
CSS Generated Content Module
Level 3

Specification Metadata

Copyright © 2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules

apply.

This CSS3 Module describes how to insert content in a document.

CSS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

This is a public copy of the editors’ draft. It is provided for discussion only and may change at any

moment. Its publication here does not imply endorsement of its contents by W3C. Don’t cite this

document other than as work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-content” in

the title, like this: “[css-content] …summary of comment…”. All issues and comments are archived.

Alternately, feedback can be sent to the (archived) public mailing list www-style@w3.org.

This document is governed by the 15 September 2020 W3C Process Document.

This is a very rough draft, and is not ready for implementation.

Table of Contents

Editor’s Draft, 15 December 2020

Abstract

Status of this document

Introduction

Value Definitions

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

1 of 41 27/01/2021, 09:00

1 Inserting and replacing content with the ‘content’ property

1.1 Accessibility of Generated Content

1.2 Alternative Text for Accessibility

2 <content-list> Values and Functions

2.1 String

2.2 <image>

2.3 Element Content

2.4 Quotes

2.4.1 Specifying quotes with the ‘quotes’ property

2.4.2 The *-quote values of the content property

2.5 Leaders

2.5.1 The ‘leader()’ function

2.5.2 Rendering leaders

2.5.3 Procedure for rendering leaders

2.6 Cross references and the target-* functions

2.6.1 The ‘target-counter()’ function

2.6.2 The ‘target-counters()’ function

2.6.3 The ‘target-text()’ function

2.7 Named strings

2.7.1 The string-set property

2.7.2 The ‘string()’ function

2.7.3 The ‘content()’ function

3 Automatic counters and numbering: the ‘counter-increment’ and ‘counter-reset’
properties (moved)

4 Bookmarks

4.1 bookmark-level

4.2 bookmark-label

4.3 bookmark-state

5 Changes since the 2 June 2016 Working Draft

Acknowledgements

Conformance

Document conventions

Conformance classes

Partial implementations

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

2 of 41 27/01/2021, 09:00

Authors sometimes want user agents to render content that does not come from the document tree.

One familiar example of this is numbered headings; the author does not want to mark the numbers up

explicitly, they want the user agent to generate them automatically. Counters and markers are used to

achieve these effects.

Similarly, authors may want the user agent to insert the word "Figure" before the caption of a figure,

or "Chapter 7" on a line before the seventh chapter title.

Another common effect is replacing elements with images or other multimedia content. Since not all

user agents support all multimedia formats, fallbacks may have to be provided.

Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index

Terms defined by this specification

Terms defined by reference

References

Normative References

Informative References

Property Index

Issues Index

Introduction

EXAMPLE 1

h1::before { content: counter(section) ": "; }

EXAMPLE 2

chapter { counter-increment: chapter; }

chapter > title::before { content: "Chapter " counter(chapter) "\A"; }

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

3 of 41 27/01/2021, 09:00

This specification follows the CSS property definition conventions from [CSS2] using the value

definition syntax from [CSS-VALUES-3]. Value types not defined in this specification are defined in

CSS Values & Units [CSS-VALUES-3]. Combination with other CSS modules may expand the

definitions of these value types.

In addition to the property-specific values listed in their definitions, all properties defined in this

specification also accept the CSS-wide keywords as their property value. For readability they have not

been repeated explicitly.

Name: ‘content’

Value: normal | none | [<content-replacement> | <content-list>] [/ [<string> |

<counter>]+]?

Initial: normal

Applies to: all elements, tree-abiding pseudo-elements, and page margin boxes

Inherited: no

Percentages: n/a

EXAMPLE 3

/* Replace <logo> elements with the site’s logo, using a format

 * supported by the UA */

logo { content: url(logo.mov), url(logo.mng), url(logo.png), none; }

/* Replace <figure> elements with the referenced document, or,

 * failing that, with either the contents of the alt attribute or the

 * contents of the element itself if there is no alt attribute */

figure[alt] { content: attr(href url), attr(alt); }

figure:not([alt]) { content: attr(href url), contents; }

Value Definitions

1. Inserting and replacing content with the ‘content’ property

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

4 of 41 27/01/2021, 09:00

Computed

value:

See prose below

Canonical

order:

per grammar

Animation

type:

discrete

User Agents are expected to support this property on all media, including non-visual ones.

The ‘content’ property dictates what is rendered inside an element or pseudo-element.

For elements, it has only one purpose: specifying that the element renders as normal, or replacing the

element with an image (and possibly some associated "alt text").

For pseudo-elements and margin boxes, it is more powerful. It controls whether the element renders at

all, can replace the element with an image, or replace it with arbitrary inline content (text and images).

For an element or page margin box, this computes to ‘contents’.

For ‘::before’ and ‘::after’, this computes to ‘none’.

For ‘::marker’, this computes to itself (‘normal’).

On elements, this inhibits the children of the element from being rendered as children of this

element, as if the element was empty.

On pseudo-elements it inhibits the creation of the pseudo-element as if it had ‘display: none’.

In neither case does it prevent any pseudo-elements which have this element or pseudo-element

as an originating element from being generated.

Equal to:

<image>

Makes the element or pseudo-element a replaced element, filled with the specified <image>. Its

normal contents are suppressed and do not generate boxes, as if they were ‘display: none’.

‘normal’

‘none’

‘<content-replacement>’

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

5 of 41 27/01/2021, 09:00

If the <image> represents an invalid image, then it must be treated as instead representing an

image with zero natural width and height, filled with transparent black.

Equal to:

[<string> | contents | <image> | <counter> | <quote> | <target> | <leader()>

Replaces the element’s contents with one or more anonymous inline boxes corresponding to the

specified values, in the order specified. Its normal contents are suppressed and do not generate

boxes, as if they were ‘display: none’.

Each value contributes an inline box to the element’s contents. For <image>, this is an inline

anonymous replaced element; for the others, it’s an anonymous inline run of text.

If an <image> represents an invalid image, the user agent must do one of the following:

This specification intentionally does not define which behavior a user agent must use, but it must

use one or the other consistently.

Specifies the "alt text" for the element. See § 1.2 Alternative Text for Accessibility for details. If

omitted, the element has no "alt text".

ISSUE 1 The above invalid image behavior appears to be what Chrome is doing. Is this

okay? Is there a better behavior we can/should use?

Note: Replaced elements use different layout rules than normal elements. (In effect, it

becomes equivalent to an HTML element.)

Note: Replaced elements do not have ‘::before’ or ‘::after’ pseudo-elements; the ‘content’

property replaces their entire contents.

‘<content-list>’

"Skip" the <image>, generating nothing for it.

Display some indication that the image can’t be displayed in place of the <image>, such as a

"broken image" icon.

Note: If the value of <content-list> is a single <image>, it must instead be interpreted as a

<content-replacement>.

‘/ [<string> | <counter>]+’

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

6 of 41 27/01/2021, 09:00

Generated content should be searchable, selectable, and available to assistive technologies. The

‘content’ property applies to speech and generated content must be rendered for speech output.

[CSS3-SPEECH]

Content intended for visual media sometimes needs alternative text for speech output or other non-

visual mediums. The ‘content’ property thus accepts alternative text to be specified after a slash (‘/’)

after the last <content-list>. If such alternative text is provided, it must be used for speech output

instead.

This allows, for example, purely decorative text to be elided in speech output (by providing the empty

string as alternative text), and allows authors to provide more readable alternatives to images, icons, or

text-encoded symbols.

ISSUE 2 Should the contents keyword be replaced with ‘content()’?

1.1. Accessibility of Generated Content

ISSUE 3 Start work on an AAM for CSS.

1.2. Alternative Text for Accessibility

EXAMPLE 4

Here the content property is an image, so the alt value is required to provide alternative text.

.new::before {

content: url(./img/star.png) / "New!";

/* or a localized attribute from the DOM: attr("data-alt") */

}

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

7 of 41 27/01/2021, 09:00

The <content-list> value is used in ‘content’ to fill an element with one or more anonymous inline

boxes, including images, strings, the values of counters, and the text value of elements. In this section

we enumerate the possibilities.

Represents an anonymous inline box filled with the specified text.

Represents an anonymous inline replaced element filled with the specified <image>.

If the <image> represents an invalid image, this value instead represents nothing. (No inline

content is added to the element, as if this value were "skipped".)

EXAMPLE 5

If the pseudo-element is purely decorative and its function is covered elsewhere, setting alt to the

empty string can avoid reading out the decorative element. Here the ARIA attribute will be spoken

as "collapsed". Without the empty string alt value, the content would also be spoken as "Black

right-pointing pointer".

.expandable::before {

content: "\25BA" / "";

/* a.k.a. ► */

/* aria-expanded="false" already in DOM,

 so this pseudo-element is decorative */

}

2. <content-list> Values and Functions

2.1. String

‘<string>’

Note: White space in the string is handled the same as in literal text, and controlled by the

properties in [CSS-TEXT-3] and elsewhere. In particular, white space character can collapse,

even across multiple strings, such as in ‘content: "First " " Second";’, which by default will

render similar to "First Second" (with a single visible space between the two words).

2.2. <image>

‘<image>’

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

8 of 41 27/01/2021, 09:00

The element’s descendants. Since this can only be used once per element (you can’t duplicate the

children if, e.g., one is a plugin or form control), it is handled as follows:

Always honoured. Note that this is the default, since the initial value of ‘content’ is ‘normal’

and ‘normal’ computes to ‘contents’ on an element.

Check to see that it is not set on a "previous" pseudo-element, in the following order, depth

first:

If it is already used, then it evaluates to nothing (like ‘none’). Only pseudo-elements that are

actually generated are checked.

ISSUE 4 CSS2.1 explicitly allowed the UA to substitute a broken image icon if the image was

invalid. However, no browser appears to do this. Is this removal okay?

2.3. Element Content

‘contents’

If set on the element:

If set on one of the element’s other pseudo-elements:

1. the element itself

2. ::before

3. ::after

ISSUE 5 Should this behave as an empty string on pseudo-elements?

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

9 of 41 27/01/2021, 09:00

HTML has long had the q element, used to delimit quotations. The ‘quotes’ property, in conjunction

with the various ‘*-quote’ values of the ‘content’ property, can be used to properly style such

quotations.

EXAMPLE 6

In the following case:

foo { content: normal; } /* this is the initial value */

foo::after { content: contents; }

...the element’s ‘content’ property would compute to ‘contents’ and the after pseudo element

would have no contents (equivalent to ‘none’) and thus would not appear.

foo { content: none; }

foo::after { content: contents; }

But in this example, the ::after pseudo-element will contain the contents of the foo element.

ISSUE 6 Use cases for suppressing the content on the element and using it in a pseudo-element

would be welcome.

Note: While it is useless to include ‘contents’ twice in a single ‘content’ property, that is not a

parse error. The second occurrence simply has no effect, as it has already been used. It is also not a

parse error to use it on a ‘::marker’ pseudo-element, it is only during the rendering stage that it

gets treated like ‘none’.

ISSUE 7 Do we need the statement about marker pseudo-elements here? Or is this legacy from

the old version of the spec?

2.4. Quotes

2.4.1. Specifying quotes with the ‘quotes’ property

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

10 of 41 27/01/2021, 09:00

Name: ‘quotes’

Value: auto | none | [<string> <string>]+

Initial: auto

Applies to: all elements

Inherited: yes

Percentages: n/a

Computed

value:

the keyword ‘none’, the keyword ‘auto’, or a list, each item a pair of string

values

Canonical

order:

per grammar

Animation

type:

discrete

User Agents are expected to support this property on all media, including non-visual ones.

This property specifies quotation marks for any number of embedded quotations. Values have the

following meanings:

The ‘open-quote’ and ‘close-quote’ values of the ‘content’ property produce no quotations marks,

as if they were ‘no-open-quote’ and ‘no-close-quote’ respectively.

A typographically appropriate used value for ‘quotes’ is automatically chosen by the UA based

on the content language of the element and/or its parent.

Values for the ‘open-quote’ and ‘close-quote’ values of the ‘content’ property are taken from this

list of pairs of quotation marks (opening and closing). The first (leftmost) pair represents the

‘none’

‘auto’

Note: The Unicode Common Locale Data Repository [CLDR] maintains information on

typographically appropriate quotation marks. UAs can use other sources of information as

well, particularly as typographic preferences can vary; however it is encouraged to submit

any improvements to Unicode so that the entire software ecosystem can benefit.

[<string> <string>]+

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

11 of 41 27/01/2021, 09:00

outermost level of quotation, the second pair the first level of embedding, etc. The user agent

must apply the appropriate pair of quotation marks according to the level of embedding.

<quote> = open-quote | close-quote | no-open-quote | no-close-quote

These values are replaced by the appropriate string from the ‘quotes’ property, and increments

(decrements) the level of nesting for quotes. See § 2.4.1 Specifying quotes with the quotes

property for more information.

Inserts nothing (as in ‘none’), but increments (decrements) the level of nesting for quotes. See

§ 2.4.1 Specifying quotes with the quotes property for more information.

Quotation marks are inserted in appropriate places in a document with the ‘open-quote’ and ‘close-

quote’ values of the ‘content’ property. Each occurrence of ‘open-quote’ or ‘close-quote’ is replaced

by one of the strings from the value of ‘quotes’, based on the depth of nesting.

‘open-quote’ refers to the first of a pair of quotes, ‘close-quote’ refers to the second. Which pair of

quotes is used depends on the nesting level of quotes: the number of occurrences of ‘open-quote’ in all

generated text before the current occurrence, minus the number of occurrences of ‘close-quote’. If the

depth is 0, the first pair is used, if the depth is 1, the second pair is used, etc. If the depth is greater

than the number of pairs, the last pair is repeated.

Note that this quoting depth is independent of the nesting of the source document or the formatting

structure.

Some typographic styles require open quotation marks to be repeated before every paragraph of a

quote spanning several paragraphs, but only the last paragraph ends with a closing quotation mark. In

CSS, this can be achieved by inserting "phantom" closing quotes. The keyword ‘no-close-quote’

decrements the quoting level, but does not insert a quotation mark.

2.4.2. The *-quote values of the content property

‘open-quote’
‘close-quote’

‘no-open-quote’
‘no-close-quote’

Note: Quote nesting, like counter inheritance, operates on the “flattened element tree” in the

context of the [DOM].

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

12 of 41 27/01/2021, 09:00

For symmetry, there is also a ‘no-open-quote’ keyword, which inserts nothing, but increments the

quotation depth by one.

EXAMPLE 7

The following style sheet puts opening quotation marks on every paragraph in a blockquote , and

inserts a single closing quote at the end:

blockquote p:before { content: open-quote }

blockquote p:after { content: no-close-quote }

blockquote p:last-child::after { content: close-quote }

Note: If a quotation is in a different language than the surrounding text, it is customary to quote the

text with the quote marks of the language of the surrounding text, not the language of the quotation

itself.

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

13 of 41 27/01/2021, 09:00

EXAMPLE 8

For example, French inside English:

The device of the order of the garter is “Honi soit qui mal y pense.”

English inside French:

Il disait: « Il faut mettre l’action en ‹ fast forward ›. »

A style sheet like the following will set the ‘quotes’ property so that ‘open-quote’ and ‘close-

quote’ will work correctly on all elements. These rules are for documents that contain only

English, French, or both. One rule is needed for every additional language. Note the use of the

child combinator (">") to set quotes on elements based on the language of the surrounding text:

:lang(fr) > * { quotes: "\00AB\2005" "\2005\00BB" "\2039\2005" "\2005\203A" }

:lang(en) > * { quotes: "\201C" "\201D" "\2018" "\2019" }

The quotation marks are shown here in a form that most people will be able to type. If you can

type them directly, they will look like this:

:lang(fr) > * { quotes: "« " " »" "‹ " " ›" }

:lang(en) > * { quotes: "“" "”" "‘" "’" }

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

14 of 41 27/01/2021, 09:00

EXAMPLE 9

For example, applying the following style sheet:

/* Specify pairs of quotes for two levels in two languages */

:lang(en) > q { quotes: '"' '"' "'" "'" }

:lang(no) > q { quotes: "«" "»" "’" "’" }

/* Insert quotes before and after Q element content */

q::before { content: open-quote }

q::after { content: close-quote }

to the following HTML fragment:

<html lang="en">

 <head>

 <title>Quotes</title>

 </head>

 <body>

 <p><q>Quote me!</q></p>

 </body>

</html>

would allow a user agent to produce:

"Quote me!"

while this HTML fragment:

<html lang="no">

 <head>

 <title>Quotes</title>

 </head>

 <body>

 <p><q>Trøndere gråter når <q>Vinsjan på kaia</q> blir deklamert.</q></p>

 </body>

</html>

would produce:

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

15 of 41 27/01/2021, 09:00

A leader, sometimes known as a tab leader or a dot leader, is a repeating pattern used to visually

connect content across horizontal spaces. They are most commonly used in tables of contents, between

titles and page numbers. The ‘leader()’ function, as a value for the content property, is used to create

leaders in CSS. This function takes a string (the leader string), which describes the repeating pattern

for the leader.

Inserts a leader. See the section on leaders for more information.

leader() = leader(<leader-type>)

<leader-type> = dotted | solid | space | <string>

Three keywords are shorthand values for common strings:

Equivalent to ‘leader(".")’

Equivalent to ‘leader("_")’

Equivalent to ‘leader(" ")’

Issue: Define this.

«Trøndere gråter når ’Vinsjan på kaia’ blir deklamert.»

2.5. Leaders

2.5.1. The ‘leader()’ function

‘leader(<leader-type>)’

‘dotted’

‘solid’

‘space’

‘<string>’

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

16 of 41 27/01/2021, 09:00

Consider a line which contains the content before the leader (the “before content”), the leader, and the

content after the leader (the “after content”). Leaders obey the following rules:

EXAMPLE 10

ol.toc a::after {

content: leader('.') target-counter(attr(href), page);

}

<h1>Table of Contents</h1>

<ol class="toc">

Loomings

The Carpet-Bag

The Spouter-Inn

This might result in:

Table of Contents

1. Loomings.....................1

2. The Carpet-Bag...............9

3. The Spouter-Inn.............13

ISSUE 8 Do leaders depend on the assumption that the content after the leader is right-aligned

(end-aligned)?

2.5.2. Rendering leaders

1. The leader string must appear in full at least once.

2. The leader should be as long as possible

3. Visible characters in leaders should vertically align with each other when possible.

4. Line break characters in the leader string must be ignored.

5. White space in the leader string follows normal CSS rules.

6. A leader only appears between the start content and the end content.

7. A leader only appears on a single line, even if the before content and after content are on different

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

17 of 41 27/01/2021, 09:00

lines.

8. A leader can’t be the only thing on a line.

2.5.3. Procedure for rendering leaders

1. Lay out the before content, until reaching the line where the before content ends.

BBBBBBBBBB

BBB

2. The leader string consists of one or more glyphs, and is thus an inline box. A leader is a row of

these boxes, drawn from the end edge to the start edge, where only those boxes not overlaid by

the before or after content. On this line, draw the leader string, starting from the end edge,

repeating as many times as possible until reaching the start edge.

BBBBBBBBBB

..........

3. Draw the before and after content on top of the leader. If any part of the before content or after

content overlaps a glyph in a leader string box, that glyph is not displayed.

BBBBBBBBBB

BBB....AAA

4. If one full copy of the leader string is not visible:

BBBBBBB

BBBBBBA

Insert a line break after the before content, draw the leader on the next line, and draw the after

content on top, and hide any leader strings that are not fully displayed.

BBBBBBB

BBBBBB

......A

ISSUE 9 what to do if after content is wider than the line box?

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

18 of 41 27/01/2021, 09:00

Figure 1 Procedure for drawing leaders

Figure 2 Procedure for drawing leaders when the content doesn’t fit on a single line

ISSUE 10 Leaders don’t quite work in table layouts. How can we fix this?

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

19 of 41 27/01/2021, 09:00

Many documents contain internal references:

Three new values for the content property are used to automatically create these types of cross-

references: ‘target-counter()’, ‘target-counters()’, and ‘target-text()’. Each of these displays

information obtained from the target end of a link.

<target> = <target-counter()> | <target-counters()> | <target-text()>

See sections below for details on each of these.

target-counter() = target-counter([<string> | <url>] , <custom-ident> , <counter-style>

The ‘target-counter()’ function retrieves the value of the innermost counter with a given name. The

required arguments are the url of the target and the name of the counter. An optional counter-style

argument can be used to format the result.

These functions only take a fragment URL which points to a location in the current document. If

there’s no fragment, if the ID referenced isn’t there, or if the URL points to an outside document, the

user agent must treat that as an error.

2.6. Cross references and the target-* functions

EXAMPLE 11

See chapter 7

in section 4.1

on page 23

2.6.1. The ‘target-counter()’ function

ISSUE 11 what should error handling be?

ISSUE 12 restrict syntactically to local references for now.

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

20 of 41 27/01/2021, 09:00

EXAMPLE 12

HTML:

…which will be discussed on page .

CSS:

a::after { content: target-counter(attr(href url), page) }

Result:

…which will be discussed on page 137.

EXAMPLE 13

Page numbers in tables of contents can be generated automatically:

HTML:

<nav>

 <li class="frontmatter">Preface

 <li class="frontmatter">Introduction

 <li class="bodymatter">Chapter One

</nav>

CSS:

.frontmatter a::after { content: leader('.') target-counter(attr(href url), page

.bodymatter a::after { content: leader('.') target-counter(attr(href url), page

Result:

Preface.............vii

Introduction.........xi

Chapter One...........1

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

21 of 41 27/01/2021, 09:00

This functions fetches the value of all counters of a given name from the end of a link, and formats

them by inserting a given string between the value of each nested counter.

target-counters() = target-counters([<string> | <url>] , <custom-ident> , <string>

The ‘target-text()’ function retrieves the text value of the element referred to by the URL. An optional

second argument specifies what content is retrieved, using the same values as the ‘string-set’ property

above.

target-text() = target-text([<string> | <url>] , [content | before | after | first-letter

2.6.2. The ‘target-counters()’ function

EXAMPLE 14

I have not found a compelling example for target-counters() yet.

ISSUE 13 found a compelling example, in CSS specs. Do something.

2.6.3. The ‘target-text()’ function

ISSUE 14 A simpler syntax has been proposed by fantasai: http://lists.w3.org/Archives/Public

/www-style/2012Feb/0745.html

EXAMPLE 15

…which will be discussed later.

a::after { content: ", in the chapter entitled " target-text(attr(href url)) }

Result: …which will be discussed later, in the chapter entitled Loomings.

2.7. Named strings

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

22 of 41 27/01/2021, 09:00

This section introduces named strings, which are the textual equivalent of counters and which have a

distinct namespace from counters. Named strings follow the same nesting rules as counters. The

‘string-set’ property accepts values similar to the ‘content’ property, including the extraction of the

current value of counters.

Named strings are a convenient way to pull metadata out of the document for insertion into headers

and footers. In HTML, for example, META elements contained in the document HEAD can set the

value of named strings. In conjunction with attribute selectors, this can be a powerful mechanism:

Name: ‘string-set’

Value: none | [<custom-ident> <string>+]#

Initial: none

Applies to: all elements, but not pseudo-elements

Inherited: no

EXAMPLE 16

meta[author] { string-set: author attr(author); }

head > title { string-set: title contents; }

@page:left {

@top {

text-align: left;

vertical-align: middle;

content: string(title);

}

}

@page:right {

@top {

text-align: right;

vertical-align: middle;

content: string(author);

}

}

2.7.1. The string-set property

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

23 of 41 27/01/2021, 09:00

Percentages: N/A

Computed

value:

the keyword ‘none’ or a list, each item an identifier paired with a list of

string values

Canonical

order:

per grammar

Animation

type:

discrete

User Agents are expected to support this property on all media, including non-visual ones.

The ‘string-set’ property copies the text content of an element into a ‘named string’, which functions

as a variable. The text content of this named string can be retrieved using the ‘string()’ function. Since

these variables may change on a given page, an optional second value for the ‘string()’ function allows

authors to choose which value on a page is used.

The element does not set any named strings.

The element establishes one or more named strings, corresponding to each comma-separated

entry in the list.

For each entry, the <custom-ident> gives the name of the named string. It’s followed by one or

more <string> values, which are concatenated together to form the value of the named string.

If an element has style containment, the ‘string-set’ property must have no effects on descendants of

that element.

‘none’

[<custom-ident> <string>+]#

EXAMPLE 17

The following example captures the contents of H1 elements, which represent chapter names in

this hypothetical document.

H1 { string-set: chapter contents; }

When an H1 element is encountered, the ‘chapter’ string is set to the element’s textual contents,

and the previous value of ‘chapter’, if any, is overwritten.

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

24 of 41 27/01/2021, 09:00

string() = string(<custom-ident> , [first | start | last | first-except]?)

The ‘string()’ function is used to copy the value of a named string to the document, via the ‘content’

property. This function requires one argument, the name of the named string. Since the value of a

named string may change several times on a page (as multiple elements defining the string can appear)

an optional second argument indicates which value of the named string should be used.

The second argument of the ‘string()’ function is one of the following keywords:

The value of the first assignment on the page is used. If there is no assignment on the page, the

entry value is used. If no second argument is provided, this is the default value.

If the element is the first element on the page, the value of the first assignment is used. Otherwise

the entry value is used. The entry value may be empty if the named string hasn’t yet appeared.

The exit value of the named string is used.

This is identical to ‘first’, except that the empty string is used on the page where the value is

assigned.

The content values of named strings are assigned at the point when the content box of the element is

first created (or would have been created if the element’s display value is none). The entry value for a

page is the assignment in effect at the end of the previous page. The exit value for a page is the

assignment in effect at the end of the current page.

2.7.2. The ‘string()’ function

‘first’

‘start’

‘last’

‘first-except’

ISSUE 15 we may need to kill the entire content string. Is this necessary?

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

25 of 41 27/01/2021, 09:00

EXAMPLE 18

CSS:

@page {

size: 15cm 10cm;

margin: 1.5cm;

@top-left {

content: "first: " string(heading, first);

}

@top-center {

content: "start: " string(heading, start);

}

@top-right {

content: "last: " string(heading, last);

}

}

h2 { string-set: heading content() }

The following figures show the first, start, and last assignments of the “heading” string on various

pages.

Figure 3 The ‘start’ value is empty, as the string had not yet been set at the start of the page.

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

26 of 41 27/01/2021, 09:00

Figure 4 Since the page starts with an h2, the ‘start’ value is the value of that head.

Figure 5 Since there’s not an h2 at the top of this page, the ‘start’ value is the exit value of the previous page.

2.7.3. The ‘content()’ function

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

27 of 41 27/01/2021, 09:00

content() = content([text | before | after | first-letter | marker]?)

The string value of the element. If no value is specified in ‘content()’, it acts as if ‘text’ were

specified.

The string value of the ‘::before’ pseudo-element.

The string value of the ‘::after’ pseudo-element.

The first letter of the element, as defined for the ‘::first-letter’ pseudo-element

The string value of the ‘::marker’ pseudo-element.

‘text’

‘before’

‘after’

‘first-letter’

‘marker’

EXAMPLE 19

HTML:

<h1>Loomings</h1>

CSS:

h1::before { content: 'Chapter ' counter(chapter); }

h1 { string-set: header content(before) ':' content(text); }

h1::after { content: '.'; }

The value of the named string “header” will be “Chapter 1: Loomings”.

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

28 of 41 27/01/2021, 09:00

Some document formats, most notably PDF, allow the use of bookmarks as an aid to navigation.

Bookmarks provide a list of links to document elements, as well as text to label the links and a level

value. A bookmark has three properties: ‘bookmark-level’, ‘bookmark-label’, and ‘bookmark-state’.

When a user activates a bookmark, the user agent must bring that reference point to the user’s

attention, exactly as if navigating to that element by fragment URL.

If an element has style containment, the ‘bookmark-level’, ‘bookmark-label’, and ‘bookmark-state’

properties must have no effect on descendants of the element.

The ‘bookmark-level’ property determines if a bookmark is created, and at what level. If this property

EXAMPLE 20

HTML:

<section title="Loomings">

CSS:

section { string-set: header attr(title) }

The value of the “header” string will be “Loomings”.

3. Automatic counters and numbering: the ‘counter-increment’ and
‘counter-reset’ properties (moved)

ISSUE 16 Now described in [CSS3LIST]

ISSUE 17 Should this move back to CSS Content?

4. Bookmarks

This will also trigger

matching the ‘:target’ pseudo-class.

4.1. bookmark-level

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

29 of 41 27/01/2021, 09:00

is absent, or has value ‘none’, no bookmark should be generated, regardless of the values of

‘bookmark-label’ or ‘bookmark-state’.

Name: ‘bookmark-level’

Value: none | <integer>

Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Computed

value:

the keyword ‘none’ or the specified integer

Canonical

order:

per grammar

Animation

type:

by computed value type

defines the level of the bookmark, with the top level being 1 (negative and zero values are

invalid).

no bookmark is generated.

‘<integer>’

‘none’

EXAMPLE 21

section h1 { bookmark-level: 1; }

section section h1 { bookmark-level: 2; }

section section section h1 { bookmark-level: 3; }

Note: Bookmarks do not need to create a strict hierarchy of levels.

ISSUE 18 Should a bookmark be created for elements with display: none?

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

30 of 41 27/01/2021, 09:00

Name: ‘bookmark-label’

Value: <content-list>

Initial: content(text)

Applies to: all elements

Inherited: no

Percentages: N/A

Computed

value:

specified value

Canonical

order:

per grammar

Animation

type:

discrete

<content-list> is defined above, in the section on the ‘string-set’ property. The value of <content-

list> becomes the text content of the bookmark label.

4.2. bookmark-label

‘<content-list>’

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

31 of 41 27/01/2021, 09:00

The ‘bookmark-state’ may be open or closed. The user must be able to toggle the bookmark state.

Name: ‘bookmark-state’

Value: open | closed

Initial: open

Applies to: block-level elements

Inherited: no

Percentages: N/A

Computed

value:

specified keyword

Canonical

order:

per grammar

Animation

type:

discrete

EXAMPLE 22

HTML:

<h1>Loomings</h1>

CSS:

h1 {

bookmark-label: content(text);

bookmark-level: 1;

}

The bookmark label will be “Loomings”.

4.3. bookmark-state

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

32 of 41 27/01/2021, 09:00

Subsequent bookmarks with ‘bookmark-level’ greater than the given bookmark are displayed,

until reaching another bookmark of the same level or lower. If one of subsequent bookmark is

closed, apply the same test to determine if its subsequent bookmarks should be displayed.

Subsequent bookmarks of bookmark-level greater than the given bookmark are not displayed,

until reaching another bookmark of the same level or lower.

Significant changes since the 2 June 2016 Working Draft consist primarily of:

See also previous changes.

Stuart Ballard, David Baron, Bert Bos, Tantek Çel൴k, and James Craig provided invaluable suggestions

used in this specification.

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119

terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative

parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,

‘open’

‘closed’

ISSUE 19 Is the initial bookmark state, or the bookmark state updated by the UA as

appropriate?

5. Changes since the 2 June 2016 Working Draft

Adding ‘auto’ as the initial value of ‘quotes’.

Lots of miscellaneous spec clean up: errors, cross-references, overly-loose or sloppy definitions,

etc.

Acknowledgements

Conformance

Document conventions

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

33 of 41 27/01/2021, 09:00

examples, and notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example" , like this:

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note" , like this:

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement"> , like this:

UAs MUST provide an accessible alternative.

Conformance to this specification is defined for three conformance classes:

A CSS style sheet.

A UA that interprets the semantics of a style sheet and renders documents that use them.

A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this

module are valid according to the generic CSS grammar and the individual grammars of each feature

defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined

by the appropriate specifications, it supports all the features defined by this specification by parsing

them correctly and rendering the document accordingly. However, the inability of a UA to correctly

render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

EXAMPLE 23

This is an example of an informative example.

Note, this is an informative note.

Conformance classes

style sheet

renderer

authoring tool

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

34 of 41 27/01/2021, 09:00

An authoring tool is conformant to this specification if it writes style sheets that are syntactically

correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,

user agents must not selectively ignore unsupported component values and honor supported values in

a single multi-value property declaration: if any value is considered invalid (as unsupported values

must be), CSS requires that the entire declaration be ignored.

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprietary extensions to CSS.

Once a specification reaches the Candidate Recommendation stage, non-experimental

implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working

Group requests that non-experimental CSS renderers submit an implementation report (and, if

necessary, the testcases used for that implementation report) to the W3C before releasing an

unprefixed implementation of any CSS features. Testcases submitted to W3C are subject to review and

correction by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS

Working Group’s website at http://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

Partial implementations

Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

35 of 41 27/01/2021, 09:00

Terms defined by this specification

after, in §2.7.3

auto, in §2.4.1

before, in §2.7.3

bookmark-label, in §4.2

bookmark-level, in §4.1

bookmarks, in §4

bookmark-state, in §4.3

closed, in §4.3

close-quote, in §2.4.2

content, in §1

content(), in §2.7.3

<content-list>

type for content, in §1

value for bookmark-label, in §4.2

<content-replacement>, in §1

contents, in §2.3

dotted, in §2.5.1

entry value, in §2.7.2

exit value, in §2.7.2

first, in §2.7.2

first-except, in §2.7.2

first-letter, in §2.7.3

<image>, in §2.2

<integer>, in §4.1

last, in §2.7.2

leader()

(function), in §2.5.1

function for content, <content-list>, in §2.5.1

<leader-type>, in §2.5.1

marker, in §2.7.3

named string, in §2.7

no-close-quote, in §2.4.2

none

value for bookmark-level, in §4.1

value for content, in §1

value for quotes, in §2.4.1

value for string-set, in §2.7.1

no-open-quote, in §2.4.2

normal, in §1

open, in §4.3

open-quote, in §2.4.2

<quote>, in §2.4.2

quotes, in §2.4.1

solid, in §2.5.1

space, in §2.5.1

start, in §2.7.2

<string>

value for content, <content-list>, in §2.1

value for leader(), in §2.5.1

string(), in §2.7.2

/ [<string> | <counter>]+, in §1

string-set, in §2.7.1

<target>, in §2.6

target-counter(), in §2.6.1

target-counters(), in §2.6.2

target-text(), in §2.6.3

text, in §2.7.3

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

36 of 41 27/01/2021, 09:00

Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 5. 19

January 2021. WD. URL: https://www.w3.org/TR/css-cascade-5/

Tab Atkins Jr.; Florian Rivoal; Vladimir Levin. CSS Containment Module Level 2. 16 December

2020. WD. URL: https://www.w3.org/TR/css-contain-2/

Terms defined by reference

[css-cascade-5] defines the following terms:

used value

[css-contain-2] defines the following terms:

style containment

[css-counter-styles-3] defines the following

terms:

<counter-style>

[css-display-3] defines the following terms:

display

[css-images-3] defines the following terms:

<image>

natural dimension

[css-images-4] defines the following terms:

invalid image

[css-pseudo-4] defines the following terms:

::after

::before

::first-letter

::marker

[CSS-TEXT-3] defines the following terms:

content language

white space

[CSS-VALUES-3] defines the following terms:

<integer>

<string>

<url>

[css-values-4] defines the following terms:

#

+

,

<custom-ident>

?

css-wide keywords

|

[CSS3LIST] defines the following terms:

<counter>

counter-increment

counter-reset

[HTML] defines the following terms:

img

[selectors-4] defines the following terms:

:target

originating element

References

Normative References

[CSS-CASCADE-5]

[CSS-CONTAIN-2]

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

37 of 41 27/01/2021, 09:00

Tab Atkins Jr.. CSS Counter Styles Level 3. 14 December 2017. CR. URL: https://www.w3.org

/TR/css-counter-styles-3/

Tab Atkins Jr.; Elika Etemad. CSS Display Module Level 3. 18 December 2020. CR. URL:

https://www.w3.org/TR/css-display-3/

Tab Atkins Jr.; Elika Etemad; Lea Verou. CSS Images Module Level 3. 17 December 2020. CR.

URL: https://www.w3.org/TR/css-images-3/

Tab Atkins Jr.; Elika Etemad; Lea Verou. CSS Image Values and Replaced Content Module Level

4. 13 April 2017. WD. URL: https://www.w3.org/TR/css-images-4/

Daniel Glazman; Elika Etemad; Alan Stearns. CSS Pseudo-Elements Module Level 4. 31

December 2020. WD. URL: https://www.w3.org/TR/css-pseudo-4/

Elika Etemad; Koji Ishii; Florian Rivoal. CSS Text Module Level 3. 22 December 2020. CR.

URL: https://www.w3.org/TR/css-text-3/

Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. 6 June 2019. CR. URL:

https://www.w3.org/TR/css-values-3/

Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. 11 November 2020. WD.

URL: https://www.w3.org/TR/css-values-4/

Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011.

REC. URL: https://www.w3.org/TR/CSS21/

Daniel Weck. CSS Speech Module. 10 March 2020. CR. URL: https://www.w3.org/TR/css-

speech-1/

Elika Etemad; Tab Atkins Jr.. CSS Lists and Counters Module Level 3. 17 November 2020. WD.

URL: https://www.w3.org/TR/css-lists-3/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

[CSS-COUNTER-STYLES-3]

[CSS-DISPLAY-3]

[CSS-IMAGES-3]

[CSS-IMAGES-4]

[CSS-PSEUDO-4]

[CSS-TEXT-3]

[CSS-VALUES-3]

[CSS-VALUES-4]

[CSS2]

[CSS3-SPEECH]

[CSS3LIST]

[RFC2119]

[SELECTORS-4]

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

38 of 41 27/01/2021, 09:00

Elika Etemad; Tab Atkins Jr.. Selectors Level 4. 21 November 2018. WD. URL:

https://www.w3.org/TR/selectors-4/

Unicode Common Locale Data Repository. URL: http://cldr.unicode.org/

Anne van Kesteren. DOM Standard. Living Standard. URL: https://dom.spec.whatwg.org/

Anne van Kesteren; et al. HTML Standard. Living Standard. URL: https://html.spec.whatwg.org

/multipage/

Name Value Initial Applies to Inh. %ages
Anim‐

ation type

Canonical

order

Computed

value

‘bookmark-

label’
<content-list> content(text) all elements no N/A discrete

per

grammar

specified

value

‘bookmark-

level’
none | <integer> none all elements no N/A

by

computed

value type

per

grammar

the keyword

none or the

specified

integer

‘bookmark-

state’
open | closed open

block-level

elements
no N/A discrete

per

grammar

specified

keyword

‘content’

normal | none | [

<content-

replacement> |

<content-list>] [/

[<string> |

<counter>]+]?

normal

all elements,

tree-abiding

pseudo-

elements,

and page

margin boxes

no n/a discrete
per

grammar

See prose

below

‘quotes’

auto | none | [

<string> <string>

]+

auto all elements yes n/a discrete
per

grammar

the keyword

none, the

keyword auto,

or a list, each

item a pair of

string values

Informative References

[CLDR]

[DOM]

[HTML]

Property Index

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

39 of 41 27/01/2021, 09:00

Name Value Initial Applies to Inh. %ages
Anim‐

ation type

Canonical

order

Computed

value

‘string-set’

none | [<custom-

ident> <string>+

]#

none

all elements,

but not

pseudo-

elements

no N/A discrete
per

grammar

the keyword

none or a list,

each item an

identifier

paired with a

list of string

values

Issues Index

ISSUE 1 The above invalid image behavior appears to be what Chrome is doing. Is this okay? Is

there a better behavior we can/should use? ↵

ISSUE 2 Should the contents keyword be replaced with ‘content()’? ↵

ISSUE 3 Start work on an AAM for CSS. ↵

ISSUE 4 CSS2.1 explicitly allowed the UA to substitute a broken image icon if the image was

invalid. However, no browser appears to do this. Is this removal okay? ↵

ISSUE 5 Should this behave as an empty string on pseudo-elements? ↵

ISSUE 6 Use cases for suppressing the content on the element and using it in a pseudo-element

would be welcome. ↵

ISSUE 7 Do we need the statement about marker pseudo-elements here? Or is this legacy from

the old version of the spec? ↵

ISSUE 8 Do leaders depend on the assumption that the content after the leader is right-aligned

(end-aligned)? ↵

ISSUE 9 what to do if after content is wider than the line box? ↵

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

40 of 41 27/01/2021, 09:00

ISSUE 10 Leaders don’t quite work in table layouts. How can we fix this? ↵

ISSUE 11 what should error handling be? ↵

ISSUE 12 restrict syntactically to local references for now. ↵

ISSUE 13 found a compelling example, in CSS specs. Do something. ↵

ISSUE 14 A simpler syntax has been proposed by fantasai: http://lists.w3.org/Archives/Public

/www-style/2012Feb/0745.html ↵

ISSUE 15 we may need to kill the entire content string. Is this necessary? ↵

ISSUE 16 Now described in [CSS3LIST] ↵

ISSUE 17 Should this move back to CSS Content? ↵

ISSUE 18 Should a bookmark be created for elements with display: none? ↵

ISSUE 19 Is the initial bookmark state, or the bookmark state updated by the UA as

appropriate? ↵

CSS Generated Content Module Level 3 https://drafts.csswg.org/css-content/

41 of 41 27/01/2021, 09:00

