the proportion of the conversion. A value of
100% is completely inverted. A value of ‘0%’ leaves the input unchanged. Values between ‘0%’ and ‘100%’ are linear
multipliers on the effect. Values of amount over ‘100%’ are allowed but UAs must clamp the values to ‘1°. The markup

cquivalent of this function is given below.
Negative values are not allowed.
Default value when omitted is “1°.

The initial value for interpolation is ‘0’.

opacity() = opacity(<number-percentage>?) ~
Applies transparency to the samples in the input image. The passed parameter defines the proportion of the conversion.
A value of ‘0%’ is completely transparent. A value of “100%" leaves the input unchanged. Values between ‘0%’ and
‘100%’ are linear multipliers on the effect. This is equivalent to multiplying the input image samples by amount. Values
of amount over ‘100%" are allowed but UAs must clamp the values to ‘1’. The markup equivalent of this function is

given below.
Negative values are not allowed.
Default value when omitted is “1°.

The initial value for interpolation is “1°.

Note: The opacity filter function is not meant to be a shorthand of the ‘opacity’ property. Furthermore, it allows
setting the transparency of intermediate filter primitive results before passing to the next filter primitive. If the
opacity filter function is set as last filter primitive, the value of the ‘opacity’ property is multiplied on top of the
value of the filter function, which may result in a more transparent content.

saturate() = saturate(<number-percentage>?) =
Saturates the input image. The passed parameter defines the proportion of the conversion. A value of ‘0%’ is

completely un-saturated. A value of ‘100%’ leaves the input unchanged. Other values are linear multipliers on the
effect. Values of amount over ‘100%’ are allowed, providing super-saturated results. The markup equivalent of this

function is given below.
Negative values are not allowed.
Default value when omitted is “1°.

The initial value for interpolation is “1°.

sepia() = sepia(<number-percentage>?) o
Converts the input image to sepia. The passed parameter defines the proportion of the conversion. A value of ‘100%’ is
completely sepia. A value of ‘0%’ leaves the input unchanged. Values between 0% and 100% are linear multipliers on
the effect. Values of amount over ‘100%’ are allowed but UAs must clamp the values to ‘1°. The markup equivalent of

this function is given below.
Negative values are not allowed.

Default value when omitted is “1°.

The initial value for interpolation is ‘0’.

6.2. Computed Values of Filter Functions
The values in a <filter-function> are computed as specified, with these exceptions:

¢ Onmitted values are included and compute to their defaults.

o <drop-shadow()> starts with the computed value of <color> followed by the computed value of the <length> values.

6.3. Serialization of Filter Functions

To serialize the <filter-function>, serialize as per their individual grammars, in the order the grammars are written in,
avoiding <calc()> expressions where possible, serialize filter arguments as specified, avoiding <calc()> transformations,

joining space-separated tokens with a single space, and following each serialized comma with a single space.

6.4. Interpolation of Filter Functions

For interpolation of values in <filter-function>s, the steps corresponding to the first matching condition in the following list

must be run:

< <blur()>
Interpolate values as length by computed value.

<brightness()>
<contrast()>
<grayscale()>
<invert()>
<opacity()>
<saturate()>
<sepia()>
Convert percentage values to numbers with 0% being relative to 0 and 100% relative to 1. Interpolate values as

rFceceres

number by computed value .

& <hue-rotate()>
Interpolate values as number by computed value.

© <drop-shadow()>
Interpolate values as shadow list as repeatable list.

7. SVG Filter Sources: the <filter> element

Name: filter
Categories: None.

Any number of the following elements, in any order:

o descriptive — <desc>, <title>, <metadata>

o filter primitive — <feBlend>, <feFlood>, <feColorMatrix>, <feComponentTransfer>,
<feComposite>, <feConvolveMatrix>, <feDiffuseLighting>, <feDisplacementMap>,
Content <feDropShadow>, <feGaussianBlur>, <feImage>, <feMerge>, <feMorphology>, <feOffset>,
model: <feSpecularLighting>, <feTile>, <feTurbulence>

e <animate>
e <script>

e <set>

Attributes:
¢ core attributes — id, xml:base, xml:lang, xml:space

« presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, ‘fill-opacity’, ‘fill-rule’, ‘filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o class

o style

¢ externalResourcesRequired

. X

*y

e width

e height

e filterUnits

e primitiveUnits

DOM
Interfaces:

SVGFilterElement

The description of the <filter> element follows:
‘<number-optional-number>’ = <number> <number>?
Attribute definitions:

FfilterUnits = "userSpaceOnUse | objectBoundingBox"

See filter region.

primitiveUnits ="userSpaceOnUse | objectBoundingBox"
Specifies the coordinate system for the various length values within the filter primitives and for the attributes that

define the filter primitive subregion.

If primitiveUnits is equal to userSpaceOnUse, any length values within the filter definitions represent values in the
current local coordinate system in place at the time when the <filter> element is referenced (i.e., the user coordinate
system for the element referencing the filter element via a “filter’ property).

If primitiveUnits is equal to objectBoundingBox, then any length values within the filter definitions represent
fractions or percentages of the bounding box on the referencing element (see object bounding box units). Note that if
only one number was specified in a <number-optional-number> value this number is expanded out before the

primitiveUnits computation takes place.
The initial value for primitiveUnits is userSpaceOnUse.

Animatable: yes.

x = "<length-percentage>"
See filter region.

y = "<length-percentage>"
See filter region.

width = "<length-percentage>"
See filter region.

height = "<length-percentage>"
See filter region.

filterRes = "<number-optional-number>"
The filterRes attribute was removed from the specification. See SVG 1.1 specification for the defintion [SVG11].

Properties inherit into the <filter> element from its ancestors; properties do not inherit from the element referencing the

filter element.

<filter> elements are never rendered directly; their only usage is as something that can be referenced using the ‘filter’
property. The ‘display’ property does not apply to the filter element; thus, filter elements are not directly rendered even if the
‘display’ property is set to a value other than ‘none’, and filter elements are available for referencing even when the

‘display’ property on the filter element or any of its ancestors is set to ‘none’.

8. Filter Region

A <filter> element can define a filfer region on the canvas to which a given filter effect applies and can provide a
resolution for any intermediate continuous tone images used to process any raster-based filter primitives. The filter element
has the following attributes which work together to define the filter region:

filterUnits
Defines the coordinate system for attributes x, y, width, height.

If filterUnits is equal to userSpaceOnUse, X, y, width, height represent values in the current user coordinate system
in place at the time when the <filter> element is referenced (i.c., the user coordinate system for the element
referencing the filter element via a ‘filter’ property).

If filterUnits is equal to objectBoundingBox, then x, y, width, height represent fractions or percentages of the
bounding box on the referencing element (see object bounding box units).

The initial value for filterUnits is objectBoundingBox.

Animatable: yes.

X, Y, width, height
These attributes define a rectangular region on the canvas to which this filter applies.

The coordinate system for these attributes depends on the value for attribute filterUnits.

The bounds of this rectangle act as a hard clipping region for each filter primitive included with a given <filter>
element; thus, if the effect of a given filter primitive would extend beyond the bounds of the rectangle (this sometimes
happens when using a <feGaussianBlur> filter primitive with a very large stdDeviation), parts of the effect will get

clipped.

The initial value for x and y is *-10%".

The initial value for width and height is ‘120%’.
ng of the element which referenced the filter.

Animatable: yes.

Note: Both of the two possible value for filterunits (i.e., objectBoundingBox and userSpaceOnUse) result in a filter
region whose coordinate system has its X-axis and Y-axis each parallel to the X-axis and Y-axis, respectively, of the
local coordinate system for the element to which the filter will be applied.

Note: Sometimes implementers can achieve faster performance when the filter region can be mapped directly to device
pixels; thus, for best performance on display devices, it is suggested that authors define their region such that the user
agent can align the filter region pixel-for-pixel with the background. In particular, for best filter effects performance,

avoid rotating or skewing the user coordinate system.

Note: It is often necessary to provide padding space because the filter effect might impact bits slightly outside the tight-
fitting bounding box on a given object. For these purposes, it is possible to provide negative percentage values for x, y
and percentages values greater than “100%’ for width, height. This, for example, is why the defaults for the filter
region are x="-10%" y="-10%" width="120%" height="120%".

9. Filter primitives

9.1. Overview
This section describes the various filter primitives that can be assembled to achieve a particular filter effect.

Unless otherwise stated, all image filters operate on premultiplied RGBA samples. Some filters like <feColorMatrix> and
<feComponentTransfer> work more naturally on non-premultiplied data. For the time of the filter operation, all color
values must temporarily be transformed to the required color multiplication of the current filter.

Note: All input images are assumed to be in premultiplied RGBA. User agents may optimize performance by using non-
premultiplied data buffering.

All raster effect filtering operations take 1 to N input RGBA images, additional attributes as parameters, and produce a
single output RGBA image.

The RGBA result from each filter primitive will be clamped into the allowable ranges for colors and opacity values. Thus,
for example, the result from a given filter primitive will have any negative color values or opacity values adjusted up to
color/opacity of zero.

The color space in which a particular filter primitive performs its operations is determined by the value of the property
‘color-interpolation-filters” on the given filter primitive. A different property, ‘color-interpolation’ determines the color
space for other color operations. Because these two properties have different initial values (‘color-interpolation-filters’ has
an initial value of ‘linearRGB’ whereas ‘color-interpolation’ has an initial value of ‘sRGB’), in some cases to achieve
certain results (e.g., when coordinating gradient interpolation with a filtering operation) it will be necessary to explicitly set
‘color-interpolation’ to ‘linearRGB” or ‘color-interpolation-filters’ to ‘sRGB’ on particular elements. Note that the examples
below do not explicitly set either ‘color-interpolation’ or ‘color-interpolation-filters’, so the initial values for these properties
apply to the examples.

Sometimes filter primitives result in undefined pixels. For example, filter primitive <feOffset> can shift an image down

and to the right, leaving undefined pixels at the top and left. In these cases, the undefined pixels are set to transparent black.

To provide high quality rendering, all filter primitives should operate in a device dependent coordinate space, the operating
coordinate space, taking device pixel density, user space transformations and zooming into account. To provide a platform
independent alignment, attribute and property values are often relative to a coordinate system described by the
primitiveUnits attribute. User agents must scale these relative attributes and properties to the operating coordinate space.

Note: On high resolution devices, attribute and property values that are relative to the primitiveUnits usually need to
be scaled up. User agents may reduce the resolution of filter primitives on limited platform resources.

Note: Some attribute or property values from the filter primitives <feConvolveMatrix> and light sources can not be
mapped from the coordinate space defined by the primitiveUnits attribute to the operating coordinate space.

9.2. Common filter primitive attributes
The following filter primitive attributes are available for all filter primitives:

Attribute definitions:

x = "<length-percentage>"
The minimum x coordinate for the subregion which restricts calculation and rendering of the given filter primitive. See
filter primitive subregion.

The initial value for x is ‘0%’.

Animatable: yes.

y = "<length-percentage>"
The minimum y coordinate for the subregion which restricts calculation and rendering of the given filter primitive. See
filter primitive subregion.

The initial value for y is ‘0%’.

Animatable: yes.
width = "<length-percentage>"
The width of the subregion which restricts calculation and rendering of the given filter primitive. See filter primitive

subregion.
A negative or zero value disables the effect of the given filter primitive (i.e., the result is a transparent black image).
The initial value for width is *100%’.

Animatable: yes.
height = "<length-percentage>"
The height of the subregion which restricts calculation and rendering of the given filter primitive. See filter primitive

subregion.

A negative or zero value must disable the effect of the given filter primitive (i.e., the result is a transparent black

image).
The initial value for height is “100%".

Animatable: yes.

result =" ‘<filter-primitive-reference>""
<filter-primitive-reference> is an <custom-ident> [CSS3VAL] and an assigned name for this filter primitive. If
supplied, then graphics that result from processing this filter primitive can be referenced by an in attribute on a
subsequent filter primitive within the same <filter> element. If no value is provided, the output will only be available
for re-use as the implicit input into the next filter primitive if that filter primitive provides no value for its in attribute.

Most filter primitives take other filter primitives as input. The following attribute is representative for all input attributes to

reference other filter primitives:

Attribute definitions:

in = "SourceGraphic | SourceAlpha | BackgroundIlmage | BackgroundAlpha | FillPaint | StrokePaint | <filter-primitive-
reference>"
Identifies input for the given filter primitive. The value can be either one of six keywords or can be a string which

matches a previous result attribute value within the same <filter> element. If no value is provided and this is the
first filter primitive, then this filter primitive will use SourceGraphic as its input. If no value is provided and this is a

subsequent filter primitive, then this filter primitive will use the result from the previous filter primitive as its input.

If the value for result appears multiple times within a given <filter> element, then a reference to that result will use

the closest preceding filter primitive with the given value for attribute result.

Forward references to results are not allowed, and will be treated as if no result was specified.
References to non-existent results will be treated as if no result was specified.

Definitions for the six keywords:

SourceGraphic
This keyword represents the graphics elements that were the original input into the <filter> element. For raster

effects filter primitives, the graphics elements will be rasterized into an initially clear RGBA raster in image space.
Pixels left untouched by the original graphic will be left clear. The image is specified to be rendered in linear
RGBA pixels. The alpha channel of this image captures any anti-aliasing specified by SVG. (Since the raster is
linear, the alpha channel of this image will represent the exact percent coverage of each pixel.)

SourceAlpha
This keyword represents the graphics elements that were the original input into the <filter> element.
SourceAlpha has all of the same rules as SourceGraphic except that only the alpha channel is used. The input
image is an RGBA image consisting of implicitly black color values for the RGB channels, but whose alpha

channel is the same as SourceGraphic.

Note: If this option is used, then some implementations might need to rasterize the graphics elements in order

to extract the alpha channel.

BackgroundImage

This keyword represents the back drop defined by the current isolation group behind the filter region at the time
that the <filter> element was invoked. See ‘isolation’ property [COMPOSITING-1].

BackgroundAlpha
Same as BackgroundImage except only the alpha channel is used. See SourceAlpha and the ‘isolation’ property
[COMPOSITING-1].

FillPaint
This keyword represents the value of the ‘fill’ property on the target element for the filter effect. The FillPaint
image has conceptually infinite extent. Frequently this image is opaque everywhere, but it might not be if the
"paint" itself has alpha, as in the case of a gradient or pattern which itself includes transparent or semi-transparent
parts. If “fill” references a paint server, then the coordinate space of the paint server is the coordinate space defined
for the filtered object. E.g if the paint server requires to use the objectBoundingBox of the object, the object
bounding box of the filtered object defines the reference size of the paint server. If the paint server requires to use
the userSpaceOnUse, the nearest viewport in the local coordinate system of the filtered object defines the
reference size of the paint server.

StrokePaint
This keyword represents the value of the ‘stroke’ property on the target element for the filter effect. The
StrokePaint image has conceptually infinite extent. See FillPaint above for more details.

Animatable: yes.

9.3. Filter primitive tree

Filter primitives with no or one filter primitive input can be linked together to a filter chain. E.g. the filter primitive
representation of a <filter-value-list> with two or more <filter-function>s is an example of a filter chain. Every filter
primitive takes the result of the previous filter primitive as input.

EXAMPLE 3

A simple example of a <filter> element with its filter primitive children.

<filter id="filter">
<feColorMatrix type="hueRotate" values="45"/>
<feOffset dx="10" dy="108"/>
<feGaussianBlur stdDeviation="3"/>

</filter>

<feColorMatrix>, <feOffset> and <feGaussianBlur> create a filter chain.

<feColorMatrix> takes ‘SourceGraphic’ as input. The result is the input of <feOffset> with its result being the input
of <feGaussianBlur>.

Some filter primitives may have more than one filter primitive inputs. With the use of the in and result attributes it is
possible to combine multiple filter primitives to a complex filter structure. Due to the non-forward reference restriction of
filter primitives, every filter structure can be represented as a tree, the filter primitive tree. The root filter primitive of the
filter primitive tree is the most subsequential primitive of <filter> clements filter primitive children.

A filter chain is one possible filter structure that can also be represented in a filter primitive tree. Therefore, filter chains are

referred to as filter primitive trees onwards as well.

A <filter> element may have one or more filter primitive trees. The filter primitive tree whose subsequent filter primitive
is the last filter primitive child of the filter clements is the primary filter primitive tree.

Only the primary filter primitive tree contributes to the filter process. Implementations may chose to ignore all other
possible filter primitive trees.

If a <filter> element has no filter primitive tree then the element the filter applies to does not get rendered.

EXAMPLE 4

An example of multiple filter primitive trees:

<filter id="filter">
<-- The first filter primitive tree. Ignored for filter process. -->
<feColorMatrix type="hueRotate" values="45"/>
<feOffset dx="10" dy="10"/>
<feGaussianBlur stdDeviation="3"/>
<-- The primary filter primitive tree. -->
<feFlood flood-color="green" result="flood"/>
<feComposite operator="in" in="SourceAlpha" in2="flood"/>
</filter>

The above filter has 2 filter primitive trees with the filter primitives:

1. <feColorMatrix>, <feOffset> and <feGaussianBlur> (with feGaussianBlur being the root filter primitive of the
tree) as well as

2. <feFlood> and <feComposite> (with feComposite as the root filter primitive of the tree).

Both filter primitive trees are not connected. Only the 2nd, the primary filter primitive tree contributes to the filter
process. The first tree can get ignored by implementations.

9.4. Filter primitive subregion

All filter primitives have attributes x, y, width and height which together identify a filter primitive subregion which
restricts calculation and rendering of the given filter primitive. The x, y, width and height attributes are defined according to
the same rules as other filter primitives coordinate and length attributes and thus represent values in the coordinate system

established by attribute primitiveUnits on the <filter> element.

X, y, width and height default to the union (i.e., tightest fitting bounding box) of the subregions defined for all referenced
nodes. If there are no referenced nodes (e.g., for <feImage> or <feTurbulence>), or one or more of the referenced nodes is
a standard input (one of SourceGraphic, SourceAlpha, BackgroundImage, BackgroundAlpha, FillPaint or StrokePaint), or
for <feTile> (which is special because its principal function is to replicate the referenced node in X and Y and thereby
produce a usually larger result), the default subregion is ‘0%, 0%, 100%, 100%’, where as a special-case the percentages are

relative to the dimensions of the filter region, thus making the default filter primitive subregion equal to the filter region.
If the filter primitive subregion has a negative or zero width or height, the effect of the filter primitive is disabled.

The filter region acts as a hard clip clipping rectangle on the filter primitive’s input image(s).

The filter primitive subregion acts as a hard clip clipping rectangle on the filter primitive result.

All intermediate offscreens are defined to not exceed the intersection of the filter primitive subregion with the filter region.
The filter region and any of the filter primitive subregions are to be set up such that all offscreens are made big enough to
accommodate any pixels which even partly intersect with either the filter region or the filter primitive subregions.

EXAMPLE 5
<feTile> references a previous filter primitive and then stitches the tiles together based on the filter primitive subregion
of the referenced filter primitive in order to fill its own filter primitive subregion.

<svg width="400" height="400" xmlns="http://www.w3.0rg/2000/svg">
<defs>
<filter id="flood" x="@" y="@" width="100%" height="100%" primitiveUnits="objectBoundingBox"
<feFlood x="25%" y="25%" width="50%" height="50%"
flood-color="green" flood-opacity="0.75"/>
</filter>
<filter id="blend" primitiveUnits="objectBoundingBox">
<feBlend x="25%" y="25%" width="50%" height="50%"
in2="SourceGraphic" mode="multiply"/>
</filter>
<filter id="merge" primitiveUnits="objectBoundingBox">
<feMerge x="25%" y="25%" width="50%" height="50%">
<feMergeNode in="SourceGraphic"/>
<feMergeNode in="FillPaint"/>
</feMerge>
</filter>
</defs>

<g fill="none" stroke="blue" stroke-width="4">
<rect width="200" height="200"/>
<line x2="200" y2="200"/>
<line x1="200" y2="200"/>
</g>
<circle fill="green" filter="url(#flood)" cx="100" cy="100" r="90"/>

<g transform="translate(200 0)">
<g fill="none" stroke="blue" stroke-width="4">
<rect width="200" height="200"/>
<line x2="200" y2="200"/>
<line x1="200" y2="200"/>
</g>
<circle fill="green" filter="url(#blend)" cx="100" cy="100" r="90"/>
</g>

<g transform="translate(® 200)">
<g fill="none" stroke="blue" stroke-width="4">
<rect width="200" height="200"/>
<line x2="200" y2="200"/>
<line x1="200" y2="200"/>
</g>
<circle fill="green" fill-opacity="0.5" filter="url(#merge)" cx="100" cy="100" r="90"/>
</g>
</svg>

Figure 3. Example for subregions

View this example as SVG

In the example above there are three rectangles that each have a cross and a circle in them. The circle element in each
one has a different filter applied, but with the same filter primitive subregion. The filter output should be limited to the
filter primitive subregion so you should never see the circles themselves, just the rectangles that make up the filter
primitive subregion.

e The upper left rectangle shows an <feFlood> with ‘flood-opacity: 75%’ so the cross should be visible through the
green rect in the middle.

o The lower left rectangle shows an <feMerge> that merges SourceGraphic with FillPaint. Since the circle has fill-

opacity="0.5" it will also be transparent so that the cross is visible through the green rect in the middle.

o The upper right rectangle shows an <feBlend> that has mode="multiply". Since the circle in this case isn’t

transparent the result is totally opaque. The rect should be dark green and the cross should not be visible through it.

9.5. Filter primitive <feBlend>

Name: feBlend
Categories: filter primitive

Content L. .
del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

Attributes:

e core attributes — id, xml:base, xml:lang, xml:space

« presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
“flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-cvents’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o filter primitive attributes —x, y, width, height, result
e class

o style

e in2
e mode
DOM
SVGFEBIlendElement
Interfaces:

This filter blends two objects together using commonly used imaging software blending modes. It performs a pixel-wise

combination of two input images. (See [COMPOSITING-1].)

Attribute definitions:

mode = "<blend-mode>""
One of the blend modes defined by “Compositing and Blending Level 1”7 [COMPOSITING-1] with the input in

representing the source Cs and the second input in2 representing the backdrop Cb. The output of this filter primitive Cm

is the result of blending Cs with Cb.
The initial value for mode is ‘normal’.

Animatable: yes.

no-composite ="no-composite"
If the no-composite attribute is present, the specified blend mode must not apply alpha compositing. See Blending

[COMPOSITING-1] for the "mixing" formula without compositing. Otherwise, implementations must combine the
blend mode specified by mode with the Source Over composite operator. See Blending [COMPOSITING-1] for the

"mixing" formula with compositing.

Note: This attribute is an addition to the <feBlend> element defintion in SVG 1.1. no-composite, when specified,
is meant to avoid "double-compositing” effects when blending an input source with the backdrop of the filtered
object (E.g. using the BackgroundImage filter primitive). For the majority of use cases authors will not need to

specify the no-composite attribute.

Animatable: no.

in2 = "(see in attribute)"
The second input image to the blending operation.

Animatable: yes.

The ‘normal’ blend mode with alpha compositing is equivalent to operator="over" on the <feComposite> filter primitive,
matches the blending method used by <feMerge> and matches the simple alpha compositing technique used in SVG for all

compositing outside of filter effects.

EXAMPLE 6

<svg width="5cm" height="5cm" viewBox="0 © 500 500"
xmlns="http://www.w3.0rg/2000/svg">
<title>Example feBlend - Examples of feBlend modes</title>
<desc>Five text strings blended into a gradient,
with one text string for each of the five feBlend modes.</desc>
<defs>
<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
x1="100" y1="0" x2="300" y2="0">
<stop offset="0" stop-color="#000000" />
<stop offset=".33" stop-color="#ffffff" />
<stop offset=".67" stop-color="#ffeoe00" />
<stop offset="1" stop-color="#808080" />
</linearGradient>
<filter id="Normal">
<feBlend mode="normal" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Multiply">
<feBlend mode="multiply" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Screen">
<feBlend mode="screen" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Darken">
<feBlend mode="darken" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
<filter id="Lighten">
<feBlend mode="lighten" in2="BackgroundImage" in="SourceGraphic"/>
</filter>
</defs>
<rect fill="none" stroke="blue"
x="1" y="1" width="498" height="498"/>
<g isolation="isolate" >
<rect x="100" y="20" width="300" height="460" fill="url(#MyGradient)" />
<g font-family="Verdana" font-size="75" fill="#888888" fill-opacity=".6" >
<text x="50" y="90" filter="url(#Normal)" >Normal</text>
<text x="50" y="180" filter="url(#Multiply)" >Multiply</text>
<text x="50" y="270" filter="url(#Screen)" >Screen</text>
<text x="50" y="360" filter="url(#Darken)" >Darken</text>
<text x="50" y="450" filter="url(#Lighten)" >Lighten</text>
</g>
</g>
</svg>

Figure 4. Example of feBlend

View this example as SVG

§ 9.6. Filter primitive <feColorMatrix>

Name: feColorMatrix

Categories: filter primitive

Content
del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:
¢ core attributes — id, xml:base, xml:lang, xml:space
¢ presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, ‘fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
Attributes: ‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
e filter primitive attributes —x, y, width, height, result
o class
e style
e in
. type
e values
DOM .
SVGFEColorMatrixElement
Interfaces:

This filter applies a matrix transformation:

R’ Goo Qo1 Go2 @03 Qo4 R
G’ a0 a1 a2 a13 G G
B’| =|ax axn axn a3 axy B
A’ ayx a3 azp azg as A
1 0 0 0 O 1 1

on the RGBA color and alpha values of every pixel on the input graphics to produce a result with a new set of RGBA color
and alpha values.

The calculations are performed on non-premultiplied color values.
Attribute definitions:

type = "matrix | saturate | hueRotate | LuminanceToAlpha"
Indicates the type of matrix operation. The keyword matrix indicates that a full 5x4 matrix of values will be provided.
The other keywords represent convenience shortcuts to allow commonly used color operations to be performed without
specifying a complete matrix.

The initial value for type is matrix.

Animatable: yes.

values = "list of <number>s"
The contents of values depends on the value of attribute type:

o For type="matrix", values is a list of 20 matrix values (a00 a0l a02 a03 a04 al0 all ... a34), separated by

whitespace and/or a comma. For example, the identity matrix could be expressed as:

type="matrix"
values="1 9000 01000 00100 ©00010"

e For type="saturate", values is a single real number value. A saturate operation is equivalent to the following
matrix operation:

R’ 0.213 +0.787s 0.715 —0.715s 0.072—0.072s 0 O R
G’ 0.213 —0.213s 0.715+0.285s 0.072—0.072s 0 0 G
B’| = (0.213 -0.213s 0.715—0.715s 0.072+0.928s 0 0| - | B
A’ 0 0 0 10 A

1 0 0 0 01 1

Note: A value of ‘0’ produces a fully desaturated (grayscale) filter result, while a value of ‘1’ passes the filter
input image through unchanged. Values outside the 0..1 range under- or oversaturates the filter input image
respectively.

Note: The precision of the luminance coefticients increased in comparison to previous specification texts
[Cmam)].

o For type="hueRotate", values is a single one real number value (degrees). A hueRotate operation is equivalent
to the following matrix operation:

R’ ap apn apz 0 0 R
G’ ajg a1 a2 00 G
B’| = a0 Q21 G222 0 0|-|B
A’ 0 0 0 10 A

1 0 0 0 01 1

where the terms a00, a01, etc. are calculated as follows:

Qgo ag1r Go2 +0.213 +0.715 +0.072 +0.787 —0.715 —0.072
app ann a2 | = | +0.213 +0.715 +0.072 | + cos (hueRotate value) - | —0.213 +0.285 —0.072
as as ax +0.213 +0.715 +0.072 —-0.213 —0.715 +0.928

Thus, the upper left term of the hue matrix turns out to be:

ago = 0.2127 + cos (hueRotate value) - 0.7873 — sin (hueRotate value) - 0.2127

¢ For type="1luminanceToAlpha", values is not applicable. A luminanceToAlpha operation is equivalent to the

following matrix operation:

R’ 0 0 0 00 R
G’ 0 0 0 00 G
B’| = 0 0 0 00(-|B
A’ 0.2126 0.7152 0.0722 0 0 A

1 0 0 0 01 1

The initial value for values

< if type="matrix"
defaults to the identity matrix

< if type="saturate"
defaults to the value ‘1’

< if type="hueRotate"
defaults to the value ‘0’ which results in the identity matrix.

If the number of entries in the values list does not match the required number of entries by the type, the filter
primitive acts as a pass through filter.

Animatable: yes.

+ sin (hueRotate

EXAMPLE 7

<svg width="8cm" height="5cm" viewBox="0 © 800 500"
xmlns="http://www.w3.0rg/2000/svg">
<title>Example feColorMatrix - Examples of feColorMatrix operations</title>
<desc>Five text strings showing the effects of feColorMatrix:
an unfiltered text string acting as a reference,
use of the feColorMatrix matrix option to convert to grayscale,
use of the feColorMatrix saturate option,
use of the feColorMatrix hueRotate option,
and use of the feColorMatrix luminanceToAlpha option.</desc>
<defs>
<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
x1="100" y1="0" x2="500" y2="0">
<stop offset="0" stop-color="#ffeeff" />
<stop offset=".33" stop-color="#88ff88" />
<stop offset=".67" stop-color="#2020ff" />
<stop offset="1" stop-color="#d0ooo0" />
</linearGradient>
<filter id="Matrix" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="matrix" in="SourceGraphic"
values=".33 .33 .33 0 0
.33 .33 .33 00
.33 .33 .33 00
.33 .33 .33 0 0"/>
</filter>
<filter id="Saturate40" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="saturate" in="SourceGraphic" values="0.4"/>
</filter>
<filter id="HueRotate90" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="hueRotate" in="SourceGraphic" values="90"/>
</filter>
<filter id="LuminanceToAlpha" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feColorMatrix type="luminanceToAlpha" in="SourceGraphic" result="a"/>
<feComposite in="SourceGraphic" in2="a" operator="in" />
</filter>
</defs>
<rect fill="none" stroke="blue"
x="1" y="1" width="798" height="498"/>
<g font-family="Verdana" font-size="75"
font-weight="bold" fill="url(#MyGradient)" >
<rect x="100" y="0" width="500" height="28" />
<text x="100" y="90">Unfiltered</text>
<text x="100" y="190" filter="url(#Matrix)" >Matrix</text>
<text x="100" y="290" filter="url(#Saturate4@)" >Saturate</text>
<text x="100" y="390" filter="url(#HueRotate9@)" >HueRotate</text>
<text x="100" y="490" filter="url(#LuminanceToAlpha)" >Luminance</text>
</g>
</svg>

Un'iltered

Salurate
Hu - Rotate

Figure 5. Example of feColorMatrix

View this example as SVG

9.7. Filter primitive <feComponentTransfer>

Name: feComponentTransfer
Categories: filter primitive

Content Any number of descriptive elements, <feFuncR>, <feFuncG>, <feFuncB>, <feFuncA>, <script> elements, in
model: any order.

o core attributes — id, xml:base, xml:lang, xml:space

* presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,

‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,

Attributes: . .
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
e class
o style
e in
DOM
SVGFEComponentTransferElement
Interfaces:

This filter primitive performs component-wise remapping of data as follows:

R' <feFuncR>(R)G' = <feFuncG>(G)
B' = <feFuncB>(B)
' = <feFuncA>(A)

for every pixel. It allows operations like brightness adjustment, contrast adjustment, color balance or thresholding.
The calculations are performed on non-premultiplied color values.
The child elements of a <feComponentTransfer> element specify the transfer functions for the four channels:

e <feFuncR> - transfer function for the red component of the input graphic
o <feFuncG> - transfer function for the green component of the input graphic
e <feFuncB> - transfer function for the blue component of the input graphic

e <feFuncA> - transfer function for the alpha component of the input graphic

The set of <feFuncR>, <feFuncG>, <feFuncB>, <feFuncA> elements are also called transfer function elements.
The following rules apply to the processing of the <feComponentTransfer> element:

¢ If more than one transfer function element of the same kind is specified, the last occurrence is to be used.

¢ [fany of the transfer function elements are unspecified, the <feComponentTransfer> must be processed as if those

transfer function elements were specified with their type attributes set to ‘identity’.

§ 9.7.1. Transfer function <feFuncR>

Name: feFuncR
Categories: transfer function element

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

e core attributes — id, xml:base, xml:lang, xml:space

Attributes: o transfer function element attributes — type, tableValues, slope, intercept, amplitude,

exponent, offset

DOM
Interfaces:

SVGFEFuncRElement

The attributes below are the transfer function element attributes, which apply to the transfer function elements.

Attribute definitions:

type = "identity | table | discrete | linear | gamma"
Indicates the type of component transfer function. The type of function determines the applicability of the other

attributes.

In the following, C is the initial component (e.g., <feFuncR>), C' is the remapped component; both in the closed

interval [0,1].
o For identity:

c'=¢cC

o For table, the function is defined by linear interpolation between values given in the attribute tablevalues. The
table has n+/ values (i.e., v to v,)) specifying the start and end values for » evenly sized interpolation regions.

Interpolations use the following formula:
For a value C < 1 find k such that:

k/n <= C < (k+1)/n

The result C' is given by:

C'" = v + (C - k/n)*n * (Vge1 - Vi)
IfC = 1then:

C' = vp.

o For discrete, the function is defined by the step function given in the attribute tablevalues, which provides a

list of n values (i.e., v to v,,_1) in order to identify a step function consisting of » steps. The step function is

defined by the following formula:
For a value C < 1 find k such that:
k/n <= C < (k+1)/n

The result C' is given by:

C'=Vk

IfC = 1 then:

c' = Vp-1-

o For Linear, the function is defined by the following linear equation:

C' = slope * C + intercept

o For gamma, the function is defined by the following exponential function:
C' = amplitude * pow(C, exponent) + offset
The initial value for type is identity.

Animatable: yes.

tableValues = "(list of <number>s)"
When type="table", the list of <number> s v0,v1,...vn, separated by white space and/or a comma, which define the

lookup table. An empty list results in an identity transfer function.
If the attribute is not specified, then the effect is as if an empty list were provided.
Animatable: yes.

slope ="<number>"
When type="1inear", the slope of the linear function.

The initial value for slopeis ‘1°.
Animatable: yes.

intercept = "<number>"
When type="1inear", the intercept of the linear function.

The initial value for intercept is ‘0’.

Animatable: yes.

amplitude = "<number>"
When type="gamma", the amplitude of the gamma function.

The initial value for amplitude is ‘1°.

Animatable: yes.

exponent = "<number>"
When type="gamma", the exponent of the gamma function.

The initial value for exponent is ‘1.

Animatable: yes.

offset ="<number>"
When type="gamma", the offset of the gamma function.

The initial value for offset is ‘0’.

Animatable: yes.

EXAMPLE 8

<svg width="8cm" height="4cm" viewBox="0 © 800 400"
xmlns="http://www.w3.0rg/2000/svg">
<title>Example feComponentTransfer - Examples of feComponentTransfer operations</title>
<desc>Four text strings showing the effects of feComponentTransfer:
an identity function acting as a reference,
use of the feComponentTransfer table option,
use of the feComponentTransfer linear option,
and use of the feComponentTransfer gamma option.</desc>
<defs>
<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
x1="100" y1="0" x2="600" y2="0">
<stop offset="0" stop-color="#ffo000" />
<stop offset=".33" stop-color="#00ffe0" />
<stop offset=".67" stop-color="#0000ff" />
<stop offset="1" stop-color="#000000" />
</linearGradient>
<filter id="Identity" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>
<feFuncR type="identity"/>
<feFuncG type="identity"/>
<feFuncB type="identity"/>
<feFuncA type="identity"/>
</feComponentTransfer>
</filter>
<filter id="Table" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>
<feFuncR type="table" tableValues="0 0 1 1"/>
<feFuncG type="table" tableValues="1 1 © 0"/>
<feFuncB type="table" tableValues="0 1 1 0"/>
</feComponentTransfer>
</filter>
<filter id="Linear" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>
<feFuncR type="linear" slope=".5" intercept=".25"/>
<feFuncG type="linear" slope=".5" intercept="0"/>

<feFuncB type="linear" slope=".5" intercept=".5"/>
</feComponentTransfer>
</filter>
<filter id="Gamma" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feComponentTransfer>
<feFuncR type="gamma" amplitude="2

exponent="5" offset="0"/>
<feFuncG type="gamma" amplitude="2" exponent="3" offset="0"/>
<feFuncB type="gamma" amplitude="2" exponent="1" offset="0"/>
</feComponentTransfer>
</filter>
</defs>
<rect fill="none" stroke="blue"
x="1" y="1" width="798" height="398"/>
<g font-family="Verdana" font-size="75"
font-weight="bold" fill="url(#MyGradient)" >
<rect x="100" y="0" width="600" height="20" />
<text x="100" y="90">Identity</text>
<text x="100" y="190" filter="url(#Table)" >TablelLookup</text>
<text x="100" y="290" filter="url(#Linear)" >LinearFunc</text>
<text x="100" y="390" filter="url(#Gamma)" >GammaFunc</text>
</g>
</svg>

§

wn

Identity

able up
LinearFunc
GammaFunc

Figure 6. Example for feComponentTransfer

View this example as SVG

9.7.2. Transfer function <feFuncG>

Name: feFuncG
Categories: transfer function element

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

e core attributes — id, xml:base, xml:lang, xml:space

Attributes: « transfer function element attributes — type, tableValues, slope, intercept, amplitude,

exponent, offset

DOM
Interfaces:

SVGFEFuncGElement

See <feFuncR> for the definitions of the attribute values.

9.7.3. Transfer function <feFuncB>

Name: feFuncB
Categories: transfer function element

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

¢ core attributes — id, xml:base, xml:lang, xml:space

Attributes: o transfer function element attributes — type, tableValues, slope, intercept, amplitude,

exponent, offset

DOM
Interfaces:

SVGFEFuncBElement

See <feFuncR> for the definitions of the attribute values.

9.7.4. Transfer function <feFuncA>

Name: feFuncA
Categories: transfer function element

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

e core attributes — id, xml:base, xml:lang, xml:space

Attributes: o transfer function element attributes — type, tableValues, slope, intercept, amplitude,

exponent, offset

DOM
Interfaces:

SVGFEFuncAElement

See <feFuncR> for the definitions of the attribute values.

9.8. Filter primitive <feComposite>

Name: feComposite
Categories: filter primitive

Content

del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

e core attributes — id, xml:base, xml:lang, xml:space

« presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, “clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
“flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
“font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

Attributes: ® filter primitive attributes —x, y, width, height, result

o class

o style

e in

e in2

e operator

e ki

o k2

e k3

e k4

DOM

SVGFECompositeElement
Interfaces:

This filter performs the combination of the two input images pixel-wise in image space using one of the Porter-Duff
[PORTERDUFF] compositing operations: over, ‘in’, ‘atop’, ‘out’, ‘xor’, ‘lighter’ [COMPOSITING-1]. Additionally, a
component-wise arithmetic operation (with the result clamped between [0..1]) can be applied.

The arithmetic operation is useful for combining the output from the <feDiffuseLighting> and <feSpecularLighting>
filters with texture data. It is also useful for implementing dissolve. If the arithmetic operation is chosen, each result pixel is
computed using the following formula:

result = k1*il1*i2 + k2*il + k3*i2 + k4
where:

e il and i2 indicate the corresponding pixel channel values of the input image, which map to in and in2 respectively

e k1, k2, k3 and k4 indicate the values of the attributes with the same name

For this filter primitive, the extent of the resulting image might grow as described in the section that describes the filter
primitive subregion.

Attribute definitions:

operator ="over | in|out | atop | xor | Lighter | arithmetic"
The compositing operation that is to be performed. All of the operator types except ‘arithmetic’ match the
corresponding operation as described in [COMPOSITING-1] with in representing the source and in2 representing the
destination. The ‘arithmetic’ operator is described above.

The initial value for operator is over.

Animatable: yes.

R1 ="<number>"
Only applicable if operator="arithmetic".

The initial value for k1 is ‘0’.

Animatable: yes.

R2 ="<number>"
Only applicable if operator="arithmetic".

The initial value for k2 is ‘0.

Animatable: yes.

k3 ="<number>"
Only applicable if operator="arithmetic".

The initial value for k3 is 0’.

Animatable: yes.

kR4 ="<number>"
Only applicable if operator="arithmetic".

The initial value for k4 is 0.

Animatable: yes.

in2 ="(see in attribute)"
The second input image to the compositing operation.

Animatable: yes.

Note: Compositing and Blending [COMPOSITING-1] defines more compositing keywords. The functionality of the
additional keywords can be archived by switching the input filter primitives in and in2.

EXAMPLE 9

<svg width="330" height="195" viewBox="0 © 1100 650"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1ink">
<title>Example feComposite - Examples of feComposite operations</title>
<desc>Four rows of six pairs of overlapping triangles depicting
the six different feComposite operators under different
opacity values and different clearing of the background.</desc>
<defs>
<desc>Define two sets of six filters for each of the six compositing operators.
The first set wipes out the background image by flooding with opaque white.
The second set does not wipe out the background, with the result
that the background sometimes shines through and is other cases
is blended into itself (i.e., "double-counting").</desc>
<filter id="overFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height=":
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="over" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="inFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="11
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="in" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="outFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="1
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="out" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="atopFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height=":
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="atop" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="xorFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="1
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="xor" result="comp"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="arithmeticFlood" filterUnits="objectBoundingBox"
x="-5%" y="-5%" width="110%" height="110%">
<feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
<feComposite in="SourceGraphic" in2="BackgroundImage" result="comp"
operator="arithmetic" ki1=".5" k2=".5" k3=".5" k4=".5"/>
<feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="overNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="over" result="comp"/>
</filter>
<filter id="inNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="in" result="comp"/>
</filter>
<filter id="outNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height=
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="out" result="comp"/>
</filter>
<filter id="atopNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="atop" result="comp"/>
</filter>
<filter id="xorNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height=
<feComposite in="SourceGraphic" in2="BackgroundImage" operator="xor" result="comp"/>
</filter>
<filter id="arithmeticNoFlood" filterUnits="objectBoundingBox"
x="-5%" y="-5%" width="110%" height="110%">
<feComposite in="SourceGraphic" in2="BackgroundImage" result="comp"
operator="arithmetic" ki1=".5" k2=".5" k3=".5" k4=".5"/>
</filter>

<path id="Bluel@e" d="M © @ L 100 @ L 100 100 z" fill="#e@0ffff" />
<path id="Red100" d="M @ @ L @ 100 L 100 0 z" fill="#ffeeff" />
<path id="Blue50" d="M © 125 L 100 125 L 100 225 z" fill="#@o0ffff" fill-opacity=".5" />
<path id="Red50" d="M © 125 L © 225 L 100 125 z" fill="#ffeoff" fill-opacity=".5" />
<g id="TwoBlueTriangles">
<use xlink:href="#Bluel@0"/>
<use xlink:href="#Blue50"/>
</g>
<g id="BlueTriangles">
<use transform="translate(275,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(400,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(525,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(650,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(775,25)" xlink:href="#TwoBlueTriangles"/>
<use transform="translate(900,25)" xlink:href="#TwoBlueTriangles"/>
</g>
</defs>

<rect fill="none" stroke="blue" x="1" y="1" width="1098" height="648"/>
<g font-family="Verdana" font-size="40" shape-rendering="crispEdges">
<desc>Render the examples using the filters that draw on top of
an opaque white surface, thus obliterating the background.</desc>
<g isolation="isolate">
<text x="15" y="75">opacity 1.0</text>
<text x="15" y="115" font-size="27">(with feFlood)</text>
<text x="15" y="200">opacity 0.5</text>
<text x="15" y="240" font-size="27">(with feFlood)</text>
<use xlink:href="#BlueTriangles"/>
<g transform="translate(275,25)">
<use xlink:href="#Red100" filter="url(#overFlood)" />
<use xlink:href="#Red50" filter="url(#overFlood)" />
<text x="5" y="275">over</text>
</g>
<g transform="translate(400,25)">
<use xlink:href="#Red10@" filter="url(#inFlood)" />
<use xlink:href="#Red50" filter="url(#inFlood)" />
<text x="35" y="275">in</text>
</g>
<g transform="translate(525,25)">
<use xlink:href="#Red100" filter="url(#outFlood)" />
<use xlink:href="#Red50" filter="url(#outFlood)" />
<text x="15" y="275">out</text>
</g>
<g transform="translate(650,25)">
<use xlink:href="#Red100" filter="url(#atopFlood)" />
<use xlink:href="#Red50" filter="url(#atopFlood)" />
<text x="10" y="275">atop</text>
</g>
<g transform="translate(775,25)">
<use xlink:href="#Red10@" filter="url(#xorFlood)" />
<use xlink:href="#Red50" filter="url(#xorFlood)" />
<text x="15" y="275">xor</text>
</g>
<g transform="translate(900,25)">
<use xlink:href="#Red100" filter="url(#arithmeticFlood)" />
<use xlink:href="#Red50" filter="url(#arithmeticFlood)" />
<text x="-25" y="275">arithmetic</text>
</g>
</g>
<g transform="translate(9,325)" isolation="isolate">
<desc>Render the examples using the filters that do not obliterate
the background, thus sometimes causing the background to continue
to appear in some cases, and in other cases the background
image blends into itself ("double-counting").</desc>
<text x="15" y="75">opacity 1.0</text>

<text x="15" y="115" font-size="27">(without feFlood)</text>

<text x="15" y="200">opacity @.5</text>

<text x="15" y="240" font-size="27">(without feFlood)</text>

<use xlink:href="#BlueTriangles"/>

<g transform="translate(275,25)">
<use xlink:href="#Red100" filter="url(#overNoFlood)" />
<use xlink:href="#Red50" filter="url(#overNoFlood)" />
<text x="5" y="275">over</text>

</g>

<g transform="translate(400,25)">
<use xlink:href="#Red100" filter="url(#inNoFlood)" />
<use xlink:href="#Red50" filter="url(#inNoFlood)" />
<text x="35" y="275">in</text>

</g>

<g transform="translate(525,25)">
<use xlink:href="#Red100" filter="url(#outNoFlood)" />
<use xlink:href="#Red50" filter="url(#outNoFlood)" />
<text x="15" y="275">out</text>

</g>

<g transform="translate(650,25)">
<use xlink:href="#Red100" filter="url(#atopNoFlood)" />
<use xlink:href="#Red50" filter="url(#atopNoFlood)" />
<text x="10" y="275">atop</text>

</g>

<g transform="translate(775,25)">
<use xlink:href="#Red100" filter="url(#xorNoFlood)" />
<use xlink:href="#Red50" filter="url(#xorNoFlood)" />
<text x="15" y="275">xor</text>

</g>

<g transform="translate(900,25)">
<use xlink:href="#Red100" filter="url(#arithmeticNoFlood)" />
<use xlink:href="#Red50" filter="url(#arithmeticNoFlood)" />
<text x="-25" y="275">arithmetic</text>

</g>

</g>
</g>
</svg>

opacity 1.0 V v ’ v }\
{with TaFlacd «q
|opacity 0.5

{with feFlaod
over in out atop xor arithmetic

opacity 1.0 ' h A A
:nﬂhoutrmaadj - 9 ’ | ¥ ’

‘opacity 0.5 |
{without leflaad)

over in out atop xor arithmetic

Figure 7. Example of feComposite

View this example as SVG

8 9.9. Filter primitive <feConvolveMatrix>

Name: feConvolveMatrix
Categories: filter primitive

Content L. .
del Any number of descriptive elements, <animate>, <script>, <set> clements, in any order.
model:

Attributes: o core attributes — id, xml:base, xml:lang, xml:space

presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, “‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

filter primitive attributes —x, y, width, height, result
e class

o style

e in

e order

e kernelMatrix

e divisor

e bias

e targetX

e targetY

¢ edgeMode

e kernelUnitLength

e preserveAlpha

DOM
Interfaces:

SVGFEConvolveMatrixElement

feConvolveMatrix applies a matrix convolution filter effect. A convolution combines pixels in the input image with
neighboring pixels to produce a resulting image. A wide variety of imaging operations can be achieved through
convolutions, including blurring, edge detection, sharpening, embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes how a given pixel value in the
input image is combined with its neighboring pixel values to produce a resulting pixel value. Each result pixel is determined
by applying the kernel matrix to the corresponding source pixel and its neighboring pixels. The basic convolution formula

which is applied to each color value for a given pixel is:

orderY—1 yordeX-1
§=0

i=0

SOUTCe—targetX-+j,y—targety+i-KernalMatrixorderX - j—1,orderY i
divisor

coloryy = ! | bias- a.lphaw

where "orderX" and "orderY" represent the X and Y values for the order attribute, "targetX" represents the value of the
targetX attribute, "targetY" represents the value of the targetY attribute, "kernelMatrix" represents the value of the
kernelMatrix attribute, "divisor" represents the value of the divisor attribute, and "bias" represents the value of the bias

attribute.

In the above formulas the values in the kernel matrix are applied such that the kernel matrix is rotated 180 degrees relative to

the source and destination images in order to match convolution theory as described in many computer graphics textbooks.

To illustrate, suppose you have a input image which is 5 pixels by 5 pixels, whose color values for one of the color channels
are as follows:

0 20 40 235 235
100 120 140 235 235
200 220 240 235 235
255 2565 2565 255 255
255 2565 255 255 255

and you define a 3-by-3 convolution kernel as follows:
123
456
789

Let’s focus on the color value at the second row and second column of the image (source pixel value is 120). Assuming the
simplest case (where the input image’s pixel grid aligns perfectly with the kernel’s pixel grid) and assuming default values
for attributes divisor, targetX and targety, then resulting color value will be:

9-0+4-8-204-7-404-6-1004-5-1204-4-1404-3-200+-2-220+-1-240
9+8+7+6+5+4+3+2+1

resultChannely ; =

Because they operate on pixels, matrix convolutions are inherently resolution-dependent. To make <feConvolveMatrix>
produce resolution-independent results, an explicit value should be provided for the attribute kernelUnitLength.

kernelUnitLength, in combination with the other attributes, defines an implicit pixel grid in the filter effects coordinate
system (i.e., the coordinate system established by the primitiveUnits attribute). The input image will be temporarily
rescaled to match its pixels with kernelUnitLength. The convolution happens on the resampled image. After applying the
convolution, the image is resampled back to the original resolution.

When the image must be resampled to match the coordinate system defined by kernelUnitLength prior to convolution, or
resampled to match the device coordinate system after convolution, it is recommended that high quality viewers make use of
appropriate interpolation techniques, for example bilinear or bicubic. Depending on the speed of the available interpolents,
this choice may be affected by the ‘image-rendering’ property setting. Note that implementations might choose approaches
that minimize or eliminate resampling when not necessary to produce proper results, such as when the document is zoomed

out such that kernelUnitLength is considerably smaller than a device pixel.
Attribute definitions:

order = "<number-optional-number>"
Indicates the number of cells in each dimension for kernelMatrix. The values provided must be <integer> s greater
than zero. Values that are not integers will be truncated, i.e. rounded to the closest integer value towards zero. The first
number, <orderX>, indicates the number of columns in the matrix. The second number, <orderY>, indicates the

number of rows in the matrix. If <orderY> is not provided, it defaults to <orderX>.

It is recommended that only small values (e.g., ‘3”) be used; higher values may result in very high CPU overhead and
usually do not produce results that justify the impact on performance.

The initial value for order is ‘3°.

Animatable: yes.

kernelMatrix = "<list of numbers>"
The list of <number> s that make up the kernel matrix for the convolution. Values are separated by space characters
and/or a comma. The number of entries in the list must equal <orderX> times <orderY>.

If the result of orderX * orderY is not equal to the the number of entries in the value list, the filter primitive acts as a
pass through filter.

ISSUE 2 How to behave on invalid number of entries in the value list? <https://github.com/w3c/csswg-
drafts/issues/237>

Animatable: yes.

divisor ="<number>"
After applying the kernelMatrix to the input image to yield a number, that number is divided by divisor to yield the
final destination color value. A divisor that is the sum of all the matrix values tends to have an evening effect on the
overall color intensity of the result. If the specified divisor is ‘0’ then the default value will be used instead.

The initial value is the sum of all values in kernelMatrix, with the exception that if the sum is zero, then the divisor is
setto ‘1°.

Animatable: yes.

bias ="<number>"

After applying the kernelMatrix to the input image to yield a number and applying the divisor, the bias attribute is
added to each component. One application of bias is when it is desirable to have ‘.5° gray value be the zero response of
the filter. The bias property shifts the range of the filter. This allows representation of values that would otherwise be
clamped to 0 or 1.

The initial value for bias is ‘0’.

Animatable: yes.

targetX = "<integer>"
Determines the positioning in X of the convolution matrix relative to a given target pixel in the input image. The
leftmost column of the matrix is column number zero. The value must be such that: 0 <= targetX < orderX. By default,
the convolution matrix is centered in X over each pixel of the input image (i.e., targetX = floor (orderX /2)).

Animatable: yes.

targetY = "<integer>"
Determines the positioning in Y of the convolution matrix relative to a given target pixel in the input image. The
topmost row of the matrix is row number zero. The value must be such that: 0 <= targetY < orderY. By default, the
convolution matrix is centered in Y over each pixel of the input image (i.e., targetY = floor (orderY /2)).

Animatable: yes.

edgeMode = "duplicate | wrap | none"
Determines how to extend the input image as necessary with color values so that the matrix operations can be applied

when the kernel is positioned at or near the edge of the input image.

‘duplicate” indicates that the input image is extended along each of its borders as necessary by duplicating the color
values at the given edge of the input image.

Original N-by-M image, where m=M-1 and n=N-1:

[11 12 .. 1m 1M
21 22 .. 2m 2M

nl n2 .. nm nM
| N1 N2 ... Nm NM

Extended by two pixels using ‘duplicate’:

[11 11 11 12 ... Im 1M 1M 1M
11 11 11 12 ... 1m 1M 1M 1M
1 11 11 12 ... Im 1M 1M 1M
21 21 21 22 ... 2m 2M 2M 2M
nl nl nl n2 ... om nM oM oM
N1 N1 N1 N2 ... Nm NM NM NM
N1 N1 N1 N2 ... Nm NM NM NM
| N1 N1 N1 N2 ... Nm NM NM NM |

wrap indicates that the input image is extended by taking the color values from the opposite edge of the image.

Extended by two pixels using wrap:

nm nM nl n2 ... nm nM nl n2
Nm NM N1 N2 ... Nm NM N1 N2
Im 1M 11 12 ... 1Im 1M 11 12

2m 2M 21 22 ... 2m 2M 21 22

nm nM ni n2 ... nm nM nl n2

Nm NM N1 N2 ... Nm NM N1 N2
Im 1IM 11 12 ... Im 1M 11 12
| 2m 2M 21 22 ... 2m 2M 21 22]

The value ‘none’ indicates that the input image is extended with pixel values of zero for R, G, B and A.

The initial value for edgeMode is ‘duplicate’.

Animatable: yes.

kRernelUnitLength =" <number-optional-number>"

The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified, it defaults
to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as determined by the value

of attribute primitiveUnits) between successive columns and rows, respectively, in the kernelMatrix. By specifying

value(s) for kernelUnitLength, the kernel becomes defined in a scalable, abstract coordinate system. If
kernelUnitLength is not specified, the default value is one pixel in the offscreen bitmap, which is a pixel-based
coordinate system, and thus potentially not scalable. For some level of consistency across display media and user
agents, it is necessary that a value be provided for kernelUnitLength. In some implementations, the most consistent

results and the fastest performance will be achieved if the pixel grid of the temporary off-screen images aligns with the

pixel grid of the kernel.

If a negative or zero value is specified the default value will be used instead.

Note: This attribute is deprecated and will be removed. It does not provide a reliable way to create platform
independent results. Future versions of this specification will cover this use case.

Animatable: yes.

preserveAlpha = "false | true"
A value of ‘false’ indicates that the convolution will apply to all channels, including the alpha channel. In this case the

ALPHA vy of the convolution formula for a given pixel is:

ALPHAy v = (
SUM 1-0 to [orderY-1] {
SUM 3-0 to [orderx-1] {

*

SOURCE x-targetx+3, Y-targety+I kernelMatrixgpderx-3-1, ordery-I-1

}

) / divisor + bias

A value of "true" indicates that the convolution will only apply to the color channels. In this case, the filter will
temporarily unpremultiply the color component values and apply the kernel. In this case the ALPHAy y of the

convolution formula for a given pixel is:
ALPHA,y = SOURCEy,y
The initial value for preserveAlpha is ‘false’.

Animatable: yes.

9.10. Filter primitive <feDiffuselLighting>

Name: feDiffuselLighting
Categories: filter primitive

Content

del Any number of descriptive elements, <script> and exactly one light sources element, in any order.
model:

Attributes:

o core attributes — id, xml:base, xml:lang, xml:space

e presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,

‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,

‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
o class
o style
e in
e surfaceScale
e diffuseConstant

e kernelUnitlLength

DOM

SVGFEDiftuseLightingElement
Interfaces:

This filter primitive lights an image using the alpha channel as a bump map. The resulting image is an RGBA opaque image
based on the light color with alpha = 1.0 everywhere. The lighting calculation follows the standard diffuse component of the
Phong lighting model. The resulting image depends on the light color, light position and surface geometry of the input bump

map.

The light map produced by this filter primitive can be combined with a texture image using the multiply term of the
arithmetic <feComposite> compositing method. Multiple light sources can be simulated by adding several of these light

maps together before applying it to the texture image.

The formulas below make use of 3x3 filters. Because they operate on pixels, such filters are inherently resolution-dependent.
To make <feDiffuseLighting> produce resolution-independent results, an explicit value should be provided for the

attribute kernelUnitLength.

kernelUnitLength, in combination with the other attributes, defines an implicit pixel grid in the filter effects coordinate
system (i.e., the coordinate system established by the primitiveUnits attribute). The input image will be temporarily
rescaled to match its pixels with kernelUnitLength. The 3x3 filters are applied to the resampled image. After applying the

filter, the image is resampled back to its original resolution.

Note: Depending on the speed of the available interpolates, this choice may be affected by the ‘image-rendering’

property setting.

Note: Implementations might choose approaches that minimize or eliminate resampling when not necessary to produce
proper results, such as when the document is zoomed out such that kernelUnitLength is considerably smaller than a

device pixel.

For the formulas that follow, the Norm(Ay, Ay, A;) function is defined as:

Norm (Ag,Ay,AL) = /A2 + A2 + A2

Note: User agents may use the the "fast inverse square root" to optimize the equation and avoid time differences on
extrema color values. See Privacy and Security Considerations section for more details about timing attacks.

The resulting RGBA image is computed as follows:

D. = kg * N.L * L.
Dg = kg * N.L * Lg
Dp = kg * N.L * Ly
D, = 1.0

where

kq = diffuse lighting constant

N = surface normal unit vector, a function of x and y

L = unit vector pointing from surface to light, a function of x and y in the point and spot light cases
L;Lg.Ly, = RGB components of light, a function of x and y in the spot light case

N is a function of X and y and depends on the surface gradient as follows:
The surface described by the input alpha image I(x,y) is:
Z (x,y) = surfaceScale * I(x,y)

Surface normal is calculated using the Sobel gradient 3x3 filter. Different filter kernels are used depending on whether the
given pixel is on the interior or an edge. For each case, the formula is:

Ny (x,y) = - surfaceScale * FACTORy *

(Kx(0,0)*I(x-dx,y-dy) + Kx(1,0)*I(x,y-dy) + Ky(2,0)*I(x+dx,y-dy) +
Kx(0,1)*I(x-dx,y) + Ky(1,1)*I(x,y) + Ky(2,1)*I(x+dx,y) +
Ky(0,2)*I(x-dx,y+dy) + Ky(1,2)*I(x,y+dy) + Ky(2,2)*I(x+dx,y+dy))

Ny (x,y) = - surfaceScale * FACTORy, *

(Ky(0,0)*I(x-dx,y-dy) + Ky(1,0)*I(x,y-dy) + Ky(2,0)*I(x+dx,y-dy) +
Ky(0,1)*I(x-dx,y) + Ky(1,1)*I(x,y) + Ky(2,1)*I(x+dx,y) +
Ky(0,2)*I(x-dx,y+dy) + Ky(1,2)*I(x,y+dy) + Ky(2,2)*I(x+dx,y+dy))

=1.0

=2
N
—~
x
<
<
~
l

N = (Nx, Ny, Nz) / Norm((Ny,Ny,N;))

In these formulas, the dx and dy values (e.g., I(x-dx,y-dy)), represent deltas relative to a given (x,y) position for the
purpose of estimating the slope of the surface at that point. These deltas are determined by the value (explicit or implicit) of

attribute kernelUnitLength.

Top/left corner:

FACTOR,=2/(3*dx)
K, =
[000]
| 0-2 2]

[0-11]

FACTOR~2/(3*dy)
K, =
[000]

[0-2-1]
[021]

Left column:

FACTOR,=1/(2*dx)
K, =
[0-1 1]
[0-2 2]
[0-1 1|

FACTOR=1/(3*dy)
K, =
| 0-2-1]
[000]
[021]

Bottom/left corner:

FACTOR,=2/(3*dx)

Top row:

FACTOR,=1/(3*dx)
Ky =
| 000]
[-2 02|
[-10 1]

FACTOR~1/(2*dy)
Ky =
[000]
[-1-2-1]
[121]

Interior pixels:

FACTOR,=1/(4*dx)
Ky =
[-101]
[202]
[-101]

FACTOR~1/(4*dy)
Ky =
[-1-2-1]
[000]
[121]

Bottom row:

FACTOR,=1/(3*dx)

Top/right corner:

FACTOR,=2/(3*dx)
Ky =
|000]
[-220]
[-110]

FACTOR~2/(3*dy)
K, =
[000]
[-1-2 0]
[120]

Right column:

FACTOR,=1/(2*dx)
K, =
[-110]
|22 0]
[-11 0]

FACTOR=1/(3*dy)
Ky =
[-1-2 0]
[000]
[120]

Bottom/right corner:

FACTOR,=2/(3*dx)

K, =

[0-1 1]
[0-2 2]
[000]

FACTOR,~2/(3*dy)
K=
| 0-2-1]
[021]
[000]

L, the unit vector from the image sample to the light, is calculated as follows:

For Infinite light sources it is constant:

Lx
Ly

cos(azimuth)*cos(elevation)

sin(azimuth)*cos(elevation)

L, = sin(elevation)

Ky =

[-101]
|20 2]
| 000]

FACTOR,=1/(2*dy)
K=
[-1-2-1]

[121]
|000]

For Point and spot lights it is a function of position:

Ly = Lighty - x
Ly = Lighty -y
L, Light, - Z(x,y)

L = (Lx, Ly, Lz) / Norm(Ly, Ly, Lz)

where Light,, Lighty, and Light, are the input light position.

L.Lg.Ly, the light color vector, is a function of position in the spot light case only:

Lr
Lg

Light*pow((-L.S),specularExponent)

Lightg*pow((-L.S),specularExponent)
Lp = Lightp*pow((-L.S),specularExponent)

K, =

[-110]
[220]
|000]

FACTOR,~2/(3*dy)
Ky =
[-1-2 0]
[120]
[000]

where S is the unit vector pointing from the light to the point (pointsAtX, pointsAtY, pointsAtZ) in the x-y plane:

Sx = pointsAtX - Lighty
Sy = pointsAtY - Lighty
S, = pointsAtzZ - Light,

S = (Sxs Sy, Sz) / Norm(Sx, Sy, Sz)

If L.S is positive, no light is present. (L, = Ly = L, = 0). If 1imitingConeAngle is specified, -L.S < cos(limitingConecAngle)

also indicates that no light is present.
Attribute definitions:

surfaceScale = "<number>"
height of surface when A;;, = 1.

If the attribute is not specified, then the effect is as if a value of “1” were specified.

Animatable: yes.

diffuseConstant ="<number>"

kd in Phong lighting model. In SVG, this can be any non-negative number.

If the attribute is not specified, then the effect is as if a value of “1” were specified.

Animatable: yes.

kernelUnitLength = "<number-optional-number>"

The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified, it defaults
to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as determined by the value
of attribute primitiveUnits) for dx and dy, respectively, in the surface normal calculation formulas. By specifying
value(s) for kernelUnitLength, the kernel becomes defined in a scalable, abstract coordinate system. If
kernelUnitLength is not specified, the dx and dy values should represent very small deltas relative to a given (x,y)
position, which might be implemented in some cases as one pixel in the intermediate image offscreen bitmap, which is
a pixel-based coordinate system, and thus potentially not scalable. For some level of consistency across display media
and user agents, it is necessary that a value be provided for kernelUnitLength.

If a negative or zero value is specified the default value will be used instead.

Note: This attribute is deprecated and will be removed. It does not provide a reliable way to create platform

independent results. Future versions of this specification will cover this use case.

Animatable: yes.

The light source is defined by one of the child elements <feDistantLight>, <fePointLight> or <feSpotLight>. The light
color is specified by property ‘lighting-color’.

9.11. Filter primitive <feDisplacementMap>

Name: feDisplacementMap

Categories: filter primitive

Content o .
del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:
o core attributes — id, xml:base, xml:lang, xml:space
o presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
“flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
Attributes: ‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
o class
o style
e in
e in2
e scale
e xChannelSelector
e yChannelSelector
DOM ,
SVGFEDisplacementMapElement
Interfaces:

I ISSUE 3 Implementations do not match specification. <https:/github.com/w3c/csswg-drafts/issues/113>

This filter primitive uses the pixels values from the image from in2 to spatially displace the image from in. This is the

transformation to be performed:

P'(x,y) « P(x + scale * (XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(x,y) is the input image, in, and P'(x,y) is the destination. XC(x,y) and YC(X,y) are the component values of the
channel designated by the xChannelSelector and yChannelSelector. For example, to use the R component of in2 to

control displacement in x and the G component of Image2 to control displacement in y, set xChannelSelector to "R" and
yChannelSelector to "G".

The displacement map, in2, defines the inverse of the mapping performed.

The input image in is to remain premultiplied for this filter primitive. The calculations using the pixel values from in2 are
performed using non-premultiplied color values.

This filter can have arbitrary non-localized effect on the input which might require substantial buffering in the processing
pipeline. However with this formulation, any intermediate buffering needs can be determined by scale which represents the
maximum range of displacement in either x or y.

When applying this filter, the source pixel location will often lie between several source pixels.

Note: Depending on the speed of the available interpolents, this choice may be affected by the ‘image-rendering’
property setting.

Note: A future version of this spec will define the interpolation method to be used when distorting the source image
making UAs rendering result more interoperable.

The ‘color-interpolation-filters’ property only applies to the in2 source image and does not apply to the in source image.
The in source image must remain in its current color space.

Attribute definitions:

scale ="<number>"
Displacement scale factor. The amount is expressed in the coordinate system established by attribute primitiveUnits
on the <filter> element.

When the value of this attribute is ‘0’, this operation has no effect on the source image.
The initial value for scale is ‘0’.

Animatable: yes.
XxChannelSelector ="R|G|B| A"
Indicates which channel from in2 to use to displace the pixels in in along the x-axis.

The initial value for xChannelSelector is ‘A’.

Animatable: yes.

yChannelSelector="R|G|B| A"
Indicates which channel from in2 to use to displace the pixels in in along the y-axis.

The initial value for yChannelSelector is ‘A’.
Animatable: yes.

in2 ="(see in attribute)"
The second input image, which is used to displace the pixels in the image from attribute in. See defintion for in
attribute.

Animatable: yes.

9.12. Filter primitive <feDropShadow>

Name: feDropShadow
Categories: filter primitive

Content

del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

Attributes:

o core attributes — id, xml:base, xml:lang, xml:space

« presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o filter primitive attributes —x, y, width, height, result
e class

o style

e in

e stdDeviation

e dx
° dy
DOM
SVGFEDropShadowElement
Interfaces:

This filter creates a drop shadow of the input image. It is a shorthand filter, and is defined in terms of combinations of other
filter primitives. The expectation is that it can be optimized more easily by implementations.

The result of a <feDropShadow> filter primitive is equivalent to the following:

<feGaussianBlur in="alpha-channel-of-feDropShadow-in" stdDeviation="stdDeviation-of-feDropShadow"
<feOffset dx="dx-of-feDropShadow" dy="dy-of-feDropShadow" result="offsetblur"/>
<feFlood flood-color="flood-color-of-feDropShadow" flood-opacity="flood-opacity-of-feDropShadow"/>
<feComposite in2="offsetblur" operator="in"/>
<feMerge>

<feMergeNode/>

<feMergeNode in="in-of-feDropShadow"/>
</feMerge>

The above divided into steps:

1. Take the alpha channel of the input to the <feDropShadow> filter primitive and the stdDeviation on the
feDropShadow and do processing as if the following <feGaussianBlur> was applied:

<feGaussianBlur in="alpha-channel-of-feDropShadow-in" stdDeviation="stdDeviation-of-feDropShado

»

2. Offset the result of step 1 by dx and dy as specified on the <feDropShadow> element, equivalent to applying an
<feOffset> with these parameters:

<feOffset dx="dx-of-feDropShadow" dy="dy-of-feDropShadow" result="offsetblur"/>

3. Do processing as if an <feFlood> element with ‘flood-color’ and ‘flood-opacity’ as specified on the <feDropShadow>
was applied:

<feFlood flood-color="flood-color-of-feDropShadow" flood-opacity="flood-opacity-of-feDropShadow

»

4. Composite the result of the <feFlood> in step 3 with the result of the <feOffset> in step 2 as if an <feComposite>
filter primitive with operator="in" was applied:

<feComposite in2="offsetblur" operator="in"/>
5. Finally merge the result of the previous step, doing processing as if the following <feMerge> was performed:

<feMerge>

<feMergeNode/>

<feMergeNode in="in-of-feDropShadow"/>
</feMerge>

Note: that while the definition of the <feDropShadow> filter primitive says that it can be expanded into an equivalent tree
it is not required that it is implemented like that. The expectation is that user agents can optimize the handling by not
having to do all the steps separately.

Beyond the DOM interface SVGFEDropShadowElement there is no way of accessing the internals of the <feDropShadow>

filter primitive, meaning if the filter primitive is implemented as an equivalent tree then that tree must not be exposed to the
DOM.

Attribute definitions:

dx ="<number>"
The x offset of the drop shadow.

The initial value for dx is ‘2’.
This attribute is then forwarded to the dx attribute of the internal <feOffset> element.

Animatable: yes.

dy ="<number>"
The y offset of the drop shadow.

The initial value for dy is ‘2
This attribute is then forwarded to the dy attribute of the internal <feOffset> element.

Animatable: yes.

stdDeviation = "<number-optional-number>"
The standard deviation for the blur operation in the drop shadow.

The initial value for stdDeviation is ‘2.

This attribute is then forwarded to the stdDeviation attribute of the internal <feGaussianBlur> element.

Animatable: yes.

9.13. Filter primitive <feFlood>

Name: feFlood
Categories: filter primitive

Content

del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

Attributes:
o core attributes — id, xml:base, xml:lang, xml:space
¢ presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, “fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,

‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o filter primitive attributes —x, y, width, height, result

e class
o style
DOM
SVGFEFloodElement
Interfaces:

This filter primitive creates a rectangle filled with the color and opacity values from properties ‘flood-color’ and
‘flood-opacity’. The rectangle is as large as the filter primitive subregion established by the <feFlood> element.

§

9.13.1. The ‘flood-color’ property

Name: ‘flood-color’

Value: <color>

Initial: black

Applies to: <feFlood> and <feDropShadow> elements
Inherited: no

Percentages: n/a

Computed value: as specified

Canonical order: per grammar

Media: visual

Animatable: as by computed value

The ‘flood-color’ property indicates what color to used to flood the current filter primitive subregion.

The ‘flood-color’ property is a presentation attribute for SVG elements.

§

9.13.2. The ‘flood-opacity’ property

Name: ‘flood-opacity’

Value: <alpha-value>

Initial: 1

Applies to: <feFlood> and <feDropShadow> clements

Inherited: no

Percentages: n/a

Computed value: the specified value converted to a number, clamped to the range [0,1]
Canonical order: per grammar

Media: visual

Animatable: by computed value

The ‘flood-opacity’ property defines the opacity value to use across the entire filter primitive subregion. If the ‘flood-color’

value includes an alpha channel, the alpha channel gets multiplied with the computed value of the ‘flood-opacity’ property.

The ‘flood-opacity’ property is a presentation attribute for SVG elements.

9.14. Filter primitive <feGaussianBlur>

Name: feGaussianBlur
Categories: filter primitive

Content
del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

e core attributes — id, xml:base, xml:lang, xml:space

¢ presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,

‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, ‘fill’, ‘fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,

Attributes: ‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result

o class

o style

e in

e stdDeviation
e edgeMode

DOM

SVGFEGaussianBlurElement
Interfaces:

This filter primitive performs a Gaussian blur on the input image.
The Gaussian blur kernel is an approximation of the normalized convolution:

G(x,y) = H(X)I(y)

where

H(x) = exp(-x%/ (2s2)) / sqrt(2m * s2)
and
I(y) = exp(-y?/ (2t?)) / sqrt(2m * t2)

with "s" being the standard deviation in the x direction and "t" being the standard deviation in the y direction, as specified by

stdDeviation.

The value of stdDeviation can be either one or two numbers. If two numbers are provided, the first number represents a
standard deviation value along the x-axis of the current coordinate system and the second value represents a standard
deviation in Y. If one number is provided, then that value is used for both X and Y.

Even if only one value is provided for stdDeviation, this can be implemented as a separable convolution.

For larger values of "'s" (s >= 2.0), an approximation can be used: Three successive box-blurs build a piece-wise quadratic
convolution kernel, which approximates the Gaussian kernel to within roughly 3%.

let d = floor(s * 3 * sqrt(2 * n) / 4 + 0.5)
... if d is odd, use three box-blurs of size "d", centered on the output pixel.

... if d is even, two box-blurs of size "d" (the first one centered on the pixel boundary between the output pixel and the one to
the left, the second one centered on the pixel boundary between the output pixel and the one to the right) and one box blur of

size "d+1" centered on the output pixel.
The approximation formula also applies correspondingly to "t".

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input, SourceAlpha.
The implementation may notice this and optimize the single channel case. This optimization must be omitted if it leads to
privacy concerns of any matter. (See section Privacy and Security Considerations for more details about timing attacks.) If
the input has infinite extent and is constant (e.g FillPaint where the fill is a solid color), this operation has no effect. If the
input has infinite extent and the filter result where the fill is a solid color) is the input to an <feTile>, the filter is evaluated

with periodic boundary conditions.
Attribute definitions:

stdDeviation = "<number-optional-number>"
The standard deviation for the blur operation. If two <number> s are provided, the first number represents a standard
deviation value along the x-axis of the coordinate system established by attribute primitiveUnits on the <filter>
element. The second value represents a standard deviation in Y. If one number is provided, then that value is used for
both X and Y.

A negative value or a value of zero disables the effect of the given filter primitive (i.e., the result is the filter input

image).

If stdDeviation is ‘0’ in only one of X or Y, then the effect is that the blur is only applied in the direction that has a

non-zero value.
The initial value for stdDeviation is ‘0.

Animatable: yes.

edgeMode = "duplicate | wrap | none"
Determines how to extend the input image as necessary with color values so that the matrix operations can be applied

when the kernel is positioned at or near the edge of the input image.

duplicate indicates that the input image is extended along each of its borders as necessary by duplicating the color
values at the given edge of the input image.

Original N-by-M image, where m=M-1 and n=N-1:
wrap indicates that the input image is extended by taking the color values from the opposite edge of the image.

The value ‘none’ indicates that the input image is extended with pixel values of zero for R, G, B and A.

The initial value for edgeMode is ‘none’.
Animatable: yes.

The example at the start of this chapter makes use of the <feGaussianBlur> filter primitive to create a drop shadow effect.

9.15. Filter primitive <feImage>

Name: feImage
Categories: filter primitive

Content Any number of descriptive elements, <animate>, <animateTransform>, <script>, <set> elements, in any
model: order.

e core attributes — id, xml:base, xml:lang, xml:space

o presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
“flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

Attributes: ‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
e class
o style
o externalResourcesRequired
e preserveAspectRatio
e xlink:href
e href

e crossorigin

DOM

SVGFEImageElement
Interfaces:

This filter primitive refers to a graphic external to this filter element, which is loaded or rendered into an RGBA raster and
becomes the result of the filter primitive.

This filter primitive can refer to an external image or can be a reference to another piece of SVG. It produces an image
similar to the built-in image source SourceGraphic except that the graphic comes from an external source.

If the href references a stand-alone image resource such as a JPEG, PNG or SVG file, then the image resource is rendered
according to the behavior of the <image> element; otherwise, the referenced resource is rendered according to the behavior
of the <use> element. In either case, the current user coordinate system depends on the value of attribute primitiveUnits
on the <filter> element. The processing of the preserveAspectRatio attribute on the <feImage> element is identical to
that of the image element.

A href reference that is an empty image (zero width or zero height), that fails to download, is non-existent, or that cannot be
displayed (e.g. because it is not in a supported image format) fills the filter primitive subregion with transparent black.

When the referenced image must be resampled to match the device coordinate system, it is recommended that high quality
viewers make use of appropriate interpolation techniques, for example bilinear or bicubic. Depending on the speed of the
available interpolents, this choice may be affected by the ‘image-rendering’ property setting.

Attribute definitions:

xLink:href ="<url>"

See href attribute.

Animatable: yes.

Note: This xlink:href attribute is deprecated and should not be used in new content, it’s included for backwards

compatibility reasons only. Authors should use the href attribute instead.

href ="<url>"
An <url> to an image resource or to an element. If both, the x1ink:href and the href attribute are specified, the latter

overrides the first definition.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"
See preserveAspectRatio.

The initial value for preserveAspectRatio is ‘xMidYMid meet’.

Animatable: yes.

crossorigin = "anonymous | use-credentials"
The crossorigin attribute is a CORS settings attribute. Its purpose is to allow images from third-party sites that allow
cross-origin access to be used with <feDisplacementMap>. For the defintion see crossorigin attribute for the tag
[HTMLS] and the Privacy and Security Considerations section in this specification.

Animatable: no.

EXAMPLE 10

The following example illustrates how images are placed relative to an object. From left to right:

o The default placement of an image. Note that the image is centered in the filter region and has the maximum size
that will fit in the region consistent with preserving the aspect ratio.

e The image stretched to fit the bounding box of an object.

o The image placed using user coordinates. Note that the image is first centered in a box the size of the filter region
and has the maximum size that will fit in the box consistent with preserving the aspect ratio. This box is then shifted

by the given x and y values relative to the viewport the object is in.

<svg width="600" height="250" viewBox="0 © 600 250"
xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink">

<title>Example feImage - Examples of felmage use</title>
<desc>Three examples of using felImage, the first showing the
default rendering, the second showing the image fit
to a box and the third showing the image
shifted and clipped.</desc>
<defs>
<filter id="Default">
<feImage xlink:href="smiley.png" />
</filter>
<filter id="Fitted" primitiveUnits="objectBoundingBox">
<feImage xlink:href="smiley.png"
x="8" y="0" width="100%" height="100%"
preserveAspectRatio="none"/>
</filter>
<filter id="Shifted">
<feImage xlink:href="smiley.png"
x="500" y="5"/>
</filter>
</defs>
<rect fill="none" stroke="blue"
x="1" y="1" width="598" height="248"/>
<g>
<rect x="50" y="25" width="100" height="200" filter="url(#Default)"/>
<rect x="50" y="25" width="100" height="200" fill="none" stroke="green"/>
<rect x="250" y="25" width="100" height="200" filter="url(#Fitted)"/>
<rect x="250" y="25" width="100" height="200" fill="none" stroke="green"/>
<rect x="450" y="25" width="100" height="200" filter="url(#Shifted)"/>
<rect x="450" y="25" width="100" height="200" fill="none" stroke="green"/>
</g>
</svg>

L n ._
LVJ ~

Figure 8. Example of felmage

View this example as SVG

9.16. Filter primitive <feMerge>

Name: feMerge

Categories: filter primitive

Content
del Any number of descriptive elements, <feMergeNode>, <script> elements, in any order.
model:
o core attributes — id, xml:base, xml:lang, xml:space
¢ presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, “clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
“flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
Attributes: ‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
e class
o style
DOM
SVGFEMergeElement
Interfaces:

This filter primitive composites input image layers on top of each other using the over operator with Inputl (corresponding
to the first <feMergeNode> child element) on the bottom and the last specified input, /nputN (corresponding to the last
feMergeNode child element), on top.

Many effects produce a number of intermediate layers in order to create the final output image. This filter allows us to
collapse those into a single image. Although this could be done by using n-1 Composite-filters, it is more convenient to have
this common operation available in this form, and offers the implementation some additional flexibility.

Each <feMerge> element can have any number of <feMergeNode> subelements, each of which has an in attribute.

The canonical implementation of feMerge is to render the entire effect into one RGBA layer, and then render the resulting
layer on the output device. In certain cases (in particular if the output device itself is a continuous tone device), and since
merging is associative, it might be a sufficient approximation to evaluate the effect one layer at a time and render each layer
individually onto the output device bottom to top.

If the topmost image input is SourceGraphic and this <feMerge> is the last filter primitive in the filter, the implementation is
encouraged to render the layers up to that point, and then render the SourceGraphic directly from its vector description on
top.

The example at the start of this chapter makes use of the <feMerge> filter primitive to composite two intermediate filter

results together.

9.16.1. Merge node <feMergeNode>

Name: feMergeNode

Categories: None.

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
e core attributes — id, xml:base, xml:lang, xml:space

Attributes:
e in

DOM Interfaces: SVGFEMergeNodeElement

9.17. Filter primitive <feMorphology>

Name: feMorphology
Categories: filter primitive
Content

del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

o core attributes — id, xml:base, xml:lang, xml:space

* presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,

Attributes: ‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
e class
o style
e in
e operator

e radius

DOM

SVGFEMorphologyElement
Interfaces:

This filter primitive performs "fattening" or "thinning" of artwork. It is particularly useful for fattening or thinning an alpha

channel.

The dilation (or erosion) kernel is a rectangle with a width of 2*x-radius and a height of 2*y-radius. In dilation, the output
pixel is the individual component-wise maximum of the corresponding R,G,B.A values in the input image’s kernel
rectangle. In erosion, the output pixel is the individual component-wise minimum of the corresponding R,G,B,A values in

the input image’s kernel rectangle.

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input, SourceAlpha. In
that case, the implementation might want to optimize the single channel case. This optimization must be omitted if it leads to

privacy concerns of any matter. (See section Privacy and Security Considerations for more details.)

If the input has infinite extent and is constant (e.g FillPaint where the fill is a solid color), this operation has no effect. If the
input has infinite extent and the filter result is the input to an <feTile>, the filter is evaluated with periodic boundary

conditions.

Because <feMorphology> operates on premultipied color values, it will always result in color values less than or equal to
the alpha channel.

Attribute definitions:

operator = "erode | dilate"
A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the source graphic.

The initial value for operator is ‘erode’.

Animatable: yes.

radius = "<number-optional-number>"

The radius (or radii) for the operation. If two <number> s are provided, the first number represents a x-radius and the
second value represents a y-radius. If one number is provided, then that value is used for both X and Y. The values are
in the coordinate system established by attribute primitiveUnits on the <filter> element.

A negative or zero value disables the effect of the given filter primitive (i.e., the result is the filter input image).
The initial value for radius is ‘0’.

Animatable: yes.

EXAMPLE 11

<svg width="5cm" height="7cm" viewBox="0 © 700 500"
xmlns="http://www.w3.0rg/2000/svg">
<title>Example feMorphology - Examples of erode and dilate</title>
<desc>Five text strings drawn as outlines.
The first is unfiltered. The second and third use 'erode’.
The fourth and fifth use 'dilate'.</desc>
<defs>
<filter id="Erode3">
<feMorphology operator="erode" in="SourceGraphic" radius="3" />
</filter>
<filter id="Erode6">
<feMorphology operator="erode" in="SourceGraphic" radius="6" />
</filter>
<filter id="Dilate3">
<feMorphology operator="dilate" in="SourceGraphic" radius="3" />
</filter>
<filter id="Dilate6">
<feMorphology operator="dilate" in="SourceGraphic" radius="6" />
</filter>
</defs>
<rect fill="none" stroke="blue" stroke-width="2"
x="1" y="1" width="698" height="498"/>
<g isolation="isolate" >
<g font-family="Verdana" font-size="75"
fill="none" stroke="black" stroke-width="6" >
<text x="50" y="90">Unfiltered</text>
<text x="50" y="180" filter="url(#Erode3)" >Erode radius 3</text>
<text x="50" y="270" filter="url(#Erode6)" >Erode radius 6</text>
<text x="50" y="360" filter="url(#Dilate3)" >Dilate radius 3</text>
<text x="50" y="450" filter="url(#Dilate6)" >Dilate radius 6</text>
</g>
</g>
</svg>

Unfiltered

Erode radius 3
Erode radlus 6
Dilate radius 3
Diiate radius 6

Figure 9. Example of feMorphology

View this example as SVG

§ 9.18. Filter primitive <feOffset>

Name: feOffset
Categories: filter primitive

Content

del Any number of descriptive elements, <animate>, <script>, <set> clements, in any order.
model:

e core attributes — id, xml:base, xml:lang, xml:space

¢ presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, ‘fill-opacity’, ‘fill-rule’, ‘filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,

Attributes: ‘stroke-lingjoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,

‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’
o filter primitive attributes —x, y, width, height, result
o class
o style
e in
e dx
o dy

DOM

SVGFEOffsetElement
Interfaces:

This filter primitive offsets the input image relative to its current position in the image space by the specified vector.
This is important for effects like drop shadows.

When applying this filter, the destination location may be offset by a fraction of a pixel in device space. In this case a high
quality viewer should make use of appropriate interpolation techniques, for example bilinear or bicubic. This is especially
recommended for dynamic viewers where this interpolation provides visually smoother movement of images. For static

viewers this is less of a concern. Close attention should be made to the ‘image-rendering’ property setting to determine the

authors intent.
Attribute definitions:

dx = "<number>"
The amount to offset the input graphic along the x-axis. The offset amount is expressed in the coordinate system
established by attribute primitiveUnits on the <filter> element.

The initial value for dx is ‘0’.

Animatable: yes.

dy = "<number>"
The amount to offset the input graphic along the y-axis. The offset amount is expressed in the coordinate system
established by attribute primitiveUnits on the <filter> element.

The initial value for dy is 0.
Animatable: yes.

The example at the start of this chapter makes use of the <feOffset> filter primitive to offset the drop shadow from the
original source graphic.

9.19. Filter primitive <feSpecularLighting>

Name: feSpecularLighting
Categories: filter primitive

Content
del Any number of descriptive elements, <script> and exactly one light sources element, in any order.
model:

Attributes: o core attributes — id, xml:base, xml:lang, xml:space

« presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, *kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o filter primitive attributes —x, y, width, height, result
e class

o style

e in

e surfaceScale

e specularConstant

e specularExponent

e kernelUnitLength

DOM

SVGFESpecularLightingElement
Interfaces:

This filter primitive lights a source graphic using the alpha channel as a bump map. The resulting image is an RGBA image
based on the light color. The lighting calculation follows the standard specular component of the Blinn-Phong lighting
model. The resulting image depends on the light color, light position and surface geometry of the input bump map. The
result of the lighting calculation is added. The filter primitive assumes that the viewer is at infinity in the z direction (i.c., the
unit vector in the eye direction is (0,0,1) everywhere).

Note: This filter primitive produces an image which contains the specular reflection part of the lighting calculation. Such
a map is intended to be combined with a texture from a second filter primitive using the add term of the arithmetic
<feComposite> method. Multiple light sources can be simulated by adding several of these light maps before applying it
to the texture image.

The resulting RGBA image is computed as follows:

Se = kg * pow(N.H, specularExponent) * L.

Sg = ks * pow(N.H, specularExponent) * Lg
Sp = kg * pow(N.H, specularExponent) * L
Sa = max(Sp, Sg, Sb)

where

kg = specular lighting constant

N = surface normal unit vector, a function of x and y
H = "halfway" unit vector between eye unit vector and light unit vector

L;Lg,Ly = RGB components of light

See <feDiffuseLighting> for definition of N and (L,, Lg, Ly).

The definition of H reflects our assumption of the constant eye vector E = (0,0,1):
H = (L + E) / Norm(L+E)

where L is the light unit vector.

Unlike the <feDiffuselLighting>, the <feSpecularLighting> filter produces a non-opaque image. This is due to the fact
that the specular result (S;.S,Sp.S,) is meant to be added to the textured image. The alpha channel of the result is the max of

the color components, so that where the specular light is zero, no additional coverage is added to the image and a fully white
highlight will add opacity.

The <feDiffuseLighting> and <feSpecularLighting> filters will often be applied together. An implementation may
detect this and calculate both maps in one pass, instead of two.

Attribute definitions:

surfaceScale = "<number>"
height of surface when A;, = 1.

The initial value for surfaceScaleis ‘1’.

Animatable: yes.

specularcConstant = "<number>"
ks in Phong lighting model. In SVG, this can be any non-negative number.

The initial value for specularConstant is ‘1.

Animatable: yes.

specularExponent = "<number>"
Exponent for specular term, larger is more "shiny".

The initial value for specularExponent is ‘1’

Animatable: yes.

kRernelUnitLength = "<number-optional-number>"
The first number is the <dx> value. The second number is the <dy> value.

If the <dy> value is not specified, it defaults to the same value as <dx>. Indicates the intended distance in current filter
units (i.c., units as determined by the value of attribute primitiveUnits) for dx and dy, respectively, in the surface
normal calculation formulas. By specitying value(s) for kernelUnitLength, the kernel becomes defined in a scalable,

abstract coordinate system.

If kernelUnitLength is not specified, the dx and dy values should represent very small deltas relative to a given (x,y)
position, which might be implemented in some cases as one pixel in the intermediate image offscreen bitmap, which is
a pixel-based coordinate system, and thus potentially not scalable. For some level of consistency across display media
and user agents, it is necessary that a value be provided for kernelUnitLength.

Animatable: yes.

The light source is defined by one of the child elements <feDistantLight>, <fePointLight> or <feSpotLight>. The light
color is specified by property ‘lighting-color’.

The example at the start of this chapter makes use of the <feSpecularLighting> filter primitive to achieve a highly
reflective, 3D glowing effect.

9.20. Filter primitive <feTile>

Name: feTile
Categories: filter primitive

Content o .
del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

Attributes:
e core attributes — id, xml:base, xml:lang, xml:space
« presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, “clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, ‘fill-rule’, “filter’, ‘flood-color’,
“flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,

‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, ‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o filter primitive attributes —x, y, width, height, result

e class
o style
e in
DOM .
SVGFETileElement
Interfaces:

This filter primitive fills a target rectangle with a repeated, tiled pattern of an input image. The target rectangle is as large as
the filter primitive subregion established by the <feTile> element.

Typically, the input image has been defined with its own filter primitive subregion in order to define a reference tile.
<feTile> replicates the reference tile in both X and Y to completely fill the target rectangle. The top/left corner of each
given tile is at location (x + i*width, y + j*height), where (x,y) represents the top/left of the input image’s filter
primitive subregion, width and height represent the width and height of the input image’s filter primitive subregion, and i
and j can be any integer value. In most cases, the input image will have a smaller filter primitive subregion than the feTile in

order to achieve a repeated pattern effect.

Implementers must take appropriate measures in constructing the tiled image to avoid artifacts between tiles, particularly in
situations where the user to device transform includes shear and/or rotation. Unless care is taken, interpolation can lead to
edge pixels in the tile having opacity values lower or higher than expected due to the interaction of painting adjacent tiles
which each have partial overlap with particular pixels.

9.21. Filter primitive <feTurbulence>

Name: feTurbulence
Categories: filter primitive
Content

del Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.
model:

Attributes:

e core attributes — id, xml:base, xml:lang, xml:space

o presentation attributes — ‘alignment-baseline’, ‘baseline-shift’, ‘clip’, ‘clip-path’, ‘clip-rule’, ‘color’,
‘color-interpolation’, ‘color-interpolation-filters’, ‘color-rendering’, ‘cursor’, ‘direction’, ‘display’,
‘dominant-baseline’, ‘enable-background’, “fill’, “fill-opacity’, fill-rule’, “filter’, ‘flood-color’,
‘flood-opacity’, ‘font’, ‘font-family’, ‘font-size’, ‘font-size-adjust’, ‘font-stretch’, ‘font-style’,
‘font-variant’, ‘font-weight’, ‘glyph-orientation-horizontal’, ‘glyph-orientation-vertical’,
‘image-rendering’, ‘isolation’, ‘kerning’, ‘letter-spacing’, ‘lighting-color’, ‘marker’, ‘marker-end’,
‘marker-mid’, ‘marker-start’, ‘mask’, ‘opacity’, ‘overflow’, ‘pointer-events’, ‘shape-rendering’,
‘stop-color’, ‘stop-opacity’, ‘stroke’, ‘stroke-dasharray’, ‘stroke-dashoffset’, ‘stroke-linecap’,
‘stroke-linejoin’, ‘stroke-miterlimit’, ‘stroke-opacity’, ‘stroke-width’, ‘text-anchor’, ‘text-decoration’,
‘text-rendering’, “‘unicode-bidi’, ‘visibility’, ‘word-spacing’, ‘writing-mode’

o filter primitive attributes —x, y, width, height, result

o class

o style

e baseFrequency

* numOctaves

e seed

e stitchTiles

o type

DOM
Interfaces:

SVGFETurbulenceElement

This filter primitive creates an image using the Perlin turbulence function. It allows the synthesis of artificial textures like
clouds or marble. For a detailed description the of the Perlin turbulence function, see "Texturing and Modeling" [TaM]. The

resulting image will fill the entire filter primitive subregion for this filter primitive.
It is possible to create bandwidth-limited noise by synthesizing only one octave.

The C code below shows the exact algorithm used for this filter effect. The filter primitive subregion is to be passed as the
arguments fTileX, fTileY, fTileWidth and fTileHeight.

For fractalSum, you get a turbFunctionResult that is aimed at a range of -1 to 1 (the actual result might exceed this range in
some cases). To convert to a color or alpha value, use the formula colorValue = (turbFunctionResult + 1) / 2, then

clamp to the range 0 to 1.

For turbulence, you get a turbFunctionResult that is aimed at a range of 0 to 1 (the actual result might exceed this range in
some cases). To convert to a color or alpha value, use the formula colorvValue = turbFunctionResult, then clamp to the

range 0 to 1.

The following order is used for applying the pseudo random numbers. An initial seed value is computed based on the seed
attribute. Then the implementation computes the lattice points for R, then continues getting additional pseudo random
numbers relative to the last generated pseudo random number and computes the lattice points for G, and so on for B and A.

The generated color and alpha values are in the color space determined by the ‘color-interpolation-filters’ property:

/* Produces results in the range [1, 2**31 - 2].
Algorithm is: r = (a * r) mod m
where a = 16807 and m = 2**31 - 1 = 2147483647
See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
To test: the algorithm should produce the result 1043618065
as the 10,000th generated number if the original seed is 1.
*/
#define RAND_m 2147483647 /* 2**31 - 1 */
#define RAND_a 16807 /* 7**5; primitive root of m */
#define RAND_q 127773 /* m / a */
#define RAND_r 2836 /* m % a */
long setup_seed(long 1Seed)
{
if (1Seed <= @) 1Seed = -(1Seed % (RAND_m - 1)) + 1;
if (1Seed > RAND_m - 1) 1Seed = RAND_m - 1;
return 1Seed;
}
long random(long 1Seed)
{
long result;
result = RAND_a * (1Seed % RAND_q) - RAND_r * (1Seed / RAND_q);
if (result <= @) result += RAND_m;
return result;
}
#define BSize 0x100
#define BM Oxff
#define PerlinN 0x1000
#define NP 12 /* 2~PerlinN */
#define NM Oxfff
static ulLatticeSelector[BSize + BSize + 2];
static double fGradient[4][BSize + BSize + 2][2];
struct StitchInfo
{
int nWidth; // How much to subtract to wrap for stitching.
int nHeight;
int nWrapX; // Minimum value to wrap.
int nWrapY;
s
static void init(long 1Seed)
{
double s;
int i, j, k;
1Seed = setup_seed(1Seed);
for(k = 0; k < 4; k++)
{
for(i = @; i < BSize; i++)
{
uLatticeSelector[i] = i;
do {
for (j =0; j < 2; j++)
fGradient[k][1i][j] = (double)(((lSeed = random(1lSeed)) % (BSize + BSize)) - BSize) / BSi
} while(fGradient[k][i][@] == @ && fGradient[k][i][1] == @);
s = double(sqrt(fGradient[k][i][@] * fGradient[k][i][@] + fGradient[k][i][1] * fGradient[k][i
if (s > 1) {
i--; // discard the current random vector; try it again.
continue;
¥
fGradient[k][i][@] /= s;
fGradient[k][i][1] /= s;

}
while(--1)
{

k = uLatticeSelector[i];

uLatticeSelector[i] = uLatticeSelector[j = (1Seed = random(1Seed)) % BSize];
uLatticeSelector[j] = k;
}
for(i = @; i < BSize + 2; i++)
{
uLatticeSelector[BSize + i] = uLatticeSelector[i];
for(k = 0; k < 4; k++)
for(j = 0; j < 2; j++)
fGradient[k][BSize + i][j] = fGradient[k][i][j];

}
#define s_curve(t) (t *t * (3. - 2. *t))
#define lerp(t, a, b) (a+t * (b - a))
double noise2(int nColorChannel, double vec[2], StitchInfo *pStitchInfo)
{
int bx@, bxl, bye, byl, beo, bl@, bel, bll;
double rxe@, rx1, ryo, ryl, *qg, sx, sy, a, b, t, u, v;
register i, j;
t = vec[@] + PerlinN;
bxo = (int)t;
bx1l = bx0+1;
rxe = t - (int)t;
rxl = rx0 - 1l.0f;
t = vec[1] + PerlinN;
bye = (int)t;
byl = byo+1;
ryd = t - (int)t;
ryl = ry® - 1.0f;
// If stitching, adjust lattice points accordingly.
if(pStitchInfo != NULL)
{
if(bx@ >= pStitchInfo->nWrapX)
bx@ -= pStitchInfo->nWidth;
if(bx1 >= pStitchInfo->nWrapX)
bx1 -= pStitchInfo->nWidth;
if(by® >= pStitchInfo->nWrapY)
by@ -= pStitchInfo->nHeight;
if(byl >= pStitchInfo->nWrapY)
byl -= pStitchInfo->nHeight;
¥
bxo &= BM;
bx1l &= BM;
by® &= BM;
byl &= BM;
i = uLatticeSelector[bxe];
j = uLatticeSelector[bx1];
boo = uLatticeSelector[i + by@];
b10 = uLatticeSelector[j + by@];
bol = uLatticeSelector[i + byl];
b1l = uLatticeSelector[j + byl];
sx = double(s_curve(rxo));
sy = double(s_curve(ry0));

q = fGradient[nColorChannel][b@@]; u = rx@ * q[@] + ry@ * q[1];
q = fGradient[nColorChannel][b10]; v = rx1 * q[@] + ry@ * q[1];
a = lerp(sx, u, Vv);
q = fGradient[nColorChannel][b@1]; u = rx@ * q[@] + ryl * g[1];
q = fGradient[nColorChannel][b11]; v = rx1 * q[@] + ryl * q[1];
b = lerp(sx, u, Vv);

return lerp(sy, a, b);
}
double turbulence(int nColorChannel, double *point, double fBaseFregX, double fBaseFreqy,
int nNumOctaves, bool bFractalSum, bool bDoStitching,
double fTileX, double fTileY, double fTileWidth, double fTileHeight)

StitchInfo stitch;

StitchInfo *pStitchInfo = NULL; // Not stitching when NULL.
// Adjust the base frequencies if necessary for stitching.
if(bDoStitching)
{
// When stitching tiled turbulence, the frequencies must be adjusted
// so that the tile borders will be continuous.
if(fBaseFregX != 0.0)
{
double fLoFreq = double(floor(fTileWidth * fBaseFregX)) / fTileWidth;
double fHiFreq = double(ceil(fTileWidth * fBaseFreqX)) / fTileWidth;
if(fBaseFregX / fLoFreq < fHiFreq / fBaseFregX)
fBaseFregX = fLoFreq;
else
fBaseFregX = fHiFreq;
}
if(fBaseFreqY != 0.0)
{
double fLoFreq = double(floor(fTileHeight * fBaseFreqY)) / fTileHeight;
double fHiFreq = double(ceil(fTileHeight * fBaseFreqY)) / fTileHeight;
if(fBaseFreqY / fLoFreq < fHiFreq / fBaseFreqY)
fBaseFreqY = fLoFreq;
else
fBaseFreqY = fHiFreq;
}
// Set up initial stitch values.
pStitchInfo = &stitch;

stitch.nWidth = int(fTileWidth * fBaseFregX + 0.5f);
stitch.nWrapX = fTileX * fBaseFregX + PerlinN + stitch.nWidth;
stitch.nHeight = int(fTileHeight * fBaseFreqY + ©.5F);
stitch.nWrapY = fTileY * fBaseFreqY + PerlinN + stitch.nHeight;

¥

double fSum = 0.0f;

double vec[2];

vec[@] = point[@] * fBaseFregX;

vec[1l] = point[1] * fBaseFreqY;

double ratio = 1;

for(int nOctave = @; nOctave < nNumOctaves; nOctave++)

{
if(bFractalSum)
fSum += double(noise2(nColorChannel, vec, pStitchInfo) / ratio);
else
fSum += double(fabs(noise2(nColorChannel, vec, pStitchInfo)) / ratio);
vec[@] *= 2;

vec[1l] *= 2;
ratio *= 2;
if(pStitchInfo != NULL)

{
// Update stitch values. Subtracting PerlinN before the multiplication and
// adding it afterward simplifies to subtracting it once.
stitch.nWidth *= 2;
stitch.nWrapX = 2 * stitch.nWrapX - PerlinN;
stitch.nHeight *= 2;
stitch.nWrapY = 2 * stitch.nWrapY - PerlinN;
}
¥
return fSum;
}
<
Attribute definitions:

baseFrequency = "<number-optional-number>"'
The base frequency (frequencies) parameter(s) for the noise function. If two <number>s are provided, the first number

represents a base frequency in the X direction and the second value represents a base frequency in the Y direction. If

one number is provided, then that value is used for both X and Y.
The initial value for baseFrequency is ‘0’.
Negative values are unsupported.

Animatable: yes.

numOctaves = "<integer>"
The numOctaves parameter for the noise function.

The initial value for numOctaves is “1°.
Negative values are unsupported.

Animatable: yes.

Note: The contribution of each additional octave to the color and alpha values in the final image is one-half of the
preceding octave. At some point, the contribution of additional octaves becomes smaller than the color resolution
for a given color depth. UAs may clamp the specified value for numOctaves during the processing depending on
the supported color depth. (For example: For a color depth of 8 bits per channel, the UA may clamp the value of
numOctaves to 9.)

seed =" <number>"
The starting number for the pseudo random number generator.

The initial value for seed is ‘0’.

When the seed number is handed over to the algorithm above it must first be truncated, i.e. rounded to the closest

integer value towards zero.

Animatable: yes.

stitchTiles = "stitch | noStitch"
If stitchTiles="noStitch", no attempt is made to achieve smooth transitions at the border of tiles which contain a
turbulence function. Sometimes the result will show clear discontinuities at the tile borders.

If stitchTiles="stitch", then the user agent will automatically adjust baseFrequency-x and baseFrequency-y values
such that the <feTurbulence> node’s width and height (i.c., the width and height of the current subregion) contains an
integral number of the Perlin tile width and height for the first octave. The baseFrequency will be adjusted up or down
depending on which way has the smallest relative (not absolute) change as follows: Given the frequency, calculate
lowFreq=floor(width*frequency)/width and hiFreq=ceil (width*frequency)/width. If frequency/lowFreq <
hiFreg/frequency then use lowFreq, else use hiFreq. While generating turbulence values, generate lattice vectors as
normal for Perlin Noise, except for those lattice points that lie on the right or bottom edges of the active area (the size
of the resulting tile). In those cases, copy the lattice vector from the opposite edge of the active area.

The initial value for stitchTiles is ‘noStitch’.

Animatable: yes.

type = "fractalNoise | turbulence"
Indicates whether the filter primitive should perform a noise or turbulence function.

The initial value for type is ‘turbulence’.

Animatable: yes.

EXAMPLE 12

<svg width="450px" height="325px" viewBox="@ © 450 325"
xmlns="http://www.w3.0rg/2000/svg">
<title>Example feTurbulence - Examples of feTurbulence operations</title>
<desc>Six rectangular areas showing the effects of
various parameter settings for feTurbulence.</desc>
<g font-family="Verdana" text-anchor="middle" font-size="10" >
<defs>
<filter id="Turbl" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.05" numOctaves="2"/>
</filter>
<filter id="Turb2" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.1" numOctaves="2"/>
</filter>
<filter id="Turb3" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.05" numOctaves="8"/>
</filter>
<filter id="Turb4" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="fractalNoise" baseFrequency="0.1" numOctaves="4"/>
</filter>
<filter id="Turb5" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="fractalNoise" baseFrequency="0.4" numOctaves="4"/>
</filter>
<filter id="Turb6" filterUnits="objectBoundingBox"
x="0%" y="0%" width="100%" height="100%">
<feTurbulence type="fractalNoise" baseFrequency="0.1" numOctaves="1"/>
</filter>
</defs>

<rect x="1" y="1" width="448" height="323"
fill="none" stroke="blue" stroke-width="1" />

<rect x="25" y="25" width="100" height="75" filter="url(#Turbl)" />
<text x="75" y="117">type=turbulence</text>

<text x="75" y="129">baseFrequency=0.05</text>

<text x="75" y="141">numOctaves=2</text>

<rect x="175" y="25" width="100" height="75" filter="url(#Turb2)" />
<text x="225" y="117">type=turbulence</text>

<text x="225" y="129">baseFrequency=0.1</text>

<text x="225" y="141">numOctaves=2</text>

<rect x="325" y="25" width="100" height="75" filter="url(#Turb3)" />
<text x="375" y="117">type=turbulence</text>

<text x="375" y="129">baseFrequency=0.05</text>

<text x="375" y="141">numOctaves=8</text>

<rect x="25" y="180" width="100" height="75" filter="url(#Turb4)" />
<text x="75" y="272">type=fractalNoise</text>

<text x="75" y="284">baseFrequency=0.1</text>

<text x="75" y="296">numOctaves=4</text>

<rect x="175" y="180" width="100" height="75" filter="url(#Turb5)" />
<text x="225" y="272">type=fractalNoise</text>

<text x="225" y="284">baseFrequency=0.4</text>

<text x="225" y="296">numOctaves=4</text>

<rect x="325" y="180" width="100" height="75" filter="url(#Turb6)" />
<text x="375" y="272">type=fractalNoise</text>
<text x="375" y="284">baseFrequency=0.1</text>

<text x="375" y="296">numOctaves=1</text>
</g>
</svg>

type=turbulence type=turbulence type=turbulence
basefFrequency=0.05 baseFrequency=0.1 baseFrequency=0.05
numdctaves=2 numOctaves=2 numOctaves=8
type=fractalMoise type=fractaiMoise type=fractalNoise
basefrequency=0.1 basefrequency=0.4 basefrequency=0.1
numOctaves=4 numOctaves=4 numOctaves=1

Figure 10. Example of feTurbulence

View this example as SVG

§ 10. The ‘color-interpolation-filters’ property

The description of the ‘color-interpolation-filters’ property is as follows:

Name: ‘color-interpolation-filters’
Value: auto | SRGB | linearRGB
Initial: linearRGB
Applies to: Al filter primitives
Inherited: yes
Percentages: n/a
Computed value: as specified
Canonical order: per grammar
Media: visual
Animatable: no
‘auto’

Indicates that the user agent can choose either the ‘sRGB’ or ‘linearRGB’ spaces for filter effects color operations. This
option indicates that the author doesn’t require that color operations occur in a particular color space.

‘SRGB’
Indicates that filter effects color operations should occur in the SRGB color space.

‘linearRGB’
Indicates that filter effects color operations should occur in the linearized RGB color space.

The ‘color-interpolation-filters’ property specifies the color space for imaging operations performed via filter effects.

Note: The ‘color-interpolation-filters’ property just has an affect on filter operations. Therefore, it has no effect on filter

primitives like <feOffset>, <feImage>, <feTile> or <feFlood>.

Note: The ‘color-interpolation-filters’ has a different initial value than ‘color-interpolation’. ‘color-interpolation-filters’
has an initial value of ‘linearRGB’, where as ‘color-interpolation’ has an initial value of ‘sRGB’. Thus, in the default
case, filter effects operations occur in the linearRGB color space, whereas all other color interpolations occur by default

in the SRGB color space.

Note: The ‘color-interpolation-filters” property has no affect on Filter Functions, which operate in the sSRGB color space.

The ‘color-interpolation-filters’ property is a presentation attribute for SVG elements.

11. Light source elements and properties

11.1. Introduction

The following sections define the elements that define a light source, <feDistantLight>, <fePointLight> and

<feSpotLight>, and property ‘lighting-color’, which defines the color of the light.

11.2. Light source <feDistantLight>

Name: feDistantLight
Categories: light source

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

e core attributes — id, xml:base, xml:lang, xml:space
Attributes: e azimuth

e elevation
DOM Interfaces: SVGFEDistantLightElement

Attribute definitions:

azimuth ="<number>"
Direction angle for the light source on the XY plane (clockwise), in degrees from the x axis.

The initial value for azimuth is ‘0’.

Animatable: yes.

elevation = "<number>"
Direction angle for the light source from the XY plane towards the Z-axis, in degrees. Note that the positive Z-axis

points towards the viewer.
The initial value for elevationis ‘0.
Animatable: yes.

The following diagram illustrates the angles which azimuth and elevation represent in an XYZ coordinate system.

------- feDistantLight source
—-- Azimuth
—— Elevation

» <

\
\‘ 7 »X
|

Figure 11. Angles which azimuth and elevation represent

11.3. Light source <fePointLight>

Name: fePointLight
Categories: light source

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

e core attributes — id, xml:base, xml:lang, xml:space
* X

Attributes:
*y

ez
DOM Interfaces: SVGFEPointLightElement

Attribute definitions:

X ="<number>"
X location for the light source in the coordinate system established by attribute primitiveUnits on the <filter>

element.
The initial value for x is ‘0’.

Animatable: yes.

y ="<number>"
Y location for the light source in the coordinate system established by attribute primitiveUnits on the <filter>

element.
The initial value for y is 0.

Animatable: yes.

z ="<number>"
Z location for the light source in the coordinate system established by attribute primitiveUnits on the <filter>
element, assuming that, in the initial local coordinate system , the positive Z-axis comes out towards the person
viewing the content and assuming that one unit along the Z-axis equals one unit in X and Y.

The initial value for z is ‘0.

Animatable: yes.

11.4. Light source <feSpotLight>

Name: feSpotLight

Categories: light source

Content model: Any number of descriptive elements, <animate>, <script>, <set> elements, in any order.

¢ core attributes — id, xml:base, xml:lang, xml:space
* X
°y
¢z
Attributes: ® pointsAtX
* pointsAtY
e pointsAtZ
e specularExponent

e limitingConeAngle
DOM Interfaces: SVGFESpotLightElement

Attribute definitions:

X ="<number>"
X location for the light source in the coordinate system established by attribute primitiveUnits on the <filter>

element.
The initial value for x is ‘0’.

Animatable: yes.

y = "<number>"
Y location for the light source in the coordinate system established by attribute primitiveUnits on the <filter>
element.

The initial value fory is 0°.

Animatable: yes.

Z ="<number>"
Z location for the light source in the coordinate system established by attribute primitiveUnits on the <filter>
element, assuming that, in the initial local coordinate system, the positive Z-axis comes out towards the person viewing
the content and assuming that one unit along the Z-axis equals one unit in X and Y.

The initial value for z is ‘0’.

Animatable: yes.

pointsAtX = "<number>"
X location in the coordinate system established by attribute primitiveUnits on the <filter> element of the point at
which the light source is pointing.

The initial value for pointsAtXis ‘0.

Animatable: yes.

pointsAtY = "<number>"
Y location in the coordinate system established by attribute primitiveUnits on the <filter> element of the point at
which the light source is pointing.

The initial value for pointsAtY is ‘0’.

Animatable: yes.

pointsAtZ = "<number>"
Z location in the coordinate system established by the attribute primitiveUnits on the <filter> element of the point
at which the light source is pointing, assuming that, in the initial local coordinate system, the positive Z-axis comes out
towards the person viewing the content and assuming that one unit along the Z-axis equals one unit in X and Y.

The initial value for pointsAtz is ‘0’.

Animatable: yes.
specularexponent = "<number>"
Exponent value controlling the focus for the light source.

The initial value for specularExponent is ‘1.

See section Filter primitive <feDiffuseLighting> for how to use specularExponent.

Note: specularExponent for <feSpotLight> serves a different use case than specularExponent for

<feSpecularLighting>.

Animatable: yes.

LimitingConeAngle = "<number>"
A limiting cone which restricts the region where the light is projected. No light is projected outside the cone.
limitingConeAngle represents the angle in degrees between the spot light axis (i.e. the axis between the light source

and the point to which it is pointing at) and the spot light cone. User agents should apply a smoothing technique such as

anti-aliasing at the boundary of the cone.
If no value is specified, then no limiting cone will be applied.

Animatable: yes.

11.5. The ‘lighting-color’ property

Name: ‘lighting-color’

Value: <color>

Initial: white

Applies to: <feDiffuseLighting> and <feSpecularLighting> elements
Inherited: no

Percentages: n/a

Computed value: as specified

Canonical order: per grammar

Media: visual

Animatable: as by computed value

The ‘lighting-color’ property defines the color of the light source for filter primitives <feDiffuseLighting> and
<feSpecularLighting>.

The ‘lighting-color’ property is a presentation attribute for SVG elements.

12. Filter CSS <image> values

CSS <image> values can be filtered with the filter functions specified for the CSS ‘filter’ property. This specification

introduces the <image> <filter()> function with the following syntax:
filter() = filter([<image> | <string>], <filter-value-list>)

The <filter()> function takes two arguments. The first argument is an <image>. The second is a filter function list as
specified for the CSS ‘filter’ property. The function takes the <image> parameter and applies the filter rules, returning a
processing image. Filter- and filter effect regions are sized according to the concrete object size of the input <image>.

§

§

§

Note: Since the dimension and origin of the original image must be preserved, some filter effects like <drop-shadow()>

on a fully opaque image may not have any affect.

For the <blur()> function the edgeMode attribute on the <feGaussianBlur> element is set to “duplicate’. This produces more

pleasant results on the edges of the filtered input image.

12.1. Interpolating filter()

If both the starting and ending image are <filter()>s which may only differ by their used filter functions, they must be
interpolated by interpolating their filter function lists as described in section Interpolation of Filters. Otherwise, they must be
interpolated as generic <image>s. If the filter function interpolation can not be performed, the images must be interpolated

as generic <image>s.

13. Shorthands defined in terms of the <filter> element

13.1. Filter primitive representation

Below are the equivalents for each of the filter functions expressed in terms of the 'filter element' element. The parameters
from the function are labeled with brackets in the following style: [amount]. In the case of parameters that are percentage

values, they are converted to real numbers.

13.1.1. grayscale

<filter id="grayscale">
<feColorMatrix type="matrix"
values="

(0.2126 + 0.7874 * [1 - amount]) (©.7152 - 8.7152 * [1 - amount]) (0.0722 - ©.0722 * [1 - amoul
(0.2126 - 0.2126 * [1 - amount]) (@©.7152 + ©.2848 * [1 - amount]) (0.0722 - ©.0722 * [1 - amou
(0.2126 - 0.2126 * [1 - amount]) (@©.7152 - ©.7152 * [1 - amount]) (0.0722 + ©.9278 * [1 - amou
00010"/>

</filter>

13.1.2. sepia

<filter id="sepia">
<feColorMatrix type="matrix"
values="
(0.393 + 0.607 * [1 - amount]) (0.769 - ©0.769 * [1 - amount]) (©.189 - ©.189 * [1 - amount]) ©
(0.349 - 0.349 * [1 - amount]) (0.686 + ©0.314 * [1 - amount]) (©.168 - ©.168 * [1 - amount]) ©
(0.272 - ©.272 * [1 - amount]) (0.534 - 0.534 * [1 - amount]) (©.131 + ©.869 * [1 - amount]) ©
©00010"/>

</filter>

13.1.3. saturate

<filter id="saturate">
<feColorMatrix type="saturate" values="[amount]"/>
</filter>

§ 13.1.4. hue-rotate

<filter id="hue-rotate">
<feColorMatrix type="hueRotate" values="[angle]"/>
</filter>

§ 13.1.5. invert

<filter id="invert">
<feComponentTransfer>
<feFuncR type="table" tableValues="[amount] (1 - [amount])"/>
<feFuncG type="table" tableValues="[amount] (1 - [amount])"/>
<feFuncB type="table" tableValues="[amount] (1 - [amount])"/>
</feComponentTransfer>
</filter>

§ 13.1.6. opacity

<filter id="opacity">
<feComponentTransfer>
<feFuncA type="table" tableValues="@ [amount]"/>
</feComponentTransfer>
</filter>

§ 13.1.7. brightness

<filter id="brightness">
<feComponentTransfer>
<feFuncR type="linear" slope="[amount]"/>
<feFuncG type="linear" slope="[amount]"/>
<feFuncB type="linear" slope="[amount]"/>
</feComponentTransfer>
</filter>

§ 13.1.8. contrast

<filter id="contrast">
<feComponentTransfer>
<feFuncR type="linear" slope="[amount]" intercept="-(0.5 * [amount]) + ©.5"/>
<feFuncG type="linear" slope="[amount]" intercept="-(0.5 * [amount]) + ©.5"/>
<feFuncB type="linear" slope="[amount]" intercept="-(0.5 * [amount]) + ©.5"/>
</feComponentTransfer>
</filter>

§ 13.1.9. blur

<filter id="blur">
<feGaussianBlur stdDeviation="[radius radius]" edgeMode="[edge mode]" >

</filter>

Where edge mode computes to ‘none’ for the “filter’ property and to ‘duplicate’ for the CSS Image <filter()> function.

Note: The <blur()> function may increase the UA defined filter region. See Filter region for shorthands.

§ 13.1.10. drop-shadow

<filter id="drop-shadow">
<feGaussianBlur in="[alpha-channel-of-input]" stdDeviation="[radius]"/>
<feOffset dx="[offset-x]" dy="[offset-y]" result="offsetblur"/>
<feFlood flood-color="[color]"/>
<feComposite in2="offsetblur" operator="in"/>
<feMerge>
<feMergeNode/>
<feMergeNode in="[input-image]"/>
</feMerge>
</filter>

Note: The <drop-shadow()> function may increase the UA defined filter region. See Filter region for shorthands.

13.2. Filter region for shorthands

All shorthand filters implemented with filter primitives in the previous subsection must have a UA defined filter region. The
filter region must cover the visual content of an element including overflowing content, graphical control elements such as
scrollbars, ‘border’/border-image’, ‘box-shadow’, ‘text-shadow’ and ‘outline’. Furthermore, if a shorthand filter expands

this visible area like it is the case for <blur()> or <drop-shadow()> the filter region must cover this area as well.

Note: For the handling of filter sources see section Filter region.

14. Animation of Filters

14.1. Interpolation of Filter Function Lists

For interpolation between one filter and a second, the steps corresponding to the first matching condition in the following

list must be run:

9/~ If both filters have a <filter-value-list> of same length without <url> and for each <filter-function> for which

there is a corresponding item in each list
Interpolate each <filter-function> pair following the rules in section Interpolation of Filter Functions.

9> If both filters have a <filter-value-list> of different length without <url> and for each <filter-function> for which
there is a corresponding item in each list
1. Append the missing equivalent <filter-function>s from the longer list to the end of the shorter list. The new added

<filter-function>s must be initialized to their initial values for interpolation.

2. Interpolate each <filter-function> pair following the rules in section Interpolation of Filter Functions.

§/> If one filter is ‘none’ and the other is a <filter-value-list> without <url>

1. Replace ‘none’ with the corresponding <filter-value-list> of the other filter. The new <filter-function>s must be

initialized to their initial values for interpolation.

2. Interpolate each <filter-function> pair following the rules in section Interpolation of Filter Functions.

< Otherwise
Use discrete interpolation.

I ISSUE4 Compute distance of filter functions. <https://github.com/w3c/csswg-drafts/issues/91>

14.2. Addition
It is possible to combine independent animations of <filter-value-list>s [SVG11].

Given two filter values representing an base value (base filter list) and a value to add (added filter list), returns the

concatenation of the the two lists: ‘base filter list added filter list’.

EXAMPLE 13
The following SVG animation has two <animate> elements animating ‘filter’ property of the <rect> element. Both

specified animations are additive and have a duration of /0s.

<rect width="200px" filter="none" ...>
<animate attributeName="filter" from="blur(@px)" to="blur(1lepx)" dur="10s"
additive="sum"/>
<animate attributeName="filter" from="sepia(@)" to="sepia(1)" dur="10s"
additive="sum"/>
</rect>

After 5s, the used value of ‘filter’ is ‘blur(5px) sepia(0.5).

14.3. Accumulation

Given two filter values V,, and ¥}, returns the filter value, 7},

15. Privacy and Security Considerations

15.1. Tainted Filter Primitives

It is important that the timing of any filter operation is independent of pixel values derived from the filtered content or other

sources potentially containing privacy-sensitive information.

The following filter primitives may have access to pixel values that potentially contain privacy-sensitive information, either

from the filtered object itself or other sources such as CSS styling. These primitives must be flagged as "tainted".

—_

. <feFlood> when the specified value of the ‘flood-color’ property computes to ‘currentColor’,
2. <feDropShadow> when the specitied value value of the ‘flood-color’ property computes to ‘currentColor’,
3. <feDiffuseLighting>, when the specified value value of the ‘lighting-color’ property computes to ‘currentColor’

4. <feSpecularLighting> when the specified value value of the ‘lighting-color’ property computes to ‘currentColor’,

o v

. the filter primitives: SourceGraphic, SourceAlpha, Backgroundlmage, BackgroundAlpha, FillPaint and StrokePaint.

<feFlood>, <feDropShadow>, <feDiffuseLighting> and <feSpecularLighting> are primitives with one or more CSS
properties that take <color> as property value. <color> consists of (amongst others) the ‘currentColor’ keyword. The used
value for ‘currentColor’ derives from the ‘color’ property. Since ‘color’ can be set by the “:visited” pseudo selector, it
potentially contains privacy-sensitive information and therefore these primitives must be marked as tainted.

<feImage> can reference cross-domain images as well as document fragments such as SVG graphics elements. These
references potentially contain privacy-sensitive information and therefore the primitive must be marked as tainted.

<feImage>, when the <url> reference points to an element or fetches a resource with the fetching mode No-CORS and

The filter primitives SourceGraphic, SourceAlpha, Backgroundlmage, BackgroundAlpha, FillPaint and StrokePaint either
reference document fragments such as SVG graphics elements or style information that may derive directly or indirectly

from the ‘color’ property. Therefore these primitives must be marked as tainted.
Every filter primitive that has a "tainted" flagged filter primitive as input must be flagged as "tainted" as well.

Filter operations must be implemented in such a way that they always take the same amount of time regardless of the pixel
values if one of the input filter primitives is flagged as "tainted".

Note: This specification aggravates the restrictions to filter primitives based on implementation feedback from user

agents.

15.2. <feDisplacementMap> Restrictions

If <feDisplacementMap> has a "tainted" flagged filter primitive as input and this input filter primitive is used as
displacement map (referenced by in2), then feDisplacementMap must not proceed with the filter operation and acts as a
pass through filter.

15.3. Origin Restrictions

User agents must use the potentially CORS-enabled fetch method defined by the [HTMLS5] specification for the ‘filter’
property. When fetching, user agents must use "Anonymous" mode, set the referrer source to the stylesheet’s URL and set
the origin to the URL of the containing document. If this results in network errors, the effect is as if the value ‘none’ had

been specified.

15.4. Timing Attacks
If any of the above rules are not followed, an attacker could infer information and mount a timing attack.

A timing attack is a method of obtaining information about content that is otherwise protected, based on studying the
amount of time it takes for an operation to occur. If, for example, red pixels took longer to draw than green pixels, one might
be able to reconstruct a rough image of the element being rendered, without ever having access to the content of the element.
Security studies show that timing differences on arithmetic operations can be caused by the hardware architecture or
compiler [ArTD].

Appendix A: The deprecated ‘enable-background’ property

SVG 1.1 introduced the ‘enable-background’ property [SVG11]. The property defined the back drop under the filter region
at the time that the <filter> element was invoked. The concept defined by this property was identified to be incompatible
with the model of stacking context in CSS at the time writing this specification. UAs can choose to implement the
‘enable-background’ property as defined in SVG 1.1 but will not be compatible to this specification or to CSS Compositing
and Blending [COMPOSITING-1].

This specification does not support the ‘enable-background’ property. UAs must support the ‘isolation’ property instead
[COMPOSITING-1].

Appendix B: DOM interfaces

Interface SVGFilterElement

The SVGFilterElement interface corresponds to the <filter> element.

interface SVGFilterElement : SVGElement {
readonly attribute SVGAnimatedEnumeration filterUnits;
readonly attribute SVGAnimatedEnumeration primitiveUnits;
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

¥

SVGFilterkElement includes SVGURIReference;

Attributes:
filterUnits, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute filterUnits on the given <filter> element. Takes one of the constants defined in

SVGUnitTypes.

primitiveUnits, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute primitiveUnits on the given <filter> element. Takes one of the constants defined in
SVGUnitTypes.

X, of type SVGAnimatedLength, readonly

Corresponds to attribute x on the given <filter> element.
y, of type SVGAnimatedLength, readonly

Corresponds to attribute y on the given <filter> element.

width, of type SVGAnimatedLength, readonly
Corresponds to attribute width on the given <filter> element.

height, of type SVGAnimatedLength, readonly
Corresponds to attribute height on the given <filter> element.

Interface SVGFilterPrimitiveStandardAttributes

interface mixin SVGFilterPrimitiveStandardAttributes {
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGAnimatedString result;

s

Attributes:
X, of type SVGAnimatedLength, readonly
Corresponds to attribute x on the given element.

y, of type SVGAnimatedLength, readonly
Corresponds to attribute y on the given element.

width, of type SVGAnimatedLength, readonly
Corresponds to attribute width on the given element.

height, of type SVGAnimatedLength, readonly
Corresponds to attribute height on the given element.

result, of type SVGAnimatedString, readonly
Corresponds to attribute result on the given element.

Interface SVGFEBIlendElement

The SVGFEBLendELement interface corresponds to the <feBlend> element.

interface SVGFEBlendElement : SVGElement {

// Blend Mode Types

const unsigned short SVG_FEBLEND_MODE_UNKNOWN = ©;
const unsigned short SVG_FEBLEND_MODE_NORMAL = 1;
const unsigned short SVG_FEBLEND_MODE_MULTIPLY = 2;
const unsigned short SVG_FEBLEND_MODE_SCREEN = 3;
const unsigned short SVG_FEBLEND_MODE_DARKEN = 4;
const unsigned short SVG_FEBLEND_MODE_LIGHTEN = 5;
const unsigned short SVG_FEBLEND_MODE_OVERLAY = 6;
const unsigned short SVG_FEBLEND_MODE_COLOR_DODGE = 7;
const unsigned short SVG_FEBLEND_MODE_COLOR_BURN = 8;
const unsigned short SVG_FEBLEND_MODE_HARD_LIGHT = 9;
const unsigned short SVG_FEBLEND_MODE_SOFT_LIGHT
const unsigned short SVG_FEBLEND_MODE_DIFFERENCE = 11;
const unsigned short SVG_FEBLEND_MODE_EXCLUSION = 12;
const unsigned short SVG_FEBLEND_MODE_HUE = 13;

const unsigned short SVG_FEBLEND_MODE_SATURATION = 14;
const unsigned short SVG_FEBLEND_MODE_COLOR = 15;
const unsigned short SVG_FEBLEND_MODE_LUMINOSITY = 16;

n
iy
(Y

o

readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration mode;

}s

SVGFEBlendElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Blend Mode Types™:
SVG_FEBLEND_MODE_UNKNOWN
The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_FEBLEND_MODE_NORMAL
Corresponds to value ‘normal’.

SVG_FEBLEND_MODE_MULTIPLY
Corresponds to value ‘multiply’.

SVG_FEBLEND_MODE_SCREEN
Corresponds to value ‘screen’.

SVG_FEBLEND_MODE_DARKEN

Corresponds to value ‘darken’.

SVG_FEBLEND_MODE_LIGHTEN
Corresponds to value ‘lighten’.

SVG_FEBLEND _MODE_OVERLAY
Corresponds to value ‘overlay’.

SVG_FEBLEND_MODE_COLOR_DODGE
Corresponds to value ‘color-dodge’.

SVG_FEBLEND_MODE_COLOR_BURN
Corresponds to value ‘color-burn’.

SVG_FEBLEND_MODE_HARD_LIGHT
Corresponds to value ‘hard-light’.

SVG_FEBLEND_MODE_SOFT_LIGHT
Corresponds to value ‘soft-light’.

SVG_FEBLEND_MODE_DIFFERENCE
Corresponds to value ‘difference’.

SVG_FEBLEND_MODE_EXCLUSION
Corresponds to value ‘exclusion’.

SVG_FEBLEND_MODE_HUE
Corresponds to value ‘hue’.

SVG_FEBLEND_MODE_SATURATION

Corresponds to value ‘saturation’.

SVG_FEBLEND_MODE_COLOR
Corresponds to value ‘color’.

SVG_FEBLEND_MODE_LUMINOSITY
Corresponds to value ‘luminosity’.

Attributes:
inl, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feBlend> element.

in2, of type SVGAnimatedString, readonly
Corresponds to attribute in2 on the given <feBlend> element.

mode, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute mode on the given <feBlend> element. Takes one of the SVG_FEBLEND MODE_*
constants defined on this interface.

Interface SVGFEColorMatrixElement

The SVGFEColorMatrixELement interface corresponds to the <feColorMatrix> element.

interface SVGFEColorMatrixElement : SVGElement {

// Color Matrix Types

const unsigned short SVG_FECOLORMATRIX_TYPE_UNKNOWN = 0;

const unsigned short SVG_FECOLORMATRIX_TYPE_MATRIX = 1;

const unsigned short SVG_FECOLORMATRIX_TYPE_SATURATE = 2;

const unsigned short SVG_FECOLORMATRIX_TYPE_HUEROTATE = 3;

const unsigned short SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA = 4;

readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedEnumeration type;
readonly attribute SVGAnimatedNumberList values;

3

SVGFEColorMatrixElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Color Matrix Types”:
SVG_FECOLORMATRIX_TYPE_UNKNOWN

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to
switch an existing value to this type.
SVG_FECOLORMATRIX_TYPE_MATRIX
Corresponds to value ‘matrix’.
SVG_FECOLORMATRIX_TYPE_SATURATE
Corresponds to value ‘saturate’.

SVG_FECOLORMATRIX_TYPE_HUEROTATE
Corresponds to value ‘hueRotate’.

SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA
Corresponds to value ‘luminanceToAlpha’.

Attributes:
inl1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feColorMatrix> element.

type, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute type on the given <feColorMatrix> element. Takes one of the
SVG_FECOLORMATRIX_TYPE_* constants defined on this interface.

values, of type SVGAnimatedNumberList, readonly
Corresponds to attribute values on the given <feColorMatrix> element.

Interface SVGFEComponentTransferElement

The SVGFEComponentTransferElement interface corresponds to the <feComponentTransfer> element.

interface SVGFEComponentTransferElement :

SVGElement {

readonly attribute SVGAnimatedString ini;

3

SVGFEComponentTransferElement includes SVGFilterPrimitiveStandardAttributes;

Attributes:

in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feComponentTransfer> element.

Interface SVGComponentTransferFunctionElement

This interface defines a base interface used by the component transfer function interfaces.

interface SVGComponentTransferFunctionElement :

SVGElement {

// Component Transfer Types

const

unsigned

short

const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short

SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN = @;
SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY = 1;
SVG_FECOMPONENTTRANSFER_TYPE_TABLE = 2;
SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE =
SVG_FECOMPONENTTRANSFER_TYPE_LINEAR = 4;
SVG_FECOMPONENTTRANSFER_TYPE_GAMMA = 5;

3;

readonly
readonly
readonly
readonly
readonly
readonly

attribute
attribute
attribute
attribute
attribute
attribute
attribute

SVGAnimatedEnumeration type;

SVGAnimatedNumberList tableValues;
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber

slope;
intercept;
amplitude;
exponent;
offset;

readonly

s

Constants in group “Component Transfer Types”:
SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN
The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY
Corresponds to value ‘identity’.

SVG_FECOMPONENTTRANSFER_TYPE_TABLE
Corresponds to value ‘table’.

SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE
Corresponds to value ‘discrete’.

SVG_FECOMPONENTTRANSFER_TYPE_LINEAR
Corresponds to value ‘linear’.

SVG_FECOMPONENTTRANSFER_TYPE_GAMMA
Corresponds to value ‘gamma’.

Attributes:
type, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute in on the given <feComponentTransfer> element. Takes one of the

SVG_FECOMPONENTTRANSFER TYPE * constants defined on this interface.

tableValues, of type SVGAnimatedNumberList, readonly
Corresponds to attribute tablevalues on the given <feComponentTransfer> clement. Takes one of the
SVG_FECOLORMATRIX_TYPE_* constants defined on this interface.

slope, of type SVGAnimatedNumber, readonly
Corresponds to attribute slope on the given <feComponentTransfer> element.

intercept, of type SVGAnimatedNumber, readonly
Corresponds to attribute intercept on the given <feComponentTransfer> element.

amplitude, of type SVGAnimatedNumber, readonly
Corresponds to attribute amplitude on the given <feComponentTransfer> element.

exponent, of type SVGAnimatedNumber, readonly
Corresponds to attribute exponent on the given <feComponentTransfer> element.

offset, of type SVGAnimatedNumber, readonly
Corresponds to attribute offset on the given <feComponentTransfer> element.

Interface SVGFEFuncRElement

The SVGFEFuncRELement interface corresponds to the <feFuncR> element.
interface SVGFEFuncRElement : SVGComponentTransferFunctionElement {

3

Interface SVGFEFuncGElement
The SVGFEFuncGELement interface corresponds to the <feFuncG> element.
interface SVGFEFuncGElement : SVGComponentTransferFunctionElement {

s

Interface SVGFEFuncBElement

The SVGFEFuncBELement interface corresponds to the <feFuncB> element.
interface SVGFEFuncBElement : SVGComponentTransferFunctionElement {

s

Interface SVGFEFuncAElement

The SVGFEFuncAELement interface corresponds to the <feFuncA> element.
interface SVGFEFuncAElement : SVGComponentTransferFunctionElement {

1

Interface SVGFECompositeElement

The SVGFECompositeELement interface corresponds to the <feComposite> element.

interface SVGFECompositeElement : SVGElement {

// Composite Operators

const unsigned short SVG_FECOMPOSITE_OPERATOR_UNKNOWN = ©;
const unsigned short SVG_FECOMPOSITE_OPERATOR_OVER = 1;

const unsigned short SVG_FECOMPOSITE_OPERATOR_IN = 2;

const unsigned short SVG_FECOMPOSITE_OPERATOR_OUT = 3;

const unsigned short SVG_FECOMPOSITE_OPERATOR_ATOP = 4;

const unsigned short SVG_FECOMPOSITE_OPERATOR_XOR = 5;

const unsigned short SVG_FECOMPOSITE_OPERATOR_ARITHMETIC = 6;

readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber k1;
readonly attribute SVGAnimatedNumber k2;
readonly attribute SVGAnimatedNumber k3;
readonly attribute SVGAnimatedNumber k4;

}s

SVGFECompositeElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Composite Operators”:
SVG_FECOMPOSITE_OPERATOR_UNKNOWN
The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_FECOMPOSITE_OPERATOR_OVER
Corresponds to value over.

SVG_FECOMPOSITE_OPERATOR_IN

Corresponds to value in.

SVG_FECOMPOSITE_OPERATOR_OUT
Corresponds to value out.

SVG_FECOMPOSITE_OPERATOR_ATOP
Corresponds to value atop.

SVG_FECOMPOSITE_OPERATOR_XOR
Corresponds to value xor.

SVG_FECOMPOSITE_OPERATOR_ARITHMETIC
Corresponds to value arithmetic.

Attributes:
in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feComposite> element.

in2, of type SVGAnimatedString, readonly
Corresponds to attribute in2 on the given <feComposite> element.

operator, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute operator on the given <feComposite> element.

R1, of type SVGAnimatedNumber, readonly
Corresponds to attribute k1 on the given <feComposite> element.

R2, of type SVGAnimatedNumber, readonly
Corresponds to attribute k2 on the given <feComposite> element.

R3, of type SVGAnimatedNumber, readonly
Corresponds to attribute k3 on the given <feComposite> element.

R4, of type SVGAnimatedNumber, readonly
Corresponds to attribute k4 on the given <feComposite> element.

Interface SVGFEConvolveMatrixElement

The SVGFEConvolveMatrixElLement interface corresponds to the <feConvolveMatrix> element.

interface SVGFEConvolveMatrixElement : SVGElement {

// Edge Mode Values

const unsigned short SVG_EDGEMODE_UNKNOWN = 0;
const unsigned short SVG_EDGEMODE_DUPLICATE = 1;
const unsigned short SVG_EDGEMODE_WRAP = 2;
const unsigned short SVG_EDGEMODE_NONE = 3;

readonly attribute SVGAnimatedString ini;

readonly attribute SVGAnimatedInteger orderX;

readonly attribute SVGAnimatedInteger orderY;

readonly attribute SVGAnimatedNumberlList kernelMatrix;
readonly attribute SVGAnimatedNumber divisor;

readonly attribute SVGAnimatedNumber bias;

readonly attribute SVGAnimatedInteger targetX;

readonly attribute SVGAnimatedInteger targetY;

readonly attribute SVGAnimatedEnumeration edgeMode;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;
readonly attribute SVGAnimatedBoolean preserveAlpha;

}s

SVGFEConvolveMatrixElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Edge Mode Values”:
SVG_EDGEMODE_UNKNOWN

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to
switch an existing value to this type.

SVG_EDGEMODE_DUPLICATE
Corresponds to value duplicate.

SVG_EDGEMODE_WRAP
Corresponds to value wrap.

SVG_EDGEMODE_NONE

Corresponds to value ‘none’.

Attributes:
in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feConvolveMatrix> element.

orderX, of type SVGAnimatedInteger, readonly
Corresponds to attribute order on the given <feConvolveMatrix> element.

orderY, of type SVGAnimatedInteger, readonly
Corresponds to attribute order on the given <feConvolveMatrix> element.

kernelMatrix, of type SVGAnimatedNumberList, readonly
Corresponds to attribute kernelMatrix on the given <feConvolveMatrix> element.

divisor, of type SVGAnimatedNumber, readonly
Corresponds to attribute divisor on the given <feConvolveMatrix> element.

bias, of type SVGAnimatedNumber, readonly
Corresponds to attribute bias on the given <feConvolveMatrix> element.

targetX, of type SVGAnimatedInteger, readonly
Corresponds to attribute targetX on the given <feConvolveMatrix> element.

targety, of type SVGAnimatedInteger, readonly
Corresponds to attribute targetY on the given <feConvolveMatrix> element.

edgeMode, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute edgeMode on the given <feConvolveMatrix> element.

RernelUnitLengthX, of type SVGAnimatedNumber, readonly
Corresponds to attribute kernelUnitLength on the given <feConvolveMatrix> element.

kernelUnitLengthyY, of type SVGAnimatedNumber, readonly
Corresponds to attribute kernelUnitLength on the given <feConvolveMatrix> element.

preserveAlpha, of type SVGAnimatedBoolean, readonly

Corresponds to attribute preserveAlpha on the given <feConvolveMatrix> element.

Interface SVGFEDiffuseLightingElement

The SVGFEDiffuselightingElement interface corresponds to the <feDiffuselLighting> element.

interface SVGFEDiffuselLightingElement : SVGElement {
readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedNumber surfaceScale;
readonly attribute SVGAnimatedNumber diffuseConstant;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;

}s

SVGFEDiffuseLightingElement includes SVGFilterPrimitiveStandardAttributes;

Attributes:
inl1, of type SVGAnimatedString, readonly

Corresponds to attribute in on the given <feDiffuselLighting> element.

surfaceScale, of type SVGAnimatedNumber, readonly
Corresponds to attribute surfaceScale on the given <feDiffuselLighting> element.

diffuseConstant, of type SVGAnimatedNumber, readonly
Corresponds to attribute diffuseConstant on the given <feDiffuseLighting> element.

kernelUnitLengthX, of type SVGAnimatedNumber, readonly
Corresponds to attribute kernelUnitLength on the given <feDiffuselLighting> element.

kernelUnitLengthy, of type SVGAnimatedNumber, readonly
Corresponds to attribute kernelUnitLength on the given <feDiffuselLighting> element.

Interface SVGFEDistantLightElement

The SVGFEDistantLightELement interface corresponds to the <feDistantLight> element.

interface SVGFEDistantLightElement : SVGElement {
readonly attribute SVGAnimatedNumber azimuth;
readonly attribute SVGAnimatedNumber elevation;

}s

Attributes:
azimuth, of type SVGAnimatedNumber, readonly
Corresponds to attribute azimuth on the given <feDistantLight> element.

elevation, of type SVGAnimatedNumber, readonly
Corresponds to attribute elevation on the given <feDistantLight> element.

Interface SVGFEPointLightElement

The SVGFEPointLightELement interface corresponds to the <fePointLight> element.

interface SVGFEPointLightElement : SVGElement {
readonly attribute SVGAnimatedNumber x;
readonly attribute SVGAnimatedNumber y;
readonly attribute SVGAnimatedNumber z;

s

Attributes:
X, of type SVGAnimatedNumber, readonly
Corresponds to attribute x on the given <fePointLight> element.

y, of type SVGAnimatedNumber, readonly

Corresponds to attribute y on the given <fePointLight> element.

z, of type SVGAnimatedNumber, readonly
Corresponds to attribute z on the given <fePointLight> element.

Interface SVGFESpotLightElement

The SVGFESpotLightELement interface corresponds to the <feSpotLight> element.

interface SVGFESpotLightElement :
attribute
attribute

SVGElement {
SVGAnimatedNumber x;
SVGAnimatedNumber y;

readonly
readonly

attribute
attribute
attribute
attribute
attribute
attribute

readonly
readonly
readonly
readonly
readonly
readonly

}s

Attributes:

SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber

Z;

pointsAtX;
pointsAtY;
pointsAtz;
specularExponent;
limitingConeAngle;

X, of type SVGAnimatedNumber, readonly
Corresponds to attribute x on the given <feSpotLight> clement.

y, of type SVGAnimatedNumber, readonly
Corresponds to attribute y on the given <feSpotLight> element.

z, of type SVGAnimatedNumber, readonly
Corresponds to attribute z on the given <feSpotLight> element.

pointsAtX, of type SVGAnimatedNumber, readonly
Corresponds to attribute pointsAtX on the given <feSpotLight> element.

pointsAtY, of type SVGAnimatedNumber, readonly
Corresponds to attribute pointsAtY on the given <feSpotLight> element.

pointsAtZ, of type SVGAnimatedNumber, readonly
Corresponds to attribute pointsAtZ on the given <feSpotLight> clement.

specularExponent, of type SVGAnimatedNumber, readonly
Corresponds to attribute specularExponent on the given <feSpotLight> element.

LimitingConeAngle, of type SVGAnimatedNumber, readonly
Corresponds to attribute 1imitingConeAngle on the given <feSpotLight> element.

Interface SVGFEDisplacementMapElement

The SVGFEDisplacementMapELement interface corresponds to the <feDisplacementMap> element.

interface SVGFEDisplacementMapElement : SVGElement {
// Channel Selectors

const unsigned short SVG_CHANNEL_UNKNOWN =
SVG_CHANNEL_R = 1;
SVG_CHANNEL_G = 2;
SVG_CHANNEL_B = 3;
4

SVG_CHANNEL_A

0;

const unsigned short

unsigned

const short

const unsigned short

unsigned

.~

const short

>

attribute
attribute
attribute
attribute

readonly
readonly
readonly

SVGAnimatedString
SVGAnimatedString
SVGAnimatedNumber

inl;
in2;
scale;

readonly SVGAnimatedEnumeration xChannelSelector;

readonly attribute SVGAnimatedEnumeration yChannelSelector;

}s

SVGFEDisplacementMapElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Channel Selectors”:
SVG_CHANNEL_UNKNOWN

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_CHANNEL_R
Corresponds to value ‘R’.

SVG_CHANNEL_G
Corresponds to value ‘G’.

SVG_CHANNEL_B
Corresponds to value ‘B’.

SVG_CHANNEL_A
Corresponds to value ‘A’.

Attributes:
in1, of type SVGAnimatedString, readonly

Corresponds to attribute in on the given <feDisplacementMap> clement.

in2, of type SVGAnimatedString, readonly
Corresponds to attribute in2 on the given <feDisplacementMap> element.

scale, of type SVGAnimatedNumber, readonly
Corresponds to attribute scale on the given <feDisplacementMap> element.

XxChannelSelector, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute xChannelSelector on the given <feDisplacementMap> element. Takes one of the
SVG_CHANNEL_* constants defined on this interface.

yChannelSelector, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute yChannelSelector on the given <feDisplacementMap> element. Takes one of the
SVG_CHANNEL_* constants defined on this interface.

Interface SVGFEDropShadowElement

The SVGFEDropShadowELement interface corresponds to the <feDropShadow> element.

interface SVGFEDropShadowElement : SVGElement {
readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedNumber dx;
readonly attribute SVGAnimatedNumber dy;
readonly attribute SVGAnimatedNumber stdDeviationX;
readonly attribute SVGAnimatedNumber stdDeviationY;

void setStdDeviation(float stdDeviationX, float stdDeviationY);
s

SVGFEDropShadowElement includes SVGFilterPrimitiveStandardAttributes;

Attributes:
in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feDropShadow> element.

dx, of type SVGAnimatedNumber, readonly
Corresponds to attribute dx on the given <feDropShadow> element.

dy, of type SVGAnimatedNumber, readonly
Corresponds to attribute dy on the given <feDropShadow> element.

stdDeviationX, of type SVGAnimatedNumber, readonly
Corresponds to attribute stdDeviation on the given <feDropShadow> element. Contains the X component of
attribute stdDeviation.

stdDeviationy, of type SVGAnimatedNumber, readonly
Corresponds to attribute stdDeviation on the given <feDropShadow> element. Contains the Y component of
attribute stdDeviation.

Methods:
setStdDeviation(stdDeviationX, stdDeviationY)

Sets the values for attribute stdDeviation.

stdDeviationX
The X component of attribute stdDeviation.

stdDeviationY
The Y component of attribute stdDeviation.

Interface SVGFEFloodElement

The SVGFEFLoodELement interface corresponds to the <feFlood> element.

interface SVGFEFloodElement : SVGElement {
s

SVGFEFloodElement includes SVGFilterPrimitiveStandardAttributes;

Interface SVGFEGaussianBlurElement

The SVGFEGaussianBlurElement interface corresponds to the <feGaussianBlur> element.

interface SVGFEGaussianBlurElement : SVGElement {

// Edge Mode Values

const unsigned short SVG_EDGEMODE_UNKNOWN = O;
const unsigned short SVG_EDGEMODE_DUPLICATE = 1;
const unsigned short SVG_EDGEMODE_WRAP = 2;
const unsigned short SVG_EDGEMODE_NONE = 3;

readonly attribute SVGAnimatedString ini;

readonly attribute SVGAnimatedNumber stdDeviationX;
readonly attribute SVGAnimatedNumber stdDeviationY;
readonly attribute SVGAnimatedEnumeration edgeMode;

void setStdDeviation(float stdDeviationX, float stdDeviationY);
s

SVGFEGaussianBlurElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Edge Mode Values”:
SVG_EDGEMODE_UNKNOWN
The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to
switch an existing value to this type.
SVG_EDGEMODE_DUPLICATE
Corresponds to value ‘duplicate’.

SVG_EDGEMODE_WRAP
Corresponds to value wrap.

SVG_EDGEMODE_NONE
Corresponds to value ‘none’.

Attributes:
inl, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feGaussianBlur> element.

stdDeviationX, of type SVGAnimatedNumber, readonly
Corresponds to attribute stdDeviation on the given <feGaussianBlur> element. Contains the X component of
attribute stdDeviation.

stdDeviationY, of type SVGAnimatedNumber, readonly
Corresponds to attribute stdDeviation on the given <feGaussianBlur> element. Contains the Y component of
attribute stdDeviation.

edgeMode, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute edgeMode on the given <feGaussianBlur> element. Takes one of the

SVG_EDGEMODE_* constants defined on this interface.

Methods:
setStdDeviation(stdDeviationX, stdDeviationY)
Sets the values for attribute stdDeviation.

stdDeviationX
The X component of attribute stdDeviation.

stdDeviationY
The Y component of attribute stdDeviation.

Interface SVGFEImageElement

The SVGFEImageElement interface corresponds to the <feImage> element.

interface SVGFEImageElement : SVGElement {
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
readonly attribute SVGAnimatedString crossOrigin;

}s

SVGFEImageElement includes SVGFilterPrimitiveStandardAttributes;
SVGFEImageElement includes SVGURIReference;

Attributes:
preserveAspectRatio, of type SYGAnimatedPreserveAspectRatio, readonly
Corresponds to attribute preserveAspectRatio on the given <feImage> clement.

crossorigin, of type SVGAnimatedString, readonly
The crossOrigin IDL attribute must reflect the crossorigin content attribute, limited to only known values.

Interface SVGFEMergeElement

The SVGFEMergeELement interface corresponds to the <feMerge> element.

interface SVGFEMergeElement : SVGElement {
s

SVGFEMergeElement includes SVGFilterPrimitiveStandardAttributes;

Interface SVGFEMergeNodeElement

The SVGFEMergeNodeELement interface corresponds to the <feMergeNode> element.

interface SVGFEMergeNodeElement : SVGElement {
readonly attribute SVGAnimatedString ini;
s

Attributes:
inl, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feMergeNode> element.

Interface SVGFEMorphologyElement

The SVGFEMorphologyELement interface corresponds to the <feMorphology> clement.

interface SVGFEMorphologyElement : SVGElement {

// Morphology Operators

const unsigned short SVG_MORPHOLOGY_OPERATOR_UNKNOWN = 0;
const unsigned short SVG_MORPHOLOGY_OPERATOR_ERODE = 1;
const unsigned short SVG_MORPHOLOGY_OPERATOR_DILATE = 2;

readonly attribute SVGAnimatedString ini;

readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber radiusX;
readonly attribute SVGAnimatedNumber radiusY;

}s

SVGFEMorphologyElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Morphology Operators”:
SVG_MORPHOLOGY_OPERATOR_UNKNOWN

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_MORPHOLOGY_OPERATOR_ERODE
Corresponds to value ‘erode’.

SVG_MORPHOLOGY_OPERATOR_DILATE
Corresponds to value “dilate’.

Attributes:
in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feMorphology> element.

operator, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute operator on the given <feMorphology> element. Takes one of the

SVG_MORPHOLOGY_OPERATOR_* constants defined on this interface.

radiusX, of type SVGAnimatedNumber, readonly
Corresponds to attribute radius on the given <feMorphology> element. Contains the X component of attribute
radius.

radiusY, of type SVGAnimatedNumber, readonly

Corresponds to attribute radius on the given <feMorphology> element. Contains the Y component of attribute

radius.

Interface SVGFEOffsetElement

The SVGFEOffsetELement interface corresponds to the <feOffset> element.

interface SVGFEOffsetElement : SVGElement {
readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedNumber dx;
readonly attribute SVGAnimatedNumber dy;
s

SVGFEOffsetElement includes SVGFilterPrimitiveStandardAttributes;

Attributes:
inl, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feOffset> element.

dx, of type SVGAnimatedNumber, readonly
Corresponds to attribute dx on the given <feOffset> element.

dy, of type SVGAnimatedNumber, readonly
Corresponds to attribute dy on the given <feOffset> element.

Interface SVGFESpecularLightingElement

The SVGFESpecularLightingElement interface corresponds to the <feSpecularLighting> element.

interface SVGFESpecularLightingElement : SVGElement {
readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedNumber surfaceScale;
readonly attribute SVGAnimatedNumber specularConstant;
readonly attribute SVGAnimatedNumber specularExponent;
readonly attribute SVGAnimatedNumber kernelUnitLengthX;
readonly attribute SVGAnimatedNumber kernelUnitLengthY;

¥

SVGFESpecularLightingElement includes SVGFilterPrimitiveStandardAttributes;

Attributes:
in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feSpecularLighting> element.

surfaceScale, of type SVGAnimatedNumber, readonly
Corresponds to attribute surfaceScale on the given <feSpecularLighting> element.

specularConstant, of type SVGAnimatedNumber, readonly
Corresponds to attribute specularConstant on the given <feSpecularLighting> element.

specularExponent, of type SVGAnimatedNumber, readonly
Corresponds to attribute specularExponent on the given <feSpecularLighting> element.

RernelUnitLengthX, of type SVGAnimatedNumber, readonly
Corresponds to attribute kernelUnitLength on the given <feSpecularLighting> element.

kernelUnitLengthY, of type SVGAnimatedNumber, readonly
Corresponds to attribute kernelUnitLength on the given <feSpecularLighting> element.

Interface SVGFETileElement

The SVGFETileELement interface corresponds to the <feTile> element.

interface SVGFETileElement : SVGElement {
readonly attribute SVGAnimatedString ini;
s

SVGFETileElement includes SVGFilterPrimitiveStandardAttributes;

Attributes:
in1, of type SVGAnimatedString, readonly
Corresponds to attribute in on the given <feTile> element.

Interface SVGFETurbulenceElement

The SVGFETurbulenceElement interface corresponds to the <feTurbulence> element.

interface SVGFETurbulenceElement : SVGElement {
// Turbulence Types
const unsigned short SVG_TURBULENCE_TYPE_UNKNOWN = ©;

SVG_TURBULENCE_TYPE_FRACTALNOISE =

SVG_TURBULENCE_TYPE_TURBULENCE = 2;

const unsigned short
const unsigned short

1;

// Stitch Options
const unsigned short SVG_STITCHTYPE_UNKNOWN = 0;
SVG_STITCHTYPE_STITCH = 1;

SVG_STITCHTYPE_NOSTITCH = 2;

const unsigned short
const unsigned short
attribute

readonly SVGAnimatedNumber baseFrequencyX;

readonly
readonly
readonly

attribute
attribute
attribute

SVGAnimatedNumber baseFrequencyY;
SVGAnimatedInteger numOctaves;
SVGAnimatedNumber seed;

attribute
attribute

readonly
readonly

}s

SVGAnimatedEnumeration stitchTiles;
SVGAnimatedEnumeration type;

SVGFETurbulenceElement includes SVGFilterPrimitiveStandardAttributes;

Constants in group “Turbulence Types™:
SVG_TURBULENCE_TYPE_UNKNOWN
The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_TURBULENCE_TYPE_FRACTALNOISE
Corresponds to value ‘fractalNoise’.

SVG_TURBULENCE_TYPE_TURBULENCE
Corresponds to value ‘turbulence’.

Constants in group “Stitch Options™:
SVG_STITCHTYPE_UNKNOWN

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt to

switch an existing value to this type.

SVG_STITCHTYPE_STITCH
Corresponds to value ‘stitch’.

SVG_STITCHTYPE_NOSTITCH
Corresponds to value ‘noStitch’.

Attributes:
baseFrequencyX, of type SVGAnimatedNumber, readonly
Corresponds to attribute baseFrequency on the given <feTurbulence> element. Contains the X component of the
baseFrequency attribute.

baseFrequencyy, of type SVGAnimatedNumber, readonly
Corresponds to attribute baseFrequency on the given <feTurbulence> element. Contains the Y component of the
baseFrequency attribute.

numOctaves, of type SVGAnimatedInteger, readonly
Corresponds to attribute numOctaves on the given <feTurbulence> element.

seed, of type SVGAnimatedNumber, readonly
Corresponds to attribute seed on the given <feTurbulence> element.

stitchTiles, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute stitchTiles on the given <feTurbulence> element. Takes one of the
SVG_TURBULENCE_TYPE_* constants defined on this interface.

type, of type SVGAnimatedEnumeration, readonly
Corresponds to attribute type on the given <feTurbulence> clement. Takes one of the SVG_STITCHTYPE_*
constants defined on this interface.

Changes

The following significant changes were made since the 25 November 2014 Working Draft.

Editorial changes.

Add description elements to content model of all elements.
Clarify that crossorigin is not animatable.

<hue-rotate()> takes unitless zero.

Allow author to change order of <color> and <length> values of <drop-shadow()>. Change grammar to put <color>
first. Differentiate between initial value for interpolation and default values for omitted values.

Define animation type of CSS properties.

Make <feColorMatrix> and <feConvolveMatrix> a pass through on unfulfilled pre-conditions.
Make <feTurbulence> algorithms respect uniformity.

Apply properties that apply to all graphics elements to the use element as well.

Corrected filter primitive representation of <saturate()>.

Extend SVG DOM SVGFEBIendElement enumerations with new blend modes.

The following significant changes were made since the 26 November 2013 Working Draft.

Removed Custom Filters.

Allow the <script> element in the content model everywhere.

Support all blend modes from CSS Blending specification for <feBlend>.

Support all non-duplicated compositing modes from CSS Blending specification for <feComposite>.
Added no-composite attribute to <feBlend> to avoid double compositing.

Corrections on shorthands syntax.

Added definition for shorthand filter regions.

The following significant changes were made since the 25 October 2012 Working Draft.

Correction of brightness short hand filter.

New syntax for Custom Filter function.

Add at-function rule for Custom Filters.

Allow Custom Filter function to be used as extension for future filter features.
Remove unnecessary attributes and uniforms on shaders.

Redefine origin of shader coordinate space to bottom left.

Remove now unnecessary filter-margin properties.

See more detailed and longterm changes in the ChangeLog.

Acknowledgments

The editors would like to thank Robert O’Callahan, Coralie Mercier, Chris Lilley, Nikos Andronikos, Stephen Chenney,
Simon Fraser, Tavmjong Bah, Robert Longson, Cameron McCormack, Brad Kemper, Tab Atkins, Brian Birtles, Michael

Mullany, Rik Cabanier, Anne van Kesteren, Boris Zbarsky, Kristopher Giesing, Stephen White, Jasper van de Gronde,

Kang-Hao Lu, Paul LeBeau, Debarshi Ray, Jarek Foksa, Sebastian Zartner, Yuqian Li, Amelia Bellamy-Royds and Max

Vujovic for their careful reviews, comments, and corrections.

Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology. The key
words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

wn

“RECOMMENDED?”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as described
in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and notes.
[RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative text with
class="example", like this:

EXAMPLE 14

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:
Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other normative text with

<strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.
renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool
A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this module are valid
according to the generic CSS grammar and the individual grammars of each feature defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined by the appropriate
specifications, it supports all the features defined by this specification by parsing them correctly and rendering the document
accordingly. However, the inability of a UA to correctly render a document due to limitations of the device does not make
the UA non-conformant. (For example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically correct according to the
generic CSS grammar and the individual grammars of each feature in this module, and meet all other conformance

requirements of style sheets as described in this module.

Requirements for Responsible Implementation of CSS

The following sections define several conformance requirements for implementing CSS responsibly, in a way that promotes
interoperability in the present and future.

Partial Implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS renderers must treat as
invalid (and ignore as appropriate) any at-rules, properties, property values, keywords, and other syntactic
constructs for which they have no usable level of support. In particular, user agents must not selectively ignore
unsupported property values and honor supported values in a single multi-value property declaration: if any value is

considered invalid (as unsupported values must be), CSS requires that the entire declaration be ignored.

wn

Implementations of Unstable and Proprietary Features

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices for the implementation

of unstable features and proprietary extensions to CSS.

Implementations of CR-level Features

Once a specification reaches the Candidate Recommendation stage, implementers should release an unprefixed

implementation of any CR-level feature they can demonstrate to be correctly implemented according to spec, and should

avoid exposing a prefixed variant of that feature.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group requests that non-

experimental CSS renderers submit an implementation report (and, if necessary, the testcases used for that implementation

report) to the W3C before releasing an unprefixed implementation of any CSS features. Testcases submitted to W3C are

subject to review and correction by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS Working Group’s

website at https://www.w3.org/Style/CSS/Test/. Questions should be directed to the public-css-testsuite@w3.org mailing

list.

Index

Terms defined by this specification

amplitude

attribute for
SVGComponentTransferFunctionEle
ment, in §Unnumbered section

element-attr for

feComponentTransfer, in §9.7.1
arithmetic, in §9.8
atop, in §9.8
auto, in §10

azimuth

attribute for
SVGFEDistantLightElement, in

§Unnumbered section

element-attr for feDistantLight, in
§11.2

BackgroundAlpha, in §9.2
BackgroundImage, in §9.2
baseFrequency, in §9.21

baseFrequencyX, in §Unnumbered

section

baseFrequencyY, in §Unnumbered
section
bias

attribute for

SVGFEConvolveMatrixElement, in

§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9

blur(), in §6.1
brightness(), in §6.1

color-interpolation-filters, in §10

contrast(), in §6.1
crossOrigin, in §Unnumbered section
crossorigin, in §9.15

diffuseConstant

attribute for
SVGFEDiffuseLightingElement, in

§Unnumbered section
element-attr for feDiffuseLighting, in
§9.10

discrete, in §9.7.1

divisor
attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9

drop-shadow(), in §6.1
duplicate, in §9.14

dx

attribute for
SVGFEDropShadowElement, in
§Unnumbered section

attribute for SVGFEOffsetElement, in
§Unnumbered section

element-attr for feDropShadow, in
§9.12

element-attr for feOffset, in §9.18

dy
attribute for
SVGFEDropShadowElement, in

§Unnumbered section

attribute for SVGFEOffsetElement, in

§Unnumbered section

clement-attr for feDropShadow, in
§9.12

element-attr for feOffset, in §9.18

edgeMode

attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

attribute for
SVGFEGaussianBlurElement, in
§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9

clement-attr for feGaussianBlur, in
§9.14
elevation

attribute for
SVGFEDistantLightElement, in

§Unnumbered section
element-attr for feDistantLight, in
§11.2

exponent

attribute for
SVGComponentTransferFunctionEle
ment, in §Unnumbered section

element-attr for

feComponentTransfer, in §9.7.1
feBlend, in §9.5

feColorMatrix, in §9.6

feComponentTransfer, in §9.7
feComposite, in §9.8
feConvolveMatrix, in §9.9
feDiffuseLighting, in §9.10
feDisplacementMap, in §9.11
feDistantLight, in §11.2
feDropShadow, in §9.12
feFlood, in §9.13

feFuncA, in §9.7.4

feFuncB, in §9.7.3

feFuncG, in §9.7.2
feFuncR, in §9.7.1
feGaussianBlur, in §9.14
felmage, in §9.15

feMerge, in §9.16
feMergeNode, in §9.16.1
feMorphology, in §9.17
feOffset, in §9.18
fePointLight, in §11.3
feSpecularLighting, in §9.19
feSpotLight, in §11.4

feTile, in §9.20
feTurbulence, in §9.21
FillPaint, in §9.2

filter

(element), in §7

(property), in §5
filter(), in §12
<filter-function>, in §6.1
filter primitive, in §4

filter-primitive, in §4

filter primitive attributes, in §9.2
<filter-primitive-reference>, in §9.2

filter primitive subregion, in §9.4

filter primitive tree, in §9.3
filter region, in §8
filterRes, in §7

filterUnits

attribute for SVGFilterElement, in

§Unnumbered section

clement-attr for filter, in §7
<filter-value-list>, in §5
flood-color, in §9.13.1
flood-opacity, in §9.13.2

gamma, in §9.7.1

grayscale(), in §6.1

height

attribute for SVGFilterElement, in
§Unnumbered section

attribute for
SVGFilterPrimitiveStandardAttribute
s, in §Unnumbered section

element-attr for filter, in §7

element-attr for filter-primitive, in
§9.2

href, in §9.15

hueRotate, in §9.6

hue-rotate(), in §6.1

identity, in §9.7.1

in

inl

attr-value for operator, in §9.8

element-attr for filter-primitive, in

§9.2

attribute for SVGFEBIlendElement, in
§Unnumbered section

attribute for
SVGFEColorMatrixElement, in

§Unnumbered section

attribute for
SVGFEComponentTransferElement,

in §Unnumbered section
attribute for

SVGFECompositeElement, in
§Unnumbered section

attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

attribute for
SVGFEDiffuseLightingElement, in
§Unnumbered section

attribute for
SVGFEDisplacementMapElement, in
§Unnumbered section

attribute for
SVGFEDropShadowElement, in
§Unnumbered section

attribute for
SVGFEGaussianBlurElement, in
§Unnumbered section

attribute for
SVGFEMergeNodeElement, in
§Unnumbered section

attribute for
SVGFEMorphologyElement, in
§Unnumbered section

attribute for SVGFEOffsetElement, in

§Unnumbered section

attribute for
SVGFESpecularLightingElement, in

§Unnumbered section

attribute for SVGFETileElement, in

§Unnumbered section

in2

attribute for SVGFEBIlendElement, in

§Unnumbered section

attribute for
SVGFECompositeElement, in

§Unnumbered section

attribute for
SVGFEDisplacementMapElement, in

§Unnumbered section
clement-attr for feBlend, in §9.5
element-attr for feComposite, in §9.8

element-attr for feDisplacementMap,
in §9.11

intercept

attribute for
SVGComponentTransferFunctionEle

ment, in §Unnumbered section

clement-attr for

feComponentTransfer, in §9.7.1

invert(), in §6.1

ki1

k2

k3

k4

attribute for
SVGFECompositeElement, in
§Unnumbered section

element-attr for feComposite, in §9.8

attribute for
SVGFECompositeElement, in

§Unnumbered section

element-attr for feComposite, in §9.8

attribute for
SVGFECompositeElement, in

§Unnumbered section

element-attr for feComposite, in §9.8

attribute for
SVGFECompositeElement, in
§Unnumbered section

element-attr for feComposite, in §9.8

kernelMatrix

attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9

kernelUnitLength

element-attr for feConvolveMatrix, in
§9.9

element-attr for feDiffuseLighting, in
§9.10

element-attr for feSpecularLighting,
in §9.19

kernelUnitLengthX

attribute for
SVGFEConvolveMatrixElement, in

§Unnumbered section

attribute for
SVGFEDiffuseLightingElement, in

§Unnumbered section

attribute for
SVGFESpecularLightingElement, in

§Unnumbered section

kernelUnitLengthY

attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

attribute for
SVGFEDiffuseLightingElement, in

§Unnumbered section

attribute for
SVGFESpecularLightingElement, in
§Unnumbered section

lighter, in §9.8
lighting-color, in §11.5
light source, in §11.1
limitingConeAngle
attribute for

SVGFESpotLightElement, in
§Unnumbered section

element-attr for feSpotLight, in §11.4
linear, in §9.7.1
linearRGB, in §10
luminanceToAlpha, in §9.6
matrix, in §9.6

mode

attribute for SVGFEBlendElement, in
§Unnumbered section

clement-attr for feBlend, in §9.5
no-composite
attr-value for no-composite, in §9.5

element-attr for feBlend, in §9.5
<number-optional-number>, in §7

numOctaves

attribute for
SVGFETurbulenceElement, in
§Unnumbered section

element-attr for feTurbulence, in
§9.21
objectBoundingBox
attr-value for filterUnits, in §7
attr-value for primitiveUnits, in §7
offset

attribute for
SVGComponentTransferFunctionEle

ment, in §Unnumbered section

element-attr for

feComponentTransfer, in §9.7.1

opacity(), in §6.1

operating coordinate space, in §9.1

operator

attribute for
SVGFECompositeElement, in

§Unnumbered section

attribute for
SVGFEMorphologyElement, in
§Unnumbered section

element-attr for feComposite, in §9.8

element-attr for feMorphology, in
§9.17

order, in §9.9

orderX, in §Unnumbered section
orderY, in §Unnumbered section
out, in §9.8

over, in §9.8

pass through filter, in §4

pointsAtX

attribute for
SVGFESpotLightElement, in
§Unnumbered section

element-attr for feSpotLight, in §11.4

pointsAtY

attribute for
SVGFESpotLightElement, in

§Unnumbered section
clement-attr for feSpotLight, in §11.4

pointsAtZ

attribute for
SVGFESpotLightElement, in

§Unnumbered section
clement-attr for feSpotLight, in §11.4

preserveAlpha

attribute for
SVGFEConvolveMatrixElement, in

§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9

preserveAspectRatio

attribute for SVGFEImageElement, in
§Unnumbered section

element-attr for felmage, in §9.15
primary filter primitive tree, in §9.3
primitiveUnits

attribute for SVGFilterElement, in
§Unnumbered section

clement-attr for filter, in §7
radius, in §9.17
radiusX, in §Unnumbered section

radiusY, in §Unnumbered section

result

attribute for
SVGFilterPrimitiveStandardAfttribute

s, in §Unnumbered section
element-attr for filter-primitive, in
§9.2

saturate(), in §6.1

saturate, in §9.6

scale

attribute for
SVGFEDisplacementMapElement, in
§Unnumbered section

element-attr for feDisplacementMap,
in §9.11
seed

attribute for
SVGFETurbulenceElement, in
§Unnumbered section

element-attr for feTurbulence, in
§9.21
sepia(), in §6.1

setStdDeviation(stdDeviationX,
stdDeviationY)

method for
SVGFEDropShadowElement, in

§Unnumbered section

method for
SVGFEGaussianBlurElement, in
§Unnumbered section

slope
attribute for

SVGComponentTransferFunctionEle
ment, in §Unnumbered section

element-attr for

feComponentTransfer, in §9.7.1
SourceAlpha, in §9.2
SourceGraphic, in §9.2

specularConstant

attribute for
SVGFESpecularLightingElement, in

§Unnumbered section
element-attr for feSpecularLighting,
in §9.19

specularExponent

attribute for
SVGFESpecularLightingElement, in
§Unnumbered section

attribute for
SVGFESpotLightElement, in

§Unnumbered section

element-attr for feSpecularLighting,
in §9.19

element-attr for feSpotLight, in §11.4

sRGB, in §10

stdDeviation
element-attr for feDropShadow, in
§9.12
element-attr for feGaussianBlur, in
§9.14

stdDeviationX

attribute for
SVGFEDropShadowElement, in
§Unnumbered section

attribute for

SVGFEGaussianBlurElement, in

§Unnumbered section
stdDeviationY

attribute for
SVGFEDropShadowElement, in

§Unnumbered section

attribute for

SVGFEGaussianBlurElement, in

§Unnumbered section
stitchTiles

attribute for
SVGFETurbulenceElement, in
§Unnumbered section

element-attr for feTurbulence, in
§9.21

StrokePaint, in §9.2

surfaceScale

attribute for
SVGFEDiffuseLightingElement, in

§Unnumbered section

attribute for
SVGFESpecularLightingElement, in
§Unnumbered section

element-attr for feDiffuseLighting, in
§9.10

element-attr for feSpecularLighting,

in §9.19
SVG_CHANNEL A, in
§Unnumbered section
SVG_CHANNEL B, in
§Unnumbered section
SVG_CHANNEL G, in
§Unnumbered section
SVG_CHANNEL R, in
§Unnumbered section

SVG_CHANNEL UNKNOWN, in
§Unnumbered section

SVGComponentTransferFunctionEle
ment, in §Unnumbered section

SVG_EDGEMODE DUPLICATE
const for
SVGFEConvolveMatrixElement, in
§Unnumbered section
const for
SVGFEGaussianBlurElement, in

§Unnumbered section

SVG_EDGEMODE_NONE

const for
SVGFEConvolveMatrixElement, in

§Unnumbered section

const for
SVGFEGaussianBlurElement, in

§Unnumbered section

SVG_EDGEMODE_UNKNOWN

const for
SVGFEConvolveMatrixElement, in
§Unnumbered section

const for
SVGFEGaussianBlurElement, in
§Unnumbered section

SVG_EDGEMODE_WRAP

const for
SVGFEConvolveMatrixElement, in
§Unnumbered section

const for
SVGFEGaussianBlurElement, in

§Unnumbered section
SVGFEBIlendElement, in

§Unnumbered section

SVG _FEBLEND MODE _COLOR,
in §Unnumbered section

SVG_FEBLEND MODE_COLOR _
BURN, in §Unnumbered section

SVG_FEBLEND MODE _COLOR
DODGE, in §Unnumbered section

SVG_FEBLEND MODE_DARKEN

, in §Unnumbered section

SVG_FEBLEND MODE DIFFERE
NCE, in §Unnumbered section

SVG_FEBLEND MODE EXCLUSI
ON, in §Unnumbered section

SVG FEBLEND MODE HARD LI
GHT, in §Unnumbered section

SVG_FEBLEND _MODE_HUE, in

§Unnumbered section

SVG_FEBLEND MODE_LIGHTEN
, in §Unnumbered section

SVG_FEBLEND MODE _LUMINO
SITY, in §Unnumbered section
SVG_FEBLEND MODE MULTIPL
Y, in §Unnumbered section
SVG_FEBLEND MODE NORMAL
, in §Unnumbered section
SVG_FEBLEND MODE OVERLA
Y, in §Unnumbered section
SVG_FEBLEND MODE SATURA
TION, in §Unnumbered section

SVG_FEBLEND MODE_SCREEN,
in §Unnumbered section

SVG_FEBLEND MODE SOFT LI
GHT, in §Unnumbered section

SVG_FEBLEND MODE UNKNO
WN, in §Unnumbered section

SVGFEColorMatrixElement, in

§Unnumbered section

SVG_FECOLORMATRIX TYPE H
UEROTATE, in §Unnumbered
section
SVG_FECOLORMATRIX TYPE L
UMINANCETOALPHA, in

§Unnumbered section

SVG_FECOLORMATRIX TYPE M
ATRIX, in §Unnumbered section

SVG_FECOLORMATRIX TYPE S
ATURATE, in §Unnumbered section

SVG_FECOLORMATRIX TYPE U
NKNOWN, in §Unnumbered section

SVGFEComponentTransferElement,
in §Unnumbered section

SVG_FECOMPONENTTRANSFER
_TYPE_DISCRETE, in
§Unnumbered section
SVG_FECOMPONENTTRANSFER

_TYPE_GAMMA, in §Unnumbered
section

SVG_FECOMPONENTTRANSFER
_TYPE_IDENTITY, in
§Unnumbered section

SVG_FECOMPONENTTRANSFER
_TYPE LINEAR, in §Unnumbered
section
SVG_FECOMPONENTTRANSFER
_TYPE_TABLE, in §Unnumbered
section
SVG_FECOMPONENTTRANSFER
_TYPE_UNKNOWN, in
§Unnumbered section
SVGFECompositeElement, in
§Unnumbered section
SVG_FECOMPOSITE _OPERATOR

_ARITHMETIC, in §Unnumbered
section

SVG_FECOMPOSITE_OPERATOR
_ATOP, in §Unnumbered section
SVG_FECOMPOSITE OPERATOR
_IN, in §Unnumbered section
SVG_FECOMPOSITE_OPERATOR

_OUT, in §Unnumbered section

SVG_FECOMPOSITE_OPERATOR
_OVER, in §Unnumbered section

SVG_FECOMPOSITE_OPERATOR
_UNKNOWN, in §Unnumbered
section

SVG_FECOMPOSITE OPERATOR
_XOR, in §Unnumbered section
SVGFEConvolveMatrixElement, in
§Unnumbered section
SVGFEDiffuseLightingElement, in
§Unnumbered section
SVGFEDisplacementMapElement, in
§Unnumbered section
SVGFEDistantLightElement, in

§Unnumbered section

SVGFEDropShadowElement, in

§Unnumbered section

SVGFEFloodElement, in
§Unnumbered section

SVGFEFuncAElement, in
§Unnumbered section

SVGFEFuncBElement, in
§Unnumbered section

SVGFEFuncGElement, in
§Unnumbered section
SVGFEFuncRElement, in

§Unnumbered section

SVGFEGaussianBlurElement, in

§Unnumbered section
SVGFEImageElement, in
§Unnumbered section
SVGFEMergeElement, in

§Unnumbered section

SVGFEMergeNodeElement, in
§Unnumbered section

SVGFEMorphologyElement, in
§Unnumbered section
SVGFEOffsetElement, in

§Unnumbered section

SVGFEPointLightElement, in

§Unnumbered section

SVGFESpecularLightingElement, in
§Unnumbered section

SVGFESpotLightElement, in
§Unnumbered section

SVGFETileElement, in §Unnumbered

section

SVGFETurbulenceElement, in

§Unnumbered section

SVGFilterElement, in §Unnumbered
section

SVGFilterPrimitiveStandardAttribute

s, in §Unnumbered section

SVG_MORPHOLOGY_OPERATOR
_DILATE, in §Unnumbered section

SVG_MORPHOLOGY_OPERATOR
_ERODE, in §Unnumbered section

SVG_MORPHOLOGY_OPERATOR
_UNKNOWN, in §Unnumbered
section

SVG_STITCHTYPE _NOSTITCH, in
§Unnumbered section
SVG_STITCHTYPE STITCH, in
§Unnumbered section

SVG_STITCHTYPE UNKNOWN,

in §Unnumbered section

SVG_TURBULENCE TYPE FRAC
TALNOISE, in §Unnumbered section

SVG_TURBULENCE TYPE TURB
ULENCE, in §Unnumbered section

SVG_TURBULENCE _TYPE _UNK
NOWN, in §Unnumbered section

table, in §9.7.1

tableValues

attribute for
SVGComponentTransferFunctionEle

ment, in §Unnumbered section

element-attr for

feComponentTransfer, in §9.7.1
targetX

attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9
targetY

attribute for
SVGFEConvolveMatrixElement, in
§Unnumbered section

element-attr for feConvolveMatrix, in
§9.9

transfer function element, in §9.7

transfer function element attributes, in
§9.7.1

type
attribute for
SVGComponentTransferFunctionEle

ment, in §Unnumbered section

attribute for
SVGFEColorMatrixElement, in

§Unnumbered section

attribute for
SVGFETurbulenceElement, in

§Unnumbered section

element-attr for feColorMatrix, in
§9.6

clement-attr for
feComponentTransfer, in §9.7.1

element-attr for feTurbulence, in
§9.21

<url>, in §5
userSpaceOnUse
attr-value for filterUnits, in §7
attr-value for primitiveUnits, in §7
values

attribute for
SVGFEColorMatrixElement, in
§Unnumbered section

element-attr for feColorMatrix, in
§9.6
width

attribute for SVGFilterElement, in

§Unnumbered section

attribute for
SVGFilterPrimitiveStandardAttribute
s, in §Unnumbered section
element-attr for filter, in §7
clement-attr for filter-primitive, in

§9.2

wrap, in §9.14

attribute for
SVGFEPointLightElement, in
§Unnumbered section

attribute for
SVGFESpotLightElement, in

§Unnumbered section

attribute for SVGFilterElement, in
§Unnumbered section

attribute for
SVGFilterPrimitiveStandardAttribute

s, in §Unnumbered section
element-attr for fePointLight, in §11.3
element-attr for feSpotLight, in §11.4
element-attr for filter, in §7
element-attr for filter-primitive, in
§9.2

xChannelSelector

attribute for
SVGFEDisplacementMapElement, in

§Unnumbered section

element-attr for feDisplacementMap,
in §9.11

xlink:href, in §9.15

xor, in §9.8

Terms defined by reference

[COMPOSITING-1] defines the
following terms:

<blend-mode>

backdrop

color

color-burn

color-dodge

darken

difference

exclusion

hard-light

hue

isolation

lighten

luminosity

multiply

normal

overlay

saturation

screen

soft-light
[css-cascade-4] defines the following
terms:

specified value

used value
[css-color-4] defines the following
terms:

<alpha-value>

opacity

transparent
[css-display-3] defines the following
terms:

containing block

display

attribute for
SVGFEPointLightElement, in
§Unnumbered section

attribute for
SVGFESpotLightElement, in

§Unnumbered section

attribute for SVGFilterElement, in
§Unnumbered section

attribute for
SVGFilterPrimitiveStandardAttribute

s, in §Unnumbered section
element-attr for fePointLight, in §11.3
element-attr for feSpotLight, in §11.4
element-attr for filter, in §7

element-attr for filter-primitive, in
§9.2

[css-fonts-3] defines the following
terms:

font

font-family

font-size

font-stretch

font-style

font-variant

font-weight
[css-fonts-4] defines the following
terms:

font-size-adjust
[css-masking-1] defines the following
terms:

clip

clip-path

clip-rule

mask
[css-overflow-3] defines the
following terms:

overflow
[css-position-3] defines the following
terms:

stacking context
[css-text-3] defines the following
terms:

letter-spacing

word-spacing
[css-text-decor-3] defines the
following terms:

text-decoration

text-shadow
[css-transforms-1] defines the
following terms:

local coordinate system

yChannelSelector

attribute for
SVGFEDisplacementMapElement, in
§Unnumbered section

element-attr for feDisplacementMap,
in §9.11

attribute for
SVGFEPointLightElement, in

§Unnumbered section

attribute for
SVGFESpotLightElement, in

§Unnumbered section
element-attr for fePointLight, in §11.3

element-attr for feSpotLight, in §11.4

[css-ui-3] defines the following terms:

cursor
outline
[css-values-4] defines the following
terms:
&&
+
<custom-ident>
<length-percentage>
<zero>
?
calc()
{a,b}
I
[css-writing-modes-3] defines the

following terms:

direction
unicode-bidi
[css-writing-modes-4] defines the
following terms:
writing-mode
[CSS21] defines the following terms:
visibility
[css3-images] defines the following
terms:
<image>
concrete object size
image-rendering
[CSS3BG] defines the following

terms:

border
border-image

box-shadow

[CSS3COLOR] defines the following
terms:

<color>
color
[CSS3VAL] defines the following
terms:
<angle>
<integer>
<length>
<number-percentage>
<number>
<string>
[HTML] defines the following terms:
browsing context
img
[mediaqueries-5] defines the
following terms:
false
[selectors-4] defines the following
terms:
wvisited
[SVG11] defines the following terms:
alignment-baseline
animate
animatetransform
baseline-shift
dominant-baseline
enable-background
glyph-orientation-horizontal
glyph-orientation-vertical
kerning
set
simple alpha compositing
[svg12t] defines the following terms:

unsupported

References

[SVG2] defines the following terms:

SVGAnimatedBoolean
SVGAnimatedEnumeration
SVGAnimatedInteger
SVGAnimatedLength
SVGAnimatedNumber
SVGAnimatedNumberList
SVGAnimatedPreserveAspectRatio
SVGAnimatedString
SVGElement
SVGURIReference
SVGUnitTypes
bounding box
color-interpolation
color-rendering
container element

defs

desc

descriptive element

fill

fill-opacity

fill-rule

graphics element
image

initial value

marker

marker-end
marker-mid
marker-start

metadata

object bounding box units
pointer-events

rect

script

shape-rendering
stop-color
stop-opacity

stroke
stroke-dasharray
stroke-dashoffset
stroke-linecap
stroke-linejoin
stroke-miterlimit
stroke-opacity
stroke-width
text-anchor
text-rendering

title

use

[Webl
terms:

DL] defines the following

float

unsigned short

Normative References

[COMPOSITING-1]
Rik Cabanier; Nikos Andronikos. Compositing and Blending Level 1. 13 January 2015. CR. URL:

https://www.w3.org/TR/compositing-1/

[CSS-CASCADE-4]
Elika Etemad; Tab Atkins Jr.. CSS Cascading and Inheritance Level 4. 28 August 2018. CR. URL:
https://www.w3.org/TR/css-cascade-4/

[CSS-COLOR-4]
Tab Atkins Jr.; Chris Lilley. CSS Color Module Level 4. 5 July 2016. WD. URL: https://www.w3.org/TR/css-color-4/

[CSS-DISPLAY-3]
Tab Atkins Jr.; Elika Etemad. CSS Display Module Level 3. 28 August 2018. CR. URL: https://www.w3.org/TR/css-
display-3/

[CSS-FONTS-3]
John Daggett; Myles Maxfield; Chris Lilley. CSS Fonts Module Level 3. 20 September 2018. REC. URL:
https://www.w3.org/TR/css-fonts-3/

[CSS-FONTS-4]
John Daggett; Myles Maxfield; Chris Lilley. CSS Fonts Module Level 4. 20 September 2018. WD. URL:
https://www.w3.org/TR/css-fonts-4/

[CSS-MASKING-1]
Dirk Schulze; Brian Birtles; Tab Atkins Jr.. CSS Masking Module Level 1. 26 August 2014. CR. URL:
https://www.w3.org/TR/css-masking-1/

[CSS-OVERFLOW-3]
David Baron; Elika Etemad; Florian Rivoal. CSS Overflow Module Level 3. 31 July 2018. WD. URL:
https://www.w3.org/TR/css-overflow-3/

[CSS-POSITION-3]
Rossen Atanassov; Arron Eicholz. CSS Positioned Layout Module Level 3. 17 May 2016. WD. URL:
https://www.w3.org/TR/css-position-3/

[CSS-TEXT-3]
Elika Etemad; Koji Ishii; Florian Rivoal. CSS Text Module Level 3. 12 December 2018. WD. URL:
https://www.w3.org/TR/css-text-3/

[CSS-TEXT-DECOR-3]
Elika Etemad; Koji Ishii. CSS Text Decoration Module Level 3. 3 July 2018. CR. URL: https://www.w3.org/TR/css-
text-decor-3/

[CSS-TRANSFORMS-1]
Simon Fraser; et al. CSS Transforms Module Level 1. 30 November 2018. WD. URL: https://www.w3.org/TR/css-
transforms-1/

[CSS-UI-3]
Tantek Celik; Florian Rivoal. CSS Basic User Interface Module Level 3 (CSS3 UI). 21 June 2018. REC. URL:
https://www.w3.org/TR/css-ui-3/

[CSS-VALUES-4]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. 10 October 2018. WD. URL:
https://www.w3.org/TR/css-values-4/

[CSS-WRITING-MODES-3]
Elika Etemad; Koji Ishii. CSS Writing Modes Level 3. 24 May 2018. CR. URL: https://www.w3.org/TR/css-writing-
modes-3/

[CSS-WRITING-MODES-4|
Elika Etemad; Koji Ishii. CSS Writing Modes Level 4. 24 May 2018. CR. URL: https://www.w3.org/TR/css-writing-
modes-4/

[CSS21]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011. REC. URL:
https://www.w3.org/TR/CSS2/

[CSS3-IMAGES]
Elika Etemad; Tab Atkins Jr.. CSS Image Values and Replaced Content Module Level 3. 17 April 2012. CR. URL:
https://www.w3.org/TR/css3-images/

[CSS3BG]

Bert Bos; Elika Etemad; Brad Kemper. CSS Backgrounds and Borders Module Level 3. 17 October 2017. CR. URL:
https://www.w3.org/TR/css-backgrounds-3/

[CSS3COLOR]
Tantek Celik; Chris Lilley; David Baron. CSS Color Module Level 3. 19 June 2018. REC. URL:
https://www.w3.org/TR/css-color-3/

[CSS3VAL]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. 14 August 2018. CR. URL:
https://www.w3.org/TR/css-values-3/

[HTML]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org/multipage/

[HTMLS5]
Ian Hickson; et al. HTMLS5. 27 March 2018. REC. URL: https://www.w3.org/TR/html5/

[MEDIAQUERIES-5]
Media Queries Level 5 URL: https://drafts.csswg.org/mediaqueries-5/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[SELECTORS-4]
Elika Etemad; Tab Atkins Jr.. Selectors Level 4. 21 November 2018. WD. URL: https://www.w3.org/TR/selectors-4/

[SVG11]
Erik Dahlstrom; et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011. REC. URL:
https://www.w3.org/TR/SVG11/

[SVG2]
Amelia Bellamy-Royds; et al. Scalable Vector Graphics (SVG) 2. 4 October 2018. CR. URL:
https://www.w3.org/TR/SVG2/

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. ED. URL:
https://heycam.github.io/webidl/

Informative References

[ArTD]
B. Jacob. Arithmetic Timing Differences. URL: https://wiki.mozilla.org/User:Bjacob/ArithmeticTimingDifferences

[Cmam]
IEC. IEC 61966-2-1:1999 Colour measurement and management - Part 2-1: Colour management - Default RGB colour
space - sSRGB. URL: https://webstore.iec.ch/publication/6169

[CSS3-ANIMATIONS]
Dean Jackson; et al. CSS Animations Level 1. 11 October 2018. WD. URL: https://www.w3.org/TR/css-animations-1/

[PORTERDUFF]
Thomas Porter; Tom Duff. Compositing digital images.

[TaM]
Ebert et al, AP Professional. Texturing and Modeling. 1994.

Property Index
" . Animat Canonical Computed .
Name Value Initial Applies to Inh. %ages Media
able order value
‘color- auto |
. C er . .
interpolation- | sRGB | linearRGB All filter primitives yes n/a no P as specified visual
ammar
filters’ linearRGB &
All elements. In SVG, it applies to See prose
none| i 1 ithout the def i
t t t] er
“filter’ <filter- none contamer efemen S without the dets no n/a m . . P as specified visual
. element, all graphics elements and the Animation grammar
value-list> K
use clement. of Filters.

1- (‘a i 1 C tod
Name Value Initial Applies to Inh. %ages o Media
able order value
‘flood-color’ <color> black feFlood and feDropShadow clements no n/a as color pet as specified visual
grammar
the specified
value
“lood <aloh as number converted to
- - T
00 alpha 1 feFlood and feDropShadow elements no n/a or pe a number, visual
opacity’ value> grammar
percentage clamped to
the range
[0,1]
‘lighting- 5 feDiffuseLighting and er .)
L <color> white g ‘g no n/a as color P as specified visual
color’ feSpecularLighting elements grammar

IDL Index

interface SVGFilterElement :

readonly
readonly
readonly
readonly
readonly
readonly

}s

attribute
attribute
attribute
attribute
attribute
attribute

SVGElement {

SVGAnimatedEnumeration filterUnits;

SVGAnimatedEnumeration primitiveUnits;

SVGAnimatedLength
SVGAnimatedLength
SVGAnimatedLength
SVGAnimatedLength

X5

Y5
width;
height;

SVGFilterElement includes SVGURIReference;

interface mixin SVGFilterPrimitiveStandardAttributes {

readonly
readonly
readonly
readonly
readonly

attribute
attribute
attribute
attribute
attribute

SVGAnimatedLength
SVGAnimatedLength
SVGAnimatedLength
SVGAnimatedLength
SVGAnimatedString

X

Y5
width;
height;
result;

s
interface SVGFEBlendElement : SVGElement {

// Blend Mode Types

const unsigned short SVG_FEBLEND_MODE_UNKNOWN = ©;
const unsigned short SVG_FEBLEND_MODE_NORMAL = 1;
const unsigned short SVG_FEBLEND_MODE_MULTIPLY = 2;
const unsigned short SVG_FEBLEND_MODE_SCREEN = 3;
const unsigned short SVG_FEBLEND_MODE_DARKEN = 4;
const unsigned short SVG_FEBLEND_MODE_LIGHTEN = 5;
const unsigned short SVG_FEBLEND_MODE_OVERLAY = 6;
const unsigned short SVG_FEBLEND_MODE_COLOR_DODGE = 7;
const unsigned short SVG_FEBLEND_MODE_COLOR_BURN = 8;
const unsigned short SVG_FEBLEND_MODE_HARD_LIGHT = 9;
const unsigned short SVG_FEBLEND_MODE_SOFT_LIGHT = 10;
const unsigned short SVG_FEBLEND_MODE_DIFFERENCE = 11;
const unsigned short SVG_FEBLEND_MODE_EXCLUSION = 12;
const unsigned short SVG_FEBLEND_MODE_HUE = 13;

const unsigned short SVG_FEBLEND_MODE_SATURATION = 14;
const unsigned short SVG_FEBLEND_MODE_COLOR = 15;
const unsigned short SVG_FEBLEND_MODE_LUMINOSITY = 16;

readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedString in2;
readonly attribute SVGAnimatedEnumeration mode;

s
SVGFEBlendElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEColorMatrixElement : SVGElement {
// Color Matrix Types

const unsigned short SVG_FECOLORMATRIX_TYPE_UNKNOWN = 0;
SVG_FECOLORMATRIX_TYPE_MATRIX = 1;
SVG_FECOLORMATRIX_TYPE_SATURATE = 2;
SVG_FECOLORMATRIX_TYPE_HUEROTATE = 3;

SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA =

short
short

const
const

unsigned
unsigned
short

const unsigned

const unsigned short
readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedEnumeration type;
readonly attribute SVGAnimatedNumberList values;

}s

SVGFEColorMatrixElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEComponentTransferElement : SVGElement {

readonly attribute SVGAnimatedString ini;

s

SVGFEComponentTransferElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGComponentTransferFunctionElement :

SVGElement {

// Component Transfer Types

const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short
short

SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN = @;
SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY = 1;
SVG_FECOMPONENTTRANSFER_TYPE_TABLE = 2;
SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE =
SVG_FECOMPONENTTRANSFER_TYPE_LINEAR = 4;
SVG_FECOMPONENTTRANSFER_TYPE_GAMMA = 5;

3;

readonly
readonly
readonly
readonly
readonly
readonly
readonly

}s

interface SVGFEFuncRElement :

}s

interface SVGFEFuncGElement :

}s

interface SVGFEFuncBElement :

s

interface SVGFEFuncAElement :

}s

interface SVGFECompositeElement :

attribute
attribute
attribute
attribute
attribute
attribute
attribute

SVGAnimatedEnumeration type;
SVGAnimatedNumberList tableValues;
SVGAnimatedNumber slope;
SVGAnimatedNumber intercept;
SVGAnimatedNumber amplitude;
SVGAnimatedNumber exponent;
SVGAnimatedNumber offset;

SVGComponentTransferFunctionElement {

SVGComponentTransferFunctionElement {

SVGComponentTransferFunctionElement {

SVGComponentTransferFunctionElement {

SVGElement {

// Composite Operators

const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short
short

SVG_FECOMPOSTTE_OPERATOR_UNKNOWN =
SVG_FECOMPOSITE_OPERATOR_OVER = 1;
SVG_FECOMPOSITE_OPERATOR_IN = 2;
SVG_FECOMPOSITE_OPERATOR_OUT = 3;
SVG_FECOMPOSITE_OPERATOR_ATOP = 4;
SVG_FECOMPOSITE_OPERATOR_XOR = 5;

9;

const

readonly
readonly
readonly
readonly
readonly
readonly
readonly

}s

unsigned

attribute
attribute
attribute
attribute
attribute
attribute
attribute

short

SVG_FECOMPOSITE_OPERATOR_ARITHMETIC =

SVGAnimatedString ini;
SVGAnimatedString in2;
SVGAnimatedEnumeration operator;
SVGAnimatedNumber k1;
SVGAnimatedNumber k2;
SVGAnimatedNumber k3;
SVGAnimatedNumber k4;

SVGFECompositeElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEConvolveMatrixElement :

// Edge Mode Values
unsigned

const
const
const
const

unsigned
unsigned
unsigned

short SVG_EDGEMODE_UNKNOWN =
short SVG_EDGEMODE_DUPLICATE =
short SVG_EDGEMODE_WRAP =
short SVG_EDGEMODE_NONE =

SVGElement {

9;
1;
2;

3;

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

readonly
readonly

SVGAnimatedString ini;

SVGAnimatedInteger orderX;
readonly
readonly

SVGAnimatedInteger orderY;
SVGAnimatedNumberList kernelMatrix;
SVGAnimatedNumber divisor;
SVGAnimatedNumber bias;
SVGAnimatedInteger targetX;

readonly
readonly
readonly
readonly
readonly

SVGAnimatedInteger targetY;
SVGAnimatedEnumeration edgeMode;
SVGAnimatedNumber kernelUnitLengthX;
SVGAnimatedNumber kernelUnitLengthy;
SVGAnimatedBoolean preserveAlpha;

readonly
readonly
readonly

s
SVGFEConvolveMatrixElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEDiffuselightingElement : SVGElement {
readonly attribute SVGAnimatedString ini;

attribute SVGAnimatedNumber surfaceScale;

attribute SVGAnimatedNumber diffuseConstant;

attribute SVGAnimatedNumber kernelUnitLengthX;

attribute SVGAnimatedNumber kernelUnitLengthY;

readonly
readonly
readonly
readonly

¥
SVGFEDiffuseLightingElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEDistantLightElement : SVGElement {
readonly attribute SVGAnimatedNumber azimuth;
readonly attribute SVGAnimatedNumber elevation;

s

interface SVGFEPointLightElement : SVGElement {
readonly attribute SVGAnimatedNumber x;
readonly attribute SVGAnimatedNumber y;
readonly attribute SVGAnimatedNumber z;

s

interface SVGFESpotLightElement : SVGElement {

readonly attribute SVGAnimatedNumber x;

readonly
readonly
readonly
readonly
readonly
readonly
readonly

}s

interface SVGFEDisplacementMapElement :

attribute SVGAnimatedNumber
attribute SVGAnimatedNumber
attribute SVGAnimatedNumber
attribute SVGAnimatedNumber
attribute SVGAnimatedNumber
attribute SVGAnimatedNumber
attribute SVGAnimatedNumber

// Channel Selectors

const
const
const
const
const

readonly
readonly

unsigned
unsigned
unsigned
unsigned
unsigned

short

short SVG_CHANNEL R =
SVG_CHANNEL_G
SVG_CHANNEL_B

SVG_CHANNEL_A

short

short
short

attribute
attribute

SVGAnimatedString
SVGAnimatedString

SVG_CHANNEL_UNKNOWN =

Y5

Z;

pointsAtX;
pointsAty;
pointsAtz;
specularExponent;
limitingConeAngle;

SVGElement {

0;
1;
5

2
3.
4

..

B

in1;
in2;

attribute
attribute
attribute

readonly
readonly

SVGAnimatedNumber scale;
SVGAnimatedEnumeration xChannelSelector;
readonly SVGAnimatedEnumeration yChannelSelector;

}s

SVGFEDisplacementMapElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEDropShadowElement : SVGElement {
readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedNumber dx;
readonly attribute SVGAnimatedNumber dy;
readonly attribute SVGAnimatedNumber stdDeviationX;
readonly attribute SVGAnimatedNumber stdDeviationY;

void setStdDeviation(float stdDeviationX, float stdDeviationY);
s

SVGFEDropShadowElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEFloodElement : SVGElement {
¥

SVGFEFloodElement includes SVGFilterPrimitiveStandardAttributes;
interface SVGFEGaussianBlurElement : SVGElement {

// Edge Mode Values

const unsigned short SVG_EDGEMODE_UNKNOWN = O;
const unsigned short SVG_EDGEMODE_DUPLICATE = 1;
const unsigned short SVG_EDGEMODE_WRAP = 2;
const unsigned short SVG_EDGEMODE_NONE 3;

readonly attribute SVGAnimatedString ini;

readonly attribute SVGAnimatedNumber stdDeviationX;
readonly attribute SVGAnimatedNumber stdDeviationY;
readonly attribute SVGAnimatedEnumeration edgeMode;

void setStdDeviation(float stdDeviationX, float stdDeviationY);
s

SVGFEGaussianBlurkElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEImageElement : SVGElement {
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
readonly attribute SVGAnimatedString crossOrigin;

s

SVGFEImageElement includes SVGFilterPrimitiveStandardAttributes;
SVGFEImageElement includes SVGURIReference;

interface SVGFEMergeElement : SVGElement {
¥

SVGFEMergeElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEMergeNodeElement : SVGElement {
readonly attribute SVGAnimatedString ini;

s
interface SVGFEMorphologyElement : SVGElement {

// Morphology Operators

const unsigned short SVG_MORPHOLOGY_OPERATOR_UNKNOWN = ©;
const unsigned short SVG_MORPHOLOGY_OPERATOR_ERODE = 1;
const unsigned short SVG_MORPHOLOGY_OPERATOR_DILATE = 2;

readonly attribute SVGAnimatedString ini;

readonly attribute SVGAnimatedEnumeration operator;
readonly attribute SVGAnimatedNumber radiusX;
readonly attribute SVGAnimatedNumber radiusY;

s

SVGFEMorphologyElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFEOffsetElement :

SVGElem

ent {

readonly attribute SVGAnimatedString ini;
readonly attribute SVGAnimatedNumber dx;

readonly attribute SVGAnimatedNumber dy;

}s

SVGFEOffsetElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFESpecularLightingElement :

attribute
attribute
attribute
attribute

readonly
readonly
readonly
readonly

SVGAnimatedString
SVGAnimatedNumber
SVGAnimatedNumber
SVGAnimatedNumber

SVGElement {
ini;
surfaceScale;
specularConstant;
specularExponent;

SVGAnimatedNumber
SVGAnimatedNumber

attribute
attribute

readonly
readonly

kernelUnitLengthX;
kernelUnitLengthy;

¥
SVGFESpecularLightingElement includes SVGFilterPrimitiveStandardAttributes;

interface SVGFETileElement : SVGElement {
readonly attribute SVGAnimatedString ini;
s

SVGFETileElement includes SVGFilterPrimitiveStandardAttributes;
interface SVGFETurbulenceElement : SVGElement {
// Turbulence Types

const unsigned short
const unsigned short

SVG_TURBULENCE_TYPE_UNKNOWN = O;
SVG_TURBULENCE_TYPE_FRACTALNOISE
SVG_TURBULENCE_TYPE_TURBULENCE

2;

1;

const unsigned short

// Stitch Options

const unsigned short SVG_STITCHTYPE_UNKNOWN = O;
const unsigned short SVG_STITCHTYPE_STITCH = 1;
const unsigned short SVG_STITCHTYPE_NOSTITCH = 2;

attribute
attribute
attribute
attribute
attribute
attribute

readonly
readonly
readonly
readonly

SVGAnimatedNumber baseFrequencyX;
SVGAnimatedNumber baseFrequencyY;
SVGAnimatedInteger numOctaves;
SVGAnimatedNumber seed;

readonly SVGAnimatedEnumeration stitchTiles;
readonly SVGAnimatedEnumeration type;

}s

SVGFETurbulenceElement includes SVGFilterPrimitiveStandardAttributes;

§ Issues Index

I ISSUE 1 How does filter behave on fixed background images? <https:/github.com/w3c/csswg-drafts/issues/238> ¢

ISSUE 2 How to behave on invalid number of entries in the value list? <https://github.com/w3c/csswg-
drafts/issues/237> ¢

I ISSUE 3 Implementations do not match specification. <https://github.com/w3c/csswg-drafts/issues/113> ¢

I ISSUE4 Compute distance of filter functions. <https://github.com/w3c/csswg-drafts/issues/91> ¢

1

