27/01/2021

CSS Table Module Level 3

CSS Table Module Level 3

Editor’s Draft, 18 September 2020

» Specification Metadata

¥ Not Ready For Implementation

This spec is not yet ready for implementation. It exists in this repository to record the ideas and

promote discussion.

Before attempting to implement this spec, please contact the CSSWG at www-style@w3.org.

Copyright © 2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules
apply.

Abstract

This CSS module defines a two-dimensional grid-based layout system, optimized for tabular data
rendering. In the table layout model, each display node is assigned to an intersection between a set of
consecutive rows and a set of consecutive columns, themselves generated from the table structure and

sized according to their content.

CSS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

Status of this document

This is a public copy of the editors’ draft. It is provided for discussion only and may change at any
moment. Its publication here does not imply endorsement of its contents by W3C. Don’t cite this

document other than as work in progress.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-tables” in the

title, like this: “[css-tables] ...summary of comment...”. All issues and comments are archived.
Alternately, feedback can be sent to the (archived) public mailing list www-style(@w3.org.

This document is governed by the 15 September 2020 W3C Process Document.

https://drafts.csswg.org/css-tables/

1/82

27/01/2021

CSS Table Module Level 3

Table of Contents

2.1
2.1.1
2.2
2.2.1
222
223

3.1
3.2
33
3.3.1
332
34
35
3.5.1
352
3521
353
3.6
3.6.1
3.6.2
3.7

3.7.1
37.1.1

3.7.1.2
3.7.13
3.8
3.8.1
3.8.2
3.83
3.9
3.9.1

Introduction

Value Definitions

Content Model

Table Structure
Terminology

Fixup
Fixup Algorithm
Characteristics of fixup boxes

Examples

Layout
Core layout principles
Table layout algorithm
Dimensioning the row/column grid
HTML Algorithm
Track merging
Missing cells fixup
Table layout modes
The Table-Layout property
The Border-Collapse property
The Border-Spacing property
The Caption-Side property
Style overrides
Overrides applying in all modes
Overrides applying in collapsed-borders mode
Border-collapsing

Conflict Resolution for Collapsed Borders
Conflict Resolution Algorithm for Collapsed Borders

Harmonization Algorithm for Collapsed Borders
Specificity of a border style
Computing table measures
Computing Undistributable Space
Computing Cell Measures
Computing Column Measures
Available Width Distribution
Computing the table width

https://drafts.csswg.org/css-tables/

2/82

27/01/2021

392
39.2.1
39.22
393
3.9.3.1
3932
3.10
3.10.1
3.10.2
3.10.3
3.104
3.10.5
3.10.6
3.11

4.1
4.2
4.3

5.1
5.2
53

5.3.1
53.1.1

532

533
533.1

534
54

54.1
542

6.1
6.2

CSS Table Module Level 3

Core distribution principles
Rules
Available sizings
Distribution algorithm
Changes to width distribution in fixed mode
Distributing excess width to columns
Available Height Distribution
Computing the table height
Row layout (first pass)
Row layout (second pass)
Core distribution principles
Distribution algorithm
Table-cell content layout (second pass)

Positioning of cells, captions and other internal table boxes

Absolute Positioning
With a table-root as containing block
With a table-internal as containing block

With a table-internal box as non-containing block parent

Rendering

Paint order of cells

Empty cell rendering (separated-borders mode)
Drawing backgrounds and borders

Drawing table backgrounds and borders

Changes in collapsed-borders mode
Drawing cell backgrounds

Drawing cell borders

Changes in collapsed-borders mode
Border styles (collapsed-borders mode)
Rendering for visibility: collapse
Rendering a visibility: collapse table cell

Rendering a visibility: collapse table-track or table-track-group

Fragmentation
Breaking across fragmentainers

Repeating headers across pages

Security Considerations

https://drafts.csswg.org/css-tables/

3/82

27/01/2021 CSS Table Module Level 3

8 Privacy Considerations
9 List of bugs being tracked o
10 Appendices
10.1 Mapping between CSS & HTML attributes
11 (link here for missing sections)
Conformance

Document conventions
Conformance classes
Partial implementations
Implementations of Unstable and Proprietary Features

Non-experimental implementations

Index
Terms defined by this specification

Terms defined by reference

References
Normative References

Informative References
Property Index

Issues Index

1. Introduction

This section is not normative

Many types of information (ex: weather readings collected over the past year) are best visually
represented in a two-axis grid where rows represent one item of the list (ex: a date, and the various
weather properties measured during that day), and where columns represent the successive values of

an item’s property (ex: the temperatures measured over the past year).

Sometimes, to make the representation easier to understand, some cells of the grid are used to

represent a description or summary of their parent row/column, instead of actual data. This happens

https://drafts.csswg.org/css-tables/ 4/82

27/01/2021

CSS Table Module Level 3

more frequently for the cells found on the first row and/or column (called headers) or the cells found

on the last row and/or column (called footers).

This kind of tabular data representation is usually known as tables. Tables layout can be abused to
render other grid-like representations like calendars or timelines, though authors should prefer other

layout modes when the information being represented does not make sense as a data table.

The rendering of tables in HTML has been defined for a long time in the HTML specification.
However, its interactions with features defined in CSS remained for a long time undefined. The goal of
this specification is to define the expected behavior of user agents supporting both HTML tables and
CSS.

Please be aware that some behaviors defined in this document will not be the most logical or useful
way of solving the problem they aim to solve, but such behaviors are often the result of compatibility
requirements and not a deliberate choice of the editors of this specification. Authors wishing to use

more complex layouts are encouraged to rely on more modern CSS modules such as CSS Grid.

1.1. Value Definitions

This specification follows the CSS property definition conventions from [CSS2] using the value

definition syntax from [CSS-VALUES-3]. Value types not defined in this specification are defined in
CSS Values & Units [CSS-VALUES-3]. Combination with other CSS modules may expand the

definitions of these value types.

In addition to the property-specific values listed in their definitions, all properties defined in this

specification also accept the CSS-wide keywords as their property value. For readability they have not

been repeated explicitly.

2. Content Model

2.1. Table Structure

The CSS table model is based on the HTML4 table model, in which the structure of a table closely
parallels the visual layout of the table. In this model, a table consists of an optional caption and any

number of rows of cells.

In addition, adjacent rows and columns may be grouped structurally and this grouping can be reflected

in presentation (e.g., a border may be drawn around a group of rows).

https://drafts.csswg.org/css-tables/

—

5/82

27/01/2021 CSS Table Module Level 3

The table model is said to be "row primary" since authors specify rows, not columns, explicitly in the
document language. Columns are derived once all the rows have been specified: the first cell of the
first row belongs to the first column and as many other columns as spanning requires (and it creates

them if needed), and the following cells of that row each belong to the next available column and as

many other columns as spanning requires (creating those if needed); the cells of the following rows

each belong to the next available column for that row (taking rowspan into account) and as many other
columns as spanning requires (creating those if needed). (sce

).

To summarize, an instance of the table model consists of:
¢ [ts table-root containing:
e Zero, one or more table rows, optionally in row groups,
¢ Each of them contaning one or more table cells

¢ Optionally: one or more table columns, optionally in column groups

e Optionally: one or more table caption.

TABLE TABLE-CAPTION

TABLE-CAPTION

MOY
-371avL

TABLE-CELL TABLE-CELL

TABLE-HEADER-GROUP TABLE-CELL
- TABLE-ROW

TABLE-CELL

- TABLE-ROW
TABLE-CELL TABLE-CELL TABLE-CELL

TABLE-ROW-GROUP
- TABLE-ROW TABLE-CELL [TABLE-CELL J§ TABLE-CELL

MOY
-31avL

MOY
-31avL

- TABLE-ROW TABLE-CELL TABLE-CELL

TABLE-ROW-GROUP TABLE-CELL TABLE-CELL
- TABLE-ROW

TABLE-CELL

TABLE-CELL TABLE-CELL
TABLE-FOOTER-GROUP

- TABLE-ROW TABLE- TABLE- TABLE-
COLUMN COLUMN COLUMN

=
el
8%
=
=i
X
3%
=h

MOY
-31avL

MOY
-31avL

- TABLE-ROW

Figure 1 Two representations of the structure of a table (tree vs layout)

The CSS model does not require that the document language include elements that correspond to each
of these components. For document languages (such as XML applications) that do not have pre-

defined table elements, authors must map document language elements to table elements. This is done

with the ‘display’ property.

https://drafts.csswg.org/css-tables/ 6/82

27/01/2021 CSS Table Module Level 3

The following ‘display’ values assign table formatting rules to an arbitrary element:

table (equivalent to HTML: <table>)
Specifies that an element defines a table that is block-level when placed in flow layout.

inline-table (equivalent to HTML: <table>)
Specifies that an element defines a table that is inline-level when placed in flow layout.

table-row (equivalent to HTML: <tr>)
Specifies that an element is a row of cells.

table-row-group (equivalent to HTML: <tbody>)
Specifies that an element groups some amount of rows.

Unless explicitly mentioned otherwise, mentions of table-row-groups in this spec also encompass

the specialized table-header-groups and table-footer-groups.

table-header-group (equivalent to HTML: <thead>)
Like table-row-group but, for layout purposes, the first such row group is always displayed before

all other rows and row groups.

If a table owns multiple display: table-header-group boxes, only the first is treated as a

header; the others are treated as if they had display: table-row-group.

table-footer-group (equivalent to HTML: <tfoot>)
Like table-row-group but, for layout purposes, the fist such row group is always displayed after

all other rows and row groups.

If a table owns multiple display: table-footer-group boxes, only the first is treated as a

footer; the others are treated as if they had display: table-row-group.

table-column (equivalent to HTML: <col>)
Specifies that an element describes a column of cells.

table-column-group (equivalent to HTML: <colgroup>)
Specifies that an element groups one or more columns.

table-cell (equivalent to HTML: <td> or <th>)
Specifies that an element represents a table cell.

table-caption (equivalent to HTML: <caption>)
Specifies a caption for the table. Table captions are positioned between the table margins and its

borders.

https://drafts.csswg.org/css-tables/ 7/82

27/01/2021 CSS Table Module Level 3

Authors should not assign a display type from the previous list to replaced elements (eg: input
fields or images). When the ‘display’ property of a replaced element computes to one of these
values, it is handled instead as though the author had declared either block (for table display) or
inline (for all other values). Whitespace collapsing and box generation must happen around
those replaced elements like if they never had any table-internal display value applied to them,

and had always been block or inline.

ISSUE 1 This is a breaking change from css 2.1 but matches implementations
<https://github.com/w3c/csswg-drafts/issues/508>

2.1.1. Terminology

In addition to the table structure display types, the following wording is also being used in this spec:

table wrapper box
A block container box generated around table grid boxes to account for any space occupied by

each table-caption it owns.

table grid box
A block-level box containing the table-internal boxes, excluding its captions.

table-root element
An element whose inner display type is ‘table’.

table-non-root box or element
A proper table child, or a table-cell box.

table-track box or element
A table-row, or table-column box.

table-track-group box or element
A table-row-group, or table-column-group box.

proper table child box or element
A table-track-group, table-track, or table-caption box.

proper table-row parent box or element
A table-root or a table-row-group box.

table-internal box or element
A table-cell, table-track or table-track-group box.

tabular container
A table-row or proper table-row parent box.

consecutive boxes

https://drafts.csswg.org/css-tables/

8/82

27/01/2021 CSS Table Module Level 3

Two sibling boxes are consecutive if they have no intervening siblings other than, optionally, an
anonymous inline containing only white spaces. A sequence of sibling boxes is consecutive if

each box in the sequence is consecutive to the one before it in the sequence.

table grid
A matrix containing as many rows and columns as needed to describe the position of all the

table-rows and table-cells of a table-root, as determined by the grid-dimensioning algorithm.

Each row of the grid might correspond to a table-row, and each column to a table-column.

slot of the table grid
A slot (r,c) is an available space created by the intersection of a row r and a column c in the

table grid.

Each slot of the table grid is covered by at least one table-cell (some of them anonymous), and at

most two. Each table-cell of a table-root covers at least one slot.

Table-cells which cover more than one slot do so densely, meaning the set of slots they cover can
always be described as a set of four strictly-positive integers (rowStart, colStart, rowSpan,
colSpan) such that a slot (r, c) is covered by the table-cell if and only if r lies in the interval
between rowStart (included) and rowStart+rowSpan (exculded), and c lies in the interval

between colStart (included) and colStart+colSpan (exculded);
Such table-cell is said to eriginate from row rowStart and column colStart. Also:
o A table-cell is said to originate a table-row (resp. table-column) if it originates its
corresponding row (resp. column)
¢ A table-cell is said to originate a table-row-group (resp. table-column-group) if the group
contains the cell’s originating row (resp. column)
Such table-cell is said to span all rows r and columns ¢ matching the above condition. Also:
o A table-cell is said to span a table-row (resp. table-column) if it spans its corresponding row
(resp. column)

o A table-row (resp. table-column) corresponding to a row (resp. column) is said to span this

row (resp. column)
o A table-row (resp. table-column) is said to span all columns of the grid (resp. row)

¢ A table-row-group (resp. table-column) containing a row (resp. column) is said to span the

row (resp. column)

¢ A table-row-group (resp. table-column) is said to span all columns of the grid (resp. row)

https://drafts.csswg.org/css-tables/ 9/82

27/01/2021 CSS Table Module Level 3

2.2. Fixup

Document languages other than HTML may not contain all the elements in the CSS 2.1 table model.

In these cases, the "missing" elements must be assumed in order for the table model to work.

Any table-internal element will automatically generate necessary anonymous table objects around

itself, if necessary. Any descendant of a table-root that is not table-internal must have a set of ancestors

in the table consisting of at least three nested objects corresponding to a table/inline-table, a table-row,

and a table-cell. Missing boxes cause the generation of anonymous boxes according to the following

rules:

2.2.1. Fixup Algorithm

For the purposes of these rules, out-of-flow elements are represented as inline elements of zero width

and height. Their containing blocks are chosen accordingly.
The following steps are performed in three stages:

1. Remove irrelevant boxes:

The following boxes are discarded as if they were display:none:

1. Children of a table-column.

2. Children of a table-column-group which are not a table-column.

3. Anonymous inline boxes which contain only white space and are between two immediate

siblings each of which is a table-non-root box.

4. Anonymous inline boxes which meet all of the following criteria:

= they contain only white space

= they are the first and/or last child of a tabular container

= whose immediate sibling, if any, is a table-non-root box

2. Generate missing child wrappers:

1. An anonymous table-row box must be generated around each sequence of consecutive

children of a table-root box which are not proper table child boxes.

2. An anonymous table-row box must be generated around each sequence of consecutive

children of a table-row-group box which are not table-row boxes.

3. An anonymous table-cell box must be generated around each sequence of consecutive

children of a table-row box which are not table-cell boxes.

3. Generate missing parents:

https://drafts.csswg.org/css-tables/

10/82

27/01/2021

CSS Table Module Level 3

1. An anonymous table-row box must be generated around each sequence of consecutive table

cell boxes whose parent is not a table-row.

2. An anonymous table or inline-table box must be generated around each sequence of

consecutive proper table child boxes which are misparented. If the box’s parent is an inline,

run-in, or ruby box (or any box that would perform inlinification of its children), then an

inline-table box must be generated; otherwise it must be a table box.

= A table-row is misparented if its parent is neither a table-row-group nor a table-root

box.

= A table-column box is misparented if its parent is neither a table-column-group box no

a table-root box.

= A table-row-group, table-column-group, or table-caption box is misparented if its

parent is not a table-root box.

is inline-block for inline-table boxes and block for table boxes. The table wrapper box
establishes a block formatting context. The table-root box (not the table-wrapper box) is
used when doing baseline vertical alignment for an inline-table. The width of the table-
wrapper box is the border-edge width of the table grid box inside it. Percentages which

would depend on the ‘width’ and ‘height’ on the table-wrapper box’s size are relative to the

table-wrapper box’s containing block instead, not the table-wrapper box itself.

Please note that some layout modes such as flexbox and grid override the display type of their

children. These transformations happen before the table fixup.

Please note that the ‘float’” and “position’ properties sometimes affect the computed value of

‘display’. When those properties are used on what should have been table internal boxes, they

switch to block instead. This transformation happen before the table fixup.

We have modified the text of this section from CSS 2.2 to make it easier to read. If you find any

mistakes due to these changes please file an issue

2.2.2. Characteristics of fixup boxes

or default styling, except where otherwise mentioned by this specification.

https://drafts.csswg.org/css-tables/

—

r

. An anonymous table-wrapper box must be generated around each table-root. Its display type

Beside their display type, the anonymous boxes created for fixup purposes do not receive any specific

11/82

27/01/2021 CSS Table Module Level 3

This means in particular that their computed background is “transparent”, their computed padding

1s “Opx”, their computed border-style is “none”.

It is also woth reminding that an anonymous box inherits property values through the box tree.

2.2.3. Examples

EXAMPLE 1

<div class="row">
<div class="cell">George</div>
<div class="cell">4287</div>
<div class="cell">1998</div>
</div>

Here is the associated styles:

.row { display: table-row }
.cell { display: table-cell }

After fixup, this will produce layout boxes as though this was the initial HTML:

<table>
<tr>
<td>George</td>
<td>4287</td>
<td>1998</td>
</tr>
</table>

https://drafts.csswg.org/css-tables/ 12/82

27/01/2021 CSS Table Module Level 3

EXAMPLE 2

In this example, three table-cell anonymous boxes are assumed to contain the text in the rows. The
text inside of the divs with a display: table-row are encapsulated in anonymous inline boxes, as

explained in visual formatting model:

<div class="inline-table">
<div class="row">This is the top row.</div>
<div class="row">This is the middle row.</div>
<div class="row">This is the bottom row.</div>
</div>

.inline-table { display: inline-table; }
.row { display: table-row; }

This will produce layout boxes as though this was the initial HTML:

<table>
<tr>
<td>This is the top row.</td>
</tr>
<tr>
<td>This is the middle row.</td>
</tr>
<tr>
<td>This is the bottom row.</td>
</tr>
</table>

3. Layout

3.1. Core layout principles

Unlike other block-level boxes, tables do not fill their containing block by default. When their ‘width’
computes to auto, they behave as if they had fit-content specified instead. This is different from

most block-level boxes, which behave as if they had stretch instead.

https://drafts.csswg.org/css-tables/ 13/82

27/01/2021 CSS Table Module Level 3

The min-content width of a table is the width required to fit all of its columns min-content widths anc

its undistributable spaces.

The max-content width of a table is the width required to fit all of its columns max-content widths

and its undistributable spaces.

If the width assigned to a table is larger than its min-content width, the Available Width Distribution

algorithm will adjust column widths in consequence.

This section overrides the general-purpose rules that apply to calculating widths described in other
specifications. In particular, if the margins of a table are set to © and the width to auto, the table will
not automatically size to fill its containing block. However, once the used value of width for the table
1s found (using the algorithms given below) then the other parts of those rules do apply. Therefore, a

table can be centered using left and right auto margins, for instance.

3.2. Table layout algorithm
To layout a table, user agents must apply the following actions:

1. Determine the number of rows/columns the table requires.

This is done by executing the steps described in § 3.3 Dimensioning the row/column grid.

2. [A] If the row/column grid has at least one slot:

1. Ensure each cell slot is occupied by at least one cell.

This is done by executing the steps described in § 3.4 Missing cells fixup.

2. Compute the minimum width of each column.

This is done by executing the steps described in § 3.8 Computing table measures.

3. Compute the width of the table.
This is done by executing the steps described in § 3.9.1 Computing the table width.

4. Distribute the width of the table among columns.

This is done by executing the steps described in § 3.9.3 Distribution algorithm.

5. Compute the height of the table.
This is done by executing the steps described in § 3.10.1 Computing the table height.

6. Distribute the height of the table among rows.
This is done by executing the steps described in § 3.10.5 Distribution algorithm.

[B] Else, an empty table is laid out:

https://drafts.csswg.org/css-tables/

—

14/82

27/01/2021 CSS Table Module Level 3

1. Compute the width of the table.

This is done by returning the largest value of CAPMIN and the computed width of the table ™

grid box (including borders and paddings) if it is definite (use zero otherwise).

2. Compute the height of the table.
This is done by returning the sum of all table-caption heights (their width being set to the
table width, with margins taken into consideration appropriately) and the computed height of
the table grid box (including borders and paddings) if it is definite (use zero otherwise).

3. Assign to each table-caption and table-cell their position and size.

This is done by running the steps of § 3.11 Positioning of cells, captions and other internal table

boxes.

https://drafts.csswg.org/css-tables/

15/82

27/01/2021 CSS Table Module Level 3

The following schema describes the algorithm in a different way, to make it easier to understand.

—

CSS Table Layout

STEP 1: Compute the caption minimum width

B>

STEP 3A.1: Fill the grid gaps

B>

STEP 3A.2: Compute the row/column grid minimum & preferred width

[=] =—=]
=—==1 .=

https://drafts.csswg.org/css-tables/ 16/82

27/01/2021 CSS Table Module Level 3
‘ E E ‘ | [|

j—p] ||

STEP 3A.3: Compute the table width

>l le=>|
=[] - =
[e—p] l—p] [e——p]

STEP 3A.4: Distribute the table width to columns

>l > el —
[=[]
[——p)] [——p

STEP 3A.5: Compute the table height
=] % HLd =

STEP 3A.6: Distribute the table height to rows

=T

https://drafts.csswg.org/css-tables/ 17/82

27/01/2021 CSS Table Module Level 3

STEP 4: Position cells and captions

Ready for render ©

Replacement steps for empty tables

STEP 3B.1: Compute the table width

STEP 3B.2: Compute the table height

E.%{II - D;

https://drafts.csswg.org/css-tables/ 18/82

27/01/2021 CSS Table Module Level 3

(P= 0

Figure 2 Overview of the table layout algorithm. Not normative.

3.3. Dimensioning the row/column grid

Like mentioned in the Table structure section, how many rows and columns a table has can be

determined from the table structure. Both dimensioning the row/column grid and assigning table-cells

their slot(s) in that grid do require running the HTML Algorithms for tables.

3.3.1. HTML Algorithm

CSS Boxes that do not originate from an HTML table element equivalent to their display type need
to be converted to their HTML equivalent before we can apply this algorithm, see below. There is
no way to specify the span of a cell in css only in this level of the spec, the use of an HTML td

element is required to do so.

Apply the HTMLS5 Table Formatting algorithm, where boxes act like the HTML element equivalent to

their display type, and use the attributes of their originating element if and only if it is an HTML

element of the same type (otherwise, they act like if they didnt’t have any attribute).

https://drafts.csswg.org/css-tables/ 19/82

27/01/2021 CSS Table Module Level 3

EXAMPLE 3

<ul class="table">
<1i>0ne<i>1</i></1i>
<1i>Two<i>2</i></1i>
Three<i>3</i></1i>

<style>
ul.table { display: table; }
ul.table > 1i { display: table-row; }
ul.table > 1i > * { display: table-cell; }

</style>

produces the same row/column grid as

<table><tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody></table>

https://drafts.csswg.org/css-tables/

20/82

27/01/2021 CSS Table Module Level 3

EXAMPLE 4

<!-- built using dom api, as this would be fixed by the html parser -->

<grid style="display: table">
<row style="display: table-row">
<th rowspan="2">1</th>
<colgroup style="display: table-cell" span="2
</row>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</grid>

produces the same row/column grid as

<table>
<tr>
<th rowspan="2">1</th>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</table>

Note how the second cell of the first row doesn’t have **“colspan=2""

originating element is not an HTML TD element.

Testcase. !!Testcase. !'Test case. !!Test case. !!Test case.

§ 3.3.2. Track merging

https://drafts.csswg.org/css-tables/

colspan="2">2</colgroup>

* applied, because its

21/82

27/01/2021

CSS Table Module Level 3

The HTML Table Formatting algorithm sometimes generates more tracks than necessary to layout

—

the table properly. Those tracks have historically been ignored by user agents, so the next step just
gets rid of them entirely to avoid dealing with them as exceptions later in the spec. We have tried
to maintain the functionality with this change, but if you happen to find any issues due to this

change please file an issue.

Modify iteratively the obtained grid by merging consecutive tracks as follows: As long as there exists
an eligible track in the obtained row/column grid such that there is no table-column/table-row box
defining the said track explicitly, and both the said track and the previous one are spanned by the exact
same set of cells, those two tracks must be merged into one single track for the purpose of computing
the layout of the table. Reduce the span of the cells that spanned the deleted track by one to

compensate, and shift similarly the tracks from which cells originate when needed. (sce

)

For tables in auto mode, every track is an eligible track for the purpose of the track-merging
algorithm. For tables in fixed mode, only rows are eligible to be merged that way; which means that

every column is preserved.

Finally, assign to the table-root grid its correct number of rows and columns (from its mapped

element), and to each table-cell its accurate rowStart/colStart/rowSpan/colSpan (from its mapped

element).

3.4. Missing cells fixup

The following section clarifies and extends the CSS 2.1 statement saying that missing cells are
rendered as if an anonymous table-cell box occupied their position in the grid (a "missing cell" is a

slot in the row/column grid that is not covered yet by any table-cell box).

Once the amount of columns in a table is known, any table-row box must be modified such that it
owns enough cells to fill all the columns of the table, when taking spans into account. New table-cell

anonymous boxes must be appended to its rows content until this condition is met.

3.5. Table layout modes

This section covers the flags which modify the way tables are being laid out. There are three major

flags for table layout: ‘table-layout’, ‘border-collapse’, and ‘caption-side’. The ‘border-collapse’ flag

has an optional ‘border-spacing’ parameter.

https://drafts.csswg.org/css-tables/

22/82

27/01/2021 CSS Table Module Level 3

3.5.1. The Table-Layout property

Name: ‘table-layout’
Value: auto | fixed
Initial: auto

Applies to: table grid boxes

Inherited: no

Percentages: n/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete
type:

A table-root is said to be laid out in fixed mode whenever the computed value of the ‘table-layout’
property is equal to fixed, and the specified width of the table root is either a <length-percentage>,
min-content or fit-content. When the specified width is not one of those values, or if the computed

value of the ‘table-layout” property is auto, then the table-root is said to be laid out in auto mode.

When a table-root is laid out in fixed mode, the content of its table-cells is ignored for the purpose of
width computation, the aggregation algorithm for column sizing considers only table-cells belonging
to the first row track, such that layout only depends on the values explicitly specified for the table-
columns or cells of the first row of the table; columns with indefinite widths are attributed their fair
share of the remaining space after the columns with a definite width have been considered, or Opx if

there is no remaining space (see § 3.8.3 Computing Column Measures).

3.5.2. The Border-Collapse property

Name: ‘border-collapse’
Value: separate | collapse

https://drafts.csswg.org/css-tables/ 23/82

27/01/2021 CSS Table Module Level 3

Initial: separate —

Applies to: table grid boxes

Inherited: yes

Percentages: n/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete
type:

When the ‘border-collapse’ property has collapse as its value, the borders of adjacent cells are

merged together such that each cell draws only half of the shared border. As a result, some other

properties like ‘border-spacing’ will not applied in this case (see § 3.6.2 Overrides applying in

collapsed-borders mode), (see § 3.7 Border-collapsing).

A table-root is said to be laid out in collapsed-borders mode in this case. Otherwhise, the table-root is

said to be laid out in separated-borders mode.

3.5.2.1. The Border-Spacing property

Name: ‘border-spacing’

Value: <length>{1,2}

Initial: Opx Opx

Applies to: table grid boxes when ‘border-collapse’ is ‘separate’

Inherited: yes

Percentages: n/a

Computed two absolute lengths

https://drafts.csswg.org/css-tables/ 24/82

27/01/2021 CSS Table Module Level 3

value:

Canonical per grammar
order:

Animation by computed value
type:

The lengths specify the distance that separates adjoining cell borders in separated-borders mode, and

must not be strictly negative.

If one length is specified, it gives both the horizontal and vertical spacing. If two are specified, the first

gives the horizontal spacing and the second the vertical spacing.

See § 3.8.1 Computing Undistributable Space for details on how this affects the table layout.

3.5.3. The Caption-Side property

Name: ‘caption-side’
Value: top | bottom
Initial: top

Applies to: table-caption boxes

Inherited: yes

Percentages: n/a

Computed specified keyword

value:

Canonical per grammar
order:

Animation discrete
type:

https://drafts.csswg.org/css-tables/ 25/82

27/01/2021

CSS Table Module Level 3

This property specifies the position of the caption box with respect to the table grid box. Values have

—

the following meanings:

top
Positions the caption box above the table grid box.

bottom
Positions the caption box below the table grid box.

CSS2 described a different width and horizontal alignment behavior. That behavior was supposed

to be introduced in CSS3 using the values top-outside and bottom-outside. #REF

Gecko also supports the "left" and "right" values, but currently this specification is not attempting

to define their implementation of said values.

Gecko has a bug when dealing with multiple captions.

EXAMPLE 5
To align caption content horizontally within the caption box, use the ‘text-align’ property.

In this example, the ‘caption-side’ property places captions below tables. The caption will be as
wide as the parent of the table, and caption text will be left-justified.

caption {
caption-side: bottom;
width: auto;
text-align: left

3.6. Style overrides

Some css properties behave differently inside css tables. The following sections list the exceptions and
their effects.

3.6.1. Overrides applying in all modes

The following rules apply to all tables, irrespective of the layout mode in use.

https://drafts.csswg.org/css-tables/ 26/82

27/01/2021

CSS Table Module Level 3

The computed values of properties ‘position’, ‘float’, ‘margin’-*, ‘top’, ‘right’, ‘bottom’, and

‘left” on the table are used on the table-wrapper box and not the table grid box; the same holds

true for the properties whose use could force the used value of ‘transform-style’ to flat (see list)

and their shorthands/longhands relatives: this list currently includes ‘overflow’, ‘opacity’, ‘filter’,

‘clip’, ‘clip-path’, ‘isolation’, ‘mask’-*, ‘mix-blend-mode’, ‘transform’-* and ‘perspective’.

Where the specified values are not applied on the table grid and/or wrapper boxes, the unset

values are used instead for that box (inherit or initial, depending on the property).

The ‘overflow’ property on the table-root and table-wrapper box, when its value is not either

visible or hidden, is ignored and treated as if its value was visible.

All css properties of table-column and table-column-group boxes are ignored, except when

explicitly specified by this specification.

The ‘margin’, ‘padding’, ‘overflow’ and ‘z-index’ of table-track and table-track-group are

ignored.

The ‘margin’ of table-cell boxes is ignored (as if it was set to Opx).

The ‘background’ of table-cell boxes are painted using a special background painting algorithm

described in § 5.3.2 Drawing cell backgrounds.

3.6.2. Overrides applying in collapsed-borders mode

When a table is laid out in collapsed-borders mode, the following rules apply:

3.7.

The ‘padding’ of the table-root is ignored (as if it was set to Opx).

The ‘border-spacing’ of the table-root is ignored (as if it was set to Opx).

The ‘border-radius’ of both table-root and table-non-root boxes is ignored (as it it was set to Opx).

The values used for the layout and rendering of the borders of the table-root and the table-cell
boxes it owns are determined using a special conflict resolution algorithm described in § 3.7

Border-collapsing.

Border-collapsing

https://drafts.csswg.org/css-tables/

—

27182

27/01/2021

CSS Table Module Level 3

This entire section is a proposal to make the rendering of collapsed borders sane. As
implementations diverge very visibly, it is expected to require more discussion than some other
parts. Since browsers handle this so differently, convergence cannot happen without
reimplementation. A major concern for this proposal was to support as many cases as possible, and

yet keep the effort required for a new implementation of tables as low as possible.

Background: CSS+HTML allow unprecedented combinations of border modes for table
junctions, and it makes it difficult to support all cases properly; in fact some combinations are not

well-posed problems, so no rendering algorithm could be optimal.

Because they grew from something simple (HTML) to something very complex (HTML+CSS),
the current table rendering models (backgrounds and borders) used by web browsers are insane (in
the sense they are buggy, not interoperable and not CSSish at all). Many usual CSS assumptions
are broken, and renderings diverge widely.

This proposal aims at fixing this situation.

ISSUE 2 border-collapsing breaking change from 2.1 <https://github.com/w3c/csswg-
drafts/issues/604>

3.7.1. Conflict Resolution for Collapsed Borders

When they are laid out in collapsed-borders mode, table-root and table-cell boxes sharing a border

attempt to unify their borders so that they render using the same style, width, and color (whenever this

is possible). This is accomplished by running the following algorithm.

3.7.1.1. Conflict Resolution Algorithm for Collapsed Borders

For the purpose of this algorithm, “harmonizing” a set of borders means applying the

“Harmonization Algorithm for Collapsed Borders™ on the given set of borders, and set those

borders' used values to the value resulting from the algorithm, except for cells having a

‘border-image-source’ different from none: those keep their initial values.

For any table-cell C° of a table-root:

¢ Resolve conflicts with border-right:

https://drafts.csswg.org/css-tables/ 28/82

27/01/2021 CSS Table Module Level 3

0. Let S be an ordered set of table-cell border styles, sorted by cell in RowStart/ColumnStart
order; initially, let S contain only C°’s border-right style

1. Add to the set S the border-left style of all cells sharing a section of their left border with
C°’s right border
2. Repeat the following two instructions, until no new border style is added to S:

= For all newly-added left borders from cell C; having a rowspan greater than one, add to

the set S the border-right style of all cells sharing a section of their border-right with
C;’s border-left

= For all newly-added right borders from cell C; having a rowspan greater than one, add

to the set S the border-left style of all cells sharing a section of their border-left with
C;’s border-right

3. Harmonize the conflicting borders of S

¢ Resolve conflicts with border-bottom:
0. Let S be an ordered set of table-cell border styles, sorted by cell in RowStart/ColumnStart

order; initially, let S contain only C°’s border-bottom style

1. Add to the set S the border-top style of all cells sharing a section of their top border with

C°’s bottom border

2. Repeat the following two instructions, until no new border style is added to S:

= For all newly-added top borders from cell C; having a rowspan greater than one, add to

the set S the border-bottom style of all cells sharing a section of their bottom border
with C;’s top border

= For all newly-added bottom borders from cell C; having a rowspan greater than one,

add to the set S the border-top style of all cells sharing a section of their top border with
C;’s bottom border

3. Harmonize the conflicting borders of S

¢ Divide the used width of all borders by two.

This effect will be compensated at rendering time wherever needed, but is required for layout

correctness. (see)

Then, for that table-root:

o Harmonize the table-root border-{top,bottom,left,right} with the corresponding border of all
cells forming the border of the table (indenpendently), without actually modifying the border
properties of the table-root.

https://drafts.csswg.org/css-tables/ 29/82

27/01/2021

CSS Table Module Level 3

If the table and the cell border styles have the same specificity, keep the cell border style.
Once this is done, set the table-root border-{...}-width to half the maximum width found
during the harmonization processes for that border, then set border-{...}-style to solid, and

border-{...}-color to transparent.

Implementations may of course choose to skip some of the steps of the previous algorithm,
provided they can prove those have no visible impact on the final results; certain borders are
harmonized more than once using the previous steps, but preventing this would make the spec

harder to read.

EXAMPLE 6
To help the reader get a better idea of what this algorithm is doing, the main steps of applying
the previous algorithm over a sample table have been outlined here:

https://jsfiddle.net/bn3d1sm4/
https://jsfiddle.net/bn3d1sm4/1/
https://jsfiddle.net/bn3d1sm4/2/

https://jsfiddle.net/bn3d1sm4/15/

3.7.1.2. Harmonization Algorithm for Collapsed Borders

For the purpose of this algorithm, “considering” a border’s properties means that “if its
properties are more specific than Currently WinningBorderProperties, set
CurrentlyWinningBorderProperties to its properties”.

ISSUE 3 Change specificity in harmonization of collapsed borders?
<https://github.com/w3c/csswg-drafts/issues/606>

Given an ordered set of border styles (BC| BC,, ... located in cells C; C,, ...) execute the

following algorithm to determine the used value of the border properties for those conflicting

borders.

o Set CurrentlyWinningBorderProperties to “border: Opx none transparent”

o For each border BC;:

https://drafts.csswg.org/css-tables/

30/82

27/01/2021 CSS Table Module Level 3

= Consider the BC; border’s properties

o If the border separates two columns:
= For each border BC;: For each table-column spanned by the C; cell, if any. Consider the

border’s properties of any border of the table-column that would be drawn contiguously
to BC;.

= For each border BC;: For each table-column-group containing a column spanned by the
C; cell, if any. Consider the border’s properties of any border of the table-column-group

that would be drawn contiguously to BC;.

o If the border separates two rows:
= For each border BC;: For each table-row spanned by the C; cell, if any. Consider the

border’s properties of any border of the table-column that would be drawn contiguously
to BCi.

= For each border BC;: For each table-row-group containing a column spanned by the C;

cell, if any. Consider the border’s properties of any border of the table-row-group that

would be drawn contiguously to BC;.

o Return CurrentlyWinningBorderProperties

3.7.1.3. Specificity of a border style

Given two borders styles, the border style having the most specificity is the border style which...

1. ... has the value "hidden" as ‘border-style’, if only one does
2. ... has the biggest ‘border-width’, once converted into css pixels

3. ... has the ‘border-style’ which comes first in the following list:

double, solid, dashed, dotted, ridge, outset, groove, inset, none

If none of these criterion matches, then both borders share the same specificity.

3.8. Computing table measures

3.8.1. Computing Undistributable Space

The undistributable space of the table is the sum of the distances between the borders of

consecutive table-cells (and between the border of the table-root and the table-cells).

https://drafts.csswg.org/css-tables/ 31/82

27/01/2021 CSS Table Module Level 3

The distance between the borders of two consecutive table-cells is the ‘border-spacing’, if any.

The distance between the table border and the borders of the cells on the edge of the table is the
table’s padding for that side, plus the relevant border spacing distance (if any).

EXAMPLE 7
For example, on the right hand side, the distance is padding-right + horizontal border-spacing.

3.8.2. Computing Cell Measures

The following terms are parameters of tables or table cells. These parameters encapsulate the

differences between tables with different values of ‘border-collapse’ (separate or collapse) so that

the remaining subsections of this section do not need to refer to them differently.

cell intrinsic offsets
The cell intrinsic offsets is a term to capture the parts of padding and border of a table cell

that are relevant to intrinsic width calculation. It is a set of computed values for border-left-
width, padding-left, padding-right, and border-right-width (along with zero values for

margin-left and margin-right) defined as follows:

o In separated-borders mode: the computed horizontal padding and border of the table-

cell

o In collapsed-borders mode: the computed horizontal padding of the cell and, for border

values, the used border-width values of the cell (half the winning border-width)

table intrinsic offsets
The table intrinsic offsets capture the parts of the padding and border of a table that are

relevant to intrinsic width calculation. It is a set of computed values for border-left-width,
padding-left, padding-right, and border-right-width (along with zero values for margin-left

and margin-right) defined as follows:

o In separated-borders mode: the computed horizontal padding and border of the table-

root

o In collapsed-borders mode: the used border-width values of the cell (half the winning
border-width)

The margins are not included in the table intrinsic offsets because handling of margins

depends on the ‘caption-side’ property.

https://drafts.csswg.org/css-tables/ 32/82

27/01/2021 CSS Table Module Level 3

ISSUE 4 Handling of intrinsic offsets when in border collapsing mode
<https://github.com/w3c/csswg-drafts/issues/608>

total horizontal border spacing
The total horizontal border spacing is defined for each table:

o For tables laid out in separated-borders mode containing at least one column, the

horizontal component of the computed value of the border-spacing property times one

plus the number of columns in the table
o Otherwise, 0

offsets-adjusted min-width, width, and max-width

o For table-track and table-track-group boxes, the offsets-adjusted value of width

properties is their computed value, irrespective of the value of ‘box-sizing’ applied on
the element.

o For table-cell boxes, the offsets-adjusted value of width properties is their computed
value from which the cell’s border-{left|right}-width and/or padding-{left|right} have
eventually been deduced, depending on the value of ‘box-sizing’.

When the table is laid out in collapsed-borders mode, the border value to deduce is

half the value of the winning border value on each side (see conflict resolution

explaination note)

outer min-content and outer max-content widths
The outer min-content and max-content widths are defined for table cells, columns, and

column groups. The ‘width’, ‘min-width’, and ‘max-width’ values used in these definitions

are the offsets-adjusted values defined above:
o The outer min-content width of a table-cell is max(‘min-width’, min-content

width) adjusted by the cell intrinsic offsets.

o The outer min-content width of a table-column or table-column-group is

max(‘min-width’, ‘width’).

o The outer max-content width of a table-cell in a non-constrained column is

max(‘min-width’, ‘width’, min-content width, min(‘max-width’, max-

content width)) adjusted by the cell intrinsic offsets.

o The outer max-content width of a table-cell in a constrained column is

max(‘min-width’, ‘width’, min-content width, min(‘max-width’, ‘width’))

adjusted by the cell intrinsic offsets.

https://drafts.csswg.org/css-tables/

33/82

27/01/2021 CSS Table Module Level 3

o The outer max-content width of a table-column or table-column-group is

max(‘min-width’, min(‘max-width’, ‘width’)).

percentage contributions
The percentage contribution of a table cell, column, or column group is defined in terms of

the computed values of ‘width’ and ‘max-width’ that have computed values that are

percentages:

min(percentage ‘width’, percentage ‘max-width’).

If the computed values are not percentages, then 0% is used for ‘width’, and an infinite

percentage is used for ‘max-width’.

Please note that ‘“min-width’ is not included in this computation. As a result, a
percentage ‘min-width’ is ignored. Since ‘width’ functions like a ‘min-width’ in table
layout and column sizing cannot be both length-based and percent-based, authors should

not use ‘min-width’ on table-internal boxes and prefer to rely on ‘width’ only instead.

3.8.3. Computing Column Measures

This subsection defines three important values associated with each column of a table: their min-

content width (the smallest possible width attributed to this column), their max-content width (the

width that would be attributed to the column if no other constraint applied), their intrinsic

percentage width (the percentage of the table width the column desires to get, and could end up

overriding its max-content width).

To compute these values, an iterative algorithm is used. First, these values are computed
ignoring any cell spanning more than one column. Then, these values are updated by taking
into account cells spanning incrementally more columns. When cells that spanned all columns

of the table have been considered, this algorithm ends and the values are then finalized.

For the purpose of measuring a column when laid out in fixed mode, only cells which
originate in the first row of the table (after reordering the header and footer) will be
considered, if any. In addition, the min-content and max-content width of cells is considered
zero unless they are directly specified as a length-percentage, in which case they are

resolved based on the table width (if it is definite, otherwise use 0).

https://drafts.csswg.org/css-tables/ 34/82

27/01/2021 CSS Table Module Level 3

For the purpose of calculating the outer min-content width of cells, descendants of table cells
whose width depends on percentages of their parent cell' width are considered to have an auto

width. Testcase Testcase

min-content width of a column based on cells of span up to 1
The largest of:

o the width specified for the column:

= the outer min-content width of its corresponding table-column, if any (and not

auto)

= the outer min-content width of its corresponding table-column-group, if any

= or 0, if there is none

o the outer min-content width of each cell that spans the column whose colSpan is 1 (or
just the one in the first row in fixed mode) or 0 if there is none

max-content width of a column based on cells of span up to 1
The largest of:

o the outer max-content width of its corresponding table-column-group, if any

o the outer max-content width of its corresponding table-column, if any

o the outer max-content width of each cell that spans the column whose colSpan is 1 (or
just the one in the first row if in fixed mode) or 0 if there is no such cell

intrinsic percentage width of a column based on cells of span up to 1
The largest of the percentage contributions of each cell that spans the column whose colSpan

is 1, of its corresponding table-column (if any), and of its corresponding table-column-group
(if any)

min-content width of a column based on cells of span up to N (N > 1)
the largest of the min-content width of the column based on cells of span up to N-1 and the

contributions of the cells in the column whose colSpan is N, where the contribution of a cell

is the result of taking the following steps:

1. Define the baseline min-content width as the sum of the max-content widths based on

cells of span up to N-1 of all columns that the cell spans.

2. Define the baseline border spacing as the sum of the horizontal border-spacing for any

columns spanned by the cell, other than the one in which the cell originates.

3. The contribution of the cell is the sum of:

= the min-content width of the column based on cells of span up to N-1

= the product of:

» the ratio of:

https://drafts.csswg.org/css-tables/ 35/82

27/01/2021 CSS Table Module Level 3

= the max-content width of the column based on cells of span up to N-1 o
the column minus the min-content width of the column based on cells of

span up to N-1 of the column, to
» the baseline max-content width minus the baseline min-content width
or zero if this ratio is undefined, and

= the outer min-content width of the cell minus the baseline min-content width
and the baseline border spacing, clamped to be at least 0 and at most the
difference between the baseline max-content width and the baseline min-

content width
= the product of:
= the ratio of the max-content width based on cells of span up to N-1 of the
column to the baseline max-content width
= the outer min-content width of the cell minus the baseline max-content width
and baseline border spacing, or 0 if this is negative

max-content width of a column based on cells of span up to N (N > 1)
The largest of the max-content width based on cells of span up to N-1 and the contributions

of the cells in the column whose colSpan is N, where the contribution of a cell is the result

of taking the following steps:
1. Define the baseline max-content width as the sum of the max-content widths based on

cells of span up to N-1 of all columns that the cell spans.

2. Define the baseline border spacing as the sum of the horizontal border-spacing for any
columns spanned by the cell, other than the one in which the cell originates.
3. The contribution of the cell is the sum of:

= the max-content width of the column based on cells of span up to N-1

= the product of:

= the ratio of the max-content width based on cells of span up to N-1 of the

column to the baseline max-content width

= the outer max-content width of the cell minus the baseline max-content width

and the baseline border spacing, or O if this is negative

intrinsic percentage width of a column based on cells of span up to N (N > 1)
If the intrinsic percentage width of a column based on cells of span up to N-1 is greater than

0%, then the intrinsic percentage width of the column based on cells of span up to N is the

same as the intrinsic percentage width of the column based on cells of span up to N-1.

https://drafts.csswg.org/css-tables/ 36/82

27/01/2021 CSS Table Module Level 3

Otherwise, it is the largest of the contributions of the cells in the column whose colSpan is

N, where the contribution of a cell is the result of taking the following steps:

1. Start with the percentage contribution of the cell.

2. Subtract the intrinsic percentage width of the column based on cells of span up to N-1

of all columns that the cell spans. If this gives a negative result, change it to 0%.

3. Multiply by the ratio of

= the column’s non-spanning max-content width to

= the sum of the non-spanning max-content widths of all columns spanned by the
cell that have an intrinsic percentage width of the column based on cells of span up
to N-1 equal to 0%.

However, if this ratio is undefined because the denominator is zero, instead use the 1
divided by the number of columns spanned by the cell that have an intrinsic percentage
width of the column based on cells of span up to N-1 equal to zero.

min-content width of a column
the min-content width of the column based on cells of span up to N, where N is the number

of columns in the table

max-content width of a column
the max-content width of the column based on cells of span up to N, where N is the number

of columns in the table

intrinsic percentage width of a column
the smaller of:
o the intrinsic percentage width of the column based on cells of span up to N, where N is

the number of columns in the table

o 100% minus the sum of the intrinsic percentage width of all prior columns in the table
(further left when direction is "ltr" (right for "rtl"))

The clamping of the total of the intrinsic percentage widths of columns to a maximum of

100% means that the table layout algorithm is not invariant under switching of columns.

constrainedness
A column is constrained if its corresponding table-column-group (if any), its corresponding

table-column (if any), or any of the cells spanning only that column has a computed ‘width’

that is not "auto", and is not a percentage.

https://drafts.csswg.org/css-tables/ 37/82

27/01/2021 CSS Table Module Level 3

In a future revision of this specification, this algorithm will need to account for character-
alignment of cells ('<string™>' values of the ‘text-align’ property). This requires (based on the 9_
March 2011 editor’s draft of css3-text) separately tracking max-content widths for the part of

the column before the center of the alignment string and the part of the column after the

center of the alignment string. For tracking min-content widths, there are two options: either

not track them, or track three values: two values as for max-content widths for any cells that

do not have break points in them, and a fourth value for any cells that do have break points in

them (and to which character alignment is therefore not mandatory).

ISSUE 5 EDITORIAL. The way this describes distribution of widths from colspanning
cells is wrong. For min-content and max-content widths it should refer to the rules for

distributing excess width to columns for intrinsic width calculation.

3.9. Available Width Distribution

3.9.1. Computing the table width

Before deciding on the final width of all columns, it is necessary to compute the width of the
table itself.

As noted before, this would usually be the sum of preferred width of all columns, plus any
extra. In this case, the width distribution will result in giving each column its preferred width.
There are however a few cases where the author asks for some other width explicitly, as well

as a few cases where the table cannot be given the width it requires.

The caption width minimum (CAPMIN) is the largest of the table captions min-content

contribution.

The row/column-grid width minimum (GRIDMIN) width is the sum of the min-content width of

all the columns plus cell spacing or borders.

The row/column-grid width maximum (GRIDMAX) width is the sum of the max-content width

of all the columns plus cell spacing or borders.

The used min-width of a table is the greater of the resolved ‘min-width’, CAPMIN, and
GRIDMIN.

The used width of a table depends on the columns and captions widths as follows:

https://drafts.csswg.org/css-tables/ 38/82

27/01/2021 CSS Table Module Level 3

o If the table-root’s ‘width’ property has a computed value (resolving to resolved-table-width

—

other than auto, the used width is the greater of resolved-table-width, and the used min-
width of the table.

If the used width is greater than GRIDMIN, the extra width should be distributed over
the columns. See

o If'the table-root has 'width: auto', the used width is the greater of min(GRIDMAX, the
table’s containing block width), the used min-width of the table.

The assignable table width is the used width of the table minus the total horizontal border

spacing (if any). This is the width that we will be able to allocate to the columns.
In this algorithm, rows (and row groups) and columns (and column groups) both constrain

and are constrained by the dimensions of the cells they contain. Setting the width of a column

might indirectly influence the height of a row, and vice versa.

3.9.2. Core distribution principles

This section is not normative.

3.9.2.1. Rules

Ideally, each column should get its preferred width (usually its max-content width). However, the

assignable table width calculated before could be either too big or too small to achieve this result,

in which case the user agent must assign adhoc widths to columns as described in the width

distribution algorithm.
This algorithm follows three rules when determining a column’s used width:

Rule 0: In fixed mode, auto and percentages columns are assigned a minimum width of zero
pixels, and percentage resolution follows a different set of rules, whose goal is to

ensure pixel columns always get assigned their preferred width.

Rule 1: When assigning preferred widths, specified percent columns have a higher priority

than specified unit value columns, which have a higher priority than auto columns.

Rule 2: Columns using the same sizing type (percent columns, pixel columns, or auto

columns) follow the same distribution method. For example, they all get their min-

https://drafts.csswg.org/css-tables/ 39/82

27/01/2021 CSS Table Module Level 3

content width or they all get their max-content width.

[—

There is one exception to this rule. When giving its preferred percent width to a

percent-column, if that would result in a size smaller than its min-content width,

the column will be assigned its min-content width instead though the percent-

columns group as a whole is still regarded as being assigned the preferred

percent widths.

Rule 3: The sum of width assgined to all columns should be equal to the assignable table
width.

3.9.2.2. Available sizings

All three types of columns have the following possible used widths.
1. min-content width:
The size required to fit the content of the column

2. min-content width + delta:

A value between the min-content and preferred widths

3. preferred width:
The size specified for the column, or the size required to fit the content of the column

without breaking

4. preferred width + delta

A value larger than the preferred width

The distribution algorithm defines those values and explains when to use them.

3.9.3. Distribution algorithm

When a table is laid out at a given used width, the used width of each column must be determined

as follows, eventually after considering the changes to this algorithm applied in fixed mode.

First, each column of the table is assigned a sizing type:

o percent-column:
a column whose any constraint is defined to use a percentage only (with a value different
from 0%)

https://drafts.csswg.org/css-tables/ 40/82

27/01/2021 CSS Table Module Level 3

o pixel-column:

column whose any constraint is defined to use a defined length only (and is not a percent-
column)

o auto-column:

any other column

Then, valid sizing methods are to be assigned to the columns by sizing type, yielding the
following sizing-guesses:

1. The min-content sizing-guess is the set of column width assignments where each column is
assigned its min-content width.

2. The min-content-percentage sizing-guess is the set of column width assignments where:

= each percent-column is assigned the larger of:

= its intrinsic percentage width times the assignable width and

= its min-content width.
= all other columns are assigned their min-content width.

3. The min-content-specified sizing-guess is the set of column width assignments where:

= cach percent-column is assigned the larger of:

= its intrinsic percentage width times the assignable width and

= its min-content width
= any other column that is constrained is assigned its max-content width
= all other columns are assigned their min-content width.

4. The max-content sizing-guess is the set of column width assignments where:

= cach percent-column is assigned the larger of:

= its intrinsic percentage width times the assignable width and

® its min-content width

= all other columns are assigned their max-content width.

Note that:

o The assignable table width is always greater than or equal to the table width resulting
from the min-content sizing-guess.

o The widths for each column in the four sizing-guesses (min-content, min-content-

percentage, min-content-specified, and max-content) are in nondecreasing order.

https://drafts.csswg.org/css-tables/ 41/82

27/01/2021 CSS Table Module Level 3

If the assignable table width is less than or equal to the max-content sizing-guess, the used width

of the columns must be the linear combination (with weights adding to 1) of the two consecutive

sizing-guesses whose width sums bound the available width.

Otherwise, the used widths of the columns are the result of starting from the max-content sizing-

guess and distributing the excess width to the columns of the table according to the rules for

distributing excess width to columns (for used width).

https://drafts.csswg.org/css-tables/ 42/82

27/01/2021 CSS Table Module Level 3

The following schema describes the algorithm in a different way, to make it easier to

understand.

» Legend

The minimum possible

< >
PX 28 Auto ¥ 20% 30%
CoL coL coL coL coL

ible with % li

d

The mini p
PX PX Auto ¥ 20% 30% COL
coL coL coL coL

The minimum possible with both % and px applied

>
PX COL PX COL 20% COL 30% COL

The minimum possible, % taking the rest »/ to their percentage

28 PX Auto ¥ 20% § 30%
coL coL coL Col Col

% applied, px taking the rest 7/ to last attempted increment

o -

The preferred width (%, px, auto: applied)

PX COL PX COL 20% CoL 30% CoL

%, px: applied; auto taking the rest 7/ to last attempted increment

PXcoL PX COL 20% CoL 30% COL
coL

Auto columns taking the rest 7/ to their preferred width

< m—p>
PX coL Auto COL 20% CcoL 30% COL

Px columns taking the rest // to their preferred width

G —
- >
PX coL PX coL 20% COL 30% COL

% columns taking the rest 7/ to their percentage

& >
10% COL § 10% COL § 10% COL F 20% COL 30% COL

Figure 3 Overview of the width distribution algorithm. Not normative.

3.9.3.1. Changes to width distribution in fixed mode

The following changes to previous algorithm apply in fixed mode:

o The min-content width of percent-columns and auto-columns is considered to be zero

https://drafts.csswg.org/css-tables/ 43/82

27/01/2021

CSS Table Module Level 3

o Cells ignore their border and padding size if their width is a percentage (‘box-sizing’ is

ignored)

If, when percentages are resolved based on the assignable table width, the sum of columns

widths based on this resolution would exceed the assignable table width, they are instead to
be resolved relative to their percentage value such that the sum of columns width meets the

assignable table width exactly.

Columns whose size is computed as a sum of a percentage and a pixel length must be sized
as if they counted as two columns, one with the pixel value, the other with the percentage
value. This is different from resolving the percentage away, because of how width

distribution works for percentage-based columns.

3.9.3.2. Distributing excess width to columns

The rules for distributing excess width to columns can be invoked in two ways:

o for distributing the excess width of a table to its columns during the computation of the used

widths of those columns (for used width calculation), or

o for distributing the excess max-content or min-content width of a cell spanning more than

one column to the max-content or min-content widths of the columns it spans (for intrinsic

width calculation).

The rules for these two cases are largely the same, but there are slight differences.

The remainder of this section uses the term distributed width to refer to the one of these widths
that is being distributed, and the excess width is used to refer to the amount by which the width

being distributed exceeds the sum of the distributed widths of the columns it is being distributed

1. If there are non-constrained columns that have originating cells with intrinsic percentage

width of 0% and with nonzero max-content width (aka the columns allowed to grow by this
rule), the distributed widths of the columns allowed to grow by this rule are increased in

proportion to max-content width so the total increase adds to the excess width.

. Otherwise, if there are non-constrained columns that have originating cells with intrinsic

percentage width of 0% (aka the columns allowed to grow by this rule, which thanks to the
previous rule must have zero max-content width), the distributed widths of the columns
allowed to grow by this rule are increased by equal amounts so the total increase adds to the

excess width.

https://drafts.csswg.org/css-tables/

44/82

27/01/2021

CSS Table Module Level 3

. Otherwise, if there are constrained columns with intrinsic percentage width of 0% and with

nonzero max-content width (aka the columns allowed to grow by this rule, which, due to
other rules, must have originating cells), the distributed widths of the columns allowed to

grow by this rule are increased in proportion to max-content width so the total increase adds

to the excess width.

4. Otherwise, if there are columns with intrinsic percentage width greater than 0% (aka the

columns allowed to grow by this rule, which, due to other rules, must have originating cells),

the distributed widths of the columns allowed to grow by this rule are increased in

proportion to intrinsic percentage width so the total increase adds to the excess width.

5. Otherwise, if there is any such column, the distributed widths of all columns that have

originating cells are increased by equal amounts so the total increase adds to the excess
width.

6. Otherwise, the distributed widths of all columns are increased by equal amounts so the total

increase adds to the excess width.

These rules do not apply when the table is laid out in fixed mode. In this case, the simpler
rules that follow apply instead:

o If there are any columns with no width specified, the excess width is distributed in

equally to such columns

o otherwise, if there are columns with non-zero length widths from the base assignment,

the excess width is distributed proportionally to width among those columns

o otherwise, if there are columns with non-zero percentage widths from the base
assignment, the excess width is distributed proportionally to percentage width among

those columns

o otherwise, the excess width is distributed equally to the zero-sized columns

3.10. Available Height Distribution

3.10.1. Computing the table height

The height of a table is the sum of the row heights plus any cell spacing or borders. If the table
has a ‘height’ property with a value other than auto, it is treated as a minimum height for the table

grid, and will eventually be distributed to the height of the rows if their collective minimum

https://drafts.csswg.org/css-tables/

45/82

27/01/2021

CSS Table Module Level 3

height ends up smaller than this number. If their collective size ends up being greater than the
specified ‘height’, the specified ‘height” will have no effect.

The minimum height of a row is the maximum of:

o the computed ‘height’ (if definite, percentages being considered Opx) of its corresponding
table-row (if nay)

o the computed ‘height’ of each cell spanning the current row exclusively (if definite,

percentages being treated as Opx), and

o the minimum height (ROWMIN) required by the cells spanning the row.

ROWMIN is defined as the sum of the minimum height of the rows after a first row layout pass.

To compute the height of a table, it is therefore necessary to perform a first-pass layout on all its
rows, compute the sum of all minimum row heights plus spacings/borders, and return the greater

of either that value or the table-root specified ‘height’ (min-height).

Once the table height has been determined, rows will usually get a second layout pass (where

their cells' heights are no longer considered auto), then height distribution will happen to adjust

their heights to collectively meet the table height, then table-cell descendants might get a second
layout (where their percentage heights are resolved).

3.10.2. Row layout (first pass)

The minimum height of a row (without spanning-related height distribution) is defined as the
height of an hypothetical linebox containing the cells originating in the row and where cells
spanning multiple rows are considered having a height of Opx (but their correct baseline). In this
hypothetical linebox, cell heights are considered auto, their width (including borders and
paddings) is forced to the widths and inner spacings of the columns they span, but their other

properties are conserved.

For the purpose of calculating this height, descendants of table cells whose height depends on

percentages of their parent cell' height (see section below) are considered to have an auto height if

they have ‘overflow’ set to visible or hidden or if they are replaced elements, and a Opx height

if they have not. Testcase !!Testcase

For table-cell descendants whose percentage height was ignored as a result of the above, a
second layout pass of the table-cell content will happen once height distribution has

concluded to attempt to properly take this sizing into account (see section below)

https://drafts.csswg.org/css-tables/

46/82

27/01/2021 CSS Table Module Level 3

The baseline of a cell is defined as the baseline of the first in-flow line box in the cell, or the firs
in-flow table-row in the cell, whichever comes first. If there is no such line box or table-row, the 7™

baseline is the bottom of content edge of the cell box.

EXAMPLE 8

Here is how this works out in practice:

td { vertical-align: baseline; outline: 3px solid silver; }
img { float: left; clear: left; width: 32px; height: 32px; }
img[title] { float: none; }

<table><tr>
<td>Baseline</td>
<td>Baseline<table><tr><td>After</td></tr></table></td>
<td><table><tr><td>Baseline</td></tr></table>After</td>
<td><table align=right><tr><td>Before</td></tr></table><p>Baseline</p></td
<td><p>Baseline</p></td>
<td>
<img src="
<td><img src="http://w3.org/favicon
</tr></table>

W3
Before W5

Baseline Baseline Baseline Baseline Baseline W’S %
After After %

Figure 4 Rendering of this example in a compliant browser

For the purposes of finding a baseline, in-flow boxes with a scrolling mechanisms (see the

‘overflow’ property) must be considered as if scrolled to their origin position.

The baseline of a cell may end up below its bottom border, see the example below.

https://drafts.csswg.org/css-tables/ 47/82

27/01/2021 CSS Table Module Level 3

EXAMPLE 9

The cell in this example has a baseline below its bottom border:
div { height: @; overflow: hidden; }

<table>

<tr>

<td>

<div> Test </div>
</td>

</tr>

</table>

The ‘vertical-align’ property of each table cell determines its alignment within the row. Each

cell’s content has a baseline, a top, a middle, and a bottom, as does the row itself.

In the context of table cells, values for ‘vertical-align’ have the following meanings:

baseline The baseline of the cell is aligned with the baseline of the other cells of the

first row it spans (see the definition of baselines of cells and rows).
top The top of the cell box is aligned with the top of the first row it spans.
bottom The bottom of the cell box is aligned with the bottom of the last row it spans.
middle The center of the cell is aligned with the center of the rows it spans.
Other values do not apply to cells; the cell is aligned at the baseline instead.
The maximum distance between the top of the cell box and the baseline over all cells that have
'vertical-align: baseline' is used to set the baseline of the row. If a row doesn’t have any cell that

has 'vertical-align: baseline', the baseline of that row is the bottom content edge of the lowest cell

in the row.

The baseline of a table-root is the baseline of its first row, if any. Otherwise, it is the bottom
content edge of the table-root.

https://drafts.csswg.org/css-tables/ 48/82

27/01/2021 CSS Table Module Level 3

To avoid ambiguous situations, the alignment of cells proceeds in the following order:
o First the cells that are aligned on their baseline are positioned. This will establish the
baseline of the row.

o Next the cells with 'vertical-align: top' are positioned. The row now has a top, possibly
a baseline, and a provisional height, which is the distance from the top to the lowest

bottom of the cells positioned so far.

o If any of the remaining cells, those aligned at the bottom or the middle, have a height
that is larger than the current height of the row, the height of the row will be increased

to the maximum of those cells, by lowering the bottom.

o Finally, assign their position to the remaining cells.

EXAMPLE 10

Example showing how the previous algorithm creates the various alignment lines of a row.

CDHIEI’Tl

‘basellne’ ‘baseline’ “top’ ‘bottom’ ‘middle’

- addad padding (lo make cell as high as the row}

Figure 5 Diagram showing the effect of various values of ‘vertical-align’ on table cells. Cell boxes 1
and 2 are aligned at their baselines. Cell box 2 has the largest height above the baseline, so that

determines the baseline of the row.

Since during row layout the specified heights of cells in the row were ignored and cells that were
spanning more than one rows have not been sized correctly, their height will need to be
eventually distributed to the set of rows they spanned. This is done by running the same algorithm

as the column measurement, with the span=1 value being initialized (for min-content) with the

largest of the resulting height of the previous row layout, the height specified on the

https://drafts.csswg.org/css-tables/ 49/82

27/01/2021

CSS Table Module Level 3

corresponding table-row (if any), and the largest height specified on cells that span this row only

—

(the algorithm starts by considering cells of span 2 on top of that assignment).

ISSUE 6 EDITORIAL. Import the relevant section of § 3.8.3 Computing Column Measures

here.

Rows that see their size increase as a result of applying these steps adjust by lowering their

bottom.

The cells whose position depended on the bottom of any updated row must be positioned

correctly again in their respective rows.

At this point, cell boxes that are smaller than the collective height of the rows they span
receive extra top and/or bottom padding such that their content does not move vertically but

their top/bottom edges meet the ones of the first/last row they span.

Please note that heights being defined on row groups are being ignored by this algorithm

3.10.3. Row layout (second pass)

Once the table height has been determined, a second row layout pass will be performed, if
necessary, to assign the correct minimum height to table rows, by taking percentages used in

rows/cells specified ‘height’ into account. Other than that, all instructions for the first-pass row

layout apply (see above).

Please note that this second-pass minimum height therefore still treats percentage heights of
table-cell descendants as advised for the first pass (see above). For this reason, it is not
required to relayout the content of table-cells to compute the new row minimum height. If

necessary, table-cell content will undergo a relayout later, after table height distribution has

concluded (see below).

Then, if the sum of the new heights of the table rows after this second pass is different from what
is needed to fill the table height previously determined, the height distribution algorithm defined
below is applied (either to shrink rows by sizing them intermediately between their first-pass

minimum height and their second-pass one, or to increase the heights of all rows beyond their

https://drafts.csswg.org/css-tables/ 50/82

27/01/2021

CSS Table Module Level 3

second-pass minimum height to fill the available space; in neither case, this will have an impact

on the baseline of the rows).

3.10.4. Core distribution principles

ISSUE 7 EDITORIAL. TODO. For current proposal, skip to § 3.10.5 Distribution
algorithm.

» Investigations on height distribution

3.10.5. Distribution algorithm

The first step is to attribute to each row its base size and its reference size.

Its base size is the size it would have got if the table didn’t have a specified height (the one it was
assigned when ROWMIN was evaluated).

Its reference size is the largest of

o its initial base height and

o its new base height (the one evaluated during the second layout pass, where percentages
used in rowgroups/rows/cells' specified heights were resolved according to the table height,

instead of being ignored as Opx).
The second step is to compute the final height of each row based on those sizes.

If the table height is equal or smaller than sum of reference sizes, the final height assigned to each
row will be the weighted mean of the base and the reference size that yields the correct total
height.

Else, if the table owns any ‘“auto-height” row (a row whose size is only determined by its content
size and none of the specified heights), each non-auto-height row receives its reference height and
auto-height rows receive their reference size plus some increment which is equal to the height

missing to amount to the specified table height divided by the amount of such rows.

Else, all rows receive their reference size plus some increment which is equal to the height

missing to amount to the specified table height divided by the amount of rows.

https://drafts.csswg.org/css-tables/

—

51/82

27/01/2021 CSS Table Module Level 3

The cells whose position depended on the bottom of any updated row must be positioned

correctly again in their respective rows.

At this point, cell boxes that are smaller than the collective height of the rows they span
receive extra top and/or bottom padding such that their content does not move vertically but
their top/bottom edges meet the ones of the first/last row they span.

3.10.6. Table-cell content layout (second pass)

Once table-height distribution has concluded, and the sum of row heights plus spacing/border is
equal to the table height, the content of table-cells which contained descendants whose
percentage heights were ignored or treated as Opx by the first-pass row layout rules (see above)
must undergo a second layout pass, as defined below.

Note that this means UAs are either required to keep track of the usage of percentages in the
properties of any direct child of the table-cell including (but not limited to) the ‘height’ and
‘min-height’ properties for horizontal flows and the ‘width’ and ‘min-width’ properties for

vertical flows, or else required to perform this second layout pass on table-cell content in all

cascs.

Resolve percentage heights in table-cell content: Once the final size of the table and the rows
has been determined, after height distribution has concluded, the content of the table-cells must
also go through a second layout pass, where, if appropriate, percentage-based heights are this
time resolved against their parent cell used height.

It is appropriate to resolve percentage heights on direct children of a table-cell if the cell is

considered to have its height specified explicitly or the child is absolutely positioned, see CSS 2.

For compat reasons, it is further clarified that a cell is considered to have its height specified
explicitly if the computed height of the cell is a length, or if the computed height of its table-root

ancestor is a length or percentage, regardless of whether that percentage does behave as auto or

not.

https://drafts.csswg.org/css-tables/ 52/82

27/01/2021 CSS Table Module Level 3

EXAMPLE 11
To clarify the preceding statements, here is a table of the resulting "A" div height based on the

value being used:

<section style="height: var(--wrapper-height)">
<table style="height: var(--table-height)">
<tr>
<td style="height: var(--table-cell-height)">

<div style="height:100%; background:yellow">A</div>

</td>
<td style="height: var(--other-table-cell-height)">

B
C
</td>
</tr>
</table>
</section>
--table-cell-height |[--table-height |result
<length> <any> B
<any> <length> - b
<any> <percentage> N
auto auto Al
<percentage> auto Al

Note that neither --other-table-cell-height nor --wrapper-height do influence the

algorithm’s outcome.

A previous version of this specification incorrectly stated that - -wrapper-height was taken
into account when the table had a percentage height, but compat issues appeared when an

implementation landed, and the behavior was then special-cased.

It is possible that this second layout pass (where height percentages are being resolved) will
make some cell contents overflow their parent cell, for instance if the sum of all percentages

used is superior to 100%. This is by design.

https://drafts.csswg.org/css-tables/ 53/82

27/01/2021 CSS Table Module Level 3

3.11. Positioning of cells, captions and other internal table boxes

ISSUE 8 We need a resolution on what visibility:collapse does.
<https://github.com/w3c/csswg-drafts/issues/478>

Once the width of each column and the height of each row of the table grid has been determined,

the final step of algorithm is to assign to each table-internal box its final position.

The width/height/left/top calculated below define the dimensions of the CSS Layout Box, which
means that they are accessible via the offset* properties defined in CSSOM-VIEW, (currently

limited to css boxes for which you can obtain a corresponding HTMLElement reference).

The table-wrapper box is then sized such that it contains the margin box of all table-non-root

boxes as well as the table-root border-box.

The position defined here is the position of the children inside the space reserved for the
table-wrapper, which excludes only its margins. This is because the captions of the table are

located outside the border-box area of the table-root.

The position of any table-caption having "top'" as ‘caption-side’ within the table is defined as
the rectangle whose:
e width/height is:
¢ the width/height assigned to the caption during layout
¢ top location is the sum of:
¢ the height reserved for previous top captions (including margins), if any
e any necessary extra top margin remaining after collapsing margins with the previous
caption, if any.
e left location is the sum of:
¢ the margin left of the caption
e half of (the table width minus the width of caption and its total horizontal margin).

The position of any table-cell, table-track, or table-track-group box within the table is defined
as the rectangle whose:
¢ width/height is the sum of:

¢ the widths/heights of all spanned visible columns/rows

¢ the horizontal/vertical ‘border-spacing’ times the amount of spanned visible

columns/rows minus one
¢ left/top location is the sum of:
e for top: the height reserved for top captions (including margins), if any
e the padding-left/padding-top and border-left-width/border-top-width of the table

https://drafts.csswg.org/css-tables/ 54/82

27/01/2021

CSS Table Module Level 3

¢ the widths/heights of all previous visible columns/rows

o the horizontal/vertical ‘border-spacing’ times the amount of previous visible

columns/rows plus one
Reminder: For table-track and table-track-group boxes, all tracks of the opposite direction to

the grouping are considered spanned. For instance, a table-header-group is considered to span

all the columns, and a table-column-group is considered to span all the rows.

The above formula take in account ‘border-spacing’, and it might not be directly obvious

what the effect of these mean, so here are a couple of properties of those formula:
o the border-spacing before the first track or after the last track in a direction is not

included in any track’s or track-group’s breadth.

o the border-spacing between tracks is not included in any track’s breadth, but is included

in the breadth of track-groups spanning both tracks.

The position of any table-caption having "bottom" as ‘caption-side’ within the table is
defined as the rectangle whose:

o width/height is:
o the width/height assigned to the caption during layout
¢ top location is the sum of:
o the height reserved for top captions (including margins), if any
¢ padding-top and border-top-width of the table
e the height of all visible rows
e padding-bottom and border-bottom-width of the table
e the height reserved for previous bottom captions (including margins), if any
e any necessary extra top margin remaining after collapsing margins with the previous
bottom caption, if any.
e left location is the sum of:
¢ the margin left of the caption

e half of (the table width minus the width of caption and its total horizontal margin).

Cell overflow: If the table is laid out in fixed mode, if the content of some cell has grown
more than the cell during its second layout pass or if some tracks spanned by visible cells are

deemed not visible, the content of some cells may exceed the available space, and cause an

overflow. Such overflow should behave exactly like if the cell was an absolutely positioned
display:block box with the appropriate alignment in place to keep its content in place

relative to its inline-start block-start corner (usually top left).

https://drafts.csswg.org/css-tables/

55/82

27/01/2021 CSS Table Module Level 3

Visible tracks: For the purpose of this algorithm, a column or row is considered a visible
track if neither its corresponding table-track nor its table-track-group parent (if any) have

‘visibility’ set to collapse.

EXAMPLE 12

caption’s margins

- .
l table margins

Figure 6 Diagram of a table with a caption above it.

4. Absolute Positioning

4.1. With a table-root as containing block

https://drafts.csswg.org/css-tables/ 56/82

27/01/2021 CSS Table Module Level 3

If an absolutely positioned element’s containing block is generated by a table-wrapper box, the ‘b

—

containing block corresponds to the area around which the table margins are applied, including
the area where the table border is drawn and the margin area of any table-caption. The offset

properties (‘top’/‘right’/*bottom’/‘left’) then indicate offsets inwards from the corresponding

edges of this containing block, as normal.

Absolute positioning occurs after layout of the table and its in-flow contents, and does not
contribute to the sizing of any table grid tracks or affect the size/configuration of the table grid in

any way.

EXAMPLE 13

Figure 7 The figure below shows how a box absolutely-positioned relative to a table should be rendred.

The yellow area is the table content edge, yellow arrows the table margins.

The green area is the table caption, green arrows the caption margins.

The blue area is the table background area, and the darker blue area where the table border area.
The black area is the descendant positioned relative to the table, the arrows represent the
top/left/bottom/right displacements.

§ 4.2. With a table-internal as containing block

If an absolutely positioned element’s containing block is generated by a table-internal, the

containing block corresponds to the area starting at the top left corner of the the area that would

be assigned to the box during layout but whose size is computed to be the one of the area that

would be assigned to the box during layout if all tracks were considered visible (irrespective of

‘visibility’ being set co collapse on some boxes), not including borders and paddings as

appropriate.

https://drafts.csswg.org/css-tables/ 57/82

27/01/2021 CSS Table Module Level 3

This is done so that hiding column does not trigger a layout in the absolutely-positioned

boxes, and the content being clipped doesn’t seem to be moving. !!Testcase |

The offset properties (‘top’/‘right’/‘bottom’/‘left’) then indicate offsets inwards from the

corresponding edges of this containing block, as normal.

ISSUE 9 This only works in Firefox. It would make it easier to implement position:sticky
in the future, though. [Chrome bug] [Interop risk: Firefox bug]
<https://github.com/w3c/csswg-drafts/issues/858>

4.3. With a table-internal box as non-containing block parent

The only influence of non-containing block parent of an absolutely-positioned box is to define its

static position, in case both top+bottom and/or left+right end up being auto.

For table-cells, the absolutely-positioned content is positioned follows the rules for block layout

as usual.

Due to table fixup, it is not possible to create an absolutely-positioned box that is the child of a

table-internal box that is not a table-cell (see note about float and position for more details).

5. Rendering

5.1. Paint order of cells

Table cells are painted in a table-root in DOM order as usual, independently of where cells end up

actually being drawn.

5.2. Empty cell rendering (separated-borders mode)

Name: ‘empty-cells’
Value: show | hide
Initial: show

Applies to: table-cell boxes

https://drafts.csswg.org/css-tables/ 58/82

27/01/2021

Inherited:

Percentages:

Computed
value:

Canonical

order:

Animation

CSS Table Module Level 3

yes

n/a

specified keyword

per grammar

discrete

In collapsed-borders mode, this property has no effect.

In separated-borders mode, when this property has the value hide, no borders or backgrounds are

drawn around/behind empty cells.

An empty cell is a table-cell containing neither:

o floating content, nor

o in-flow content (other than white space that has been collapsed away by

the ‘white-space’ property handling).

ISSUE 10 Can we simplify empty-cells:hide? <https://github.com/w3c/csswg-

drafts/issues/605>

https://drafts.csswg.org/css-tables/

59/82

27/01/2021 CSS Table Module Level 3

EXAMPLE 14

For example, take the following markup and css:

<table>
<td></td>
<td></td>
<td></td>
</table>

table {
width: 500px; height: 300px;
empty-cells: hide;

table { background: black; border: 10px solid black; }
td { background: white; }

table { border-spacing: @px; }
td { padding: 0; }

The correct rendering of this code snippet is depicted here:

Figure 8 Rendering of three columns whose middle one is hidden by empty-cells:hide

https://drafts.csswg.org/css-tables/ 60/82

27/01/2021 CSS Table Module Level 3

5.3. Drawing backgrounds and borders

5.3.1. Drawing table backgrounds and borders

Unlike other boxes types, table and inline-table boxes do not paint their background and borders
around their entire client rect. Indeed, the table captions are to be visually positioned between the
table margins and its borders, which means the drawing areas of various effects applied to the

table-root need to be modified.
Painting areas:
o Backgrounds, borders and outlines painted relative to the content-box of a table-root are

painted relative to the rectangular area occupied by the table grid and its border spacings.

o Backgrounds, borders and outlines painted relative to the padding-box of a table-root are
painted relative to the rectangular area occupied by the table grid and its border spacings,

extended on each side by the table-root padding.

o Backgrounds, borders and outlines painted relative to the border-box of a table-root are
painted relative to the rectangular area occuped by the table grid and its border spacings,

extended on each side by the table-root padding and border-width.

This does not affect other uses of these concepts, like absolute positioning.

5.3.1.1. Changes in collapsed-borders mode

When a table is laid out in collapsed-borders mode, the rendering of its borders on and those of its

table-cells is modified. The following rules describe in which way.

The rules for background and borders painting defined in § 5.3 Drawing backgrounds and

borders still apply if they are not overriden.

Borders of a non-empty table-root are not painted in collapsed-borders mode, except if the

‘border-image’ property is set.

In this latter case, the border is drawn as if the table border was twice as big as its used value
specify, and as if that excess was rendered inside the padding area of the table-root.

https://drafts.csswg.org/css-tables/ 61/82

27/01/2021 CSS Table Module Level 3

Even if they are not drawn by the table, the table borders still occupy their space in the layout. ‘b

Cells will render those shared borders.

§ 5.3.2. Drawing cell backgrounds

Anonymous table-cells added by the missing cells fixup step do not render any of their

backgrounds.

In addition to its own ‘background’, table-cell boxes also render the backgrounds of the table-

track and table-track-group boxes in which they belong. This is actually different from simply

inheriting their background because the ‘background-origin’ and ‘background-size’ computations

will actually be done on the bounds of the grouping boxes, and not on those of the cell.

For the purposes of finding the background of each table cell, the different table boxes may be
thought of as being on six superimposed layers. The background set in one of the layers will only

be visible if the layers above it have a transparent background.

=" =

)

{

gs ==

Figure 9 Schema of table layers.

https://drafts.csswg.org/css-tables/

. column groups

e .
‘. ——

62/82

27/01/2021

CSS Table Module Level 3

0. The table background is being rendered by the table, and does not affect the cell backgrounc

—

1. The first background drawn by a cell is the background of its originating table-column-group

(if any). For the purpose of background-positioning, it is expected that a column group
occupies the largest possible area a single cell could occupy in the row/column grid while

originating in the column group and not entering any column not part of the column group.

2. The second background drawn by a cell is the background of its originating table-column (if

any). For the purpose of background-positioning, it is expected that a column occupies the
largest possible area a single cell could occupy in the row/column grid while originating in

the column and not entering any other column.

3. The third background drawn by a cell is the background of its originating table-row-group
(if any). For the purpose of background-positioning, it is expected that a row group occupies
the largest possible area a single cell could occupy in the row/column grid while originating

in the row group and not entering any row not part of the row group.

4. The fourth background drawn by a cell is the background of its originating table-row (if
any). For the purpose of background-positioning, it is expected that a row occupies the
largest possible area a single cell could occupy in the row/column grid while originating in

the row and not entering any other row.
5. The fifth background drawn by a cell is its own background. This is the one that appears on

top once all backgrounds have been rendered.

As the figure above shows, although all rows contain the same number of cells, not every cell

may have specified content. In separated-borders mode, if the value of their ‘empty-cells’

property is hide, these empty cells are not rendered at all, as if visibility: hidden was
specified on them, letting the table background show through.

5.3.3. Drawing cell borders

In separated-borders mode, borders of table cells are rendered as usual.

5.3.3.1. Changes in collapsed-borders mode

Borders of a table-cell are rendered in collapsed-borders mode as if the cell border was twice as

big as its used value specify, and as if that excess was rendered in the margin area of the cell, with

the added constraint that for each side of the border which isn’t located at one of the table edges,

the border is actually clipped to the border-box drawing area as its real used value define except if

the ‘border-image’ property is set.

https://drafts.csswg.org/css-tables/

63/82

27/01/2021

CSS Table Module Level 3

If applying the previously-mentioned clipping behavior results in clipping a border over a non-

integer amount of device pixels, browsers may decide to snap the clipping area to a device pixel

instead by ceiling the x- and y-values of the clipping area. Ceiling the values ensures that in a
normal writing mode, the cell which gets the contested pixels between multiple cells is actually
the most top left one, which has a greater specificity than the other ones according to this spec.

See and

5.3.4. Border styles (collapsed-borders mode)

Some of the values of the ‘border-style’ have different meanings for tables in collapsed-borders

mode than usual. Those definitions override the default behavior for ‘border-style’ values.

hidden
Same as none, but also inhibits any other border (see § 3.7.1.3 Specificity of a border style).

inset
Same as ridge.

outset
Same as groove.

5.4. Rendering for visibility: collapse

When a table part has visibility: collapse set, the rendering is handled differently depending if it is

on a table-cell, spanning table-cell, or a table-track/table-track-group.

5.4.1. Rendering a visibility: collapse table cell

As stated in CSS 2.2, if a table-cell has its visibility set to that of collapse, it is rendered the same
as if it had visibility: hidden set.

This happens when you set visibility:collapse on a table-row that contains a table-cell. If you
want to hide a row but continue to display its cells that span other rows, set visibility:visible

on those cells to prevent them from inheriting their value.

If the table-cell is spanning more than one table-track, and at least one of those table-track is set
to visibility: collapse then clip the content to the table-cell’s border-box. This means that the top

left (top right in rtl) content of the cell will continue to show, regardless of which of the tracks the

cell spans has been collapsed.

https://drafts.csswg.org/css-tables/

64/82

27/01/2021 CSS Table Module Level 3
5.4.2. Rendering a visibility: collapse table-track or table-track-group

When a table-track or table-track-group has visibility: collapse, all the backgrounds, borders or

outlines that are contributed by the cells within the given table-track or table-track-group will
continue to be painted on cells that have not been fully collapsed (because they spanned multiple
tracks).

6. Fragmentation

6.1. Breaking across fragmentainers

When fragmenting a table, user agents must attempt to preserve the table rows unfragmented if
the cells spanning the row do not span any subsequent row, and their height is at least twice
smaller than both the fragmentainer height and width. Other rows are said freely fragmentable.

When a table doesn’t fit entirely in a fragmentainer, at least one row did fit entirely in the

fragmentainer, and the first row that does not fit in the fragmentainer is not freely fragmentable.

the user agent has to insert some vertical gap between the rows located before and at the overflow
point such that the two rows end up separated in sibling fragmentainers. If the fragmentation
requires repeating headers and footers, and the footer is repeated, then the footer must come
directly after the last row in the fragmentainer and the vertical gap must be inserted after the

repeated footer.

a0
OO0

OO0
OO0

[
[
[

i

Figure 10 Expected rendering of table fragmented across two pages

https://drafts.csswg.org/css-tables/ 65/82

27/01/2021

CSS Table Module Level 3

When there is no row fitting entirely in the current fragmentainer or when the first row that does

not fit in the fragmentainer is freely fragmentable, user agents must attribute all the remaining

height in the fragmentainer to the cells of that row, and fit as much content as it can in each of the
cells independently, then break to the next fragment and start the content of each cell where it was

stopped in its previous fragment (top borders must not be repainted in continuation fragments).

Figure 11 Expected rendering of table containing a tall row fragmented across two pages

When ‘break-before’ or ‘break-after’ is applied to a table-row-group or a table-row box, the user

agent has to insert some vertical gap between the rows located before and after the breaking point
such that the two rows end up separated in sibling fragmentainers as required by the property
value. If the fragmentation requires repeating headers and footers, and the footer is repeated, then
the footer must come directly after the last row in the fragmentainer and the vertical gap must be

inserted after the repeated footer.

6.2. Repeating headers across pages

When rendering the document into a paged media, user agents must repeat header rows and

footer rows on each page spanned by a table if the page is the table’s fragmentainer, if the

header/footer has avoid ‘break-inside’ applied to it, if the height required to do so is inferior to
two quarters of the page height (up to one quarter for header rows, and up to one quarter for

footer rows), and if that doesn’t cause a row to be displayed twice on that page.

When the header rows are being repeated, user agents must leave room and if needed render the

table top border. The same applies for footer rows and the table bottom border.

https://drafts.csswg.org/css-tables/

66/82

27/01/2021 CSS Table Module Level 3

LI
U

IDDDI
IDDDI

IDDDDDDI
OO0

Figure 12 Expected rendering of table with headers and footers fragmented across two pages

User agents may decide to extend this behavior to more fragmentation contexts, for instance
repeat headers/rows across columns in addition to pages. User-agents that are rendering

static documents are more likely to adopt this behavior, though this is not required per spec.

7. Security Considerations

Using CSS Tables does not incur any security risk to mitigate.

8. Privacy Considerations

Using CSS Tables does not incur any privacy risk to mitigate.

9. List of bugs being tracked

This section is not normative.

» Align=center attribute overrides css margins in Edge
» Chrome applies nowrap quirks mode fix in DOCTYPE documents too

» Edge does not account for widths of spanned cells

https://drafts.csswg.org/css-tables/ 67/82

27/01/2021 CSS Table Module Level 3
» Chrome and Gecko do not apply display:table-cell on <button>
» Edge’s table-cell width unexplainably low due to percentage-max-width on content and colspan
» Table wrapper boxes should be wide enough to contain the caption
» Tables containing no row cannot have height in Chrome, but can in Edge/Firefox
» Table-layout:fixed causes different width distribution in Chrome
» Chrome distributes the height to each row differently then IE and firefox

» Height of rows which can overflow varies in Chrome vs Edge (percentage heights during min-height

computation)

» Height specified on row groups is not interoperable

» Min-Height specified on rows is not interoperable

» Table with interleaved td[rowspan] rendered wrong in IE (145069)

» Row with explicit 'visibility:visible' lose background color when parent table has 'visibility: hidden'

§ 10. Appendices

¥ 10.1. Mapping between CSS & HTML attributes

The default style sheet for HTML4 illustrates how its model maps to css properties and values:

Some extensions to CSS have been used for contraints not mappable to current CSS

constructs

table { display: table }

thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }

https://drafts.csswg.org/css-tables/ 68/82

27/01/2021

CSS Table Module Level 3

tr { display:
td, th { display:
colgroup { display:
col { display:
caption { display:

table-row }
table-cell }

table-column }
table-caption }

table-column-group }

table, thead, tbody, tfoot, tr, td, th, colgroup, col, caption { box-sizing: t

thead, tfoot { break-inside: avoid }

table {
box-sizing: border-box;
border-spacing: 2px;
border-collapse: separate;
text-indent: initial;

thead, tbody, tfoot, table > tr { vertical-align:
tr, td, th { vertical-align: inherit; }

td, th { padding: 1px; }
th { font-weight: bold; }

table, td, th { border-color: gray; }

middle; }

thead, tbody, tfoot, tr { border-color: inherit; }

table[frame=box i], table[frame=border i], table[frame=hsides i], table[frame:

border: 1px solid inset;

table:is([rules=all i],
border-collapse: collapse;
border-style: hidden;

[rules=rows i],

table:is([rules=all i],
table:is([rules=all i],
border-color: black;

[rules=rows i],
[rules=rows i],

[rules=cols i], [rules=groups i], [rul

[rules=cols i],
[rules=cols i],

[rules=groups i],
[rules=groups i],

[rul
[rul

table[border=$border] /* if(parseInt($border) > @) */ {
border: /*(parseInt($border) * 1px)*/ outset rgb(128, 128, 128);

https://drafts.csswg.org/css-tables/

69/82

27/01/2021 CSS Table Module Level 3

table[border=$border] > :is(thead,tbody,tfoot) > tr > :is(th,td) /* if(parse:
border: 1px inset rgb(128, 128, 128); —_—

table[rules=all i] > :is(thead,tbody,tfoot) > tr > :is(th,td) {
border: 1px solid grey;

}

table[rules=rows i] > :is(thead,tbody,tfoot) > tr > :is(th,td) {
border: 1px solid grey;
border-left: none;
border-right: none;

}

table[rules=cols i] > :is(thead,tbody,tfoot) > tr > :is(th,td) {
border: 1px solid grey;
border-top: none;
border-bottom: none;

}

table[rules=none i] > :is(thead,tbody,tfoot) > tr > :is(th,td) {
border: none;

table[rules=groups i] > :is(thead,tbody,tfoot) {
border-top-width: 1px; border-top-style: solid;
border-bottom-width: 1px; border-bottom-style: solid;

}

table[rules=groups i] > colgroup {
border-left-width: 1px; border-left-style: solid;
border-right-width: 1px; border-right-style: solid;

table[frame=box i], table[frame=border i], table[frame=hsides i], table[frame:
border-style: outset;

}

table[frame=below i], table[frame=vsides i], table[frame=lhs i], table[frame=r
border-top-style: hidden;

}

table[frame=above i], table[frame=vsides i], table[frame=lhs i], table[frame=r
border-bottom-style: hidden;

}

table[frame=hsides i], table[frame=above i], table[frame=below i], table[frame
border-left-style: hidden;

¥

table[frame=hsides i], table[frame=above i], table[frame=below i], table[frame
border-right-style: hidden;

https://drafts.csswg.org/css-tables/ 70/82

27/01/2021

CSS Table Module Level 3

—

table[cellpadding=$x] > :is(thead,tbody,tfoot) > tr > :is(th,td) /* if(parselr
padding: /*(parseInt($x) * 1px)*/;

}

table[cellspacing=$x] /* if(parseInt($x)>0) */ {
border-spacing: /*(parselnt($x) * 1px)*/;

table[width=$w] /* if(parseInt($w) > @) */ {
width: /*(parseInt($w) * 1px)*/;

}

table[width=$w] /* if($w matches /(+|-|)([0-9]1+([.]1[0-9]1+]|)|([-1[@-91+))[%]/)
width: /*(parseInt($w) * 1px)*/;

}

table[height=$h] /* if(parseInt($h) > 0) {
height: /*(parseInt($h) * 1px)*/;

)i

table[height=$h] /* if($h matches /(+|-]|)([0-9]1+([.]1[0-9]1+|)|([.1[0-9]1+))[%]/.
height: /*(parseInt($h) * 1px)*/;

table[bordercolor=$color] {

border-color: /*parseHTMLColor($color)*/;
}
table[bordercolor] > :is(tbody, thead, tfoot, tr, colgroup, col),
table[bordercolor] > :is(tbody, thead, tfoot) > tr,
table[bordercolor] > :is(tbody, thead, tfoot) > tr > :is(td, th),
table[bordercolor] > tr > :is(td, th)
table[bordercolor] > colgroup > col

) A

border-color: inherit;

}

table[bgcolor=$color] {
background-color: /*parseHTMLColor($color)*/;

}

table[align=1left i] {
float: left;

¥

table[align=right i] {
float: right;

}

https://drafts.csswg.org/css-tables/

71/82

27/01/2021 CSS Table Module Level 3

table[align=center i] {
margin-left: auto;
margin-right: auto;

caption[align=bottom i] { caption-side: bottom; }
:is(thead, tbody,tfoot,tr,td,th)[valign=top i] {
vertical-align: top;

}
:is(thead, tbody, tfoot,tr,td,th)[valign=middle i] {
vertical-align: middle;

}
:is(thead, tbody,tfoot,tr,td,th)[valign=bottom i] {
vertical-align: bottom;

}
:is(thead, tbody,tfoot,tr,td,th)[valign=baseline i] {
vertical-align: baseline;

:is(thead, tbody,tfoot,tr,td,th)[align=absmiddle i] {
text-align: center;

:is(colgroup, col,thead, tbody, tfoot,tr,td,th)[hidden] {
visibility: collapse;

:is(td,th)[nowrap] { white-space: nowrap; }
:is(td,th)[nowrap][width=$w] /* if(quirksMode && parseInt($w) > @) */ {
white-space: normal;

Some of the content here came from the WHATWG spec on the HTML to CSS mapping of

tables. However, since they include things which are not true in most browsers, this is not a

simple copy. Investigations are therefore required for each and any merge being made from

one source to another!

11. (link here for missing sections)

https://drafts.csswg.org/css-tables/ 72/82

27/01/2021

CSS Table Module Level 3
Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119

terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative

parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,
examples, and notes. [RFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

EXAMPLE 15

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.

renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool

https://drafts.csswg.org/css-tables/

73/82

27/01/2021

CSS Table Module Level 3

A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this
module are valid according to the generic CSS grammar and the individual grammars of each feature
defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined
by the appropriate specifications, it supports all the features defined by this specification by parsing
them correctly and rendering the document accordingly. However, the inability of a UA to correctly
render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically
correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

Partial implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,
user agents must not selectively ignore unsupported component values and honor supported values in
a single multi-value property declaration: if any value is considered invalid (as unsupported values

must be), CSS requires that the entire declaration be ignored.

Implementations of Unstable and Proprietary Features

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices

for the implementation of unstable features and proprietary extensions to CSS.

Non-experimental implementations

Once a specification reaches the Candidate Recommendation stage, non-experimental
implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group

requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the

https://drafts.csswg.org/css-tables/

74/82

27/01/2021 CSS Table Module Level 3

testcases used for that implementation report) to the W3C before releasing an unprefixed

o

(0

implementation of any CSS features. Testcases submitted to W3C are subject to review and correction

by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS
Working Group’s website at http://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

§ Index

v Terms defined by this specification

assignable table width, in §3.9.1

auto-column, in §3.9.3

baseline of a cell, in §3.10.2

baseline of a table-root, in §3.10.2

baseline of the row, in §3.10.2

border-collapse, in §3.5.2

border-spacing, in §3.5.2.1

bottom, in §3.5.3

caption-side, in §3.5.3
caption width minimum (CAPMIN), in §3.9.1

cell intrinsic offsets, in §3.8.2

columns, in §2.1.1
consecutive, in §2.1.1

constrainedness, in §3.8.3

distributed width, in §3.9.3.2

distributing excess width to columns, in
§3.9.3.2

eligible track, in §3.3.2
empty cell, in §5.2
empty-cells, in §5.2

https://drafts.csswg.org/css-tables/

empty table, in §3.2
excess width, in §3.9.3.2

freely fragmentable, in §6.1

in auto mode, in §3.5.1

in collapsed-borders mode, in §3.5.2

in fixed mode, in §3.5.1
inline-table, in §2.1

in separated-borders mode, in §3.5.2

intrinsic percentage width of a column, in
§3.8.3

intrinsic percentage width of a column based

on cells of span up to 1, in §3.8.3

intrinsic percentage width of a column based
on cells of span up to N (N > 1), in §3.8.3

It is appropriate to resolve percentage heights
on direct children of a table-cell, in §3.10.6

max-content sizing-guess, in §3.9.3

max-content width of a column, in §3.8.3

max-content width of a column based on cells

of span up to 1, in §3.8.3

75/82

CSS Table Module Level 3

max-content width of a column based on cells

sizing type, in §3.9.3

of span up to N (N> 1), in §3.8.3

max-content width of a table, in §3.1

min-content-percentage sizing-guess, in §3.9.3

min-content sizing-guess, in §3.9.3

min-content-specified sizing-guess, in §3.9.3

min-content width of a column, in §3.8.3

min-content width of a column based on cells

of span up to 1, in §3.8.3

min-content width of a column based on cells
of span up to N (N> 1), in §3.8.3

min-content width of a table, in §3.1

offscts-adjusted min-width, width, and max-
width, in §3.8.2

originate, in §2.1.1

outer max-content, in §3.8.2

outer min-content, in §3.8.2

percentage contribution, in §3.8.2

percent-column, in §3.9.3

pixel-column, in §3.9.3
proper table child, in §2.1.1

proper table-row parent, in §2.1.1

resolved-table-width, in §3.9.1

Resolve percentage heights in table-cell
content:, in §3.10.6

row/column-grid width maximum
(GRIDMAX), in §3.9.1

row/column-grid width minimum (GRIDMIN),
in §3.9.1

ROWMIN, in §3.10.1

rows, in §2.1.1

https://drafts.csswg.org/css-tables/

slot, in §2.1.1

span, in §2.1.1

table, in §2.1
table-caption, in §2.1
table-cell, in §2.1
table-column, in §2.1

table-column-group, in §2.1

table-footer-group, in §2.1

table grid, in §2.1.1
table-grid, in §2.1.1
table grid box, in §2.1.1

table-grid box, in §2.1.1
table-header-group, in §2.1

table-internal, in §2.1.1

table intrinsic offsets, in §3.8.2

table-layout, in §3.5.1

table-non-root, in §2.1.1
table-root, in §2.1.1
table-row, in §2.1

table-row-group, in §2.1

table-track, in §2.1.1

table-track-group, in §2.1.1

table-wrapper, in §2.1.1
table wrapper box, in §2.1.1

table-wrapper box, in §2.1.1

tabular container, in §2.1.1

top, in §3.5.3

total horizontal border spacing, in §3.8.2

27/01/2021

undistributable space, in §3.8.1

used min-width of a table, in §3.9.1

Terms defined by reference

[compositing-2] defines the following terms:

isolation
mix-blend-mode
[css-backgrounds-3] defines the following
terms:
background
background-origin
background-size
border-image
border-image-source
border-radius
border-style
border-width
[css-box-4] defines the following terms:
margin
padding
[css-break-3] defines the following terms:
break-after
break-before
break-inside
[css-color-4] defines the following terms:

opacity

https://drafts.csswg.org/css-tables/

CSS Table Module Level 3

used width of a table, in §3.9.1

visible track, in §3.11

[css-display-3] defines the following terms:
anonymous box
block-level
containing block
display
flow layout
inline-level
inner display type
table

[css-grid-2] defines the following terms:
grid

[css-inline-3] defines the following terms:
vertical-align

[css-masking-1] defines the following terms:
clip
clip-path
mask

[css-overflow-3] defines the following terms:
overflow

[css-position-3] defines the following terms:
left

position

77/82

27/01/2021 CSS Table Module Level 3

[css-sizing-3] defines the following terms: [CSS-VALUES-3] defines the following terms
behave as auto <string>
box-sizing [css-values-4] defines the following terms:
height css-wide keywords
max-width {a,b}

min-content contribution |

min-height [CSS2] defines the following terms:
min-width bottom
width float
[css-text-3] defines the following terms: right
text-align separate
[css-text-4] defines the following terms: top
white-space visibility
[css-transforms-1] defines the following terms: z-index
transform [filter-effects-1] defines the following terms:
[css-transforms-2] defines the following terms: filter
perspective [mediaqueries-5] defines the following terms:
transform-style paged media
References

Normative References

[COMPOSITING-2]
Compositing and Blending Level 2 URL: https://drafts.fxtf.org/compositing-2/

[CSS-BACKGROUNDS-3]
Bert Bos; Elika Etemad; Brad Kemper. CSS Backgrounds and Borders Module Level 3. 22
December 2020. CR. URL: https://www.w3.org/TR/css-backgrounds-3/

[CSS-BOX-4]
Elika Etemad. CSS Box Model Module Level 4. 21 April 2020. WD. URL:
https://www.w3.org/TR/css-box-4/

[CSS-BREAK-3]
Rossen Atanassov; Elika Etemad. CSS Fragmentation Module Level 3. 4 December 2018. CR.
URL: https://www.w3.org/TR/css-break-3/

[CSS-COLOR-4]

https://drafts.csswg.org/css-tables/ 78/82

27/01/2021 CSS Table Module Level 3

Tab Atkins Jr.; Chris Lilley. CSS Color Module Level 4. 12 November 2020. WD. URL:
https://www.w3.org/TR/css-color-4/

[CSS-DISPLAY-3]
Tab Atkins Jr.; Elika Etemad. CSS Display Module Level 3. 18 December 2020. CR. URL:

https://www.w3.org/TR/css-display-3/

[CSS-GRID-2]
Tab Atkins Jr.; Elika Etemad; Rossen Atanassov. CSS Grid Layout Module Level 2. 18 December
2020. CR. URL: https://www.w3.org/TR/css-grid-2/

[CSS-INLINE-3]
Dave Cramer; Elika Etemad; Steve Zilles. CSS Inline Layout Module Level 3. 27 August 2020.

WD. URL: https://www.w3.org/TR/css-inline-3/

[CSS-MASKING-1]
Dirk Schulze; Brian Birtles; Tab Atkins Jr.. CSS Masking Module Level 1. 26 August 2014. CR.

URL: https://www.w3.org/TR/css-masking-1/

[CSS-OVERFLOW-3]
David Baron; Elika Etemad; Florian Rivoal. CSS Overflow Module Level 3. 3 June 2020. WD.

URL: https://www.w3.org/TR/css-overflow-3/

[CSS-POSITION-3]
Elika Etemad; et al. CSS Positioned Layout Module Level 3. 19 May 2020. WD. URL:

https://www.w3.org/TR/css-position-3/

[CSS-SIZING-3]
Tab Atkins Jr.; Elika Etemad. CSS Box Sizing Module Level 3. 18 December 2020. WD. URL:

https://www.w3.org/TR/css-sizing-3/

[CSS-TEXT-4]
Elika Etemad; et al. CSS Text Module Level 4. 13 November 2019. WD. URL:
https://www.w3.org/TR/css-text-4/

[CSS-TRANSFORMS-1]
Simon Fraser; et al. CSS Transforms Module Level 1. 14 February 2019. CR. URL:

https://www.w3.org/TR/css-transforms-1/

[CSS-TRANSFORMS-2]
Tab Atkins Jr.; et al. CSS Transforms Module Level 2. 3 March 2020. WD. URL:

https://www.w3.org/TR/css-transforms-2/

[CSS-VALUES-3]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. 6 June 2019. CR. URL:

https://www.w3.org/TR/css-values-3/

[CSS-VALUES-4]

https://drafts.csswg.org/css-tables/ 79/82

27/01/2021

CSS Table Module Level 3

Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. 11 November 2020. WD.
URL: https://www.w3.org/TR/css-values-4/

[CSS2]

Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011.

REC. URL: https://www.w3.org/TR/CSS21/

[FILTER-EFFECTS-1]

Dirk Schulze; Dean Jackson. Filter Effects Module Level 1. 18 December 2018. WD. URL.:
https://www.w3.org/TR/filter-effects-1/

[MEDIAQUERIES-5]

Dean Jackson; Florian Rivoal; Tab Atkins Jr.. Media Queries Level 5. 31 July 2020. WD. URL:
https://www.w3.org/TR/mediaqueries-5/

[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best

Current Practice. URL: https://tools.ietf.org/html/rfc2119

Informative References

[CSS-TEXT-3]

Elika Etemad; Koji Ishii; Florian Rivoal. CSS Text Module Level 3. 22 December 2020. CR.
URL: https://www.w3.org/TR/css-text-3/

' Property Index
Anim- . Com-
. . . Canonical
Name Value Initial Applies to Inh. %ages ation order puted
type value
‘border- t) . ified
E— separate | separate table grid boxes yes n/a discrete pet specitie
collapse’ collapse grammar keyword
. by two
‘border- <length> table grid boxes when border- per
- Opx Opx . yes n/a computed absolute
spacing {1,2} collapse is separate grammar
value lengths
‘caption- to er specified
.p— P top table-caption boxes yes n/a discrete P P
side’ bottom grammar keyword
‘empty- er specified
TPy show | hide show table-cell boxes yes n/a discrete P P
cells’ grammar keyword
‘table- T ified
E— auto | fixed auto table grid boxes no n/a discrete be specte
layout’ grammar keyword

https://drafts.csswg.org/css-tables/

80/82

27/01/2021

CSS Table Module Level 3

§ Issues Index

ISSUE 1 This is a breaking change from css 2.1 but matches implementations
<https://github.com/w3c/csswg-drafts/issues/508> ¢

ISSUE 2 border-collapsing breaking change from 2.1 <https://github.com/w3c/csswg-
drafts/issues/604> <

ISSUE 3 Change specificity in harmonization of collapsed borders?
<https://github.com/w3c/csswg-drafts/issues/606> ¢

ISSUE 4 Handling of intrinsic offsets when in border collapsing mode
<https://github.com/w3c/csswg-drafts/issues/608> <

ISSUE 5 EDITORIAL. The way this describes distribution of widths from colspanning cells is
wrong. For min-content and max-content widths it should refer to the rules for distributing excess

width to columns for intrinsic width calculation. ¢

ISSUE 6 EDITORIAL. Import the relevant section of § 3.8.3 Computing Column Measures

here. ¢

ISSUE 7 EDITORIAL. TODO. For current proposal, skip to § 3.10.5 Distribution algorithm. <

ISSUE 8 We need a resolution on what visibility:collapse does. <https://github.com/w3c/csswg-
drafts/issues/478> ¢

ISSUE 9 This only works in Firefox. It would make it easier to implement position:sticky in the
future, though. [Chrome bug] [Interop risk: Firefox bug] <https://github.com/w3c/csswg-
drafts/issues/858> ¢

ISSUE 10 Can we simplify empty-cells:hide? <https://github.com/w3c/csswg-drafts/issues/605>

d

ISSUE 11 Should we hide the row-group background by saying cells only draw the backgrounds

of visibility:visible grouping elements? <

https://drafts.csswg.org/css-tables/

81/82

27/01/2021 CSS Table Module Level 3

https://drafts.csswg.org/css-tables/ 82/82

