CSS Nesting Module

W3C First Public Working Draft, 31 August 2021

This version:
https://www.w3.org/TR/2021/WD-css-nesting-1-20210831/

Latest published version:
https://www.w3.org/TR/css-nesting-1/

Editor's Draft:
https://drafts.csswg.org/css-nesting/

Issue Tracking:
CSSWG Issues Repository

Editors:
Tab Atkins-Bittner (Google)

Adam Argyle (Google)

Suggest an Edit for this Spec:
GitHub Editor

Copyright © 2021 w3aCc® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules
apply.

Abstract

This module introduces the ability to nest one style rule inside another, with the selector of the child
rule relative to the selector of the parent rule. This increases the modularity and maintainability of CSS
stylesheets.

SS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.0rg/TR/.




This document was published by the CSS Working Group as a First Public Working Draft.
Publication as a First Public Working Draft does not imply endorsement by the W3C Membership.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It

1s inappropriate to cite this document as other than work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-nesting” in
the title, like this: “[css-nesting] ...summary of comment...”. All issues and comments are archived.

Alternately, feedback can be sent to the (archived) public mailing list www-style@w3.org.

This document is governed by the 15 September 2020 W3C Process Document.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page
also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

Table of Contents

1 Introduction

1.1 Module Interactions

1.2 Values

1.3 Motivation

2 Nesting Style Rules

2.1 Direct Nesting

2.2 The Nesting At-Rule: ‘@nest’

2.3 Nesting Conditional Rules

24 Mixing Nesting Rules and Declarations

3 Nesting Selector: the ‘&’ selector

4 CSSOM

4.1 Modifications to CSSStyleRule

4.2 The CSSNestingRule Interface
Conformance

Document conventions



Conformance classes
Partial implementations
Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index
Terms defined by this specification

Terms defined by reference

References
Normative References

Informative References

IDL Index

1. Introduction

This section is not normative.

This module describes support for nesting a style rule within another style rule, allowing the inner
rule’s selector to reference the elements matched by the outer rule. This feature allows related styles to
be aggregated into a single structure within the CSS document, improving readability and

maintainability.

1.1. Module Interactions

This module introduces new parser rules that extend the [CSS21] parser model. This module
introduces selectors that extend the [SELECTORS4]| module.

1.2. Values

This specification does not define any new properties or values.

1.3. Motivation



The CSS for even moderately complicated web pages often include lots of duplication for the purpose
of styling related content. For example, here is a portion of the CSS markup for one version of the
[CSS-COLOR-3] module:

EXAMPLE 1

table.colortable td {
text-align:center;

¥
table.colortable td.c {

text-transform:uppercase;

}

table.colortable td:first-child, table.colortable td:first-child+td {
border:1px solid black;

}

table.colortable th {
text-align:center;
background:black;
color:white;

Nesting allows the grouping of related style rules, like this:

EXAMPLE 2

table.colortable {
& td {
text-align:center;
&.c { text-transform:uppercase }
&:first-child, &:first-child + td { border:1px solid black }

& th {
text-align:center;
background:black;

color:white;

Besides removing duplication, the grouping of related rules improves the readability and

maintainability of the resulting CSS.



2. Nesting Style Rules

Style rules can be nested inside of other styles rules. These nested style rules act exactly like ordinary
style rules—associating properties with elements via selectors—but they "inherit" their parent rule’s
selector context, allowing them to further build on the parent’s selector without having to repeat it,

possibly multiple times.

There are two closely-related syntaxes for creating nested style rules:

¢ Direct nesting, where the nested style rule is written normally inside the parent rule, but with the

requirement that the nested style rule’s selector is nest-prefixed.

e The ‘(@nest’ rule, which imposes less constraints on the nested style rule’s selector.

Aside from the slight difference in how they’re written, both methods are exactly equivalent in

functionality.

» Why can’t everything be directly nested?

2.1. Direct Nesting

A style rule can be directly nested within another style rule if its selector is nest-prefixed.

To be nest-prefixed, a nesting selector must be the first simple selector in the first compound selector

of the selector. If the selector is a list of selectors, every complex selector in the list must be nest-

prefixed for the selector as a whole to be nest-prefixed.



EXAMPLE 3

For example, the following nestings are valid:

/* & can be used on its own */
.foo {
color: blue;
& > .bar { color: red; }
}
/* equivalent to
.foo { color: blue; }
.foo > .bar { color: red; }

*/

/* or in a compound selector,
refining the parent’s selector */
.foo {
color: blue;
&.bar { color: red; }
¥
/* equivalent to
.foo { color: blue; }
.foo.bar { color: red; }
*/

/* multiple selectors in the list must all
start with & */
.foo, .bar {
color: blue;
& + .baz, &.qux { color: red; }
}
/* equivalent to
.foo, .bar { color: blue; }
:is(.foo, .bar) + .baz,
:is(.foo, .bar).qux { color: red; }
*/

/* & can be used multiple times in a single selector */

.foo {
color: blue;
& .bar & .baz & .qux { color: red; }

}

/* equivalent to



.foo { color: blue; }
.foo .bar .foo .baz .foo .qux { color: red; }

*/

/* Somewhat silly, but can be used all on its own, as well. */
.foo {
color: blue;
& { padding: 2ch; }
}
/* equivalent to
.foo { color: blue; }
.foo { padding: 2ch; }

// or

.foo {
color: blue;
padding: 2ch;
}
*/

/* Again, silly, but can even be doubled up. */
.foo {
color: blue;
&& { padding: 2ch; }
}
/* equivalent to
.foo { color: blue; }
.foo.foo { padding: 2ch; }
*/

/* The parent selector can be arbitrarily complicated */
.error, #404 {
&:hover > .baz { color: red; }
}
/* equivalent to
:is(.error, #404):hover > .baz { color: red; }
*/

/* As can the nested selector */
.foo {
&:is(.bar, &.baz) { color: red; }



/* equivalent to
.foo:is(.bar, .foo.baz) { color: red; }

*/

/* Multiple levels of nesting "stack up" the selectors */
figure {
margin: 0;

& > figcaption {
background: hsl(@ 0% 0% / 50%);

& >p {
font-size: .9rem;

}

/* equivalent to
figure { margin: @; }
figure > figcaption { background: hsl(@ 0% 0% / 50%); }
figure > figcaption > p { font-size: .9rem; }

*/

But these are not:

/* No & at all */

.foo {
color: blue;
.bar {
color: red;
¥
}
/* & isn’t the first simple selector */
.foo {
color: blue;
.bar& {
color: red;
}
}

/* & isn’t the first selector of every one in the list */
.foo, .bar {



color: blue;

& + .baz, .qux { color: red; }

The last example here isn’t technically ambiguous, since the selector as a whole does start with an
‘&’, but it’s an editing hazard—if the rule is refactored to remove the first selector or rearrange the
selectors in the list, which normally would always remain valid, it would result in a now-

ambiguous invalid selector.



Some CSS-generating tools will concatenate selectors like strings, allowing authors to build up a
single simple selector across nesting levels. This is sometimes used by selector-organization
methods like BEM to reduce repetition across a file, when the selectors themselves have

significant repetition internally.

For example, if one component uses the class ‘.foo’, and a nested component uses ‘.foo  bar’, you

could write this in Sass as:

.foo {
color: blue;

& bar { color: red; }

}

/* In Sass, this is equivalent to
.foo { color: blue; }
.foo__bar { color: red; }

*/

Unfortunately, this method is inconsistent with selector syntax in general, and at best requires
heuristics tuned to particularly selector-writing practices to recognize when the author wants it,
versus the author attempting to add a type selector in the nested rule. © bar’, for example, is a

valid custom element name in HTML.

As such, CSS can’t do this; the nested selector components are interpreted on their own, and not

"concatenated":

.foo {
color: blue;

& bar { color: red; }

}

/* In CSS, this is instead equivalent to
.foo { color: blue; }
__bar.foo { color: red; }

*/

2.2. The Nesting At-Rule: ‘@nest’

While direct nesting looks nice, it is somewhat fragile. Some valid nesting selectors, like ‘.foo &’, are

disallowed, and editing the selector in certain ways can make the rule invalid unexpectedly. As well,



some authors find the nesting challenging to distinguish visually from the surrounding declarations.

To aid in all these issues, this specification defines the ‘@nest’ rule, which imposes fewer restrictions

on how to validly nest style rules. Its syntax is:

@nest = @nest <selector-1list> { <style-block> }

The ‘@nest’ rule is only valid inside of a style rule. If used in any other context (particularly, at the

top-level of a stylesheet) the rule is invalid.

The ‘(@nest’ rule functions identically to a nested style rule: it starts with a selector, and contains a

block of declarations that apply to the elements the selector matches. That block is treated identically
to a style rule’s block, so anything valid in a style rule (such as additional ‘(@nest’ rules) is also valid

here.

The only difference between ‘(@nest’ and a directly nested style rule is that the selector used in a

‘@nest’ rule is less constrained: it only must be nest-containing, which means it contains a nesting
selector in it somewhere, rather than requiring it to be at the start of each selector. A list of selectors is

nest-containing if all of its individual complex selectors are nest-containing.




EXAMPLE 4
Anything you can do with direct nesting, you can do with an ‘@nest’ rule, so the following is

valid:

.foo {
color: red;
@nest & > .bar {
color: blue;

}

/* equivalent to

.foo { color: red; }

.foo > .bar { color: blue; }
*/

But ‘@nest’ allows selectors that don’t start with an ‘&’, so the following are also valid:

.foo {
color: red;
@nest .parent & {
color: blue;

}

/* equivalent to

.foo { color: red; }

.parent .foo { color: blue; }
*/

.foo {
color: red;
@nest :not(&) {
color: blue;

}

/* equivalent to
.foo { color: red; }
:not(.foo) { color: blue; }

*/

But the following are invalid:



won

.foo {
color: red;
@nest .bar {
color: blue;

}

/* Invalid because there’s no nesting selector */

.foo {
color: red;
@nest & .bar, .baz {
color: blue;

}

/* Invalid because not all selectors in the list
contain a nesting selector */

EXAMPLE 5

Directly nested style rules and ‘@nest’ rules can be arbitrarily mixed. For example:

.foo {
color: blue;
@nest .bar & {
color: red;
&.baz {
color: green;

}
/* equivalent to
.foo { color: blue; }
.bar .foo { color: red; }
.bar .foo.baz { color: green; }

2.3. Nesting Conditional Rules

In addition to ‘(@nest’ rules and directly nested style rules, this specification allows nested conditional
group rules inside of style rules.



When nested in this way, the contents of a conditional group rule are parsed as <style-block> rather

than <stylesheet>:

e Properties can be directly used, applying to the same elements as the parent rule (when the
conditional group rule matches)

o Style rules are treated as directly nested, and so must have nest-prefixed selectors, with their
nesting selector taking its definition from the nearest ancestor style rule.

e ‘(@nest’ rules are allowed, again with their nesting selector taking its definition from the nearest

ancestor style rule.

Note: This implies that "normal" style rules, without a nesting selector, are invalid in a nested

conditional group rule.




EXAMPLE 6

For example, the following conditional nestings are valid:

/* Properties can be directly used */
.foo {
display: grid;

@media (orientation: landscape) {
grid-auto-flow: column;

}

/* equivalent to
.foo { display: grid; }

@media (orientation: landscape) {
& {
grid-auto-flow: column;

}
*/

/* finally equivalent to
.foo { display: grid; }

@media (orientation: landscape) {
.foo {
grid-auto-flow: column;

}
*/

/* Conditionals can be further nested */
.foo {
display: grid;

@media (orientation: landscape) {
grid-auto-flow: column;

@media (min-inline-size > 1024px) {
max-inline-size: 1024px;



/* equivalent to
.foo { display: grid; }

@media (orientation: landscape) {

.foo {
grid-auto-flow: column;
}
}
@media (orientation: landscape) and (min-inline-size > 1024px) {
.foo {
max-inline-size: 1024px;
}

}
*/

But the following are invalid:

.foo {
color: red;

@media (min-width: 480px) {
& hl, h2 { color: blue; }

}

/* Invalid because not all selectors in the list
contain a nesting selector */

.foo {
color: red;

@nest @media (min-width: 480px) {
& { color: blue; }

}
/* Invalid because @nest expects a selector prelude,
instead a conditional group rule was provided */

¢ 2.4. Mixing Nesting Rules and Declarations



When a style rule contains both declarations and nested style rules or nested conditional group rules,

the declarations must come first, followed by the nested rules. Declarations occuring after a nested

rule are invalid and ignored.

EXAMPLE 7

For example, in the following code:

article {
color: green;
& { color: blue; }
color: red;

The ‘color: red’ declaration is invalid and ignored, since it occurs after the nested style rule.

However, further nested rules are still valid, as in this example:

article {
color: green;
& { color: blue; }
color: red;
&.foo { color: yellow; } /* valid! */

For the purpose of determining the Order Of Appearance, nested style rules and nested conditional

group rules are considered to come affer their parent rule.

For example:

article {
color: blue;
& { color: red; }

Both declarations have the same specificity (0,0,1), but the nested rule is considered to come affer its

parent rule, so the ‘color: red’ declarations wins the cascade.

On the other hand, in this example:



article {

color: blue;

@nest :where(&) { color: red; }
}

The ‘:where()’ pseudoclass reduces the specificity of the nesting selector to 0, so the ‘color: red’

declaration now has a specificity of (0,0,0), and loses to the ‘color: blue’ declaration before "Order Of

Appearance" comes into consideration.

3. Nesting Selector: the ‘&’ selector

When using a nested style rule, one must be able to refer to the elements matched by the parent rule;

that is, after all, the entire point of nesting. To accomplish that, this specification defines a new
selector, the nesting selector, written as ‘&’ (U+0026 AMPERSAND).

When used in the selector of a nested style rule, the nesting selector represents the elements matched

by the parent rule. When used in any other context, it represents nothing. (That is, it’s valid, but

matches no elements.)

The nesting selector can be desugared by replacing it with the parent style rule’s selector, wrapped

in an “:is()’ selector. For example,

a, b {
& ¢ { color: blue; }
}

is equivalent to

:is(a, b) c¢ { color: blue; }

The specificity of the nesting selector is equal to the largest specificity among the complex selectors in

the parent style rule’s selector list (identical to the behavior of “:is()’).



EXAMPLE 8

For example, given the following style rules:

#a, b {
& ¢ { color: blue; }
}

.foo ¢ { color: red; }

Then in a DOM structure like

<b class=foo>
<c>Blue text</c>
</b>

The text will be blue, rather than red. The specificity of the ‘&’ is the larger of the specificities of
“#a’ ([1,0,0]) and ‘b’ ([0,0,1]), so it’s [1,0,0], and the entire ‘& ¢’ selector thus has specificity
[1,0,1], which is larger than the specificity of ‘.foo ¢’ ([0,1,1]).

Notably, this is different than the result you’d get if the nesting were manually expanded out into
non-nested rules, since the ‘color: blue’ declaration would then be matching due to the ‘b ¢’
selector ([0,0,2]) rather than ‘#a ¢’ ([1,0,1]).

» Why is the specificity different than non-nested rules?

The nesting selector is allowed anywhere in a compound selector, even before a type selector,

violating the normal restrictions on ordering within a compound selector.

EXAMPLE 9
For example, ‘&div’ is a valid nesting selector, meaning "whatever the parent rules matches, but

only if it’s also a <div> element".

It could also be written as ‘div&’ with the same meaning, but that wouldn’t be valid to start a

directly nested style rule.

4. CSSOM



8 4.1. Modifications to CSSStyleRule

CSS style rules gain the ability to have nested rules:

partial interface CSSStyleRule {
[SameObject] readonly attribute CSSRulelist cssRules;

unsigned long insertRule(CSSOMString rule, optional unsigned long index = 0);
undefined deleteRule(unsigned long 1index);

}s

The cssRules attribute must return a CSSRulelList object for the child CSS rules.

The insertRule(rule, index) method must return the result of invoking insert a CSS rule rule into
the child CSS rules at index.

The deleteRule(index) method must remove a CSS rule from the child CSS rules at index.

8 4.2. The CSSNestingRule Interface

The CSSNestingRule interfaces represents a ‘(@nest’ rule:

[ Exposed=Window]
interface CSSNestingRule : CSSRule {

attribute CSSOMString selectorText;
[SameObject, PutForwards=cssText] readonly attribute CSSStyleDeclaration style;

[SameObject] readonly attribute CSSRulelist cssRules;
unsigned long insertRule(CSSOMString rule, optional unsigned long index = 9);

undefined deleteRule(unsigned long 1index);

}s

The selectorText attribute, on getting, must return the result of serializing the associated selector

list. On setting the selectorText attribute these steps must be run:

1. Run the parse a group of selectors algorithm on the given value.

2. If the algorithm returns a non-null value replace the associated selector list with the returned

value.

3. Otherwise, if the algorithm returns a null value, do nothing.



The style attribute must return a CSSStyleDeclaration object for the style rule, with the

following properties:
computed flag
Unset.

declarations
The declared declarations in the rule, in specified order.

parent CSS rule
The this object.

owner node
Null.

The cssRules attribute must return a CSSRulelist object for the child CSS rules.

The insertRule(rule, index) method must return the result of invoking insert a CSS rule rule into
the child CSS rules at index.

The deleteRule(index) method must remove a CSS rule from the child CSS rules at index.

To serialize a CSSNestingRule: return the result of the following steps:

1. Let s initially be the string "@nest" followed by a single SPACE (U+0020).

2. Append to s the result of performing serialize a group of selectors on the rule’s associated
selectors, followed by the string " {", i.e., a single SPACE (U+0020), followed by LEFT CURLY
BRACKET (U+007B).

3. Let decls be the result of performing serialize a CSS declaration block on the rule’s associated

declarations, or null if there are no such declarations.

4. Let rules be the result of performing serialize a CSS rule on each rule in the rule’s cssRules list,

or null if there are no such rules.

5. If decls and rules are both null, append " }" to s (i.e. a single SPACE (U+0020) followed by
RIGHT CURLY BRACKET (U+007D)) and return s.

6. If rules is null:

1. Append a single SPACE (U+0020) to s
2. Append decls to s

3. Append " }" to s (i.e. a single SPACE (U+0020) followed by RIGHT CURLY BRACKET
(U+007D)).

4. Return s.



7. Otherwise:

1. If decls is not null, prepend it to rules.

2. For each rule in rules:

1. Append a newline followed by two spaces to s.
2. Append rule to s.
3. Append a newline followed by RIGHT CURLY BRACKET (U+007D) to s.

4. Return s.

Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119
terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative
parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,
examples, and notes. [RFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

EXAMPLE 10

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:



UAs MUST provide an accessible alternative.

Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.

renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool
A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this
module are valid according to the generic CSS grammar and the individual grammars of each feature

defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined
by the appropriate specifications, it supports all the features defined by this specification by parsing
them correctly and rendering the document accordingly. However, the inability of a UA to correctly
render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically
correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

Partial implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,
user agents must not selectively ignore unsupported component values and honor supported values in
a single multi-value property declaration: if any value is considered invalid (as unsupported values

must be), CSS requires that the entire declaration be ignored.

Implementations of Unstable and Proprietary Features



To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprietary extensions to CSS.

Non-experimental implementations

Once a specification reaches the Candidate Recommendation stage, non-experimental
implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group
requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the
testcases used for that implementation report) to the W3C before releasing an unprefixed
implementation of any CSS features. Testcases submitted to W3C are subject to review and correction
by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS
Working Group’s website at https://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

Index

Terms defined by this specification

&,in §3 insertRule(rule)
method for CSSNestingRule, in § 4.2

CSSNestingRule, in § 4.2
method for CSSStyleRule, in § 4.1

cssRules

. . , insertRule(rule, index)
attribute for CSSNestingRule, in § 4.2

method for CSSNestingRule, in § 4.2

attribute for CSSStyleRule, in § 4.1

method for CSSStyleRule, in § 4.1

deleteRule(index) NS
nest, in .
method for CSSNestingRule, in § 4.2 nest 3
method for CSSStyleRule, in § 4.1 nest-containing, in § 2.2
directly nested, in § 2.1 nested conditional group rules, in § 2.3
direct nesting, in § 2.1 nested style rule, in § 2

nesting selector, in § 3

nesting style rule, in § 2




nest-prefixed, in § 2.1

selectorText, in § 4.2

Terms defined by reference

[css-color-4] defines the following terms:

color

[css-conditional-3] defines the following terms:

conditional group rule
[css-syntax-3] defines the following terms:
<stylesheet>
style rule
[cssom-1] defines the following terms:
CSSOMString
CSSRule
CSSRuleList
CSSStyleDeclaration
CSSStyleRule
child css rules
computed flag
cssText
declarations
insert a css rule
owner node
parent css rule
parse a group of selectors
remove a css rule
selectorText
serialize a css declaration block
serialize a css rule
serialize a group of selectors

specified order

style, in § 4.2

[HTML] defines the following terms:

div

[SELECTORSA4] defines the following terms:

:is()

:where()

<selector-list>

complex selector

compound selector

selector list

simple selector

specificity

type selector
[WebIDL] defines the following terms:

Exposed

PutForwards

SameObject

this

undefined

unsigned long



References

Normative References

[CSS-COLOR-4|
Tab Atkins Jr.; Chris Lilley. CSS Color Module Level 4. 1 June 2021. WD. URL:

https://www.w3.org/TR/css-color-4/

[CSS-CONDITIONAL-3]
David Baron; Elika Etemad; Chris Lilley. CSS Conditional Rules Module Level 3. 8 December

2020. CR. URL: https://www.w3.org/TR/css-conditional-3/

[CSS-SYNTAX-3]
Tab Atkins Jr.; Simon Sapin. CSS Syntax Module Level 3. 16 July 2019. CR. URL:
https://www.w3.org/TR/css-syntax-3/

[CSS21]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011.

REC. URL: https://www.w3.org/TR/CSS21/

[CSSOM-1]
Daniel Glazman; Emilio Cobos Alvarez. CSS Object Model (CSSOM). 26 August 2021. WD.
URL.: https://www.w3.org/TR/cssom-1/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current

Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

[SELECTORS4]
Elika Etemad; Tab Atkins Jr.. Selectors Level 4. 21 November 2018. WD. URL:

https://www.w3.org/TR/selectors-4/

[WebIDL)]
Boris Zbarsky. Web IDL. 15 December 2016. ED. URL: https://heycam.github.io/webidl/

Informative References

[CSS-COLOR-3]
Tantek Celik; Chris Lilley; David Baron. CSS Color Module Level 3. 5 August 2021. REC. URL.:
https://www.w3.org/TR/css-color-3/

[HTML]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL:
https://html.spec.whatwg.org/multipage/



§ IDL Index

partial interface CSSStyleRule {
[SameObject] readonly attribute CSSRulelist cssRules;

unsigned long insertRule(CSSOMString rule, optional unsigned long index = 0);
undefined deleteRule(unsigned long index);

}s

[Exposed=Window]
interface CSSNestingRule : CSSRule {
attribute CSSOMString selectorText;
[SameObject, PutForwards=cssText] readonly attribute CSSStyleDeclaration style;
[SameObject] readonly attribute CSSRulelist cssRules;
unsigned long insertRule(CSSOMString rule, optional unsigned long index = 0);

undefined deleteRule(unsigned long index);

}s




