CSS Images Module Level 3

W3C Candidate Recommendation Draft, 17 December 2020

This version:
https://www.w3.org/TR/2020/CRD-css-images-3-20201217/

Latest published version:
https://www.w3.org/TR/css-images-3/

Editor's Draft:
https://drafts.csswg.org/css-images-3/

Previous Versions:
https:// www.w3.org/TR/2019/CR-css-images-3-20191010/

https:// www.w3.org/TR/2012/CR-css3-images-20120417/

Implementation Report:
https://wpt.fyi/results/css/css-images?label=experimental &label=master&aligned

Test Suite:
http://test.csswg.org/suites/css-images-3_dev/nightly-unstable/

Issue Tracking:
CSSWG Issues Repository

Inline In Spec

Editors:
Tab Atkins Jr. (Google)
Elika J. Etemad / fantasai (Invited Expert)
Lea Verou (Invited Expert)

Suggest an Edit for this Spec:
GitHub Editor

Copyright © 2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules
apply.

Abstract

This module contains the features of CSS level 3 relating to the <image> type and some replaced
elements. It includes and extends the functionality of CSS level 2 [CSS2]. The main extensions
compared to CSS2.1 are the generalization of the <url> type to the <image> type, several additions to

the <image> type, a generic sizing algorithm for images and other replaced content in CSS, definitions

for interpolating several <image> types, and several properties controlling the interaction of replaced

elements and CSS’s layout models.

SS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This document was published by the CSS Working Group as a Candidate Recommendation Draft.

Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership. A
Candidate Recommendation Draft integrates changes from the previous Candidate Recommendation

that the Working Group intends to include in a subsequent Candidate Recommendation Snapshot.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It

1s inappropriate to cite this document as other than work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-images” in
the title, like this: “[css-images] ...summary of comment...”. All issues and comments are archived.

Alternately, feedback can be sent to the (archived) public mailing list www-style@w3.org.

This document is governed by the 15 September 2020 W3C Process Document.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page
also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

The following features are at-risk, and may be dropped during the CR period:

e ‘Image-orientation’

“At-risk” is a W3C Process term-of-art, and does not necessarily imply that the feature is in danger of
being dropped or delayed. It means that the WG believes the feature may have difficulty being
interoperably implemented in a timely manner, and marking it as such allows the WG to drop the
feature if necessary when transitioning to the Proposed Rec stage, without having to publish a new

Candidate Rec without the feature first.

Table of Contents

1.1
1.2

2.1
2.1.1
2.1.2

3.1
3.2
33

3.4

34.1
342
343

4.1
4.2
4.3
43.1
432
4.4
4.5
4.6

5.1
5.2

Introduction
Module Interactions

Value Definitions

Image Values: the <image> type
Image References: the ‘url()’” notation
Ambiguous Reference-or-Image URLs

Image Metadata

Gradients
Linear Gradients: the ‘linear-gradient()’ notation
Radial Gradients: the ‘radial-gradient()’ notation

Repeating Gradients: the ‘repeating-linear-gradient()” and ‘repeating-radial-gradient()’
notations

Defining Gradient Color
Color Stop Lists
Coloring the Gradient Line
Color Stop “Fixup”

Sizing Images and Objects in CSS
Object-Sizing Terminology
CSS=O0bject Negotiation
Concrete Object Size Resolution

Default Sizing Algorithm

Cover and Contain Constraint Sizing
Examples of CSS Object Sizing
Sizing Objects: the ‘object-fit” property
Positioning Objects: the ‘object-position’ property

Image Processing
Orienting an Image on the Page: the ‘image-orientation” property

Determining How To Scale an Image: the ‘image-rendering’ property
Interpolation

Serialization

Privacy and Security Considerations
Acknowledgments

Changes
Changes Since the 10 October 2019 Candidate Recommendation
Changes Since the 17 April 2012 Candidate Recommendation

Conformance
Document conventions
Conformance classes
Partial implementations
Implementations of Unstable and Proprietary Features
Non-experimental implementations

CR exit criteria

Index
Terms defined by this specification

Terms defined by reference

References
Normative References

Informative References
Property Index

Issues Index

1. Introduction

In CSS Levels 1 and 2, image values, such as those used in the ‘background-image’ property, could

only be given by a single URL value. This module introduces additional ways of representing 2D
images, for example as a gradient.

This module also defines several properties for manipulating raster images and for sizing or
positioning replaced elements such as images within the box determined by the CSS layout algorithms.

It also defines in a generic way CSS’s sizing algorithm for images and other similar replaced elements.

This subsection (above) is not normative.

1.1. Module Interactions

This module defines and extends the <image> value type defined in [CSS-VALUES-3]. It also

replaces the <url> type with <image> in the ‘background-image’, ‘cursor’, and ‘list-style-image’

definitions in CSS1 and CSS2 and adds <image> as an alternative to <url> in the ‘content’ property’s
value. It is presumed that CSS specifications beyond CSS2.1 will use the <image> notation in place of
<url> where 2D images are expected. (See e.g. [CSS3BG].)

None of the properties defined in this module, only ‘image-rendering’ applies to : : first-1line and
::first-letter.

1.2. Value Definitions

This specification follows the CSS property definition conventions from [CSS2]. using the value

definition syntax from [CSS-VALUES-3]. Value types not defined in this specification are defined in
CSS Level 2 Revision 1 [CSS2]. Other CSS modules may expand the definitions of these value types:
for example [CSS-VALUES-3], when combined with this module, adds the ‘initial’ keyword as a
possible property value.

In addition to the property-specific values listed in their definitions, all properties defined in this

specification also accept the CSS-wide keywords as their property value. For readability they have not

been repeated explicitly.

2. Image Values: the <image> type

The <image> value type denotes a 2D image. It can be a url reference or a color gradient. Its syntax is:

<image> = <url> | <gradient>

An <image> can be used in many CSS properties, including the ‘background-image’,

‘list-style-image’, ‘cursor’ properties [CSS2] (where it replaces the <url> component in the property’s

value).

In some cases an image is invalid, such as a <url> pointing to a resource that is not a valid image
format or that has failed to load. An invalid image is rendered as a solid-color ‘transparent’ image

with no natural dimensions. However, invalid images can trigger error-handling clauses in some

contexts. For example, an invalid image in ‘list-style-image’ is treated as ‘none’, allowing the
‘list-style-type’ to render in its place. [CSS2]

While an image is loading, is is a loading image. Loading images are not invalid images, but have

similar behavior: they are rendered as a solid-color ‘transparent’ image with no natural dimensions,
and may trigger fallback rendering in contexts that offer it, but must not trigger loading of fallback
resources. Alternately, if a loading image happens to be replacing an already-loaded image (for
example due to changes in the document or style sheet) and the UA is tracking this information, it may

continue to render the already-loaded image in place of the loading image.

Partially-loaded images (whose natural dimensions are known, but whose image data is not fully

loaded) may be either treated as loading images or as loaded images rendered with partial data. For

example, a UA may render an interlaced GIF in place as soon as its first pass of pixel data has loaded
or even as soon as the image header (which contains sizing data) has parsed and refresh the rendering

as more data loads; or it may wait until the entire image has loaded before using it.

A computed <image> value is the specified value with any <url>s, <color>s, and <length>s

computed.

2.1. Image References: the ‘url()’ notation

The simplest way to indicate an image is to reference an image file by URL. This can be done with the
‘url()’ notation, defined in [CSS-VALUES-3].

EXAMPLE 1
In the example below, a background image is specified with ‘url()’syntax:

background-image: url(wavy.png);

If the UA cannot download, parse, or otherwise successfully display the contents at the URL as an

image (i.e. if the image is not fully fully decodable) it must be treated as an invalid image.

2.1.1. Ambiguous Reference-or-Image URLSs

URLs are used in many contexts for many types of resources, and therefore can be interpreted in many
ways. Usually the context the URL appears in makes it clear how to interpret the resource, but in some

instances it can be ambiguous. For example, a ‘mask-image’ <url> value pointing to an SVG file could

be interpreted as a reference to an element in the file or as an <image>.

An ambiguous image URL is a <url> value that can be interpreted as either an <image> or an element

reference. If an ambiguous image URL is a fragment-only URL, then it must be treated as an element

reference. Otherwise, if the ambiguous image URL has a fragment that references an element in the
resource that is an appropriate type of element for the context in which the <url> appears (such as a

<mask> element for the ‘mask-image’ property), it is interpreted as an element reference. Otherwise, it

is treated as an <image>.

Specs using the ambiguous image URL concept must define what elements are valid references for the

URL, and any additional conditions that might apply.

EXAMPLE 2
For example, a reference like ‘mask-image: url(icon.svg#foo)’ might be pointing to a <mask
id="foo0"> element in the SVG document, or be pointing to a <g id="foo"> element and

depending on the ‘:target’ pseudo-class to change how it renders as an image.

When this occurs, the "icon.svg" file is loaded up and examined; if the #foo element is indeed a

<mask>, the ‘url()’ is treated as a reference to that element; otherwise, it’s interpreted as an image.

2.1.2. Image Metadata

Images can contain metadata such as resolution and orientation which specifies how to render the
image. Some image formats are flexible in where this metadata can be placed in the file; however, if
the metadata occurs affer the actual image data, it harms the UA’s ability to “progressively decode” the

image and display it as the image’s data streams in.
To reduce the impact of this issue:

e Authors must produce their image files so that such metadata occurs before the image data in the
image file. (Note: This is the default for most images already.)

o User agents should ignore any layout-impacting metadata (such as orientation or resolution) that
occurs after the image data begins in the file. (Note: This rule does not impact metadata that does

not affect layout, such as color space information.)

If a user agent cannot ignore the metadata based its location in the file (for example, if the
decoder being used does not report where in the file the metadata was located), it must use the
metadata in all cases. (In particular, it is not valid to use the metadata only when the image is
"small" and the entire file is downloaded quickly, but to ignore it if the image is large and the

metadata isn’t downloaded until well after the image starts being displayed.)

3. Gradients

A gradient is an image that smoothly fades from one color to another. These are commonly used for
subtle shading in background images, buttons, and many other things. The gradient functions
described in this section allow an author to specify such an image in a terse syntax, so that the UA can

generate the image automatically when rendering the page. The syntax of a <gradient> is:

<gradient> =
<linear-gradient()> | <repeating-linear-gradient()> |

<radial-gradient()> | <repeating-radial-gradient()>

EXAMPLE 3

As with the other <image> types defined in this specification, gradients can be used in any
property that accepts images. For example:

e background: linear-gradient(white, gray);

e list-style-image: radial-gradient(circle, #006, #00a 90%, #0000af 100%,
white 100%)

A gradient is drawn into a box with the dimensions of the concrete object size, referred to as the

gradient box. However, the gradient itself has no natural dimensions.

EXAMPLE 4
For example, if you use a gradient as a background, by default the gradient will draw into a

gradient box the size of the element’s padding box. If ‘background-size’ is explicitly set to a value

such as “100px 200px’, then the gradient box will be 100px wide and 200px tall. Similarly, for a

gradient used as a ‘list-style-image’, the box would be a 1em square, which is the default object
size for that property.

Gradients are specified by defining the starting point and ending point of a gradient line (which,
depending on the type of gradient, may geometrically be a line, or a ray, or a spiral), and then
specifying colors at points along this line. The colors are smoothly blended to fill in the rest of the line,
and then each type of gradient defines how to use the color of the gradient line to produce the actual
gradient.

3.1. Linear Gradients: the ‘linear-gradient()’ notation

A linear gradient is created by specifying a straight gradient line, and then several colors placed along
that line. The image is constructed by creating an infinite canvas and painting it with lines
perpendicular to the gradient line, with the color of the painted line being the color of the gradient line
where the two intersect. This produces a smooth fade from each color to the next, progressing in the

specified direction.

3.1.1. linear-gradient() syntax

The linear gradient syntax is:

Linear-gradient() = linear-gradient(
[<angle> | to <side-or-corner>]2 ,

<color-stop-1list>

)
<side-or-corner> = [left | right] || [top | bottom]

The first argument to the function specifies the gradient line, which gives the gradient a direction and

determines how color-stops are positioned. It may be omitted; if so, it defaults to ‘to bottom’.
The gradient line’s direction may be specified in two ways:

using <angle>
For the purpose of this argument, ‘Odeg’ points upward, and positive angles represent clockwise

rotation, so ‘90deg’ point toward the right.

The unit identifier may be omitted if the <angle> is zero.

using keywords
If the argument is ‘to top’, ‘to right’, ‘to bottom’, or ‘to left’, the angle of the gradient line is

‘Odeg’, ‘90deg’, ‘180deg’, or ‘270deg’, respectively.

If the argument instead specifies a corner of the box such as ‘to top left’, the gradient line must be
angled such that it points into the same quadrant as the specified corner, and is perpendicular to a
line intersecting the two neighboring corners of the gradient box. | This causes a color-stop at

50% to intersect the two neighboring corners (see example).

Starting from the center of the gradient box, extend a line at the specified angle in both directions. The
ending point is the point on the gradient line where a line drawn perpendicular to the gradient line
would intersect the corner of the gradient box in the specified direction. The starting point is

determined identically, but in the opposite direction.

Note: It is expected that the next level of this module will provide the ability to define the
gradient’s direction relative to the current text direction and writing-mode.

EXAMPLE 5

This example illustrates
visually how to calculate
the gradient line from the
rules above. This shows
the starting and ending
point of the gradient line,
along with the actual
gradient, produced by an
element with

‘background: linear-

oradient(45deg, white,

black);’.

Notice how, though the
starting point and ending

point are outside of the

box, they’re positioned

precisely right so that the

gradient is pure white
exactly at the corner, and pure black exactly at the opposite corner. That’s intentional, and will
always be true for linear gradients.

Given:

e A the angle (in any quadrant) defining the gradient line’s direction such that 0 degrees points

upwards and positive angles represent clockwise rotation,
e W the width of the gradient box,
¢ H the height of the gradient box,

The length of the gradient line (between the starting point and ending point) is:

abs(W * sin(A)) + abs(H * cos(A))

The gradient’s color stops are typically placed between the starting point and ending point on the

gradient line, but this isn’t required: the gradient line extends infinitely in both directions. The starting
point and ending point are merely arbitrary location markers, the starting point defining where 0%,
Opx, etc are located when specifying color-stops, and the ending point defines where 100% is located.
Color-stops are allowed to have positions before 0% or after 100%.

The color of a linear gradient at any point is determined by finding the unique line passing through
that point that is perpendicular to the gradient line. The point’s color is the color of the gradient line at
the point where this line intersects it.

3.1.2. Linear Gradient Examples

All of the following ‘linear-gradient()’ examples are presumed to be backgrounds applied to a box that
is 200px wide and 100px tall.

EXAMPLE 6

Below are various ways of specifying a basic vertical gradient:

linear-gradient(yellow, blue);

linear-gradient(to bottom, yellow, blue);
linear-gradient(180@deg, yellow, blue);
linear-gradient(to top, blue, yellow);
linear-gradient(to bottom, yellow 0%, blue 100%);

EXAMPLE 7
This demonstrates the use of an angle in the gradient. Note that, though the angle is not exactly the
same as the angle between the corners, the gradient line is still sized so as to make the gradient

yellow exactly at the upper-left corner, and blue exactly at the lower-right corner.

linear-gradient(135deg, yellow, blue);
linear-gradient(-45deg, blue, yellow);

EXAMPLE 8
This demonstrates a 3-color gradient, and how to specify the location of a stop explicitly:

linear-gradient(yellow, blue 20%, #0f0);

EXAMPLE 9

This demonstrates a corner-to-corner gradient specified with keywords. Note how the gradient is

red and blue exactly in the bottom-left and top-right corners, respectively, exactly like the second
example. Additionally, the angle of the gradient is automatically computed so that the color at 50%

(in this case, white) stretches across the top-left and bottom-right corners.

linear-gradient(to top right, red, white, blue)

B

3.2. Radial Gradients: the ‘radial-gradient()’ notation

In a radial gradient, rather than colors smoothly fading from one side of the gradient box to the other
as with linear gradients, they instead emerge from a single point and smoothly spread outward in a

circular or elliptical shape.

A radial gradient is specified by indicating the center of the gradient (where the 0% ellipse will be)
and the size and shape of the ending shape (the 100% ellipse). Color stops are given as a list, just as
for ‘linear-gradient()’. Starting from the gradient center and progressing towards (and potentially

beyond) the ending shape, uniformly-scaled concentric ellipses are drawn and colored according to the

specified color stops.

3.2.1. radial-gradient() Syntax

The radial gradient syntax is:

radial-gradient() = radial-gradient(
[<ending-shape> || <size>]? [at <position>]? ,
<color-stop-1ist>

EXAMPLE 10
Here is an example of a circular radial gradient Sem wide and positioned with its center in the top

left corner:

radial-gradient(5em circle at top left, yellow, blue)

Note: A future level may add the ability to move the focus of the gradient, as in the original -
webkit-gradient() function. See proposal tracked in Issue 1575 for "from <position>" and "from

offset <offset>".

The arguments are defined as follows:

‘<position>’
Determines the center of the gradient. The <position> value type (which is also used for

‘background-position’) is defined in [CSS-VALUES-3], and is resolved using the center-point as

the object area and the gradient box as the positioning area. If this argument is omitted, it defaults

to ‘center’.

‘<ending-shape>’

Can be either ‘circle’ or ‘ellipse’; determines whether the gradient’s ending shape is a circle or an
ellipse, respectively. If <ending-shape> is omitted, the ending shape defaults to a circle if the
<size> is a single <length>, and to an ellipse otherwise.

‘<size>’
Determines the size of the gradient’s ending shape. If omitted it defaults to ‘farthest-corner’. It

can be given explicitly or by keyword. For the purpose of the keyword definitions, consider the
gradient box edges as extending infinitely in both directions, rather than being finite line

segments.
If the ending-shape is an ellipse, its axises are aligned with the horizontal and vertical axises.

Both ‘circle’ and ‘ellipse’ gradients accept the following keywords as their ‘<size>":

‘closest-side’
The ending shape is sized so that it exactly meets the side of the gradient box closest to the

gradient’s center. If the shape is an ellipse, it exactly meets the closest side in each
dimension.

‘farthest-side’
Same as ‘closest-side’, except the ending shape is sized based on the farthest side(s).

‘closest-corner’
The ending shape is sized so that it passes through the corner of the gradient box closest to

the gradient’s center. If the shape is an ellipse, the ending shape is given the same aspect-

ratio it would have if ‘closest-side’ were specified.

‘farthest-corner’
Same as ‘closest-corner’, except the ending shape is sized based on the farthest corner. If the

shape is an ellipse, the ending shape is given the same aspect ratio it would have if ‘farthest-

side’ were specified.

If <ending-shape> is specified as ‘circle’ or is omitted, the <size> may be given explicitly as:

‘<length>’
Gives the radius of the circle explicitly. Negative values are invalid.

Note: Percentages are not allowed here; they can only be used to specify the size of an
elliptical gradient, not a circular one. This restriction exists because there is are multiple
reasonable answers as to which dimension the percentage should be relative to. A future
level of this module may provide the ability to size circles with percentages, perhaps

with more explicit controls over which dimension is used.

If <ending-shape> is specified as ‘ellipse’ or is omitted, <size> may instead be given explicitly

as:

‘<length-percentage>{2}’
Gives the size of the ellipse explicitly. The first value represents the horizontal radius, the

second the vertical radius. Percentages values are relative to the corresponding dimension of

the gradient box. Negative values are invalid.

Expanded with the above definitions, the grammar becomes:

radial-gradient() = radial-gradient(

[[circle || <length>] [at <position
[ellipse || <length-percentage>{2}] [at <position
[[circle | ellipse] || <extent-keyword>] [at <position
at <position> ,

1?

<color-stop> [, <color-stop>]+

)

<extent-keyword> = closest-corner | closest-side | farthest-corner | farthest-si
3

3.2.2. Placing Color Stops

Color-stops are placed on a gradient line shaped like a ray (a line that starts at one point, and extends
infinitely in a one direction), similar to the gradient line of linear gradients. The gradient line’s starting
point is at the center of the gradient, and it extends toward the right, with the ending point on the point
where the gradient line intersects the ending shape. A color-stop can be placed at a location before 0%;
though the negative region of the gradient line is never directly consulted for rendering, color stops
placed there can affect the color of non-negative locations on the gradient line through interpolation or
repetition (see repeating gradients). For example, ‘radial-gradient(red -50px, yellow 100px)” produces
an elliptical gradient that starts with a reddish-orange color in the center (specifically, #50) and
transitions to yellow. Locations greater than 100% simply specify a location a correspondingly greater

distance from the center of the gradient.

The color of the gradient at any point is determined by first finding the unique ellipse passing through
that point with the same center, orientation, and ratio between major and minor axises as the ending-
shape. The point’s color is then the color of the positive section of the gradient line at the location

where this ellipse intersects it.

3.2.3. Degenerate Radial Gradients

Some combinations of position, size, and shape will produce a circle or ellipse with a radius of 0. This

will occur, for example, if the center is on a gradient box edge and ‘closest-side’ or ‘closest-corner’ is

specified or if the size and shape are given explicitly and either of the radiuses is zero. In these

degenerate cases, the gradient must be be rendered as follows:

If the ending shape is a circle with zero radius:
Render as if the ending shape was a circle whose radius was an arbitrary very small number

greater than zero. | This will make the gradient continue to look like a circle.

If the ending shape has zero width (regardless of the height):
Render as if the ending shape was an ellipse whose height was an arbitrary very large number and

whose width was an arbitrary very small number greater than zero. || This will make the gradient
look similar to a horizontal linear gradient that is mirrored across the center of the ellipse. It also

means that all color-stop positions specified with a percentage resolve to ‘Opx’.

Otherwise, if the ending shape has zero height:
Render as if the ending shape was an ellipse whose width was an arbitrary very large number and

whose height was an arbitrary very small number greater than zero. | This will make the gradient
look like a solid-color image equal to the color of the last color-stop, or equal to the average color

of the gradient if it’s repeating.

3.2.4. Radial Gradient Examples

All of the following examples are applied to a box that is 200px wide and 100px tall.

EXAMPLE 11

These examples demonstrate different ways to write the basic syntax for radial gradients:

radial-gradient(yellow, green);
radial-gradient(ellipse at center, yellow 0%, green 100%);
radial-gradient(farthest-corner at 50% 50%, yellow, green);

radial-gradient(circle, yellow, green);

radial-gradient(red, yellow, green);

EXAMPLE 12

This image shows a gradient originating from somewhere other than the center of the box:

radial-gradient(farthest-side at left bottom, red, yellow 50px, green);

EXAMPLE 13

Here we illustrate a ‘closest-side’ gradient.

radial-gradient(closest-side at 20px 30px, red, yellow, green);
radial-gradient(20px 30px at 20px 30px, red, yellow, green);

radial-gradient(closest-side circle at 20px 30px, red, yellow, green);
radial-gradient(20px 20px at 20px 30px, red, yellow, green);

8 3.3. Repeating Gradients: the ‘repeating-linear-gradient()’ and ‘repeating-radial-

gradient()’ notations

In addition to ‘linear-gradient()’ and ‘radial-gradient()’, this specification defines ‘repeating-linear-
gradient()’ and ‘repeating-radial-gradient()’ values. These notations take the same values and are

interpreted the same as their respective non-repeating siblings defined previously.

When rendered, however, the color-stops are repeated infinitely in both directions, with their positions
shifted by multiples of the difference between the last specified color-stop’s position and the first
specified color-stop’s position. For example, ‘repeating-linear-gradient(red 10px, blue 50px)’ is
equivalent to ‘linear-gradient(..., red -30px, blue 10px, red 10px, blue 50px, red 50px, blue 90px, ...) .
Note that the last color-stop and first color-stop will always coincide at the boundaries of each group,

which will produce sharp transitions if the gradient does not start and end with the same color.

EXAMPLE 14

Repeating gradient syntax is identical to that of non-repeating gradients:

repeating-linear-gradient(red, blue 20px, red 40px)

repeating-radial-gradient(red, blue 20px, red 40px)

repeating-radial-gradient(circle closest-side at 20px 30px, red, yellow, green 1¢

»
J) ‘
If the distance between the first and last color-stops is non-zero, but is small enough that the

implementation knows that the physical resolution of the output device is insufficient to faithfully

render the gradient, the implementation must find the average color of the gradient and render the

gradient as a solid-color image equal to the average color.

If the distance between the first and last color-stops is zero (or rounds to zero due to implementation

limitations), the implementation must find the average color of a gradient with the same number and

color of color-stops, but with the first and last color-stop an arbitrary non-zero distance apart, and the
remaining color-stops equally spaced between them. Then it must render the gradient as a solid-color

image equal to that average color.

If the width of the ending shape of a repeating radial gradient is non-zero and the height is zero, or is
close enough to zero that the implementation knows that the physical resolution of the output device is

insufficient to faithfully render the gradient, the implementation must find the average color of the

gradient and render the gradient as a solid-color image equal to the average color.

Note: The Degenerate Radial Gradients section describes how the ending shape is adjusted when

its width is zero.

To find the average color of a gradient, run these steps:
1. Define /ist as an initially-empty list of premultiplied RGBA colors, and total-length as the
distance between first and last color stops.

2. For each adjacent pair of color-stops, define weight as half the distance between the two color-
stops, divided by total-length. Add two entries to list, the first obtained by representing the color
of the first color-stop in premultiplied SRGBA and scaling all of the components by weight, and

the second obtained in the same way with the second color-stop.

3. Sum the entries of /ist component-wise to produce the average color, and return it.

Note: As usual, implementations may use whatever algorithm they wish, so long as it produces the

same result as the above.

EXAMPLE 15
For example, the following gradient is rendered as a solid light-purple image (equal to
rgb(75%,50%,75%)):

‘repeating-linear-gradient(red Opx, white Opx, blue Opx);’

The following gradient would render the same as the previous under normal circumstances
(because desktop monitors can’t faithfully render color-stops 1/10th of a pixel apart), but would
render as a normal repeating gradient if, for example, the author applied "zoom:100;" to the
element on which the gradient appears:

‘repeating-linear-gradient(red Opx, white .1px, blue .2px);’

3.4. Defining Gradient Color

The colors in gradients are specified using color stops (a <color> and a corresponding position on the

gradient line) and color transition hints (a position between two color stops representing the halfway
point in the color transition) which are placed on the gradient line, defining the color at every point of

the line. (Each gradient function defines the shape and length of the gradient line, along with its
starting point and ending point; see above.)

Colors throughout the gradient field are then determined by tying them to specific points along the
gradient line as specified by the gradient function. UAs may “dither” gradient colors slightly
(randomly alternate individual pixels with nearby colors on the gradient line) to effect a smoother

gradient.

3.4.1. Color Stop Lists

Color stops and transition hints are specified in a color stop list, which is a list of two or more color

stops interleaved with optional transition hints:

<color-stop-List> =
<linear-color-stop> , [<linear-color-hint>? , <linear-color-stop>]#

<linear-color-stop> = <color> && <length-percentage>?

<linear-color-hint> = <length-percentage>

Percentages are resolved against the length of the gradient line between the starting point and ending
point, with 0% being at the starting point and 100% being at the ending point. Lengths are measured

along the gradient line from the starting point in the direction of the ending point.

Color stop and transition hint positions are usually placed between the starting point and ending point,

but that’s not required: the gradient line extends infinitely in both directions, and positions can be

specified anywhere on the gradient line.

When the position of a color stop is omitted, it is automatically assigned a position. The first or last

color stop in the color stop list is assigned the gradient line’s starting point or ending point

(respectively). Otherwise, it’s assigned the position halfway between the two surrounding stops. If
multiple stops in a row lack a position, they space themselves out equally between the surrounding

positioned stops. See § 3.4.3 Color Stop “Fixup” for details.

3.4.2. Coloring the Gradient Line

At each color stop position, the gradient line is the color of the color stop. Before the first color stop,

the gradient line is the color of the first color stop, and after the last color stop, the gradient line is the
color of the last color stop. Between two color stops, the gradient line’s color is interpolated between

the colors of the two color stops, with the interpolation taking place in premultiplied RGBA space.

By default, this interpolation is linear—at 25%, 50%, or 75% of the distance between two color stops,
the color is a 25%, 50%, or 75% blend of the colors of the two stops.

However, if a transition hint was provided between two color stops, the interpolation is non-linear, and
controlled by the hint:

1. Determine the location of the transition hint as a percentage of the distance between the two color
stops, denoted as a number between 0 and 1, where 0 indicates the hint is placed right on the first
color stop, and 1 indicates the hint is placed right on the second color stop. Let this percentage be
H.

2. For any given point between the two color stops, determine the point’s location as a percentage of
the distance between the two color stops, in the same way as the previous step. Let this
percentage be P.

3. Let C, the color weighting at that point, be equal to p1o8x(-5),

4. The color at that point is then a linear blend between the colors of the two color stops, blending
(1 - C) of the first stop and C of the second stop.

Note: The transition hint specifies where the “halfway color”—the 50% blend between the colors
of the two surrounding color stops—should be placed. When the hint is exactly halfway between
the two surrounding color stops, the above interpolation algorithm happens to produce the ordinary
linear interpolation. If the hint is placed anywhere else, it produces a smooth exponential curve
between the surrounding color stops, with the “halfway color” occurring exactly where the hint

specifies.

I ISSUE 1 Add a visual example of a color hint being used.

If multiple color stops have the same position, they produce an infinitesimal transition from the one
specified first in the list to the one specified last. In effect, the color suddenly changes at that position
rather than smoothly transitioning.

» What does “pre-multiplied” mean?

3.4.3. Color Stop “Fixup”

When resolving the used positions of each color stop, the following steps must be applied in order:

1. If the first color stop does not have a position, set its position to 0%. If the last color stop does not
have a position, set its position to 100%.

2. If a color stop or transition hint has a position that is less than the specified position of any color

stop or transition hint before it in the list, set its position to be equal to the largest specified

position of any color stop or transition hint before it.

3. If any color stop still does not have a position, then, for each run of adjacent color stops without
positions, set their positions so that they are evenly spaced between the preceding and following
color stops with positions.

After applying these rules, all color stops and transition hints will have a definite position and color

and they will be in ascending order.

Note: It is recommended that authors exercise caution when mixing different types of units, such
as px, em, or %, as this can cause a color stop to unintentionally try to move before an earlier one.

For example, the rule ‘background-image: linear-gradient(yellow 100px, blue 50%)’ wouldn’t

trigger any fix-up while the background area is at least ‘200px’ tall. If it was ‘150px” tall, however,
the blue color stop’s position would be equivalent to ‘75px’, which precedes the yellow color stop,
and would be corrected to a position of ‘100px’. Additionally, since the relative ordering of such
color stops cannot be determined without performing layout, they will not interpolate smoothly in

animations or transitions.

EXAMPLE 16
Below are several pairs of gradients. The latter of each pair is a manually “fixed-up” version of the
former, obtained by applying the above rules. For each pair, both gradients will render identically.

The numbers in each arrow specify which fixup steps are invoked in the transformation.

1. linear-gradient(red, white 20%, blue)
=1=>
linear-gradient(red 0%, white 20%, blue 100%)

2. linear-gradient(red 40%, white, black, blue)
=1,3=>
linear-gradient(red 40%, white 60%, black 80%, blue 100%)

3. linear-gradient(red -50%, white, blue)
=1,3=>
linear-gradient(red -50%, white 25%, blue 100%)

4, linear-gradient(red -50px, white, blue)
=1,3=>
linear-gradient(red -50px, white calc(-25px + 50%), blue 100%)

5. linear-gradient(red 20px, white @px, blue 40px)
=2=>
linear-gradient(red 20px, white 20px, blue 40px)

6. linear-gradient(red, white -50%, black 150%, blue)
=1,2=>
linear-gradient(red 0%, white 0%, black 150%, blue 150%)

7. linear-gradient(red 80px, white Opx, black, blue 100px)
=2,3=>
linear-gradient(red 80px, white 80px, black 90px, blue 100px)

4. Sizing Images and Objects in CSS

Images used in CSS may come from a number of sources: from binary image formats (such as gif,
jpeg, etc), dedicated markup formats (such as SVG), and CSS-specific formats (such as the linear-
gradient() value type defined in this specification). As well, a document may contain many other types

of objects, such as video, plugins, or nested documents. These images and objects (just objects

hereafter) may offer many types of sizing information to CSS, or none at all. This section defines

generically the size negotiation model between the object and the CSS layout algorithms.

4.1. Object-Sizing Terminology

In order to define this handling, we define a few terms, to make it easier to refer to various concepts:

natural dimensions
The term natural dimensions refers to the set of the natural height, natural width, and natural

aspect ratio (the ratio between the width and height), each of which may or may not exist for a
given object. These natural dimensions represent the preferred sizing intrinsic to the object itself;
that is, they are not a function of the context in which the object is used. CSS does not define how

the natural dimensions are found in general.

Raster images are an example of an object with all three natural dimensions. SVG images

designed to scale might have only an natural aspect ratio; SVG images can also be created with

only an natural width or height. CSS gradients, defined in this specification, are an example of an

object with no natural dimensions at all. Another example of this is embedded documents, such as

the <iframe> element in HTML. Many objects, such as most images, cannot have only two
natural dimensions, as any two automatically define the third. However some types of replaced
elements, such as form controls, can have a natural width and a natural height, but no natural

aspect ratio.

If an object has a degenerate natural aspect ratio (at least one part being zero or infinity), it is

treated as having no natural aspect ratio.

If an object (such as an icon) has multiple sizes, then the largest size (by area) is taken as its
natural dimensions. If it has multiple aspect ratios at that size, or has multiple aspect ratios and no

size, then the aspect ratio closest to the aspect ratio of the default object size is used. Determine

this by seeing which aspect ratio produces the largest area when fitting it within the default object

size using a contain constraint fit; if multiple sizes tie for the largest area, the widest size is

chosen as its natural dimensions.

The natural width and natural height are collectively referred to the natural sizes.

specified size
The specified size of an object is given by CSS, such as through the ‘width’ and ‘height’ or

‘background-size’ properties. The specified size can be a definite width and height, a set of

constraints, or a combination thereof.

concrete object size

The concrete object size is the result of combining an object’s natural dimensions and specified

size with the default object size of the context it’s used in, producing a rectangle with an absolute
width and height.

default object size
The default object size is a rectangle with an absolute height and width used to determine the

concrete object size when both the natural dimensions and specified size are missing dimensions.

4.2. CSS=O0bject Negotiation
Objects in CSS are sized and rendered by the object size negotiation algorithm as follows:

1. When an object is specified in a document, such as through a ‘url()’ value in a

‘background-image’ property or a src attribute on an element, CSS queries the object for

its natural dimensions.

2. Using the natural dimensions, the specified size, and the default object size for the context the

object is used in, CSS then computes a concrete object size. (See the following section.) This

defines the size and position of the region the object will render in.

3. CSS asks the object to render itself at the concrete object size. CSS does not define how objects

render when the concrete object size is different from the object’s natural dimensions. The object
may adjust itself to match the concrete object size in some way, or even render itself larger or

smaller than the concrete object size to satisty sizing constraints of its own.

4. Unless otherwise specified by CSS, the object is then clipped to the concrete object size.

4.3. Concrete Object Size Resolution

Currently the rules for sizing objects are described in each context that such objects are used. This
section defines some common sizing constraints and how to resolve them so that future specs can refer

to them instead of redefining size resolution in each instance.

4.3.1. Default Sizing Algorithm

The default sizing algorithm is a set of rules commonly used to find an object’s concrete object size. It

resolves the simultaneous constraints presented by the object’s natural dimensions and either an

unconstrained specified size or one consisting of only a definite width and/or height.

Some object sizing rules (such as those for ‘list-style-image’) correspond exactly to the default sizing

algorithm. Others (such as those for ‘border-image’) invoke the default sizing algorithm but also apply
additional sizing rules before arriving at a final concrete object size.

The default sizing algorithm is defined as follows:

o [fthe specified size is a definite width and height, the concrete object size is given that width and
height.

e If the specified size is only a width or height (but not both) then the concrete object size is given

that specified width or height. The other dimension is calculated as follows:

1. If the object has a natural aspect ratio, the missing dimension of the concrete object size is

calculated using that aspect ratio and the present dimension.

2. Otherwise, if the missing dimension is present in the object’s natural dimensions, the

missing dimension is taken from the object’s natural dimensions.

3. Otherwise, the missing dimension of the concrete object size is taken from the default object

size.

¢ [fthe specified size has no constraints:

1. If the object has a natural height or width, its size is resolved as if its natural dimensions

were given as the specified size.

2. Otherwise, its size is resolved as a contain constraint against the default object size.

4.3.2. Cover and Contain Constraint Sizing

Two other common specified sizes are the contain constraint and the cover constraint, both of which

are resolved against a specified constraint rectangle using the object’s preferred aspect ratio:

¢ A contain constraint is resolved by setting the concrete object size to the largest rectangle that

has the object’s natural aspect ratio and additionally has neither width nor height larger than the

constraint rectangle’s width and height, respectively.

e A cover constraint is resolved by setting the concrete object size to the smallest rectangle that has

the object’s natural aspect ratio and additionally has neither width nor height smaller than the

constraint rectangle’s width and height, respectively.

In both cases, if the object doesn’t have a natural aspect ratio, the concrete object size is the specified

constraint rectangle.

8 4.4, Examples of CSS Object Sizing

EXAMPLE 17

The following examples show how the CSS 2.1 and CSS3 Backgrounds & Borders sizing
algorithms correspond to concepts defined in this specification.

‘background-image’
The rules for calculating the concrete object size of a background are defined in

CSS2.1§14.2.1 and CSS3BG§3.9. CSS2.1 uses the default sizing algorithm with no specified
size and the background positioning area as the default object size. [CSS2] In CSS3,

‘background-size’ property can give a sizing constraint, invoking either the default sizing

algorithm or one of the contain or cover constraints. The concrete object size is further
adjusted in later steps if ‘background-repeat’ has a ‘round’ value. [CSS3BG]

‘list-style-image’
The rules for calculating the concrete object size of a list-style image are defined in

CSS2.1§12.5.1. They use the default sizing algorithm with no specified size and a default
object size of lem square.

3

border-image’
Border images are sized twice: first the entire image is sized to determine the slice points,

then the slices are sized to decorate the border. The first sizing operation is defined in
CSS3BG§6.2 and uses the default sizing algorithm with no specified size, and the border
image area as the default object size. The second operation is defined in CSS3BG§6.2: the
default sizing algorithm is used to determine an initial size for each slice with the
corresponding border image area part as the default object size. By default the specified size

matches this default object size; however the ‘border-image-repeat’ property can drop the

specified size in one or more directions and may also apply an additional rounding step.

[CSS3B(d]

‘cursor’
The rules for calculating the concrete object size of a cursor are defined in CSS2.1 § 18.1:
Cursors. The default object size is a UA-defined size that should be based on the size of a
typical cursor on the UA’s operating system. [CSS2]

‘content’
Objects inserted via the CSS2.1 ‘content’ property are anonymous replaced elements, and are
sized the same way. [CSS2] Note that such anonymous elements have all their non-inherited
properties (including ‘width’, ‘height’, etc.) set to their initial values.

replaced elements
CSS 2.1 defines the sizing of replaced elements (including those inserted as generated content
via ‘content’) in sections 10.3.2, 10.4, 10.6.2, and 10.7. [CSS2] The ‘object-fit’ property
defined below defines how the concrete object size corresponds to the element’s used width

and height; by default they coincide.

4.5. Sizing Objects: the ‘object-fit’ property

Name: ‘object-fit’

Value: fill | contain | cover | none | scale-down
Initial: fill

Applies to: replaced elements

Inherited: no

Percentages: n/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete
type:

The ‘object-fit” property specifies how the contents of a replaced element should be fitted to the box
established by its used height and width.

fill’

The replaced content is sized to fill the element’s content box: the object’s concrete object size is

the element’s used width and height.

‘contain’
The replaced content is sized to maintain its natural aspect ratio while fitting within the element’s

content box: its concrete object size is resolved as a contain constraint against the element’s used
width and height.

‘cover’
The replaced content is sized to maintain its natural aspect ratio while filling the element’s entire

content box: its concrete object size is resolved as a cover constraint against the element’s used
width and height.

‘none’

The replaced content is not resized to fit inside the element’s content box: determine the object’s

concrete object size using the default sizing algorithm with no specified size, and a default object
size equal to the replaced element’s used width and height.

‘scale-down’
Size the content as if ‘none’ or ‘contain’ were specified, whichever would result in a smaller

concrete object size.

Note: Both ‘none’ and ‘contain’ respect the content’s natural aspect ratio, so the concept of

"smaller" is well-defined.

If the content does not completely fill the replaced element’s content box, the unfilled space shows the
replaced element’s background. Since replaced elements always clip their contents to the content box,

the content will never overflow. See the ‘object-position’ property for positioning the object with

none contain COVEr
Figure 1 An example showing how four of the values of ‘object-fit’ cause the replaced element (blue figure) to be

respect to the content box.

intrinsic
size

scaled to fit its height/width box (shown with a green background), using the initial value for ‘object-position’.

The fifth value, ‘scale-down’, in this case looks identical to ‘contain’.

Note: The ‘object-fit’ property has similar semantics to the fit attribute in [SMIL10] and the
<meetOrSlice> parameter on the preserveAspectRatio attribute in [SVGI11].

Note: Per the object size negotiation algorithm, the concrete object size (or, in this case, the size of

the content) does not directly scale the object itself - it is merely passed to the object as
information about the size of the visible canvas. How to then draw into that size is up to the image
format. In particular, raster images always scale to the given size, while SVG uses the given size as
the size of the "SVG Viewport" (a term defined by SVG) and then uses the values of several
attributes on the root <svg> element to determine how to draw itself.

8 4.6. Positioning Objects: the ‘object-position’ property

Name: ‘object-position’

Value: <position>
Initial: 50% 50%
Applies to: replaced elements
Inherited: no

Percentages: refer to width and height of element itself

Computed as for ‘backeround-position’

value:

Canonical the horizontal component of the <position>, followed by the vertical

order: component
Animation as for ‘background-position’
type:

The ‘object-position’ property determines the alignment of the replaced element inside its box. The
<position> value type (which is also used for ‘background-position’) is defined in [CSS-VALUES-3],

and is resolved using the concrete object size as the object area and the content box as the positioning

arca.

Note: Areas of the box not covered by the replaced element will show the element’s background.

5. Image Processing

5.1. Orienting an Image on the Page: the ‘image-orientation’ property

If a picture is taken with a camera turned on its side, or a document isn’t positioned correctly within a

scanner, the resultant image may be "sideways" or even upside-down. The ‘image-orientation’

property provides a way to apply an "out-of-band" rotation to image source data to correctly orient an

image.

Name: ‘image-orientation’

Value: from-image | none | [<angle> || flip]
Initial: from-image

Applies to: all elements

Inherited: yes

Percentages: mn/a

Computed the specified keyword, or an <angle>, rounded and normalized (see text),

value: plus optionally a ‘flip’ keyword
Canonical per grammar

order:

Animation discrete

type:

This property is optional for implementations.

This property specifies an orthogonal rotation to be applied to the element’s images before they are
used in the document. It applies to content images (e.g. replaced elements and generated content) and
image sources referenced by SVG elements (such as <feImage>), as well as to decorative images

applied via CSS rules (such as ‘background-image’ and other <image> properties). It does not apply to

the rendering of images outside the document, e.g. favicons in the UA’s navigation toolbars or menus,

etc.

Note: This property is not intended to specify layout transformations such as arbitrary rotation or
flipping the image in the horizontal or vertical direction. (See [CSS-TRANSFORMS-1] for a
feature designed to do that.) It is also not needed to correctly orient an image when printing in
landscape versus portrait orientation, as that rotation is done as part of layout. (See [CSS3PAGE].)
It should only be used to correct incorrectly-oriented images.

Values have the following meanings:

‘none’
No additional rotation is applied: the image is oriented as encoded.

‘from-image’
If the image has an orientation specified in its metadata, such as EXIF, this value computes to the

angle that the metadata specifies is necessary to correctly orient the image. If necessary, this angle

is then rounded and normalized as described above for an <angle> value. If there is no orientation

specified in its metadata, this value computes to ‘none’.

Note: § 2.1.2 Image Metadata imposes some restrictions on what metadata can be used.

‘<angle> || flip’
Positive <angle> values cause the image to be rotated to the right (in a clockwise direction),

while negative values cause a rotation to the left. If the <angle> is omitted, it defaults to ‘Odeg’.
If “flip’ is specified, after rotation the image is flipped horizontally.

This value only applies to content images; decorative images continue to behave as ‘from-image’.

This value is deprecated and is optional for implementations except those conforming to

[CSS-PRINT].

Note: This value allows all 8 possible EXIF orientations that ‘from-image’ can produce to be

manually reproduced.

The computed value of the property is calculated by rounding the <angle> to the nearest quarter
turn, rounding towards positive infinity when that’s ambiguous, then moduloing the value by
‘Iturn’ (so that it lies in the half-open range [‘Oturn’, ‘1turn’)).

Values other than ‘none’ and ‘from-image’ are optional to implement and deprecated in CSS.

All CSS layout and rendering processes use the image after rotation, exactly as if the image were
originally encoded in its rotated form. This implies, for example:

¢ The natural height and width are derived from the rotated rather than the original image
dimensions.

e The height (width) property applies to the vertical (horizontal) dimension of the image, after

rotation.
e The hotspot coordinates of an image ‘cursor’ are relative to the image after rotation.

¢ Border images (see ‘border-image’) are sliced after rotation.

¢ Other transformations, such as those in [CSS-TRANSFORMS-1], are applied to the image after
‘image-orientation’ is applied.

EXAMPLE 18

The following example rotates the image 90 degrees clockwise:

img.ninety { image-orientation: 9@deg }

The same effect could be achieved with, for example, an angle of -270deg or 450deg.

Note: This property previously used ‘none’ as its initial value. It is believed that using ‘from-

image’ as the initial value will produce a generally better user experience, and minimal breakage,
but future compat data as UAs attempt to make the change will confirm that. If that is confirmed,
then it is likely that this property will be removed from CSS unless use cases other than “correct

for incorrect orientation” are raised for its other values.

5.2. Determining How To Scale an Image: the ‘image-rendering’ property

Name: ‘image-rendering’

Value: auto | smooth | high-quality | crisp-edges | pixelated
Initial: auto

Applies to: all elements

Inherited: yes

Percentages: n/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete

The ‘image-rendering’ property provides a hint to the user-agent about what aspects of an image are

most important to preserve when the image is scaled, to aid the user-agent in the choice of an
appropriate scaling algorithm. When specified on an element, it applies to all images given in
properties for the element, such as background images, list-style images, or the content of replaced
elements when they represent an image that must be scaled. The values of the ‘image-rendering’

property are interpreted as follows:

‘auto’
The scaling algorithm is UA dependent.

‘smooth’
The image should be scaled with an algorithm that maximizes the appearance of the image. In
particular, scaling algorithms that "smooth" colors are acceptable, such as bilinear interpolation.
This is intended for images such as photos.

‘high-quality’
Identical to ‘smooth’, but with a preference for higher-quality scaling. If system resources are
constrained, images with ‘high-quality’ should be prioritized over those with any other value,

when considering which images to degrade the quality of and to what degree.

This value does not prevent the image quality from being degraded when the system
resources are constrained. It merely expresses a preference that these images should receive
extra scaling resources relative to the ‘auto’ images. If all images on the page have ‘high-

quality’ applied, it’s equivalent to all of them having ‘auto’ applied—they’re all treated the

same.

To get the most value out of ‘high-quality’, only apply it to the most important images on the
page.

‘crisp-edges’
The image must be scaled with an algorithm that preserves contrast and edges in the image, and

which does not smooth colors or introduce blur to the image in the process. This is intended for
images such as pixel art or line drawings.

‘pixelated’
The image must be scaled with the "nearest neighbor" or similar algorithm, to preserve a

"pixelated" look as the image changes in size.

This property does not dictate any particular scaling algorithm to be used. For example, with ‘image-
rendering: auto’, a user agent might scale images with bilinear interpolation by default, switch to
nearest-neighbor interpolation in high-load situations, and switch to a high-quality scaling algorithm

like Lanczos interpolation for static images that aren’t moving or changing. Similarly, with 'image-

rendering: crisp-edges', a user agent might scale images with nearest-neighbor interpolation by default,

and switch to EPX interpolation in low-load situations.

EXAMPLE 19

For example, given the following small image:

Figure 2 A small pixel-art image.

Scaling it up 3x might look like the following, depending on the value of ‘image-rendering’:

Figure 4 The image scaled with ‘pixelated’

won

o

Figure 5 The image scaled with ‘crisp-edges .

(Or it might look like ‘pixelated’, or as another type of pixel-scaling algorithm, depending on the browser.)

This property previously accepted the values ‘optimizeSpeed’ and ‘optimizeQuality’. These are now
deprecated; a user agent must accept them as valid values but must treat them as having the same

behavior as ‘pixelated’ and ‘smooth’ respectively, and authors must not use them.

6. Interpolation

Interpolation of <image> values is not defined in this level. Implementations must abruptly transition
them (at 50% transition progress, like other unsupported interpolations), unless otherwise defined by a

future specification.

Note: CSS Images Level 4 is expected to define specialized interpolation for gradients, and define
that all other images interpolate by cross-fading.

7. Serialization

This section describes the serialization of all new properties and value types introduced in this
specification, for the purpose of interfacing with the CSS Object Model [CSSOM].

To serialize any function defined in this module, serialize it per its individual grammar, in the order its
grammar is written in, omitting components when possible without changing the meaning, joining

space-separated tokens with a single space, and following each serialized comma with a single space.

EXAMPLE 20

For example, a gradient specified as:

Linear-Gradient(to bottom, red ©%,yellow,black 100px)
must serialize as:

linear-gradient(red, yellow, black 100px)

Privacy and Security Considerations

This specification allows rendering of cross-origin images by default, which exposes some information

of those images programmatically—specifically, the natural dimensions and resolution of those

images.

Acknowledgments

Thanks to the Webkit team, Brad Kemper, Brian Manthos, and Alan Gresley for their contributions to

the definition of gradients; to Melinda Grant for her work on ‘object-fit’, ‘object-position’, and

‘image-orientation’; and to L. David Baron, Kang-Hao Lu, Leif Arne Storset, Erik Dahlstrom, and

@yvind Stenhaug for their careful review, comments, and corrections.

Changes

Changes Since the 10 October 2019 Candidate Recommendation

Significant changes since the 10 October 2019 CR:

¢ Define handling of degenerate aspect ratios (Issue 4572)

¢ Define that layout-affecting metadata occurring after the image data should be ignored (Issue
5165)

e Explicitly allow dithering in gradients (Issue 4793)

¢ Define that ‘image-orientation’ applies to both decorative and content images (Issue 5245)

¢ Rename “intrinsic dimensions” to natural dimensions to avoid confusion with intrinsic sizes.
(Issue 4961)

Changes Since the 17 April 2012 Candidate Recommendation

Major changes include:

The ‘image()’ notation has been deferred to Level 4.

The ‘image-resolution’ property has been deferred to Level 4.

The ‘image-orientation’ property has been marked as deprecated, optional, and at-risk.
Additionally:

o Added the ‘from-image’ and ‘none’ keywords

o Added the “flip’ values

o Swapped to "mod then round" ordering.

Added the ‘image-rendering’ property.

Moved the <resolution> type to [CSS-VALUES-3].

Better defined the handling of invalid and partially-loaded images.
Defined the general computed form of <image>.

Defined concept and handling of URLs that are ambiguous between being images or element

references.

Defined that the unit can be omitted for zero angles in ‘linear-gradient()’ due to compat.

Slightly clarified handling of degenerate repeating radial gradients.

Added transition hints to <color-stop-list>, and editorially rewrote section on gradient color stops

to better accommodate the new prose.
Added "Canonical Order" and "Animation Type" to all property definition tables.
Defined interpolation and serialization of <image> values.

Various minor clarifications.

A Disposition of Comments is available.

Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119
terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative
parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,
examples, and notes. [RFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

EXAMPLE 21

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.

renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool
A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this
module are valid according to the generic CSS grammar and the individual grammars of each feature

defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined
by the appropriate specifications, it supports all the features defined by this specification by parsing
them correctly and rendering the document accordingly. However, the inability of a UA to correctly
render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically
correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

Partial implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,
user agents must not selectively ignore unsupported component values and honor supported values in
a single multi-value property declaration: if any value is considered invalid (as unsupported values

must be), CSS requires that the entire declaration be ignored.

Implementations of Unstable and Proprietary Features

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprictary extensions to CSS.

Non-experimental implementations

Once a specification reaches the Candidate Recommendation stage, non-experimental
implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group
requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the
testcases used for that implementation report) to the W3C before releasing an unprefixed
implementation of any CSS features. Testcases submitted to W3C are subject to review and correction
by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS
Working Group’s website at https://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

CR exit criteria

For this specification to be advanced to Proposed Recommendation, there must be at least two
independent, interoperable implementations of each feature. Each feature may be implemented by a
different set of products, there is no requirement that all features be implemented by a single product.
For the purposes of this criterion, we define the following terms:

independent
each implementation must be developed by a different party and cannot share, reuse, or derive

from code used by another qualifying implementation. Sections of code that have no bearing on

the implementation of this specification are exempt from this requirement.

interoperable
passing the respective test case(s) in the official CSS test suite, or, if the implementation is not a
Web browser, an equivalent test. Every relevant test in the test suite should have an equivalent
test created if such a user agent (UA) is to be used to claim interoperability. In addition if such a
UA is to be used to claim interoperability, then there must one or more additional UAs which can
also pass those equivalent tests in the same way for the purpose of interoperability. The

equivalent tests must be made publicly available for the purposes of peer review.

implementation
a user agent which:

1. implements the specification.

2. is available to the general public. The implementation may be a shipping product or other
publicly available version (i.c., beta version, preview release, or "nightly build"). Non-
shipping product releases must have implemented the feature(s) for a period of at least one
month in order to demonstrate stability.

3. is not experimental (i.e., a version specifically designed to pass the test suite and is not
intended for normal usage going forward).

The specification will remain Candidate Recommendation for at least six months.

Index

Terms defined by this specification

ambiguous image URL, in §2.1.1

<angle>

value for image-orientation, in §5.1

value for image-orientation, in §5.1
auto, in §5.2
circle, in §3.2.1
closest-corner, in §3.2.1
closest-side, in §3.2.1

color stop, in §3.4

<color-stop-list>, in §3.4.1

color stop list, in §3.4.1

color transition hint, in §3.4

computed <image>, in §2

concrete object size, in §4.1

constraint rectangle, in §4.3.2
contain, in §4.5

contain constraint, in §4.3.2

cover, in §4.5

cover constraint, in §4.3.2

crisp-edges, in §5.2

default object size, in §4.1

default sizing algorithm, in §4.3.1
ellipse, in §3.2.1

ending point, in §3
<ending-shape>, in §3.2.1

ending shape, in §3.2

<extent-keyword>, in §3.2.1

farthest-corner, in §3.2.1
farthest-side, in §3.2.1
fill, in §4.5

flip
value for image-orientation, in §5.1
value for image-orientation, in §5.1
from-image, in §5.1
<gradient>, in §3

gradient-average-color, in §3.3

gradient box, in §3
gradient center, in §3.2.1

gradient function, in §3

gradient line, in §3
high-quality, in §5.2
<image>, in §2

image-orientation, in §5.1

image-rendering, in §5.2
invalid image, in §2
<length>, in §3.2.1

<length-percentage>{2}, in §3.2.1

<linear-color-hint>, in §3.4.1

<linear-color-stop>, in §3.4.1

linear-gradient(), in §3.1.1

loading image, in §2

natural aspect ratio, in §4.1

natural dimension, in §4.1

natural height, in §4.1
natural size, in §4.1
natural width, in §4.1

none
value for image-orientation, in §5.1
value for object-fit, in §4.5

object, in §4

object-fit, in §4.5
object-position, in §4.6
objects, in §4

object size negotiation, in §4.2

pixelated, in §5.2
<position>, in §3.2.1
radial-gradient(), in §3.2.1

repeating-linear-gradient(), in §3.3

repeating-radial-gradient(), in §3.3

scale-down, in §4.5

Terms defined by reference

[css-align-3] defines the following terms:

center

[css-cascade-4] defines the following terms:

computed value
initial

specified value
used value

[css-color-3] defines the following terms:

<color>

[css-color-4] defines the following terms:

transparent

[css-content-3] defines the following terms:

content

[css-images-4] defines the following terms:

<color-stop>

[css-lists-3] defines the following terms:
list-style-image
list-style-type

none

<side-or-corner>, in §3.1.1

<size>
type for, in §3.2.1

value for radial-gradient(), repeating-radial-

gradient(), in §3.2.1

smooth, in §5.2
specified size, in §4.1

starting point, in §3

transition hint, in §3.4

valid image, in §2

[css-masking-1] defines the following terms:
mask
mask-image

[css-sizing-3] defines the following terms:
height
intrinsic sizes

preferred aspect ratio

width

[css-ui-3] defines the following terms:

cursor

[CSS-VALUES-3] defines the following terms:

<angle>
<length>
<resolution>

<url>

[css-values-4] defines the following terms:

#
&&
<length-percentage>

<position>

[CSS3BG] defines the following terms:

background
background-image
background-position
background-repeat

background-size

? border-image

css-wide keywords border-image-repeat

degenerate ratio round

url() [HTML] defines the following terms:
| iframe

l img

SIc

[selectors-4] defines the following terms:
‘target

[SVG11] defines the following terms:

feimage

References

Normative References

[CSS-ALIGN-3]
Elika Etemad; Tab Atkins Jr.. CSS Box Alignment Module Level 3. 21 April 2020. WD. URL:
https://www.w3.org/TR/css-align-3/

[CSS-CASCADE-4]
Elika Etemad; Tab Atkins Jr.. CSS Cascading and Inheritance Level 4. 18 August 2020. WD.
URL: https://www.w3.org/TR/css-cascade-4/

[CSS-COLOR-3]
Tantek Celik; Chris Lilley; David Baron. CSS Color Module Level 3. 19 June 2018. REC. URL.:
https://www.w3.org/TR/css-color-3/

[CSS-COLOR-4]
Tab Atkins Jr.; Chris Lilley. CSS Color Module Level 4. 5 November 2019. WD. URL:
https://www.w3.org/TR/css-color-4/

[CSS-CONTENT-3]

Elika Etemad; Dave Cramer. CSS Generated Content Module Level 3. 2 August 2019. WD.
URL: https://www.w3.org/TR/css-content-3/

[CSS-LISTS-3]
Elika Etemad; Tab Atkins Jr.. CSS Lists Module Level 3. 9 July 2020. WD. URL:
https://www.w3.org/TR/css-lists-3/

[CSS-MASKING-1]
Dirk Schulze; Brian Birtles; Tab Atkins Jr.. CSS Masking Module Level 1. 26 August 2014. CR.

URL: https://www.w3.org/TR/css-masking-1/

[CSS-PRINT]
Elika Etemad; Melinda Grant. CSS Print Profile. 14 March 2013. NOTE. URL.:

https://www.w3.org/TR/css-print/

[CSS-SIZING-3]
Tab Atkins Jr.; Elika Etemad. CSS Box Sizing Module Level 3. 23 October 2020. WD. URL:

https://www.w3.org/TR/css-sizing-3/

[CSS-UI-3]
Tantek Celik; Florian Rivoal. CSS Basic User Interface Module Level 3 (CSS3 UI). 21 June
2018. REC. URL.: https://www.w3.org/TR/css-ui-3/

[CSS-VALUES-3]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. 6 June 2019. CR. URL:

https://www.w3.org/TR/css-values-3/

[CSS-VALUES-4]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. 31 January 2019. WD.

URL.: https://www.w3.org/TR/css-values-4/

[CSS2]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011.

REC. URL: https://www.w3.org/TR/CSS21/

[CSS3BG]
Bert Bos; Elika Etemad; Brad Kemper. CSS Backgrounds and Borders Module Level 3. 17

October 2017. CR. URL: https://www.w3.org/TR/css-backgrounds-3/

[HTML)]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL:
https://html.spec.whatwg.org/multipage/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best
Current Practice. URL: https://tools.ietf.org/html/rfc2119

[SVG11]

Erik Dahlstrom; et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011.
REC. URL: https://www.w3.0org/TR/SVG11/

Informative References

[CSS-IMAGES-4]
Tab Atkins Jr.; Elika Etemad; Lea Verou. CSS Image Values and Replaced Content Module Level

4. 13 April 2017. WD. URL: https://www.w3.org/TR/css-images-4/
[CSS-TRANSFORMS-1]
Simon Fraser; et al. CSS Transforms Module Level 1. 14 February 2019. CR. URL:
https://www.w3.org/TR/css-transforms-1/
[CSS3PAGE]
Elika Etemad; Simon Sapin. CSS Paged Media Module Level 3. 18 October 2018. WD. URL.:
https://www.w3.org/TR/css-page-3/
[CSSOM]
Simon Pieters; Glenn Adams. CSS Object Model (CSSOM). 17 March 2016. WD. URL.:
https://www.w3.org/TR/cssom-1/

[SELECTORS-4]
Elika Etemad; Tab Atkins Jr.. Selectors Level 4. 21 November 2018. WD. URL:

https://www.w3.org/TR/selectors-4/
[SMIL10]

Philipp Hoschka. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. 15
June 1998. REC. URL: https://www.w3.0rg/TR/1998/REC-smil-19980615/

Property Index
... . Applies Animation Canonical
Name Value Initial Inh. %ages Computed value
to type order
the specified
from-image | keyword, or an
‘image- none | [from- all) <angle>, rounded
. . . yes n/a discrete per grammar)
orientation’ | <angle> || flip image elements and normalized (see
] text), plus optionally
a flip keyword
auto | smooth
‘image- | high-quality all . .
.) auto yes n/a discrete per grammar specified keyword
rendering’ | crisp-edges | elements
pixelated

Applies Animation Canonical

Name Value Initial Inh. %ages Computed value
to type order
fill | contain |
. . replaced . .
‘object-fit’ cover [none | fill X) no n/a discrete per grammar specified keyword
elements
scale-down
refer to the horizontal
width component of
as for o
‘object- .. 50% replaced and the <position>, as for background-
. <position> no . background- .
position’ 50% eclements height of " followed by the position
osition
element P vertical
itself component

Issues Index

I ISSUE 1 Add a visual example of a color hint being used. ¢

