
Mathematical Markup Language
(MathML") 1.01 Specification

W3C Recommendation, revision of 7 July 1999
REC-MathML-19980407; revised 19990707

This version:

http://www.w3.org/1999/07/REC-MathML-19990707

Latest version:

http://www.w3.org/TR/REC-MathML

Previous version:

http://www.w3.org/TR/1998/REC-MathML-19980407

Editors:

Patrick Ion <ion@ams.org>
(Mathematical Reviews / American Mathematical Society)

Robert Miner <rminer@geomtech.com>
(Geometry Technologies, Inc.)

Principal Writers:

Stephen Buswell, Stan Devitt, Angel Diaz, Patrick Ion, Robert Miner,
Nico Poppelier, Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Copyright © 1999 W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
This specification defines the Mathematical Markup Language, or MathML. MathML is an
XML application for describing mathematical notation and capturing both its structure and
content. The goal of MathML is to enable mathematics to be served, received, and processed on
the Web, just as HTML has enabled this functionality for text.

http://www.w3.org/
http://www.w3.org/1999/07/REC-MathML-19990707
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/1998/REC-MathML-19980407
mailto:ion@ams.org
mailto:rminer@geomtech.com
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

This specification of the markup language MathML is intended primarily for a readership
consisting of those who will be developing or implementing renderers or editors using it, or
software that will communicate using MathML as a protocol for input or output. It is not a
User's Guide but rather a reference document.

This document begins with background information on mathematical notation, the problems it
poses, and the philosophy underlying the solutions MathML proposes. MathML can be used to
encode both mathematical notation and mathematical content. Twenty-eight of the MathML
tags describe abstract notational structures, while another seventy-five provide a way of
unambiguously specifying the intended meaning of an expression. Additional chapters discuss
how the MathML content and presentation elements interact, and how MathML renderers might
be implemented and should interact with browsers. Finally, this document addresses the issue of
MathML entities (extended characters) and their relation to fonts.

While MathML is human-readable it is anticipated that, in all but the simplest cases, authors
will use equation editors, conversion programs, and other specialized software tools to generate
MathML. Several early versions of such MathML tools already exist, and a number of others,
both freely available software and commercial products, are under development.

Status of this document
This document has been reviewed by W3C Members and other interested parties and has been
endorsed by the Director as a W3C Recommendation. It is a stable document and may be used
as reference material or cited as a normative reference from another document. W3C's role in
making the Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of the Web.

The fundamental eXtensible Markup Language (XML) 1.0 specification upon which MathML
is based has been adopted as a W3C Recommendation. Should future changes in the XML
specification necessitate changes in the MathML specification, it is the intention of the W3C
Math Working Group to issue a revision of the MathML specification. However, any changes
are very unlikely to be substantial.

Most of this document represents technology tested by multiple implementations. A summary
of MathML rendering and authoring software is described on the W3C Math Working Group
home page.

The www-math mailing list is a public forum for questions and comments about MathML and
issues related to putting math on the Web.

The W3C Math Working Group intends further development of recommendations for
mathematics on the Web, as set out below.

A list of current W3C Recommendations and other technical reports can be found at
http://www.w3.org/TR.

http://www.w3.org/pub/WWW/TR/REC-xml
http://www.w3.org/Math
http://lists.w3.org/Archives/Public/www-math
http://www.w3.org/TR

This document is a revised version of the document first released on 7 April 1998. Changes
from the original version are only editorial in nature. The present W3C Math Working Group is
working on further improvements of MathML.

Available formats

The MathML 1.01 W3C Recommendation is made available in different formats from the W3C
Math WG's site. In case of a discrepancy between any of the derived forms and that found in the
W3C's archive of Recommendations the definitive version is naturally the Recommendation. At
first it is expected that zipped and gzipped bundles will be made available, but such easily
printable formats as PostScript or PDF may be supplied.

Available languages

The English version of this specification is the only normative version. However, for
translations of this document, see
http://www.w3.org/MarkUp/mathml101-updates/translations.html.

Errata

The list of known errors in this specification is available at:

http://www.w3.org/MarkUp/mathml101-updates/errata.html.

Please report errors in this document to www-math@w3.org.

Table of contents
Extended Table of Contents

Chapter 1. Introduction●

Chapter 2. MathML Fundamentals●

Chapter 3. Presentation Markup●

Chapter 4. Content Markup●

Chapter 5. Mixing Presentation and Content●

Chapter 6. Entities, Characters and Fonts●

Chapter 7. Implementing MathML●

Appendix A. DTD for MathML●

Appendix B. Glossary●

Appendix C. Operator Dictionary●

http://www.w3.org/Math
http://www.w3.org/Math
http://www.w3.org/MarkUp/mathml101-updates/translations.html
http://www.w3.org/MarkUp/mathml101-updates/errata.html
mailto:www-math@w3.org

Appendix D. Working Group Membership●

Appendix E. Informal EBNF Grammar for Content Elements●

Appendix F. Default Semantic Bindings for Content Elements●

Appendix G. MathML 1.0 Changes●

References●

REC-MathML-19980407; revised 19990707

Mathematical Markup Language 1.01
Specification

Table of Contents
Title page and Abstract●

1. Introduction

1.1 Mathematics and its Notation❍

1.2 Origins and Goals

1.2.1 The History of MathML■

1.2.2 Limitations of HTML■

1.2.3 Requirements for Mathematical Markup■

1.2.4 Goals of MathML■

❍

1.3 The Role of MathML on the Web

1.3.1 Layered Design of Mathematical Web Services■

1.3.2 Relation to Other Web Technology■

❍

●

2. MathML Fundamentals

2.1 MathML Overview

2.1.1 Taxonomy of MathML Elements■

2.1.2 Expression Trees and Token Elements■

2.1.3 Presentation Markup■

2.1.4 Content Markup■

2.1.5 Mixing Presentation and Content■

❍

2.2 Some MathML Examples

2.2.1 Presentation Examples■

2.2.2 Content Examples■

2.2.3 Mixed Markup Examples■

❍

2.3 MathML Syntax and Grammar

2.3.1 An XML Syntax Primer■

❍

●

http://www.w3.org/1999/07/REC-MathML-19990707/Overview.html

2.3.2 Children vs. Arguments■

2.3.3 MathML Attributes Values■

2.3.4 Attributes Shared by all MathML Elements■

2.3.5 Collapsing Whitespace in Input■

3. Presentation Markup

3.1 Introduction

3.1.1 What Presentation Elements Represent■

3.1.2 Terminology Used In This Chapter■

3.1.3 Required Arguments■

3.1.4 Elements with Special Behaviors■

3.1.5 Summary of Presentation Elements■

❍

3.2 Token elements

3.2.1 Attributes common to token elements■

3.2.2 <mi> -- identifier■

3.2.3 <mn> -- number■

3.2.4 <mo> -- operator, fence, or separator■

3.2.5 <mtext> -- text■

3.2.6 <mspace/> -- space■

3.2.7 <ms> -- string literal■

❍

3.3 General Layout Schemata

3.3.1 <mrow> -- horizontally group any number of subexpressions■

3.3.2 <mfrac> -- form a fraction from two subexpressions■

3.3.3 <msqrt> and <mroot> -- form a radical■

3.3.4 <mstyle> -- style change■

3.3.5 <merror> -- enclose a syntax error message from a preprocessor■

3.3.6 <mpadded> -- adjust space around content■

3.3.7 <mphantom> -- make content invisible but preserve its size■

3.3.8 <mfenced> -- surround content with a pair of fences■

❍

3.4 Script and Limit Schemata

3.4.1 <msub> -- attach a subscript to a base■

3.4.2 <msup> -- attach a superscript to a base■

3.4.3 <msubsup> -- attach a subscript-superscript pair to a base■

❍

●

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.3

3.4.4 <munder> -- attach an underscript to a base■

3.4.5 <mover> -- attach an overscript to a base■

3.4.6 <munderover> -- attach an underscript-overscript pair to a base■

3.4.7 <mmultiscripts> -- attach prescripts and tensor indices to a base■

3.5 Tables and Matrices

3.5.1 <mtable> -- table or matrix■

3.5.2 <mtr> -- row in a table or matrix■

3.5.3 <mtd> -- one entry in a table or matrix■

3.5.4 <maligngroup/> and <malignmark/> -- alignment markers■

❍

3.6 Enlivening Expressions

3.6.1 <maction> -- bind actions to a subexpression■

❍

4. Content Markup -- Index of All Content Elements

4.1 Introduction

4.1.1 The Intent of Content Markup■

4.1.2 The Scope of Content Markup■

4.1.3 Basic Concepts of Content Markup■

❍

4.2 Content Element Usage Guide

4.2.1 Overview of Syntax and Usage■

4.2.2 Containers■

4.2.3 Functions, Operators and Qualifiers■

4.2.4 Relations■

4.2.5 Conditions■

4.2.6 Syntax and Semantics■

4.2.7 Semantic Mappings■

4.2.8 MathML element types■

❍

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values■

4.3.2 Attributes Modifying Content Markup Semantics■

4.3.3 Attributes Modifying Content Markup Rendering■

❍

4.4 The Content Markup Elements

4.4.1 Token Elements■

4.4.2 Basic Content Elements■

❍

●

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_6.html#sec3.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_6.html#sec3.6.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#content-element-list
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2

4.4.3 Arithmetic, Algebra and Logic■

4.4.4 Relations■

4.4.5 Calculus■

4.4.6 Theory of Sets■

4.4.7 Sequences and Series■

4.4.8 Trigonometry■

4.4.9 Statistics■

4.4.10 Linear Algebra■

4.4.11 Semantic Mapping Elements■

5. Mixing Presentation and Content

5.1 When to Use Mixed Markup

5.1.1 Why Two Different Kinds of Markup?■

5.1.2 Reasons to Mix Markup■

❍

5.2 How to use Mixed Markup

5.2.1 Presentation Markup Contained in Content Markup■

5.2.2 Content Markup Contained in Presentation Markup■

❍

5.3 Anticipating Macros for Combined Markup❍

●

6. Entities, Characters and Fonts

6.1 Introduction

6.1.1 The Intent of Entity Names■

6.1.2 The STIX Project■

❍

6.2 Entity Listings

6.2.1 Non-Marking Entities■

6.2.2 Printing Entity List■

6.2.3 Special Constants■

6.2.4 Full Alphabetical Lists■

6.2.5 ISO Entity Set Groupings

6.2.5.1 ISO Symbol Entity Sets■

6.2.5.2 ISO Math Font Entity Sets■

6.2.5.3 Other ISO Font Entity Sets■

■

6.2.6 Additional Entity Set Grouping■

❍

●

7. Implementing MathML●

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.9
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.11

7.1 Embedding MathML in HTML

7.1.1 The Top-Level math Element■

7.1.2 Requirements for a MathML Browser Interface■

7.1.3 Invoking Embedded Objects as Renderers■

7.1.4 Invoking Other Applications■

7.1.5 Mixing and Linking MathML and HTML■

❍

7.2 Generating, Processing and Rendering MathML

7.2.1 MathML Compliance■

7.2.2 Handling Of Errors■

7.2.3 An Attribute for Unspecified Data■

❍

7.3 Future Extensions

7.3.1 Macros and Style Sheets■

7.3.2 XML Extensions to MathML■

❍

Appendix A. DTD for MathML●

Appendix B. Glossary●

Appendix C. Operator Dictionary●

Appendix D. Working Group Membership●

Appendix E. Informal EBNF Grammar for Content Elements●

Appendix F. Default Semantic Bindings for Content Elements●

Appendix G. MathML 1.0 Changes●

References●

Up: Table of Contents REC-MathML-19980407; revised 19990627

1. Introduction
1.1 Mathematics and its Notation●

1.2 Origins and Goals

1.2.1 The History of MathML❍

1.2.2 Limitations of HTML❍

1.2.3 Requirements for Math Markup❍

1.2.4 Design Goals of MathML❍

●

1.3 The Role of MathML on the Web

1.3.1 Layered Design of Mathematical Web Services❍

1.3.2 Relation to Other Web Technology❍

●

1.1 Mathematics and its Notation
A distinguishing feature of mathematics is the use of a complex and highly evolved system of
two-dimensional symbolic notations. As J. R. Pierce has written in his book on communication
theory, mathematics and its notations should not be viewed as one and the same thing [Pierce
1961]. Mathematical ideas exist independently of the notations that represent them. However,
the relation between meaning and notation is subtle, and part of the power of mathematics to
describe and analyze derives from its ability to represent and manipulate ideas in symbolic
form. The challenge in putting math on the Web is to capture both notation and content in such
a way that documents can utilize the highly-evolved notational practices of print, and the
potential for interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to discover innovative ways
of approaching and expressing ideas. Even the commonplace notations of arithmetic have gone
through an amazing variety of styles, including many defunct ones advocated by leading
mathematical figures of their day [Cajori 1928/1929]. Modern mathematical notation is the
product of centuries of refinement, and the notational conventions for high-quality typesetting
are quite complicated. For example, variables, or letters which stand for numbers, are usually
typeset today in a special italic font subtly distinct from the text italic. Spacing around symbols
for operations such as +, -, x and / is slightly different from that of text, to reflect conventions
about operator precedence. Entire books have been devoted to the conventions of mathematical
typesetting, from the alignment of superscripts and subscripts, to rules for choosing parenthesis

sizes, to specialized notational practices for subfields of mathematics [for instance, Chaudry,
Barret and Batey, 1954, Swanson 1979, Higham 1993, or in the TeX literature Knuth 1986, and
Spivak 1986].

Notational conventions in mathematics, and printed text in general, guide the eye and make
printed expressions much easier to read and understand. Though we usually take them for
granted, we rely on hundreds of conventions such as paragraphs, capital letters, font families
and cases, and even the device of decimal-like numbering of sections such as we are using in
this document (an invention due to G. Peano, who is probably better known for his axioms for
the natural numbers). Such notational conventions are even more important for electronic
media, where one must contend with the difficulties of on-screen reading.

However, there is more to putting math on the Web than merely finding ways of displaying
traditional mathematical notation in a Web browser. The Web represents a fundamental change
in the underlying metaphor for knowledge storage, a change in which interconnectivity plays a
central role. It is becoming increasingly important to find ways of communicating mathematics
which facilitate automatic processing, searching and indexing, and reuse in other mathematical
applications and contexts. With this advance in communication technology, there is an
opportunity to expand our ability to represent, encode, and ultimately to communicate our
mathematical insights and understanding with each other. We believe that MathML is an
important step in developing Mathematics on the Web.

1.2 Origins and Goals

1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is
much older than the Web. The common practice among scientists before the Web was to write
papers in some encoded form based on the ASCII character set, and e-mail them to each other.
Several markup methods for mathematics, in particular TeX [Knuth 1986], were already in
wide use in 1992, just before the Web rose to prominence, [Poppelier, van Herwijnen and
Rowley 1992].

Since its inception, the Web has demonstrated itself to be a very effective method of making
information available to widely separated groups of individuals. However, even though the
World Wide Web was initially conceived and implemented by scientists for scientists, the
capability to include mathematical expressions in HTML is very limited. At present, most
mathematics on the Web consists of text with GIF images of scientific notation, which are
difficult to read and to author.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific
communication was a serious problem. Dave Raggett included a proposal for HTML Math in
the HTML 3.0 working draft in 1994. A panel discussion on math markup was held at the
WWW Conference in Darmstadt in April 1995. In November 1995, representatives from

Wolfram Research presented a proposal for doing math in HTML to the W3C team. In May
1996, the Digital Library Initiative meeting in Champaign-Urbana played an important role in
bringing together many interested parties. Following the meeting, an HTML Math Editorial
Review Board was formed. In the intervening years, this group has grown, and was formally
reconstituted as the W3C Math working group in March 1997.

The MathML proposal reflects the interests and expertise of a very diverse group. Many
contributions to the development of MathML deserve special mention, some of which we touch
on here. One such contribution concerns the question of accessibility, especially for the visually
handicapped. T. V. Raman is particularly notable in this regard. Neil Soiffer and Bruce Smith
from Wolfram Research shared their experience with the problems of representing mathematics
in connection with the design of Mathematica 3.0, which was an important influence in the
design of the presentation elements. Paul Topping from Design Science also contributed his
expertise in mathematical formatting and editing. MathML has benefited from the participation
of a number of working group members involved in other math encoding efforts in the SGML
and Nico Poppelier from Elsevier Science, Stéphane Dalmas from INRIA, Sophia Antipolis,
Stan Devitt from Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M.
Watt from the University of Western Ontario. In particular, MathML has been influenced by the
OpenMath project, the work of the ISO 12083 working group, and Stilo Technologies' work on
a 'semantic' math DTD fragment. The American Mathematical Society has played a key role in
the development of MathML. Among other things, it has provided two working group chairs:
Ron Whitney led the group from May 1996 to March 1997, and Patrick Ion, who has co-chaired
the group with Robert Miner from The Geometry Center, from March 1997 to the present.

The working group has benefited from the help of many people. We would like to particularly
name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby Villegas
and Joe Yurvati for help and information in assembling the character tables in Chapter 6, as
well as Peter Flynn, Russel S. S. O'Connor, Andreas Strotmann, and other contributors to the
www-math mailing list for their careful proofreading and constructive criticisms.

1.2.2 Limitations of HTML

The demand for effective means of electronic scientific communication is high. Increasingly,
researchers, scientists, engineers, educators, students and technicians find themselves working
remotely and relying on electronic communication. At the same time, the image-based methods
that are currently the predominant means of transmitting scientific notation over the Web are
primitive and inadequate. Document quality is poor, authoring is difficult, and mathematical
information contained in images is not available for searching, indexing, or reuse in other
applications.

The most obvious problems with HTML for mathematical communication are of two types:

Display Problems. Consider the equation . This equation is sized to match the
surrounding line in 14pt type on the system where it was authored. Of course, on other systems,

or for other font sizes, the equation is too small or too large. A second point to observe is that
the equation image was generated against a white background. Thus, if a reader or browser
resets the page background to another color, the anti-aliasing in the image results in white

"halos." Next, consider the equation . This equation has a descender
which places the baseline for the equation at a point about a third of the way from the bottom of

the image. One can pad the image like this: , so that the centerline of

the image and the baseline of the equation coincide, but this causes problems with the inter-line
spacing, which also makes the equation difficult to read. Moreover, center alignment of images
is handled in slightly different ways by different browsers, making it impossible to guarantee
proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding
text in the browser window. Moreover, these problems become worse when the document is
printed. The resolution of the equations will be around 70 dots per inch, while the surrounding
text will typically be 300 or more dots per inch. The disparity in quality is judged to be
unacceptable by most people.

Encoding Problems. Consider trying to search this page for part of an equation, for example,
the "=10" from the first equation above. In a similar vein, consider trying to cut and paste an
equation into another application; even more demanding is to cut and paste a subexpression.
Using image based methods, neither of these common needs can be adequately addressed.
Although the use of ALT text in the document source can help, it is clear that highly interactive
Web documents must provide a more sophisticated interface between browsers and
mathematical notation. Another problem with encoding mathematics as images is that it
requires more bandwidth. By using markup-based encoding, more of the rendering process is
moved to the client machine. Markup describing an equation is typically smaller and more
compressible than an image of the equation.

1.2.3 Requirements for Math Markup

Some display problems associated with including math notation in HTML documents as images
could be addressed by improving browser image handling. However, even if image handling
were improved, the problem of making the information contained in mathematical expressions
available to other applications would remain. Therefore, in planning for the future, it is not
sufficient to merely upgrade image-based methods. To fully integrate mathematical material
into Web documents, a markup-based encoding of mathematical notation and content is
required.

In designing any markup language, it is essential to carefully consider the needs of its potential
users. In the case of MathML, the needs of potential users cover a broad spectrum, from
education to research, and on to commerce:

The education community is a large and important group that must be able to put scientific
curriculum materials on the Web. At the same time, educators often have limited resources of
time and equipment, and are severely hampered by the difficulty of authoring technical Web
documents. Students and teachers need to be able to create mathematical content quickly and
easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important
in education. Management consultant Peter Drucker has recently been prophesying the end of
big-campus residential higher education and its distribution over the Web [Drucker 1997].
Electronic textbooks will need to be active, allowing intercommunication between the text and
scientific software and graphics.

The academic research community generates large volumes of dense scientific material.
Increasingly, research publications are being stored in databases, such as the highly successful
physics preprint server at Los Alamos National Laboratory. This is especially true in some areas
of physics and mathematics where academic journal prices have been increasing at an
unsustainable rate. In mathematics there are large collections at Duke, MSRI and SISSA, and
on the AMS e-MATH server. In addition, databases of information on mathematical research,
such as Mathematical Reviews and Zentralblatt für Mathematik, offer on the Web millions of
records containing math.

To accommodate the research community, a design for math markup must facilitate the
maintenance and operation of large document collections, where automatic searching and
indexing are important. Because of the large collection of legacy data, especially TeX
documents, the ability to convert between existing formats and new formats is also very
important to the research community. Finally, the ability to maintain information for archival
purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work to
collaborate, to record results of experiments and computer simulations, and to verify
calculations. For such uses, math on the Web must provide a standard way of sharing
information that can be easily read, processed and generated using commonly available tools.

Another design requirement is the ability to render mathematical material in other media such
as speech or braille, which is extremely important for the visually impaired.

Commercial publishers are also involved with math on the Web at all levels from electronic
versions of print books to interactive textbooks to academic journals. Publishers require a
method of putting math on the Web that is capable of high-quality output, robust enough for
large-scale commercial use, and preferably compatible with their current, usually SGML-based,
production systems.

1.2.4 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with
the following ultimate goals in mind.

MathML should:

encode mathematical material suitable for teaching and scientific communication at all
levels.

●

encode both mathematical notation and mathematical meaning.●

facilitate conversion to and from other math formats, both presentational and semantic.
Output formats should include:

graphical displays❍

speech synthesizers❍

computer algebra systems' input❍

other math layout languages, such as TeX❍

plain text displays, e.g. VT100 emulators❍

print media, including braille❍

It is recognized that conversion to and from other notational systems or media may entail
loss of information in the process.

●

allow the passing of information intended for specific renderers and applications.●

support efficient browsing for lengthy expressions.●

provide for extensibility.●

be well suited to template and other math editing techniques.●

be human legible, and simple for software to generate and process.●

No matter how successfully MathML might achieve its goals as a markup language, it is clear
that MathML will only be useful if it is implemented well. To this end, the W3C Math working
group has identified a short list of additional implementation goals. These goals attempt to
describe concisely the minimal functionality MathML rendering and processing software should
try to provide.

MathML equations in HTML pages should render properly in popular Web browsers, in
accordance with reader and author viewing preferences, and at the highest quality
possible given the capabilities of the platform.

●

HTML documents containing MathML equations should print properly and at
high-quality printer resolutions.

●

MathML equations in Web pages should be able to react to mouse gestures, and
coordinate communication with other applications through the browser.

●

Equation editors and converters should be developed to facilitate the creation of Web
pages containing MathML equations.

●

These goals can probably be adequately addressed in the near term by using embedded elements

such as Java applets, plug-ins and ActiveX controls to render MathML. However, the extent to
which these goals are ultimately met depends on the cooperation and support of browser
vendors, and other software developers. The W3C Math working group will continue to work
with the Document Object Model working group and the proposed Extensible Style Language
working group to ensure that the needs of the scientific community will be met in the future.

1.3 The Role of MathML on the Web

1.3.1 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web
which is flexible and extensible, suitable for interaction with external software, and capable of
producing high-quality rendering in several media. Any markup language that encodes enough
information to do all these tasks well will of necessity involve some complexity.

At the same time, it is important for many groups, such as students, to have simple ways to
include math in Web pages by hand. Similarly, other groups, such as the TeX community,
would be best served by a system which allowed the direct entry of markup languages like TeX
in Web pages. In general, specific user groups are better served by more specialized kinds of
input and output tailored to their needs. Therefore, the ideal system for communicating
mathematics on the Web should provide both specialized services for input and output, and
general services for interchange of information and rendering to multiple media.

In practical terms, the observation that math on the Web should provide for both specialized and
general need naturally leads to the idea of a layered architecture. One layer consists of
powerful, general software tools exchanging, processing and rendering suitably encoded
mathematical data. A second layer consists of specialized software tools aimed at specific user
groups, and which are capable of easily generating encoded mathematical data which can then
be shared with a general audience.

MathML is designed to provide the encoding of mathematical data for the bottom, more general
layer in a two-layer architecture. It is intended to encode complex notational and semantic
structure in an explicit, regular, and easy to process way for renderers, searching and indexing
software, and other mathematical applications.

As a consequence, MathML is not primarily intended for direct use by authors. While MathML
is human-readable, in all but the simplest cases it is too verbose and error-prone for hand
generation. Instead, it is anticipated that authors will use equation editors, conversion programs,
and other specialized software tools to generate MathML. Alternatively, some renderers may
convert other kinds of input directly included in Web pages into MathML on the fly, in
response to a cut-and-paste operation, for example.

In some ways, MathML is analogous to other low-level, communication formats such as
Adobe's PostScript language. You can create a PostScript file in a variety of ways, depending
on your needs; experts write and modify them by hand, authors create them with word

processors, graphic artists with illustration programs, and so on. Once you have a PostScript
file, however, you can share it with a very large audience, since devices which render
PostScript, such as printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general,
communication layer is to stimulate mathematical Web software development in the layers
above. MathML provides a way of coordinating the development of modular authoring tools
and rendering software. By making it easier to develop a functional piece of a larger system,
MathML can stimulate a "critical mass" of software development, greatly to the benefit of
potential users of math on the Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML
documents using the tools best suited to their needs. For example, a student might prefer to use
a menu-driven equation editor that can write out MathML to an HTML file. A researcher might
use a computer algebra package that automatically encodes the mathematical content of an
expression, so that it can be cut from a Web page and evaluated by a colleague. An academic
journal publisher might use a program that converts TeX markup to HTML and MathML.
Regardless of the method used to create a MathML web page, once it exists, all the advantages
of a powerful and general communication layer become available. A variety of MathML
software could all be used with the same document to render it in speech or print, to send it to a
computer algebra system, or to manage it as part of a large Web document collection. One may
expect that eventually MathML can be integrated into other arenas where mathematical
formulas occur, such as spreadsheets, statistical packages and engineering tools.

The W3C Math working group is working with vendors to ensure that a wide variety of
MathML software will soon be available, including both rendering and authoring tools. A
current list of MathML software is maintained at the World Wide Web Consortium.

1.3.2 Relation to Other Web Technology

The original conception of HTML Math was a simple, straightforward extension to HTML that
would be natively implemented in browsers. However, very early on, the explosive growth of
the Web made it clear that a general extension mechanism was required, and that math was only
one of many kinds of structured data which would have to be integrated into the Web using
such a mechanism.

Given that MathML must integrate into the Web as an extension, it is extremely important that
MathML and MathML software can interact well with the existing Web environment. In
particular, MathML has been designed with three kinds of interaction in mind. First, in order to
create mathematical Web content, it is important that existing mathematical markup languages
can be converted to MathML, and that existing authoring tools can be modified to generate
MathML. Second, it must be possible to embed MathML markup seamlessly in HTML markup
in such a way that it will be accessible to future browsers, search engines, and all kinds of Web
applications which now manipulate HTML. Finally, it must be possible to render MathML
embedded in HTML in today's web browsers in some fashion, even if it is less than ideal.

http://www.w3.org/Math

Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two
decades is the TeX typesetting system developed by Donald Knuth [Knuth 1986]. TeX is a de
facto standard in the mathematical research community, and it is pervasive in the scientific
community at large. TeX sets a standard for quality of visual rendering, and a great deal of
effort has gone into ensuring MathML can provide the same visual rendering quality. Moreover,
because of the many legacy documents in TeX, and because of the large authoring community
versed in TeX, a priority in the design of MathML was the ability to convert TeX math input
into MathML format. The feasibility of such conversion has been demonstrated by prototype
software.

Extensive work on encoding mathematics has also been done in the SGML community, and
SGML-based encoding schemes are widely used by commercial publishers. ISO 12083 is an
important markup language which contains a math DTD fragment primarily intended for
describing the visual presentation of mathematical notation. Because ISO 12083 math and its
derivatives share many presentational aspects with TeX, and because SGML enforces structure
and regularity more than TeX, much of the work in ensuring MathML is compatible with TeX
also applies well to ISO12083.

MathML also pays particular attention to compatibility with other mathematical software, and
in particular, with computer algebra systems. Many of the presentation elements of MathML are
derived in part from the mechanism of typesetting boxes. The MathML content elements are
heavily indebted to the OpenMath project and the Semantic Maths DTD. The OpenMath project
has close ties to both the SGML and computer algebra communities, and has laid a foundation
for an SGML-based means of communication between mathematical software packages, among
other things. The feasibility of both generating and interpreting MathML in computer algebra
systems has been demonstrated by prototype software.

HTML Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide
variety of data types and software applications into the Web. Each new format or application
potentially places new demands on HTML and on browser vendors. For some time, it has been
clear that a general extension mechanism is necessary to accommodate new extensions to
HTML. We began our work thinking of a plain extension to HTML in the spirit of the first math
support suggested for HTML 3.2. But for various reasons, once we got into the details this
proved to be not so good an idea. Since work first began on MathML, XML has emerged as the
leading candidate for such a general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML,
the meta-language used to define the grammar and syntax of HTML. One of the goals of XML
is to be suitable for use on the Web, and in the context of this discussion it can be viewed as a
general mechanism for extending HTML. As its name implies, extensibility is a key feature of

XML; authors are free to declare and use new tags and attributes. At the same time, XML
grammar and syntax rules carefully enforces document structure to facilitate automatic
processing and maintenance of large document collections.

Though details about how XML markup will ultimately be embedded in HTML remain to be
resolved, XML has garnered broad industry support including major browser vendors. Devising
a standard way of embedding XML in HTML is also important with the W3C. Furthermore,
other applications of XML for all kinds of document publishing and processing promise to
become increasingly important. Consequently, both on theoretical and pragmatic grounds, it
makes a great deal of sense to specify MathML as an XML application, and we have done so.

Browser Extension Mechanisms

While details of a general model for rendering and processing XML extensions to HTML is still
being being resolved, broad features of the model are already fairly clear. Formatting Properties
developed by the Cascading Style Sheets and Formatting Properties Working Group for CSS
and made available through the Document Object Model (DOM) will be applied to MathML
elements to obtain some stylistic control over the presentation of MathML. Further
development of these Formatting Properties falls within the charter of both the CSS&FP and the
XSL working groups. Thus, it may soon be possible to write a style sheet which will largely
describe the correct display of MathML.

MathML was designed with the goal of style sheet-based rendering in mind. It is the intention
of the W3C Math Working Group to work closely with W3C style sheet activities to ensure
both that adequate support for MathML is incorporated into future style sheet mechanisms, and
that MathML style sheets are developed. In particular, providing for adequate follow-on
activities beyond the scope of the W3C Math working group charter is a high priority.

Until style sheet mechanisms are capable of delivering native browser rendering of MathML,
however, it is necessary to extend browser capabilities by using embedded elements to render
MathML. It may soon be possible to instruct a browser to use a particular embedded renderer to
process embedded XML markup such as MathML, and coordinate the resulting output with the
surrounding Web page. Indeed, for specialized processing, such as connecting to a computer
algebra system, this capability is likely to remain highly desirable. However, for this kind of
interaction to be really satisfactory, it will be necessary to define a document object model rich
enough to facilitate complicated interactions between browsers and embedded elements. For
this reason, the W3C Math working group is coordinating its efforts closely with the Document
Object Model working group.

For processing by embedded elements, and for inter-communication between scientific software
generally, a style sheet-based layout model is less than ideal in some ways. It can impose an
additional implementation burden in a setting where it may offer few advantages, and it
imposes implementation requirements for coordination between browsers and embedded
renderers that will likely be unavailable in the immediate future.

http://www.w3.org/pub/WWW/Style/css/
http://www.w3.org/DOM/
http://www.w3.org/Style/XSL/

For these reasons, the MathML specification defines an attribute-based layout model, which has
proven very effective for high-quality rendering of complicated mathematical expressions in
several independent implementations. MathML presentation attributes utilize W3C Formatting
Properties where possible. Also, MathML elements accept class, style and id attributes to
facilitate their use with CSS style sheets. However, at present, there are few settings where CSS
machinery is currently available to MathML renderers.

When style sheet mechanisms become available to MathML, it is anticipated their use will
become the dominant method of stylistic control of MathML presentation meant for use in
rendering environments which support those mechanisms.

Next: MathML Fundamentals
Up: Table of Contents

http://www.w3.org/pub/WWW/TR/REC-CSS1
http://www.w3.org/pub/WWW/TR/REC-CSS1

Up: Table of Contents REC-MathML-19980407; revised 19990707

2. MathML Fundamentals
2.1 MathML Overview

2.1.1 Taxonomy of MathML Elements❍

2.1.2 Expression Trees and Token Elements❍

2.1.3 Presentation Markup❍

2.1.4 Content Markup❍

2.1.5 Mixing Presentation and Content❍

●

2.2 Some MathML Examples

2.2.1 Presentation Examples❍

2.2.2 Content Examples❍

2.2.3 Mixed Markup Examples❍

●

2.3 MathML Syntax and Grammar

2.3.1 An XML Syntax Primer❍

2.3.2 Children vs. Arguments❍

2.3.3 MathML Attribute Values

Syntax notations used in the MathML specification■

Attributes with units■

CSS-compatible attributes■

Default values of attributes■

Attribute values in the MathML DTD■

❍

2.3.4 Attributes Shared by all MathML Elements❍

2.3.5 Collapsing Whitespace in Input❍

●

MathML Overview
This chapter introduces the basic ideas of MathML. The first section describes the overall
design of MathML. The second section present a number of motivating examples, to give the
reader something concrete to refer to while reading subsequent chapters of the MathML
Specification. The final section describes basic features of the MathML syntax and grammar,

which apply to all MathML markup. In particular, Section 2.3 should be read before Chapters 3,
4 and 5.

A fundamental challenge in defining a mathematics markup language for the Web is reconciling
the need to encode both the presentation of a mathematical notation and the content of the
mathematical idea or object which it represents.

The relationship between a mathematical notation and a mathematical idea is subtle and deep.
On a formal level, the results of mathematical logic raise unsettling questions about the
correspondence between symbolic logic systems and the phenomena they model. At a more
intuitive level, anyone who uses mathematical notation knows the difference that a good choice
of notation can make; the symbolic structure of the notation suggests the logical structure. For
example, the Leibniz notation for derivatives "suggests" the chain rule of calculus through the
symbolic cancellation of fractions:

Mathematicians and teachers understand this very well; part of their expertise lies in choosing
notation that emphasizes key aspects of a problem while hiding or diminishing extraneous
aspects. It is commonplace in math and science to write one thing when technically something
else is meant, because long experience shows this actually communicates the idea better at
some higher level.

In many other settings, though, mathematical notation is used to encode the full, precise
meaning of a mathematical object. Mathematical notation is capable of prodigious rigor, and
when used carefully, it is virtually free of ambiguity. Moreover, it is precisely this lack of
ambiguity which makes it possible to describe mathematical objects so that they can be used by
software applications such as computer algebra systems and voice renderers. In situations where
such inter-application communication is of paramount importance, the nuances of visual
presentation generally play a minimal role.

MathML allows authors to encode both the notation which represents a mathematical object and
the mathematical structure of the object itself. Moreover, authors can mix both kinds of
encoding in order to specify both the presentation and content of a mathematical idea. The
remainder of this section gives a basic overview of how MathML can be used in each of these
ways.

2.1.1 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements
and interface elements. Each of these categories is described in detail in chapters 3, 4 and 7
respectively.

Presentation elements describe mathematical notation structure. Typical examples are the mrow
element, which is used to indicate a horizontal row of characters, and the msup element, which
is used to indicate a base and superscript. As a general rule, each presentation element
corresponds to a single kind of notational "schema" such as a row, a superscript, an underscript
and so on. Since many notational schemata have a number of frequently occurring variants,
most presentation elements accept a number of attributes which can be used to select between
variants. For example, the superscript element accepts a "superscript shift" attribute which
specifies the minimum amount the superscript should shift upward.

Content elements describe mathematical objects directly, as opposed to describing the notation
which represents them. Typical examples include the plus element, which denotes the usual
addition operator for real numbers, and the vector element, which denotes a vector from linear
algebra. Each content element corresponds to a carefully defined mathematical concept. Some
elements represent mathematical objects like vectors, while others represent functions or
operations like addition.

Every MathML element but one is either a presentation element or a content element. The math
element is neither, since its role is to serve as a top-level, interface element. One function of the
math element is to pass on parameters to a MathML processor that affect an entire expression,
such as style preferences. A second function is to communicate parameters to a Web browser
about what software to use to render a MathML expression, and how the expression should be
integrated into the surrounding HTML page. (As XML support is added to browsers, it may
ultimately be necessary to introduce one or two more interface elements, to handle these
functions separately. See chapter 7 for details.)

2.1.2 Expression Trees and Token Elements

Presentation and content expressions both share a number of formal properties. In both cases,
most expressions naturally decompose into pieces, or subexpressions. For example, the
expression

(a + b)2

naturally breaks into a "base," the (a + b), and a "script," which is the single character '2' in this
case. Furthermore, as this example shows, the subexpressions may themselves decompose into
further subexpressions, and so on. Of course, the decomposition process eventually terminates
with indivisible expressions such as digits, letters, or other symbol characters.

Although this particular example involves mathematical notation, and hence presentation
markup, the same observation applies equally well to abstract mathematical objects, and hence
to content markup. For example, our superscript example would typically denote an
exponentiation operation that would require two operands: a "base" and an "exponent." This is
no coincidence, since as a general rule, mathematical notation closely mirrors the logical
structure of the underlying mathematical objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML

markup. Most presentation or content elements contain some number of other MathML
elements corresponding to the constituent pieces out of which the original object is recursively
built. The original schema is commonly called the parent schema, and the constituent pieces are
called child schemata. More generally, MathML expressions can be regarded as trees, where
each node corresponds to a MathML element, the branches under a "parent" node correspond to
its "children", and the leaves in the tree correspond to indivisible notation or content units such
as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are either canonically empty elements, or token
elements. Canonically empty elements directly represent symbols in MathML, such as the
content element plus. MathML token elements are the only MathML elements permitted to
directly contain character data. The character data may consist of ASCII characters and
MathML entities, which are escape sequences of the form &entity_name;. MathML entities
typically denote non-ASCII Unicode characters such as α, → and ∑. A
third kind of leaf node permitted in MathML is the annotation element, which is used to hold
data in a non-MathML format.

The most important presentation token elements are mi, mn and mo for representing identifiers,
numbers and operators respectively. Typically a renderer will employ slightly different
typesetting styles for each of these kinds of character data: numbers are usually in upright font,
identifiers in italics, and operators have extra space around them. In content markup, there are
only two tokens, ci and cn for identifiers and numbers respectively. In content markup, separate
elements are provided for commonly used functions and operators. The fn element is provided
for user-defined extensions to the base set.

In terms of markup, most MathML elements have a start tag and an end tag, which enclose the
markup for their contents. In the case of tokens, the content is character data, and in most other
cases, the content is the markup for child elements. A third category of elements, called
canonically empty elements, don't require any contents, and are marked up using a single tag of
the form <element_name/>. An example of this kind of markup is the content element <plus/>.

Returning to the example of (a + b)2, we can now see how the principles discussed above play
out in practice. One form of presentation markup for this example is:

 <msup>
 <mfenced>
 <mrow>
 <mi>a</mi>
 <mo>+</mo>
 <mi>b</mi>
 </mrow>
 </mfenced>
 <mn>2</mn>
 </msup>

The content markup for the same example is:

 <apply>
 <power/>
 <apply>
 <plus/>
 <ci>a</ci>
 <ci>b</ci>
 </apply>
 <cn>2</cn>
 </apply>

While a full discussion of presentation and content markup must wait until Chapters 3 and 4,
the main features of these sample encodings should now be relatively clear.

2.1.3 Presentation Markup

MathML presentation markup consists of 28 elements which accept over 50 attributes. Most of
the elements correspond to layout schemata, which contain other presentation elements. Each
layout schema corresponds to a 2-dimensional notational device, such as a super- or sub-script,
fraction or table. In addition, there are the presentation token elements mi, mn and mo
introduced above, as well as several other less commonly used token elements. The remaining
few presentation elements are empty elements, and are used mostly in connection with
alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts,
and contains elements such as msub, munder, and mmultiscripts. Another group focuses on
more general layout and includes mrow, mstyle, and mfrac. A third group deals with tables.
The maction element is a category by itself, and represents various kinds of actions on notation,
such as in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is significant.
For example, the first child of an mfrac element is the numerator and the second child is the
denominator. Since the order of child schemata is not enforced at the XML level by the
MathML DTD, the information added by ordering is only available to a MathML processor, as
opposed to a generic XML processor. When we want to emphasize that a MathML element
such as mfrac requires children in a specific order, we will refer to them as arguments, and
think of the mfrac element as a notational "constructor".

2.1.4 Content Markup

Content markup consists of about 75 elements accepting roughly a dozen attributes. The
majority of these elements are empty elements corresponding to a wide variety of operators,
relations and named functions. Examples of this sort include partialdiff, leq and tan. Others
such as matrix and set are used to encode various mathematical data types, and a third,

important category of content elements such as apply are used to make new mathematical
objects from others.

The apply element is perhaps the single most important content element. It is used to apply a
function to a collection of arguments. The positions of the child schemata is again significant,
with the first child denoting the function to be applied, and the remaining children denoting the
arguments of the function, with order preserved. Note that the apply construct always uses
prefix notation, like the programming language LISP. In particular, even binary operations like
subtraction are marked up by applying a prefix subtraction operator to two arguments. For
example, a - b would be marked up as

 <apply>
 <minus/>
 <ci>a</ci>
 <ci>b</ci>
 </apply>

A number of functions and operations require one or more quantifiers to be well-defined. For
example, in addition to an integrand, a definite integral must specify the limits of integration
and the bound variable. For this reason, there are several qualifier schemata such as bvar and
lowlimit. They are used with operators such as diff and int.

The declare construct is especially important for content markup that might be evaluated by a
computer algebra system. The declare element provides a basic assignment mechanism, where
a variable can be declared to be of a certain type, with a certain value. Typically, declarations
are ignored for visual rendering, and are used when an expression is evaluated.

2.1.5 Mixing Presentation and Content

Different kinds of markup will be most appropriate for different kinds of tasks. Legacy data is
probably best translated into pure presentation markup, since semantic information about what
the author meant can only be guessed at heuristically. By contrast, some mathematical
applications and pedagogically-oriented authoring tools will likely choose to be entirely
content-based. However, the majority of applications fall somewhere in between these
extremes. For these applications, the most appropriate markup is a mixture of both presentation
and content markup.

The rules for mixing presentation and content markup derive from the general principle that
mixed content should only be allowed in places where it makes sense. For content markup
embedded in presentation markup this basically means that any content fragments should be
semantically meaningful, and should not require additional arguments or quantifiers to be fully
specified. For presentation markup embedded in content markup, this usually means that
presentation markup must be contained in a content token element, so that it will be treated as
an indivisible notational unit used as a variable or function name.

Another option is to use a semantics element. The semantics element is used to bind MathML
expressions to various kinds of annotations. One common use for the semantics element is to
bind a content expression to a presentation expression as a semantic annotation. In this way, an
author can specify a non-standard notation be used when displaying a particular content
expression. Another use of the semantics element is to bind some other kind of semantic
specification, such as an OpenMath expression, to a MathML expression. In this way, the
semantics element can be used to extend the scope of MathML content markup.

2.2 Some MathML Examples

2.2.1 Presentation Examples

Notation:

Markup:

<mrow>
 <mrow>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 <mo>+</mo>
 <mrow>
 <mn>4</mn>
 <mo>⁢</mo>
 <mi>x</mi>
 </mrow>
 <mo>+</mo>
 <mn>4</mn>
 </mrow>
 <mo>=</mo>
 <mn>0</mn>
</mrow>

Note the use of nested mrow elements to denote terms, in this case the left-hand side of the
equation functioning as an operand of "=". Marking terms greatly facilitates things like spacing
for visual rendering, voice rendering, and line breaking.

http://www.openmath.org/

Notation:

Markup:

<mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mrow>
 <mo>-</mo>
 <mi>b</mi>
 </mrow>
 <mo>±</mo>
 <msqrt>
 <mrow>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>
 <mo>-</mo>
 <mrow>
 <mn>4</mn>
 <mo>⁢</mo>
 <mi>a</mi>
 <mo>⁢</mo>
 <mi>c</mi>
 </mrow>
 </mrow>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn>
 <mo>⁢</mo>
 <mi>a</mi>
 </mrow>
 </mfrac>
</mrow>

Notice that the plus/minus sign is given by a special named entity ±. MathML

provides a very comprehensive list of entity names for mathematical symbols. In addition to the
mathematical symbols needed for screen and print rendering, MathML provides symbols to
facilitate audio rendering. For audio rendering, it is important to be able to automatically
determine whether

 <mrow>
 <mi>z</mi>
 <mfenced>
 <mrow>
 <mi>x</mi>
 <mo>+</mo>
 <mi>y</mi>
 </mrow>
 </mfenced>
 </mrow>

should be read as "z times the quantity x plus y" or "z of x plus y". The entities
⁢ and ⁡ provide a way for authors to directly encode the
distinction for audio renderers. For instance, in the first case ⁢ should be
inserted after the line containing the z. MathML also introduces entities like ⅆ which
represents a "differential d" which renders with slightly different spacing in print, and is usually
rendered as "with respect to" in speech. Unless content tags, or some other mechanism, are used
to eliminate the ambiguity, authors should always use these entities, in order to make their
documents more accessible.

Notation:

Markup:

<mrow>
 <mi>A</mi>
 <mo>=</mo>
 <mfenced open="[" close="]">
 <mtable>
 <mtr>
 <mtd><mi>x</mi></mtd>
 <mtd><mi>y</mi></mtd>
 </mtr>
 <mtr>
 <mtd><mi>z</mi></mtd>
 <mtd><mi>w</mi></mtd>

 </mtr>
 </mtable>
 </mfenced>
</mrow>

Most elements have a number of attributes that control the details of their screen and print
rendering. For example, there are several attributes for the mfenced element that control what
delimiters should be used at the beginning and the end of the expression. The attributes for
operator elements given using <mo> are set to default values determined by a dictionary. (For
the suggested MathML operator dictionary, see appendix C.)

2.2.2 Content Examples

Notation:

Markup:

<reln>
 <eq/>
 <apply>
 <plus/>
 <apply>
 <power/>
 <ci>x</ci>
 <cn>2</cn>
 </apply>
 <apply>
 <times/>
 <cn>4</cn>
 <ci>x</ci>
 </apply>
 <cn>4</cn>
 </apply>
 <cn>0</cn>
</reln>

Note that the reln element is used much like the apply element, except that it is used with
relations instead of operators and functions.

Notation:

Markup:

<reln>
 <eq/>
 <ci>x</ci>
 <apply>
 <divide/>
 <apply>
 <fn><mo>±</mo></fn>
 <apply>
 <minus/>
 <ci>b</ci>
 </apply>
 <apply>
 <root/>
 <apply>
 <minus/>
 <apply>
 <power/>
 <ci>b</ci>
 <cn>2</cn>
 </apply>
 <apply>
 <times/>
 <cn>4</cn>
 <ci>a</ci>
 <ci>c</ci>
 </apply>
 </apply>
 <cn>2</cn>
 </apply>
 </apply>
 <apply>
 <times/>
 <cn>2</cn>
 <ci>a</ci>
 </apply>
 </apply>

</reln>

MathML content markup does not directly contain an element for the "plus or minus" operation.
Therefore, we use the fn element to declare that we want the presentation markup for this
operator to act as a content operator. This is a simple example of how presentation and content
markup can be mixed to extend content markup.

Notation:

Markup:

<reln>
 <eq/>
 <ci>A</ci>
 <matrix>
 <matrixrow>
 <ci>x</ci>
 <ci>y</ci>
 </matrixrow>
 <matrixrow>
 <ci>z</ci>
 <ci>w</ci>
 </matrixrow>
 </matrix>
</reln>

Note that by default, the rendering of the content element matrix includes enclosing
parentheses, so we need not directly encode them. This is quite different from the presentation
element mtable which may or may not refer to a matrix, and hence requires explicit encoding
of the parentheses if they are desired.

2.2.3 Mixed Markup Examples

Notation:

Markup:

<semantics>

 <mrow>
 <msubsup>
 <mo>∫</mo>
 <mn>0</mn>
 <mi>t</mi>
 </msubsup>
 <mfrac>
 <mrow>
 <mo>ⅆ</mo>
 <mi>x</mi>
 </mrow>
 <mi>x</mi>
 </mfrac>
 </mrow>

 <annotation-xml encoding="MathML-Content">
 <apply>
 <int/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><ci>t</ci></uplimit>
 <apply>
 <divide/>
 <cn>1</cn>
 <ci>x</ci>
 </apply>
 </apply>
 </annotation-xml>

</semantics>

In this example, we use the semantics element to provide a MathML content expression to
serve as a "semantic annotation" for a presentation expression. The semantics element has as its
first child the expression being annotated, and the subsequent children are the annotations.
There is no restriction on the kind of annotation that can be attached using the semantics
element. For example, one might give a TeX encoding, or computer algebra input in an
annotation. The type of annotation is specified by the encoding attribute and the annotation
and annotation-xml elements.

Another common use of the semantics element arises when one wants to use a content coding,
and provide a suggestion for its presentation. In this case, we would have the markup:

<semantics>

 <apply>
 <int/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><ci>t</ci></uplimit>
 <apply>
 <divide/>
 <cn>1</cn>
 <ci>x</ci>
 </apply>
 </apply>

 <annotation-xml encoding="MathML-Presentation">
 <mrow>
 <msubsup>
 <mo>∫</mo>
 <mn>0</mn>
 <mi>t</mi>
 </msubsup>
 <mfrac>
 <mrow>
 <mo>ⅆ</mo>
 <mi>x</mi>
 </mrow>
 <mi>x</mi>
 </mfrac>
 </mrow>
 </annotation-xml>

</semantics>

This kind of annotation is useful when something other than the default rendering of the content
encoding is desired. For example, by default, some renderers might layout the integrand
something like "1/x dx". Specifying that the integrand should by preference render as "dx / x"
instead can be accomplished with the use of a MathML Presentation annotation as shown. Be
aware, however, that renderers are not required to take into account information contained in
annotations, and what use is made of them, if any, will depend on the renderer.

2.3 MathML Syntax and Grammar
MathML is an application of XML, or Extensible Markup Language, and as such, its syntax is
governed by the rules of XML syntax, and its grammar is in part specified by a DTD, or

Document Type Definition. In other words, the details of using tags, attributes, entity references
and so on are defined in the XML language specification, and the details about MathML
element and attribute names, which elements can be nested inside each other, and so on are
specified in the MathML DTD.

However, MathML also specifies some syntax and grammar rules in addition to the general
rules it inherits as an XML application. These rules allow MathML to encode a great deal more
information than would ordinarily be possible with pure XML, without introducing many more
elements, and using a substantially more complex DTD. A grammar for content markup
expressions is given in Appendix E. Of course, one drawback to using MathML specific rules is
that they are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind
involves placing additional criteria on attribute values. For example, it is not possible in pure
XML to require that an attribute value be a positive integer. The second kind of rule specifies
more detailed restrictions on the child elements (for example on ordering) than are given in the
DTD. For example, it is not possible in XML to specify that the first child be interpreted one
way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of
MathML in particular. Throughout the remainder of the MathML specification, we will usually
take care to distinguish between usage required by XML syntax and the MathML DTD and
usage required by MathML specific rules. However, we will frequently allude to "MathML
errors" without identifying which part of the specification is being violated.

2.3.1 An XML Syntax Primer

Since MathML is an application of XML, the MathML Specification uses the terminology of
XML to describe it. Briefly, XML data is composed of Unicode characters (which include
ordinary ASCII characters), "entity references" (informally called "entities") such as " "
which usually represent "extended characters", and "elements" such as <mi
fontstyle="normal"> x </mi>. Elements enclose other XML data called their
"content" between a "start tag" (sometimes called a "begin tag") and an "end tag", much like in
HTML. There are also "empty elements" such as <plus/>, whose start tag ends with /> to
indicate that the element has no content or end tag. The start tag can contain named parameters
called "attributes", such as fontstyle="normal" in the example above. For further details
on XML, consult the XML specification.

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons
of legibility, the MathML defines them almost all in lowercase.

In formal discussions of XML markup a distinction is maintained between an element, such as
an mrow element, and the tags <mrow> and </mrow> marking it. What is between the
<mrow> start tag and the </mrow> end tag is the mrow element's content. An "empty
element" such as none is defined to have no content and so has a single tag of the form

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

<none/>. Usually, the distinction between elements and tags will not be so finely drawn in this
specification. For instance, we will often refer to the <mrow> and <none/> elements, really
meaning the elements whose tags these are, in order that references to elements are visually
distinguishable from references to attributes. However, the words "element" and "tag"
themselves will be used strictly in accordance with XML terminology.

2.3.2 Children vs. Arguments

Many MathML elements require a specific number of child elements and/or attach additional
meanings to children in certain positions. As noted above, these kinds of requirements are
MathML specific, and cannot be specified entirely in terms of XML syntax and grammar. When
the children of a given MathML element are subject to these kinds of additional conditions, we
will often refer to them as arguments instead of merely children in order to emphasize their
MathML specific usage. Note that especially in Chapter 3 the term "argument" is usually used
in this technical sense, unless otherwise noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML
specification, the number of required arguments and their order is implicitly indicated by giving
names for the arguments at various positions. This information is also given for presentation
elements in the table of argument requirements in Section 3.1.3, and for content elements in the
EBNF grammar for content markup in appendix E.

A few elements have other requirements on the number or type of arguments. These additional
requirements are described together with the individual elements.

2.3.3 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the
forms

attribute-name = "value"

or

attribute-name = 'value'

where whitespace around the '=' is optional.

Attribute names are generally shown in bold within descriptive text in this specification, but not
within examples.

The attribute value, which in general in MathML can be a string of arbitrary characters, must be
surrounded by a pair of either double quotes (") or single quotes ('). The kind of quotes not
used to surround the value may be included within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax
required by the MathML DTD. These additional rules are intended for use by MathML
applications, and it is a MathML error to violate them, though they are not enforced by XML

processing. The MathML syntax of each attribute value is specified in the table of attributes
provided with the description of each element it can be used with, using a notation described
below. In MathML applications these attribute values should be further processed as follows,
unless otherwise specified: whitespace is ignored except to separate letter and/or digit
sequences into individual words or numbers; and the same entity references (listed in Chapter 6)
which can be used within token elements to represent characters can be used to represent those
characters in attribute values (whenever those characters would be permitted by that attribute
value's syntax).

In particular, the characters ", ', and & can be included in MathML attribute values (when
permitted by the attribute value syntax) using the entity references ", ', and
&, respectively. (< can also be used for <, but this is not required in attribute values,
only in token element content.)

The MathML DTD provided in Appendix A declares most attribute value types as CDATA
strings. This permits increased interoperability with existing SGML software and allows
extension to the lists of predefined values.

Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following
conventions and notations are used in the MathML specifications for most attributes.

Notation what it matches

number
decimal integer or real number (digits with one decimal point),
optionally starting with '-'

unsigned-number decimal integer or real number, no sign
integer decimal integer, optionally starting with '-'
positive-integer decimal integer, unsigned, not 0
string arbitrary string (always the entire attribute value)

character
single non-whitespace character, or MathML entity reference;
whitespace separation is optional

#rgb RGB color value
#rrggbb RGB color value
h-unit unit of horizontal length (allowable units are listed below)
v-unit unit of vertical length (allowable units are listed below)
css-fontfamily explained in CSS subsection, below
html-color-name explained in CSS subsection, below
other italicized words explained in the text for each attribute
form + one or more instances of form
form * zero or more instances of form

f1 f2 ... fn
one instance of each form, in sequence, perhaps separated by
whitespace

f1 | f2 | ... | fn any one of the specified forms
[form] optional instance of form
(form) same as form

word in plain text
that word, literally present in attribute value (unless it is obviously part
of an explanatory phrase)

quoted symbol that symbol, literally present in attribute value (e.g. "+" or '+')

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

form + or form *
f1 f2 ... fn (sequence of forms)
f1 | f2 | ... | fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XML CDATA attribute
values; it must use entity references for certain characters, as described earlier. It can contain
XML-format entity or character references for any of the characters listed in Chapter 6. No
syntax rule in MathML includes string as only part of an attribute value, only as the entire
value.

A character consists of a single non-whitespace character or entity reference.

As a simple example, the permissible values of boolean attributes are specified as true |
false, meaning that the entire attribute value should be either "true" or "false".

Adjacent keywords and/or numbers must be separated by whitespace in the actual attribute
values, except for unit identifiers (symbolized by h-unit or v-unit syntax symbols) following
numbers. Whitespace is not otherwise required, but is permitted between any of the tokens
listed above, except (for compatibility with CSS1) immediately before unit identifiers, between
the '-' signs and digits of negative numbers, or between # and rgb or rrggbb.

Numeric attribute values for dimensions that should depend upon the current font can be given
in font-related units, or in named absolute units (described in a separate subsection below).
Horizontal dimensions are conventionally given in "ems", and vertical dimensions in "exs", by
immediately following a number by one of the unit identifiers em or ex. For example, the
horizontal spacing around an operator such as "+" is conventionally given in "ems", though
other units can be used. Using font-related units is usually preferable to using absolute units,
since it allows renderings to grow or shrink proportionately to the current font size.

For most numeric attributes, only those in a subset of the expressible values are sensible; values
outside this subset are not errors, unless otherwise specified, but rather are rounded up or down
(at the discretion of the renderer) to the closest value within the allowed subset. The set of
allowed values may depend on the renderer, and is not specified by MathML.

If a numeric value within an attribute value syntax description is declared to allow a minus sign

('-'), e.g. number or integer, it is not a syntax error to provide one, even if a negative value is not
sensible. Instead, the value should be handled by the processing application as described in the
preceding paragraph. An explicit plus sign ('+') is not allowed as part of a numeric value except
when it is specifically listed in the syntax (as a quoted '+' or "+"), and its presence can change
the meaning of the attribute value (as documented with each attribute which permits it).

The symbols h-unit, v-unit, css-fontfamily, and html-color-name are explained in the following
subsections.

Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a "unit identifier"
(often just called a "unit"). The syntax symbols h-unit and v-unit refer to a unit for horizontal or
vertical length, respectively. The possible units and the lengths they refer to are shown in the
table below; they are the same for horizontal and vertical lengths, but the syntax symbols are
distinguished in attribute syntaxes as a reminder of the direction they are each used in.

The unit identifiers and meanings are taken from CSS1. (However, the syntax of numbers
followed by unit identifiers in MathML is not identical to the syntax of length values with units
in CSS style sheets, since numbers in CSS can't end with decimal points, and are allowed to
start with '+' signs.)

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description
em ems (font-relative unit traditionally used for horizontal lengths)
ex exs (font-relative unit traditionally used for vertical lengths)
px pixels, or pixel size of a "typical computer display"
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of default value

The typesetting units em and ex are defined in the Glossary, and discussed further under
"Additional notes", below.

% is a "relative unit"; when an attribute value is given as "nnn%" (for any numeric value nnn),
the value being specified is the default value for the property being controlled multiplied by nnn
divided by 100. The default value (or the way in which it is obtained, when it is not constant) is
listed in the table of attributes for each element, and its meaning is described in the subsequent
documentation about that attribute. (The <mpadded> element has its own syntax for % and
does not allow it as a unit identifier.)

http://www.w3.org/TR/REC-CSS1

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit
symbol is enclosed in square brackets in the attribute syntax, following the number it applies to,
e.g. number [h-unit]. The meaning of specifying no unit is given in the documentation
for each attribute; in general it is that the number given is a multiplier for the default value of
the attribute. (In such cases, specifying the number nnn without a unit is equivalent to
specifying the number nnn times 100 followed by %. For example, <mo maxsize="2"> (
</mo> is equivalent to <mo maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numeric value equal to 0 need not be
followed by a unit identifier even if the syntax specified here requires one. In such cases, the
unit identifier (or lack of one) would not matter, since 0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is the
same as the one used in that attribute's default value in this specification; when a specific
default value is not given, the typical unit is usually mentioned in the syntax table or in the
documentation for that attribute. The typical unit is usually em or ex. However, any unit can be
used, unless otherwise specified for a specific attribute.

Additional notes about units

Note that some attributes (e.g. framespacing on <mtable>) can contain more than one numeric
value, each followed by its own unit.

It is conventional to use the font-relative unit ex mainly for vertical lengths, and em mainly for
horizontal lengths, but this is not required. These units are relative to the font and fontsize
which would be used for rendering the element in whose attribute value they are specified,
which means they should be interpreted after attributes such as fontfamily and fontsize are
processed, if those occur on the same element, since changing the current font or fontsize can
change the length of these units.

The definition of the length of each unit (but not the MathML syntax for length values) is as
specified in CSS1, except that if a font provides specific values for em and/or ex which differ
from the values defined by CSS1 (the font size and 'x'-height respectively), those values should
be used.

CSS-compatible attributes

Several MathML attributes, listed below, correspond closely with text rendering properties
defined by Cascading Style Sheets, Level 1 (CSS1).

The names and acceptable values of these attributes have been aligned with the CSS1
recommendation where possible. In general, the MathML syntax for each attribute is intended
to be a subset of the CSS syntax for the corresponding property. Differences in detail, where
they exist, are explained with the documentation about each attribute, in the sections of this
specification listed in the table.

http://www.w3.org/TR/REC-CSS1#length-units
http://www.w3.org/TR/REC-CSS1#length-units
http://www.w3.org/TR/REC-CSS1

The syntax of certain attributes is partially specified, in the tables of attribute syntax in this
specification, using one of the symbols css-fontfamily or html-color-name, as shown in the
following table. These symbols refer to syntaxes from other W3C Recommendations, and are
explained in the sections of this specification referred to in the table.

MathML attribute CSS property syntax symbol MathML elements refer to

fontsize font-size -
presentation tokens;
<mstyle>

Section 3.2.1

fontweight font-weight -
presentation tokens;
<mstyle>

Section 3.2.1

fontstyle font-style -
presentation tokens;
<mstyle>

Section 3.2.1

fontfamily font-family css-fontfamily
presentation tokens;
<mstyle>

Section 3.2.1

color color html-color-name
presentation tokens;
<mstyle>

Section 3.3.4

background background html-color-name <mstyle> Section 3.3.4

See also Section 2.3.4 below for a discussion of the class, style, and id attributes for use with
style sheets.

Order of processing attributes vs. style sheets

CSS or analogous style sheets specify changes to rendering properties of selected MathML
elements (selecting the elements in various ways). Either the properties listed above, or any
other MathML rendering attributes or properties supported by a style sheet mechanism, can be
affected, in principle for any element. Since rendering properties can also be changed by
attributes on an element, or automatically (which can happen to fontsize, as explained in the
discussion on scriptlevel in Section 3.3.4), it is necessary to specify the relative order in which
changes from various sources occur. In the case of "absolute" changes, i.e. setting a new
property value independent of the old value (as opposed to "relative" changes, such as
increments or multiplications by a factor), the absolute change performed last will be the only
absolute change which is effective, so the sources of changes which should have the highest
priority must be processed last.

In the case of CSS1, the order of processing of changes from various sources which affect one
MathML element's rendering properties should be as follows:

(first changes; lowest priority)

automatic changes to properties or attributes based on the type of the parent element, and
this element's position in the parent, as for the changes to fontsize in relation to
scriptlevel mentioned above; such changes will usually be implemented by the parent
element itself before it passes a set of rendering properties to this element

●

style sheet from reader: styles which are not declared "important"●

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/TR/REC-CSS1#important

explicit attribute settings on this MathML element●

style sheet from author: styles which are not declared "important"●

style sheet from reader: styles which are declared "important"●

style sheet from author: styles which are declared "important"●

(last changes; highest priority)

Note that the order of the various CSS-style sheet-derived changes is specified by CSS itself.
The following rationale is related only to the issue of where in this preexisting order the
changes caused by explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes such as
ALIGN, which the CSS1 section on cascading order specifies should be processed with the
same priority. Furthermore, this choice of priority permits readers, by declaring certain CSS
styles as "important", to decide which of their style preferences should override explicit
attribute settings in MathML. Since MathML expressions, whether composed of "presentation"
or "content" elements, are primarily intended to convey meaning, with their "graphic design" (if
any) intended mainly to aid in that purpose but not to be essential in it, it is likely that readers
will often want their own style preferences to have priority; the main exception will be when a
rendering attribute is intended to alter the meaning conveyed by an expression, which is
generally discouraged in the presentation attributes of MathML.

Default values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions
of specific elements in the text. Default values shown in plain text, in the tables of attributes for
an element, are literal (unless they are obviously explanatory phrases), but when italicized are
descriptions of how default values can be computed.

Default values described as inherited are taken from the rendering environment, as described
under <mstyle>, or in some cases (described individually) from the values of other attributes of
surrounding elements, or from certain parts of those values. The value used will always be one
which could have been specified explicitly, had it been known; it will never depend on the
content or attributes of the same element, only on its environment. (What it means when used
may, however, depend on those.)

Default values described as automatic should be computed by a MathML renderer in a way
which will produce a high-quality rendering; how to do this is not usually specified by
MathML. The value computed will always be one which could have been specified explicitly,
had it been known, but it will usually depend on the element content and/or the rendering
environment.

Other italicized descriptions of default values which appear in the tables of attributes are
explained for each attribute individually.

http://www.w3.org/TR/REC-CSS1#cascading-order
http://www.w3.org/TR/REC-CSS1#cascading-order
http://www.w3.org/TR/REC-CSS1#important
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#warn-meaningful-space
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4

The single or double quotes which are required around attribute values in an XML start tag are
not shown in the tables of attribute value syntax for each element, but are shown around
example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute
which will simulate the effect of not specifying the attribute at all, for attributes which are
inherited or automatic. Giving the words "inherited" or "automatic" explicitly will not work,
and is not generally allowed. Furthermore, even for presentation attributes for which a specific
default value is documented here, the <mstyle> element (Section 3.3.4) can be used to change
this for the elements it contains. Therefore, the MathML DTD declares most presentation
attribute default values as #IMPLIED, which prevents XML preprocessors from adding them
with any specific default value.

Attribute values in the MathML DTD

In an XML DTD, allowed attribute values can be declared as general strings, or they can be
constrained in various ways, either by enumerating the possible values, or by declaring them to
be certain special data types. The choice of an XML attribute type affects the extent to which
validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, including
enumerations of legitimate values in some cases. In general, however, the MathML DTD is
relatively permissive, frequently declaring attribute values as strings; this is done to provide for
interoperability with SGML parsers while allowing multiple attributes on one MathML element
to accept the same values (such as "true" and "false"), and also to allow extension to the lists of
predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only
certain values are legitimate in MathML, as described above and in the rest of this specification.
For example, many attributes expect numerical values. In the sections which follow, the
allowed attribute values are described for each element. To determine when these constraints
are actually enforced in the MathML DTD, consult Appendix A. However, lack of enforcement
of a requirement in the DTD does not imply that the requirement is not part of the MathML
language itself, or that it will not be enforced by a particular MathML renderer. (See Section
7.2.2 for a description of how MathML renderers should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully
compatible with the text of the specification, the text should be taken as definitive if there is a
contradiction. (Any contradictions which may exist between various chapters of the text should
be resolved by favoring Chapter 6 first, then Chapters 3 and 4, then Section 2.3, and then other
parts of the text.)

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4

2.3.4 Attributes Shared by all MathML Elements

In order to facilitate compatibility with Cascading Style Sheets, Level 1 (CSS1), all MathML
elements accept class, style, and id attributes in addition to the attributes described specifically
for each element. MathML renderers not supporting CSS may ignore these attributes. (MathML
specifies these attribute value syntaxes as general strings, even if style sheet mechanisms have
more restrictive syntaxes for them. That is, any value for them is valid in MathML.)

Renderers supporting CSS (or analogous style sheet mechanisms) may use these attributes to
help determine which MathML elements should be subject to which style sheet-induced
changes to various rendering properties. The properties that can be affected, and how these
changes affect them, are discussed in the subsection CSS-compatible attributes in Section 2.3.3
above.

Every MathML element also accepts the attribute other (Section 7.2.3) for passing
non-standard attributes without violating the MathML DTD. MathML renderers are only
required to process this attribute if they respond to any attributes which are not standard in
MathML.

See also Section 3.2.1 for a list of MathML attributes which can be used on most presentation
token elements.

2.3.5 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are
not allowed there. Whitespace occurring within the content of token elements is "trimmed"
from the ends (i.e. all whitespace at the beginning and end of the content is removed), and
"collapsed" internally (i.e. each sequence of 1 or more whitespace characters is replaced with
one blank character).

In MathML, as in XML, "whitespace" means blanks, tabs, newlines, or carriage returns, i.e.
characters with hexadecimal Unicode codes U+0020, U+0009, U+000a, or U+000d,
respectively.

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
 Theorem
 1:
</mtext>

is equivalent to <mtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or
in sequences other than a single blank, without having them ignored, must use or other
"whitespace" non-marking entities as described in section 6.2.1. For example, compare

http://www.w3.org/TR/REC-CSS1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1

<mtext>
 Theorem
 1:
</mtext>

with

<mtext>
 Theorem
 1:
</mtext>

When the first example is rendered, there is no whitespace before "Theorem", one blank
between "Theorem" and "1:", and no whitespace after "1:". In the second example, a single
blank is rendered before "Theorem", a new line is placed after "Theorem", two blanks are
rendered before "1:", and there is no whitespace after the "1:".

Note that the "xml:space" attribute does not apply in this situation since XML processors pass
whitespace in tokens to a MathML processor; it is the MathML processing rules which specify
that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci,
cn and annotation, an mspace element should be used, as opposed to an mtext element
containing only "whitespace" entities.

Next: Presentation Markup -- Introduction
Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

3. Presentation Markup
3.1 Introduction

3.1.1 What Presentation Elements Represent❍

3.1.2 Terminology Used In This Chapter❍

3.1.3 Required Arguments❍

3.1.4 Elements with Special Behaviors❍

3.1.5 Summary of Presentation Elements❍

●

3.2 Token Elements

3.2.1 Attributes common to token elements❍

3.2.2 <mi> -- identifier❍

3.2.3 <mn> -- number❍

3.2.4 <mo> -- operator, fence, or separator❍

3.2.5 <mtext> -- text❍

3.2.6 <mspace/> -- space❍

3.2.7 <ms> -- string literal❍

●

3.3 General Layout Schemata

3.3.1 <mrow> -- horizontally group any number of subexpressions❍

3.3.2 <mfrac> -- form a fraction from two subexpressions❍

3.3.3 <msqrt> and <mroot> -- form a radical❍

3.3.4 <mstyle> -- style change❍

3.3.5 <merror> -- enclose a syntax error message from a preprocessor❍

3.3.6 <mpadded> -- adjust space around content❍

3.3.7 <mphantom> -- make content invisible but preserve its size❍

3.3.8 <mfenced> -- surround content with a pair of fences❍

●

3.4 Script and Limit Schemata

3.4.1 <msub> -- attach a subscript to a base❍

3.4.2 <msup> -- attach a superscript to a base❍

3.4.3 <msubsup> -- attach a subscript-superscript pair to a base❍

●

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.3

3.4.4 <munder> -- attach an underscript to a base❍

3.4.5 <mover> -- attach an overscript to a base❍

3.4.6 <munderover> -- attach an underscript-overscript pair to a base❍

3.4.7 <mmultiscripts> -- attach prescripts and tensor indices to a base❍

3.5 Tables and Matrices

3.5.1 <mtable> -- table or matrix❍

3.5.2 <mtr> -- row in a table or matrix❍

3.5.3 <mtd> -- one entry in a table or matrix❍

3.5.4 <maligngroup/> and <malignmark/> -- alignment markers❍

●

3.6 Enlivening Expressions

3.6.1 <maction> -- bind actions to a subexpression❍

●

3.1 Introduction
This chapter specifies the "presentation" elements of MathML, which can be used to describe
the layout structure of mathematical notation. It is strongly recommended that one read Section
2.3 on MathML syntax and grammar before reading Chapter 3. Section 2.3 contains important
information on MathML notations and conventions which are necessary for understanding some
of the material in this chapter.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the "constructors" of traditional math notation -- that is, to
the basic kinds of symbols and expression-building structures out of which any particular piece
of traditional math notation is built. They are designed to be medium-independent, in the sense
that there are sensible ways to render them in audio, as well as in traditional visual media for
math. Because of the importance of traditional visual notation, the descriptions of which
notational constructs the elements represent, and how they are typically rendered, is often given
here in visual terms. However, the elements have been designed to contain enough information
for good spoken renderings as well, provided the conventions described herein for their proper
use are followed. Some attributes of these elements may make sense only for visual media, but
most attributes can be treated in an analogous way in audio as well (for example, by a
correspondence between time duration and horizontal extent).

One major anticipated use of MathML is to describe mathematical expressions within HTML
documents, using multiple MathML expressions embedded in some manner in an HTML
document. Note that HTML in general describes logical structures such as headings,
paragraphs, etc. but only suggests (i.e. does not require) specific ways of rendering various

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_6.html#sec3.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_6.html#sec3.6.1

logical parts of the document, in order to allow for medium-dependent rendering and for
individual preferences of style; MathML presentation elements are fully compatible with this
philosophy. This specification describes suggested visual rendering rules in some detail, but a
particular MathML renderer is free to use its own rules as long as its renderings are intelligible.

The presentation elements are meant to express the syntactic structure of math notation in much
the same way as titles, sections, and paragraphs capture the higher level syntactic structure of a
textual document. Because of this, for example, a single row of identifiers and operators, such
as "x + a / b", will often be represented not just by one <mrow> element (which renders as a
horizontal row of its arguments), but by multiple nested <mrow> elements corresponding to the
nested subexpressions of which one mathematical expression is composed -- in this case,

<mrow>
 <mi> x </mi>
 <mo> + </mo>
 <mrow>
 <mi> a </mi>
 <mo> / </mo>
 <mi> b </mi>
 </mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression
constituting their base. This structure allows for better-quality rendering of math, especially
when details of the rendering environment such as display widths are not known to the
document author; it also greatly eases automatic interpretation of the mathematical structures
being represented.

Certain extended characters, represented by entity references, are used to name operators or
identifiers which in traditional notation render the same as other symbols, such as
"ⅆ", "ⅇ", or "ⅈ", or operators which usually render
invisibly, such as "⁢", "⁡", or "⁣". These are
distinct notational symbols or objects, as evidenced by their distinct spoken renderings and in
some cases by their effects on linebreaking and spacing in visual rendering, and as such should
be represented by the appropriate specific entity references. For example, the expression
represented visually as "f(x)" would usually be spoken in English as "f of x" rather than just "f
x"; this is expressible in MathML by the use of the "⁡" operator after the "f",
which (in this case) can be aurally rendered as "of".

The complete list of MathML entities is described in Chapter 6.

3.1.2 Terminology Used In This Chapter

The MathML specification uses a number of technical terms to describe MathML-specific rules
and conventions. The most notable example is the attribute value notations and conventions
described in Section 2.3.3. (See also the brief description of XML terminology in Section
2.3.1.)

The remainder of this section introduces MathML-specific terminology and conventions used in
this chapter.

Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual
symbols, names, numbers, labels, etc. and can have only characters and entity references (or the
vertical alignment element <malignmark/>) as content. Layout schemata build expressions out
of parts, and can have only elements as content (except for whitespace, which they ignore).
There are also a few empty elements used only in conjunction with certain layout schemata.

All individual "symbols" in a mathematical expression should be represented by MathML token
elements. The primary MathML token element types are identifiers (e.g. variables or function
names), numbers, and operators (including fences, such as parentheses, and separators, such as
commas). There are also token elements for representing text or whitespace which has more
aesthetic than mathematical significance, and for representing "string literals" for compatibility
with computer algebra systems. Note that although a token element represents a single
meaningful "symbol" (name, number, label, mathematical symbol, etc.), such symbols may be
comprised of more than one character. For example sin and 24 are represented by the single
tokens <mi>sin</mi> and <mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller
expressions, and ultimately out of single symbols, with the parts grouped and positioned using
one of a small set of notational structures, which can be thought of as "expression constructors".
In MathML, expressions are constructed in the same way, with the layout schemata playing the
role of the expression constructors. The layout schemata specify the way in which
subexpressions are built into larger expressions. The terminology derives from the fact that each
layout schema corresponds to a different way of "laying out" its subexpressions to form a larger
expression in traditional mathematical typesetting.

Terminology for other classes of elements and their relationships

The terminology used in this Chapter for special classes of elements, and for relationships
between elements, is as follows: The presentation elements are the MathML elements defined
in the chapter. These elements are listed in Section 3.1.5. The content elements are the MathML
elements defined in chapter 4. The content elements are listed in Section 4.4.

A MathML expression is a single instance of any of the presentation elements with the

http://www.w3.org/1999/07/REC-MathML-19990707/chapter2#sec2.3.1
http://www.w3.org/1999/07/REC-MathML-19990707/chapter2#sec2.3.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4

exception of the empty elements <none/> or <mprescripts/>, or is a single instance of any of
the content elements which are allowed as content of presentation elements (listed in Section
5.2.2). A subexpression of an expression E is any MathML expression which is part of the
content of E, whether directly or indirectly, i.e. whether it is a "child" of E or not.

A child of a layout schema is also called an argument of that element. Token elements have no
arguments, by definition, even though they can contain the <malignmark/> element; this
means that a <malignmark/> element in a token is not an argument, whereas in a layout
schema it is one.

As a consequence of the above definitions, the content of a layout schema consists exactly of a
sequence of zero or more nonoverlapping elements which are its arguments (possibly with
intervening whitespace, which is ignored in MathML). Note that an argument is almost always
a subexpression; the only exceptions are the empty elements <none/> and <mprescripts/>
which are allowed only as special arguments of the <mmultiscripts> element, but are not
subexpressions because they are not MathML expressions as defined above.

Descriptions of presentation elements

Each MathML presentation element is described below in detail. The description starts with the
information needed by authors of MathML (or of programs which generate MathML). The
intended use of each element is described, along with the argument syntax it accepts. (There is
also a table of argument count requirements and argument roles in Section 3.1.3.) The valid
attributes, along with their permissible and default values, are listed, and the effect of each
attribute is discussed.

For certain elements, further information of interest mainly to those implementing MathML
renderers is given in a subsection. This includes many details of one suggested set of rendering
rules which can be used to render MathML expressions in a manner reminiscent of traditional
visual notation.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or
3). Recall that MathML uses the term argument to describe a child element with additional
MathML-specific requirements, usually related to which position it occupies in its parent.

In the detailed descriptions of element syntax given below, the number of required arguments is
implicitly indicated by giving names for the arguments at various positions. The descriptions,
interpreted according to the convention just stated, fully specify the allowed numbers of
arguments for every element defined in this Chapter. A few elements have additional
requirements on the number or type of arguments, which are described with the individual
element. For example, some elements accept sequences of 0 or more arguments -- that is, they
are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements
they appear in. See Section 3.2.6 for a discussion of the proper use of such spacelike elements.

Inferred <mrow>s

The elements listed in the following table as requiring exactly 1 argument (<msqrt>, <mstyle>,
<merror>, <mpadded>, <mphantom>, and <mtd>) actually accept any number of arguments,
but if the number of arguments is 0, or is more than 1, they treat their contents as a single
"inferred <mrow>" formed from all their arguments.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
 <mrow>
 </mrow>
</mtd>

and

<msqrt>
 <mo> - </mo>
 <mn> 1 </mn>
</msqrt>

is treated as if it were

<msqrt>
 <mrow>
 <mo> - </mo>
 <mn> 1 </mn>
 </mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) many <mrow>
elements which would otherwise be necessary.

In the descriptions in this Chapter of the above-listed elements' rendering behaviors, their
content can be assumed to consist of exactly one expression, which may be an <mrow>
element formed from their arguments in this manner. However, their argument counts are
shown in the following table as exactly 1, since they are most naturally understood as acting on

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#define-spacelike

a single expression.

Table of argument requirements

For convenience, here is a table of each element's argument count requirements, and the roles of
individual arguments when these are distinguished. Recall that a required argument count of 1
may indicate an inferred <mrow>.

Element Required argument count (and argument roles, when these differ by
position)

<mrow> 0 or more

<mfrac> 2 (numerator denominator)

<msqrt> 1

<mroot> 2 (base index)

<mstyle> 1

<merror> 1

<mpadded> 1

<mphantom> 1

<mfenced> 0 or more

<msub> 2 (base subscript)

<msup> 2 (base superscript)

<msubsup> 3 (base subscript superscript)

<munder> 2 (base underscript)

<mover> 2 (base overscript)

<munderover> 3 (base underscript overscript)

<mmultiscripts>

1 or more
(base (subscript superscript) * [<mprescripts/> (presubscript
presuperscript) *])

<mtable> 0 or more rows (<mtr>s, inferred if necessary)

<mtr> 0 or more table elements (<mtd>s, inferred if necessary)

<mtd> 1

<maction> 1 or more (argument roles depend on actiontype attribute)

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such
special behaviors are discussed in the detailed element descriptions below. However, for
convenience, some of the most important classes of special behavior are listed here.

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_6.html#sec3.6.1

Certain elements are considered spacelike; these are defined in Section 3.2.6. This definition
affects some of the suggested rendering rules for <mo> elements (Section 3.2.4).

Certain elements (e.g., <msup>) are able to embellish operators which are their first argument.
These elements are listed in Section 3.2.4, which precisely defines an "embellished operator"
and explains how this affects the suggested rendering rules for stretchy operators.

Certain elements treat their arguments as the arguments of an "inferred <mrow>" if they are not
given exactly one argument, as explained in Section 3.1.3.

The <mtable> element can infer <mtr>s around its arguments, and the <mtr> element can
infer <mtd>s, as explained in the sections about those elements.

3.1.5 Summary of Presentation Elements

Token Elements:

<mi> identifier

<mn> number

<mo> operator, fence, or separator

<mtext> text

<mspace/> space

<ms> string literal

General Layout Schemata:

<mrow> group any number of subexpressions horizontally

<mfrac> form a fraction from two subexpressions

<msqrt> form a square root sign (radical without an index)

<mroot> form a radical with specified index

<mstyle> style change

<merror> enclose a syntax error message from a preprocessor

<mpadded> adjust space around content

<mphantom> make content invisible but preserve its size

<mfenced> surround content with a pair of fences

Script and Limit Schemata:

<msub> attach a subscript to a base

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#define-spacelike
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#detailed-rendering-rules-for-mo
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#define-embellished-operator
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.1

<msup> attach a superscript to a base

<msubsup> attach a subscript-superscript pair to a base

<munder> attach an underscript to a base

<mover> attach an overscript to a base

<munderover> attach an underscript-overscript pair to a base

<mmultiscripts> attach prescripts and tensor indices to a base

Tables and Matrices:

<mtable> table or matrix

<mtr> row in a table or matrix

<mtd> one entry in a table or matrix

<maligngroup/> and <malignmark/> alignment markers

Enlivening Expressions:

<maction> bind actions to a subexpression

Next: Presentation Markup -- Token Elements
Up: Table of Contents

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_4.html#sec3.4.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_5.html#sec3.5.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_6.html#sec3.6.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2

Up: Table of Contents REC-MathML-19980407; revised 19990707

4. Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup❍

4.1.2 The Scope of Content Markup❍

4.1.3 Basic Concepts of Content Markup❍

●

4.2 Content Element Usage Guide

4.2.1 Overview of Syntax and Usage❍

4.2.2 Containers❍

4.2.3 Functions, Operators and Qualifiers❍

4.2.4 Relations❍

4.2.5 Conditions❍

4.2.6 Syntax and Semantics❍

4.2.7 Semantic Mappings❍

4.2.8 MathML element types❍

●

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values❍

4.3.2 Attributes Modifying Content Markup Semantics❍

4.3.3 Attributes Modifying Content Markup Rendering❍

●

4.4 The Content Markup Elements

4.4.1 Token Elements❍

4.4.2 Basic Content Elements❍

4.4.3 Arithmetic, Algebra and Logic❍

4.4.4 Relations❍

4.4.5 Calculus❍

4.4.6 Theory of Sets❍

4.4.7 Sequences and Series❍

4.4.8 Trigonometry❍

4.4.9 Statistics❍

4.4.10 Linear Algebra❍

4.4.11 Semantic Mapping Elements❍

●

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.9
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.11

4.1 Introduction

4.1.1 The Intent of Content Markup

As has been noted in the introductory section of this report, mathematics can be distinguished by its use of a
(relatively) formal language, mathematical notation. However, mathematics and its presentation should not
be viewed as one and the same thing. Mathematical sums or products exist and are meaningful to many
applications completely without regard to how they are rendered aurally or visually. The intent of the
content markup in Mathematical Markup Language is to provide an explicit encoding of the underlying
mathematical structure of an expression, rather than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use
of presentation tags cannot properly capture this semantic information. This is because without additional
information it is impossible to decide if a particular presentation was chosen deliberately to encode the
mathematical structure or simply to achieve a particular visual or aural effect. Furthermore, an author using
the same encoding to deal with both the presentation and mathematical structure might find a particular
presentation encoding unavailable simply because convention had reserved it for a different semantic
meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and
vice versa. For example the mathematical construct "H multiplied by e" is often encoded using an explicit
operator as in H * e. In different presentational contexts, the multiplication operator might be invisible
"H e" , or rendered as the spoken word "times". Generally, many different presentations are possible
depending on the context and style preferences of the author or reader. Thus, given "H e" out of context it
may be impossible to decide if this is the name of a chemical or a mathematical product of two variables H
and e.

Mathematical presentation also changes with culture and time: some expressions in combinatorial
mathematics today have one meaning to an English mathematician, and quite another to a French
mathematician. Notations may lose currency, for example the use of musical sharp and flat symbols to
denote maxima and minima. [Chaudry 1954] A notation in use in 1644 for the multiplication mentioned

above was .[Cajori, 1928/1929]

When we encode the underlying mathematical structure explicitly, without regard to how it is presented
aurally or visually, we are able to interchange information more precisely with those systems which are able
to manipulate the mathematics. In the trivial example above, such a system could substitute values for the
variables H and e and evaluate the result. Further interesting application areas include interactive textbooks
and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job
to systematically codify most of mathematics - a task which can never be complete. Instead, MathML
makes explicit a relatively small number of commonplace mathematical constructs, chosen carefully to be
sufficient in a large number of applications. In addition, it provides a mechanism for associating semantics
with new notational constructs. In this way, mathematical concepts that are not in the base collection of tags
can still be encoded (see section 4.2.6).

The base set of content elements are chosen to be adequate for simple coding of most of the formulas used

from kindergarten to the end of high school in the United States, and probably beyond through the first two
years of college, that is up to A-Level or Baccalaureate level in Europe. Subject areas covered to some
extent in MathML are:

Arithmetic, Algebra, Logic and Relations●

Calculus●

Set Theory●

Sequences and Series●

Trigonometry●

Statistics●

Linear Algebra●

It is not claimed, or even suggested, that the proposed element set is complete for these areas, but the
provision for author extensibility greatly alleviates any problem which omissions from this finite list might
cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

The expression tree structure of a mathematical expression should be directly encoded by the
MathML content elements.

●

The encoding of an expression tree should be explicit, and not dependent on the special parsing of
CDATA or on additional processing such as operator precedence parsing.

●

The basic set of mathematical content constructs that are provided should have default mathematical
semantics.

●

There should be a mechanism for associating specific mathematical semantics with the constructs.●

The primary goal of the content encoding is to establish explicit connections between mathematical
structures and their mathematical meanings. The content elements correspond directly to parts of the
underlying mathematical expression tree. Each structure has an associated default semantics and there is a
mechanism for associating new mathematical definitions with new constructs.

Significant advantages to the introduction of content specific tags include:

Presentation element usage is less constrained. When mathematical semantics are inferred from
presentation markup, processing agents must either be quite sophisticated, or they run the risk of
inferring incomplete or incorrect semantics when irregular constructions are used to achieve a
particular aural or visual effect.

●

It is immediately clear which kind of information is being encoded simply by the kind tags which are
used.

●

Combinations of semantic and presentation tags can be used to convey both the appearance and its
mathematical meaning much more effectively than simply trying to infer one from the other.

●

Expressions described in terms of content elements must still be rendered. For common expressions, default
visual presentations are usually clear. "Take care of the sense and the sounds will take care of themselves"
wrote Lewis Carroll [Carroll 1871]. Default presentations are included in the detailed description of each
element occurring in section 4.4.

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4

content expression tree is constructed from a collection of more primitive objects, referred to herein as
containers and operators. MathML possesses a rich set of predefined container and operator objects, as well
as constructs for combining containers and operators in mathematically meaningful ways. The syntax and
usage of these content elements and constructions is described in the next section.

4.2 Content Element Usage Guide
Since the intent of MathML content markup is to encode mathematical expressions in such a way that the
mathematical structure of the expression is clear, the syntax and usage of content markup must be consistent
enough to facilitate automated semantic interpretation. There must be no doubt when, for example, an
actual sum, product or function application is intended and if specific numbers are present there must be
enough information present to reconstruct the correct number for purposes of computation. Of course, it is
still up to a MathML-compliant processor to decide what is to be done with such a content based
expression, and computation is only one of many options. A renderer or a structured editor might simply
use the data and its own built-in knowledge of mathematical structure to render the object. Alternatively, it
might manipulate the object to build a new mathematical object. A more computationally oriented system
might attempt carry out the indicated operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements involve more
than just satisfying the syntactic structure specified by an XML DTD. Failure to conform to the usage as
described below will result in a MathML error, even though the expression may be syntactically valid
according to the DTD.

In addition to the usage information contained in this section, section 4.4 gives a complete listing of each
content element, providing reference information about about their attributes, syntax, examples and
suggested default semantics and renderings. An informal EBNF grammar describing the syntax for the
content markup is given in appendix E.

4.2.1 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal
nodes in the tree represent basic mathematical objects, such as numbers, variables, arithmetic operations
and so on. The internal nodes in the tree generally represent some kind of function application or other
mathematical construction that builds up a compound object. Function application provides the most
important example; an internal node might represent the application of a function to several arguments,
which are themselves represented by the terminal nodes underneath the internal node.

The MathML content elements can be grouped into the following categories based on their usage:

Containers●

Operators●

Qualifiers●

Relations●

Conditions●

Semantic●

These are the building blocks out of which MathML content expressions are constructed. Each category is

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4

discussed in a separate section below. In the remainder of this section, we will briefly introduce some of the
most common elements of each type, and consider the general constructions for combining them in
mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowest level, "leaf nodes," are
encapsulated in non-empty elements that define their type. Numbers and symbols are marked by the token
elements cn and ci. More elaborate constructs such as sets, vectors and matrices are also marked using
elements to denote their types, but rather than containing data directly, these container elements are
constructed out of other elements. Elements are used in order to clearly identify the underlying objects. In
this way, standard XML parsing can be used and attributes can be used to specify global properties of the
objects.

The containers such as <cn>12345</cn> and <ci>x</ci>, represent mathematical numbers and variables.
Below, we will look at operator elements such as <plus/> or <sin/>, which provide access to the basic
mathematical operations and functions applicable to those objects. Additional containers such as
<set>...</set> for sets, and <matrix>...</matrix> for matrices are provided for representing a variety of
common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>
The attributes and CDATA content together provide the data necessary for an application to parse the
number. For example, a default base of 10 is assumed, but to communicate that the underlying data was
actually written in base 8, simply set the "base" attribute to 8 as in

<cn base="8">12345</cn>
while complex number 3 + 4 i can be indicated as

<cn type="complex">3<sep/>4</cn>
Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symbol v is encoded as

<ci>v</ci>
By default ci elements represent elements from a commutative field (see Appendix F.) If a vector is
intended then this fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated with the vector element, namely an arbitrary element of a finite
dimensional vector space.

By using the ci element we have made clear that we are referring to a mathematical symbol but this does
not say much about how it is rendered. By default a symbol is rendered as if the ci element were actually
the presentation element mi (see section 3.2.2). The actual rendering of a mathematical symbol can be made
as elaborate as necessary simply by using the more elaborate presentational constructs (as described in
chapter 3) in the body of the ci element.

The default rendering of a simple cn-tagged object is the same as for the presentation element mn with
some provision for overriding the presentation of the CDATA by providing explicit mn tags. This is
described in detail in section 4.4 .

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above
for numbers and symbols. Each such object has global properties as a mathematical object that impact how
they are to be parsed. This may affect everything from the interpretation of operations that are applied to
them through to how to render the symbols representing them. These mathematical properties are captured
by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to
sub-objects. For example, the sum a + b can be thought of as an application of the addition operator to two
arguments a and b. In MathML, elements are used for operators for much the same reason that elements are
used to contain objects. They are recognized at the XML parse level and their attributes can be used to
record or modify the intended semantics. For example, with the MathML plus element, setting the type
attribute to vector as in <plus type="vector"/> can communicate that the intended operation is vector
based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction
between the function itself and the expression resulting from applying that function to zero or more
arguments which must be captured. This is addressed by making the functions self-contained objects with
their own properties and providing an explicit apply construct corresponding to function application. We
will consider the apply construct in the next section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects.
However, an important class of expressions involve unknown or user-defined functions. For these
situations, MathML provide a general fn element, which is discussed below.

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markup is the
apply construct. An apply element typically applies an operator to its arguments. It corresponds to a
complete mathematical expression. Roughly speaking, this means a piece of mathematics which could be
surrounded by parentheses or "logical brackets" without changing its meaning.

For example, (x + y) might be encoded as

<apply><plus/> <ci> x </ci> <ci> y </ci> </apply>

The opening and closing tags of apply specify exactly the scope of any operator or function. The most
typical way of using apply is simple and recursive. Symbolically, the content model can the described as:

<apply> op a b </apply>

where the operands a and b are containers or other content-based elements themselves, and op is an
operator or function. Note that since apply is a container, this allows apply constructs to be nested to
arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] </apply>

For example, (x + y + z) can be encoded as

<apply><plus/>
 <ci> a </ci>
 <ci> b </ci>

 <ci> c </ci>
</apply>

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For
example, ax + b would be encoded as

<apply><plus/>
 <apply><times/>
 <ci> a </ci>
 <ci> x </ci>
 </apply>
 <ci> b </ci>
</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse the
expression correctly. The apply tags provide the proper grouping for the re-use of the expressions within
other constructs. Any expression enclosed by an apply element is viewed as a single coherent object.

An expression such as (F + G)(x) might be a product, as in

<apply><times/>
 <apply><plus/>
 <ci> F </ci>
 <ci> G </ci>
 </apply>
 <ci> x </ci>
</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by constructing
the sum

<apply><plus/> <ci> F </ci> <ci> G </ci> </apply>

and applying it to the argument<ci> x </ci> as in

<apply>
 <apply><plus/>
 <ci> F </ci>
 <ci> G </ci>
 </apply>
 <ci> x </ci>
</apply>

Both the function and the arguments may be simple identifiers or more complicated expressions.

Another construction closely related to the use of the apply with operators and arguments involves the reln
element. The reln element is used to denote that a mathematical relation holds between its arguments, as
opposed to applying an operator. Thus, the MathML markup for the expression x < y is given by:

<reln>
 <lt/>
 <ci> x </ci>

 <ci> y </ci>
</reln>

4.2.1.4 Explicitly defined functions and the fn construct

The most common operations and functions such as <plus/> and <sin/> have been predefined explicitly as
empty elements (see section section 4.4). They have type and definition URL attributes, and by changing
these attributes, the author can record that a different sort of algebraic operation is intended. This allows
essentially the same notation to be re-used for a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of
the user to define new functions.

It is always possible to apply arbitrary expressions as if they were functions and to infer their functional
properties directly from that usage as was done in the previous section. However such an approach would
preclude being able to encode the fact that the construct was a function or to record its mathematical
properties except by actually using it. The fn element is used as a container to construct an actual function
object in much the same way that ci is used to construct a symbol.

To record the fact that F+G is being used semantically as if it were a function, encode it as:

<fn>
 <apply><plus/>
 <ci>F</ci>
 <ci>G</ci>
 </apply>
</fn>

Its intended semantic role (as a function) has now been indicated. Furthermore, the definitionURL attribute
of the fn can now be used to point to a written definition of such a function as in

<fn definitionURL="http://www.defs.org/function_spaces.html#my_def">
 <apply><plus/>
 <ci>F</ci>
 <ci>G</ci>
 </apply>
</fn>

This would be important information to any application wanting to evaluate or simplify such an expression
according to systematic rules provided by an algebra of functions.

To indicate that a matrix is being used as an operator encode it as

<fn>
 <matrix>
 <matrixrow>
 <ci> a </ci>
 <ci> b </ci>
 </matrixrow>
 <matrixrow>
 <ci> c </ci>

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4

 <ci> d </ci>
 </matrixrow>
 </matrix>
</fn>

A common usage of fn is to describe a completely new function. The definitionURL attribute can then be
used to refer explicitly to the mathematical definition. An example of such a construct is:

<fn definitionURL="mydefs.html#NewG"> <ci>NewG</ci> </fn>
The definitionURL attribute specifies a URL which provides a written definition for the NewG. Suggested
default definitions for pre-defined MathML content elements appear in Appendix F in a format based on
OpenMath, although there is no requirement that a particular format be used. The role of the
definitionURL attribute is very similar to the role of definitions included at the beginning many
mathematical papers, and which often just refer to a definition used by a particular book.

4.2.1.5 The inverse construct

Given functions, it is natural to have functional inverses. This is handled by the inverse element.

Functional inverses can be problematic from a mathematical point of view in that it implicitly involves the
definition of an inverse for an arbitrary function F. Even at the K through 12 level the concept of an inverse
F-1 of many common functions F is not used in a uniform way. For example, the definitions used for the
inverse trigonometric functions may differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view:

If F is a function from a domain D to D', then the inverse G of F is a function over D' such that
G(F(x)) = x for x in D.

This definition does not assert that such an inverse exists for all or indeed any x in D, or that it is
single-valued anywhere. Also, depending on the functions involved, additional properties such as F(G(y)) =
y for y in D' may hold.

The inverse element is applied to a function whenever an inverse is required. For example, application of
the inverse sine function to x (i.e., sin (-1) (x) is encoded as:

<apply>
 <apply><inverse/>
 <sin/>
 </apply>
 <ci> x </ci>
</apply>

While arcsin is one of the predefined MathML functions, and explicit reference to sin (-1) (x) might occur in
a document discussing possible definitions of arcsin.

4.2.1.6 The declare construct

Consider a document discussing the vectors A = (a,b,c) and B = (d,e,f) and later including the expression V
= A + B. It is important to be able communicate the fact that wherever A and B are used they represent a
particular vector. The properties of that vector may determine aspects of operators such as plus.

The simple fact that A is a vector can be communicated by using the tagging

<ci type="vector">A</ci>
but this still does not communicate, for example, which vector is involved or its dimensions.

The declare construct is used to associate specific properties or meanings with an object. The actual
declaration itself is not rendered visually (or in any other form). However, it indirectly impacts the
semantics of all affected uses of the declared object.

The scope of a declaration is, by default, local to the MathML element in which the declaration is made. If
the scope attribute of the declare element is set to "global", the declaration applies to the entire MathML
expression in which it appears.

The uses of the declare element range from resetting default attribute values to associating an expression
with a particular instance of of a more elaborate structure. Subsequent uses of the original expression
(within the scope of the declare) play the same semantic role as would the paired object.

For example, the declaration

<declare>
 <ci> A </ci>
 <vector>
 <ci> a </ci>
 <ci> b </ci>
 <ci> c </ci>
 </vector>
</declare>

specifies that A stands for the particular vector (a,b,c) so that subsequent uses of A as in V = A + B can take
this into account. When declare is used in this way, the actual encoding

<apply><eq/>
 <ci> V </ci>
 <apply><plus/>
 <ci> A </ci>
 <ci> B </ci>
 </apply>
</apply>

remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
 <ci> A </ci>
</declare>

specifies that A is a vector without indicating the number of components or the values of specific
components. The possible values for the type attribute include all the predefined container element names
such as vector, matrix or set. (See 4.3.2.9 type.)

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example,

the lambda construct underlies the common mathematical idiom illustrated here:

Let f be the function taking x to x2 + 2

There are various notations for this concept in mathematical literature, such as lambda(x, F(x)) = F or
lambda(x, [F]) = F, where x is a free variable in F.

This concept is implemented in MathML with the lambda element. A lambda construct with n internal
variables is encoded by a lambda element with n + 1 children. All but the last child must be bvar elements
containing the identifiers of the internal variables. The last is an expression defining the function. This is
typically an apply, but can also be any container element.

The following constructs lambda(x, sin (x+1)):

<lambda>
 <bvar><ci> x </ci></bvar>
 <apply> <sin/>
 <apply><plus/>
 <ci> x </ci>
 <cn> 1 </cn>
 </apply>
 </apply>
</lambda>

To use declare and lambda to construct the function f for which f(x) = x2 + x + 3 use:

<declare type="fn">
 <ci> f </ci>
 <lambda>
 <bvar><ci> x </ci></bvar>
 <apply><plus/>
 <apply><power/>
 <ci> x </ci>
 <cn> 2 </cn>
 </apply>
 <ci> x </ci>
 <cn> 3 </cn>
 </apply>
 </lambda>
</declare>

The following markup declares and constructs the function J such that J(x,y) = the integral from x to y of t4
with respect to t.

<declare type="fn">
 <ci> J </ci>
 <lambda>
 <bvar><ci> x </ci></bvar>
 <bvar><ci> y </ci></bvar>
 <apply> <int/>
 <bvar>

 <ci> t </ci>
 </bvar>
 <lowlimit>
 <ci> x </ci>
 </lowlimit>
 <uplimit>
 <ci> y </ci>
 </uplimit>
 <apply> <power/>
 <ci>t</ci>
 <cn>4</cn>
 </apply>
 </apply>
 </lambda>
</declare>

The function J can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the use of qualifier elements lowlimit, uplimit, and
bvar used in conjunction with the int element. A number of common mathematical constructions involve
additional data which is either implicit in conventional notation, such as a bound variable, or thought of as
part of the operator rather than an argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals,
sums, series, and certain differential operators. Qualifier elements appear in the same apply element with
one of these operators. In general, they must appear in a certain order, and their precise meaning depends on
the operators being used. For details, see section 4.2.3.4.

The bvar qualifier element is also used in another important MathML construction. The condition element
is used to place conditions on bound variables in other expressions. This allows MathML to define sets by
rule, rather than enumeration, for example. The following markup, for instance, encodes the set {x | x < 1}:

<set>
 <bvar><ci> x </ci></bvar>
 <condition>
 <reln><lt/>
 <ci> x </ci>
 <cn> 1 </cn>
 </reln>
 </condition>
</set>

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure
of expressions independent of the notation used to present the objects, rendering issues cannot be ignored.
Each content element has a default rendering, given in section 4.4. and several mechanisms (including style
attributes, declarations and semantics elements) are provided for associating a particular rendering with an

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.8

object.

4.2.2 Containers

Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn

Constructors
interval, list, matrix, matrixrow,
set, vector, apply, reln, lambda, fn

Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate
numbers and symbols.

It is also possible for the canonically empty operator elements such as <exp/>, <sin/> and <cos/> to be
leaves in an expression tree. The usage of of operator elements is described in Section 4.2.3.

cn
The cn element is the MathML token element used to represent numbers. The supported types of
numbers include: real,integer,rational,complex-cartesian, and complex-polar, with real being the
default type. A base attribute (defaulting to base 10) is used to help specify how the content is to be
parsed. The content itself is essentially PCDATA, separated by <sep/> when two parts are needed in
order to fully describe a number. For example, the real number 3 is constructed by <cn type="real">
3 </cn> while the rational number 3/4 is constructed as <cn type="rational"> 3 <sep/> 4 </cn> The
detailed structure and specifications are provided in section 4.4.1.1.

ci
The ci element, or "content identifier" is used to construct a variables, or symbols. A type attribute
indicates the type of object the symbol represents. Typically, they represent real scalars, but no
default is specified. Their content is either CDATA or a general presentation construct . For example,

 <ci>
 <msub>
 <mi>c</mi>
 <mn>1</mn>
 </msub>
 </ci>

encodes an atomic symbol which displays visually as c1 which, for purposes of content, is treated as a
single symbol representing a real number. The detailed structure and specifications is provided in
section 4.4.1.2.

4.2.2.2 Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The
compound objects include things like lists, sets. Each constructor produces a new type of object.

interval

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1.2

The interval element is described in detail in section 4.4.2.4. It denotes an interval on the real line
with the values represented by its children as end points. The closure attribute is used to qualify the
type of interval being represented. For example,

<interval closure="open-closed">
 <ci> a </ci>
 <ci> b </ci>
</interval>

represents the open-closed interval often written (a,b].

set and list

The list and set elements are described in detail in sections 4.4.6.1 and 4.4.6.2.

Typically, the child elements of a possibly empty list element are the actual components of an
ordered list. For example an ordered list of the three symbols a, b, and c is encoded as

<list> <ci> a </ci> <ci> b </ci> <ci> c </ci> </list>
Alternatively, bvar and condition elements can be used to define lists where membership depends on
satisfying certain conditions.

An order attribute which is used to specify what ordering is to be used. When the nature of the child
elements permits, the ordering defaults to a numeric or lexicographic ordering.

Sets are structured much the same as lists except that there is no implied ordering and the type of set
may be "normal" or "multiset" with "multiset" indicating that repetitions are allowed.

For both sets and lists, the child elements must be valid MathML content elements. The type of the
child elements is not restricted. For example, one might construct a list of equations, or inequalities.

matrix and matrixrow

The matrix element is used to represent mathematical matrices. It is described in detail in section
4.4.10.2. It has zero or more child elements, all of which are matrixrow elements. These in turn
expect zero or more child elements which evaluate to algebraic expressions or numbers. These
sub-elements are often real numbers, or symbols as in

<matrix>
 <matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
 <matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>
</matrix>

The matrixrow elements must always be contained inside of a matrix and all matrixrows in a given
matrix must have the same number of elements.

Note that the behavior of the matrix and matrixrow elements is substantially different from the
mtable and mtr presentation elements.

vector

The vector element is described in detail in section 4.4.10.1. It constructs vectors from a
n-dimensional vector space so that its n child elements typically represent real or complex valued
scalars as in the three-element vector

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.6.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.6.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10.1

<vector>
 <apply><plus/>
 <ci> x </ci>
 <ci> y </ci>
 </apply>
 <cn> 3 </cn>
 <cn> 7 </cn>
</vector>

apply

The apply element is described in detail in section 4.4.2.1. Its purpose is apply a function or operator
to its arguments to produce an an expression representing an element of the range of the function. It is
involved in everything from forming sums such as a + b as in

<apply><plus/>
 <ci> a </ci>
 <ci> b </ci>
</apply>

through to using the sine function to construct sin(a) as in

<apply><sin/>
 <ci> a </ci>
</apply>

or constructing integrals. Its usage in any particular setting is determined largely by the properties of
the function (the first child element) and as such its detailed usage is covered together with the
functions and operators in section 4.2.3 Functions, Operators and Qualifiers.

reln

The reln element is described in detail in section 4.4.2.2. It is used to construct an expression such as
a = b, as in

<reln><eq/>
 <ci> a </ci>
 <ci> b </ci>
</reln>

indicating an intended comparison between two mathematical values.

Such expressions could in principle be regarded as applications of a boolean function, and as such
could be constructed using apply. They have treated as a special class of expressions in order to
better reflect traditional usage.

The actual structure of expressions constructed using reln is similar to that for the apply element.
The use of reln is described in 4.2.4 Relations.

fn

The fn element is used to identify an expression as a defined function or operator. It is discussed in
detail in section 4.4.2.3. The use of fn is also described in 4.2.3.3. It differs from the lambda element

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.3

in that it does not make any attempt to describe how to map the arguments occurring in any
application of the function into a new MathML expression. Instead, it depends on its definitionURL
attribute to point to a particular meaning.

lambda

The lambda element is used to construct an user-defined function from a an expression and one or
more free variables. The lambda construct with n internal variables takes n + 1 children. The first
(second, up to n) is a bvar containing the identifiers of the internal variables. The last is an
expression defining the function. This is typically an apply, but can also be any container element.
The following constructs lambda(x, sin x)

<lambda>
 <bvar><ci> x </ci></bvar>
 <apply>
 <sin/>
 <ci> x </ci>
 </apply>
</lambda>

The following constructs the constant function lambda(x, 3)

<lambda>
 <bvar><ci> x </ci></bvar>
 <cn> 3 </cn>
</lambda>

4.2.2.3 Special Constructs

The declare construct is described in detail in section 4.4.2.8. It is special in that its entire purpose is to
modify the semantics of other objects. It is not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to
represent an instance of an object of a particular type. For example, you may wish to declare that the
symbolic identifier V represents a vector.

The declaration <declare type="vector"><ci>V</ci></declare> resets the default type attribute of
<ci>V</ci> to vector for all affected occurrences of <ci>V</ci>. This avoids having to write <ci
type="vector">V</ci> every time you use the symbol.

More generally, declare can be used to associate expressions with specific content. For example, the
declaration

<declare>
 <ci>F</ci>
 <lambda>
 <bvar><ci> U </ci></bvar>
 <apply><int/>
 <bvar><ci> x </ci></bvar>
 <lowlimit><cn> 0 </cn></lowlimit>
 <uplimit><ci> a </ci></uplimit>
 <ci> U </ci>

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.8

 </apply>
 </lambda>
</declare>

associates the symbol F with a new function defined by the lambda construct. Within the scope where the
declaration is in effect, the expression

<apply><ci>F</ci>
 <ci> U </ci>
</apply>

stands for the integral of U from 0 to a.

The declare element can also be used to change the definition of a function or operator. For example, if the
URL "HTTP://.../MATHML:NONCOMMUTPLUS" described a non-commutative plus operation then the
declaration

<declare definitionURL="HTTP://.../MATHML:NONCOMMUTPLUS">
<plus/>
</declare>

would indicate that all affected uses of plus are to be interpreted as having that definition of plus.

4.2.3 Functions, Operators and Qualifiers

Table of Operators

unary arithmetic exp, factorial, abs, conjugate

unary logical not

unary functional inverse , ident

unary trigonometric
sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,
arccos, arctan

unary linear algebra determinant, transpose

unary calculus ln, log

binary arithmetic quotient, divide, minus, power, rem

binary logical implies

binary set operators setdiff

n-ary arithmetic plus, times, max, min, gcd

n-ary statistical mean, sdev, variance, median, mode

n-ary logical and, or, xor

n-ary linear algebra selector

n-ary set operator union, intersect

n-ary functional fn, compose

integral, sum, product operator int, sum, product

differential operator diff, partialdiff

quantifier forall, exists

From the point of view of usage, MathML regards functions (eg. sin, cos) and operators (eg. plus, times) in
the same way. MathML predefined functions and operators are all canonically empty elements

Note: The fn element can be used to construct a user-defined function or operator. fn is discussed in more
detail below.

4.2.3.2 MathML predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator within an apply element, in
which case they refer to a function evaluated at a specific value. For example,

<apply><sin/><cn>5</cn></apply>

denotes a real number, namely sin(5).

MathML functions can also be used as arguments to other operators, for example

<apply><plus/><sin/><cos/></apply>

denotes a function, namely the result of adding the sine and cosine functions in some function space. (The
default semantic definition of plus is such that it infers what kind of operation is intended from the type of
its arguments.)

The number of child elements in the apply is defined by the element in the first (i.e. operator) position.

Unary operators are followed by exactly one other child element within the apply.

Binary operators are followed by exactly two child elements.

N-ary operators are followed by zero or more child elements.

The one exception to these rules is that declare elements may be inserted in any position except the first.
declare elements are not counted when satisfying the child element count for an apply containing a unary
or binary operator element.

Integral, sum, product and differential operators are discussed below in section 4.2.3.4 Operators taking
Qualifiers.

4.2.3.3 The fn element

In MathML, only functions and operators can be applied to arguments. In order to provide a way of
applying functions constructed out of other functions, or functions other than the functions provided by the
content elements, MathML provides the fn element. The fn element accepts any valid MathML expression
as content, and allows it to be used as a content function. It is an error for the fn element to have no content.

One typical way of using the fn element is with author-named functions, such as f(5), encoded as:

<apply>
 <fn><ci>f</ci></fn>
 <cn> 5 </cn>
</apply>

Another common use is to designate the result of combining several functions as a function again: (sin +
cos)(z):

<apply>
 <fn>

 <apply>
 <plus/>
 <sin/>
 <cos/>
 </apply>
 </fn>
 <ci>z</ci>
</apply>

4.2.3.4 Operators taking Qualifiers

Table of Qualifiers and Operators taking Qualifiers

qualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition

operators int, sum, product, diff, partialdiff, limit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions which differ from ordinary empty functions
only in that they support the use of special "qualifier" elements to specify their meaning more fully. They
are used in exactly the same way as ordinary operators, except that when they are used as operators, certain
qualifier elements are also permitted to be in the enclosing apply. They always precede the argument if it is
present. If more than one qualifier is present, they appear in the order bvar lowlimit uplimit interval
condition degree logbase. A typical example is:

<apply>
 <int/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>1</cn></uplimit>
 <apply>
 <power/>
 <ci>x</ci>
 <cn>2</cn>
 </apply>
</apply>

It is also valid to use qualifier schema with a function not applied to an argument. For example, a function
acting on integrable functions on the interval [0,1] might be denoted:

<fn>
 <apply>
 <int/>
 <bvar><ci>x</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>1</cn></uplimit>
 </apply>
</fn>

The meaning and usage of qualifier schema varies from function to function. The following list summarizes
the usage of qualifier schema with the MathML functions taking qualifiers.

int

The int function accepts the lowlimit, uplimit, bvar, interval and condition schema. If both
lowlimit and uplimit schema are present, they denote the limits of a definite integral.The domain of
integartion may alternatively be specified using interval or condition The bvar schema signifies the
variable of integration. When used with int, each qualifier schema is expected to contain a single
child schema; otherwise an error is generated.

diff

The diff function accepts the bvar schema. The bvar schema specifies with respect to which variable
the derivative is being taken. The bvar may itself contain a degree schema which is used to specify
the order of the derivative, i.e. a first derivative, a second derivative, etc. For example, the second
derivative of f with respect to x is:

<apply><diff/>
 <bvar>
 <ci> x </ci>
 <degree>
 <cn> 2 </cn>
 </degree>
 </bvar>
 <apply><fn><ci>f</ci></fn>
 <ci> x </ci>
 </apply>
</apply>

partialdiff

The partialdiff function accepts zero or more bvar schema. The bvar schema specify with respect to
which variables the derivative is being taken. The bvar elements may themselves contain degree
schema which are used to specify the order of the derivative. Variables specified by multiple bvar
elements will be used in order as the variable of differentiation in mixed partials. When used with
partialdiff, the degree schema is expected to contain a single child schema. For example,

<apply>
 <partialdiff/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <fn><ci>f</ci></fn>
</apply>

denote the mixed partial (d2 / dx dy) f.

sum, product

The sum and product functions accept the bvar, lowlimit, uplimit, interval and condition schema.
If both lowlimit and uplimit schema are present, they denote the limits of the sum/product. The
limits may alternatively be specified using the interval or condition schema. The bvar schema
signifies the index variable in the sum or product. A typical example might be:

<apply>
 <sum/>
 <bvar><ci>i</ci></bvar>
 <lowlimit><cn>0</cn></lowlimit>
 <uplimit><cn>100</cn></uplimit>

 <apply>
 <power/>
 <ci>x</ci>
 <ci>i</ci>
 </apply>
</apply>

When used with sum or product, each qualifier schema is expected to contain a single child schema;
otherwise an error is generated.

limit

The limit function accepts zero or more bvar schema and optional condition and lowlimit schema.
A condition may be used to place constraints on the bvar. The bvar schema denotes the variable
with respect to which the limit is being taken. The lowlimit schema denotes the limit point. When
used with limit, the bvar and lowlimit schemata are expected to contain a single child schema;
otherwise an error is generated.

log

The log function accepts only the logbase schema. If present, the logbase schema denotes the base
with respect to which the logarithm is being taken. Otherwise, the log is assumed to be base 10.
When used with log, the logbase schema is expected to contain a single child schema; otherwise an
error is generated.

moment

The moment function accepts only degree schema. If present, the degree schema denotes the order
of the moment. Otherwise, the moment is assumed to be the first order moment. When used with
moment, the degree schema is expected to contain a single child schema; otherwise an error is
generated.

min, max

The min and max functions accept a bvar schema in cases where the max or min is being taken over
a set of values specified by a condition schema together with an expression to be evaluated on that
set. The min and max functions are unique in that they provide the only context in which the bvar
element is optional when using a condition; if a condition element containing a single variable is
given by itself following a min or max operator, the variable is implicitly assumed to be bound, and
the expression to be maximized or minimized is assumed to be the identity.

The min and max elements may also be applied to a list of values in which case no qualifier
schemata are used. For examples of all three usages, see section 4.4.3.5

forall, exists

The universal and existential quantifier operators forall and exists are used conjuction with one or
more bvar schemata to represent simple logical assertions. There are two ways of using the logical
quantifier operators. The first usage is for representing a simple, quantified assertion. For example,
the statement "there exists x < 9" would be represented as:

<apply>
 <exists/>
 <bvar><ci> x </ci></bvar>
 <reln><lt/>

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3.5

 <ci> x </ci><cn> 9 </cn>
 </reln>
</apply>

The second usage is for representing implications. Hypotheses are given by a condition element
following the bound variables. For example the statement "for all x < 9, x < 10" would be represented
as:

<apply>
 <forall/>
 <bvar><ci> x </ci></bvar>
 <condition>
 <apply><lt/>
 <ci> x </ci><cn> 9 </cn>
 </apply>
 </condition>
 <reln><lt/>
 <ci> x </ci><cn> 10 </cn>
 </reln>
</apply>

Note, in both usages one or more bvar qualifier is mandatory.

4.2.4 Relations

binary relation neq

binary logical relation implies

binary set relation in, notin, notsubset, notprsubset

binary series relation tendsto

n-ary relation eq, leq, lt, geq, gt

n-ary set relation subset, prsubset

The MathML content tags include a number of canonically empty elements which denote arithmetic and
logical relations. Relations are characterized by the fact that, if an external application were to evaluate
them (MathML does not specify how to evaluate expressions), they would typically return a truth value. By
contrast, operators generally return a value of the same type as the operands. For example, the result of
evaluating a < b is either true or false (by contrast, 1 + 2 is again a number).

Relations are bracketed with their arguments using the reln element in much the same way that other
functions are bracketed with apply. The relation element is the first child element of the reln. Thus, the
example from the preceding paragraph is properly marked up as:

<reln>
 <lt/>
 <ci>a</ci>
 <ci>b</ci>
</reln>

It is an error to enclose a relation in an element other than reln.

The number of child elements in the reln is defined by the element in the first (i.e. relation) position.

Unary relations are followed by exactly one other child element within the reln.

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is that declare elements may be inserted in any position except the first.
declare elements are not counted when satisfying the child element count for an reln containing a unary or
binary relation element.

4.2.5 Conditions

condition condition

The condition element is used to define the "such that" construct in mathematical expressions. Condition
elements are used in a number of contexts in MathML. They are used to construct objects like sets and lists
by rule instead of by enumeration. They can be used with the forall and exists operators to form logical
expressions. And finally, they can be used in various ways in conjunction with certain operators. For
example, they can be used with and int element to specify domains of integration, or to specify argument
lists for operators like min and max.

The condition element is almost always used together with one or more bvar elements. The only exception
is a special usage with the min and max operators, where the bound variable may be implied. See section
4.4.3.5 for an example of this usage.

The exact interpretation depends on the context, but generally speaking, the condition element is used to
restrict the permissible values of a bound variable appearing in another expression to those which satisfy the
relations contained in the condition. Similarly, when the condition element contains a set, the values of the
bound variables are restricted to that set.

A condition element contains a single child which is typically a reln element, but may also be an apply or a
set element. The apply element is allowed so that several relations can be combined by applying logical
operators.

Examples:

The following encodes "there exists x such that x5 < 3".

<apply><exists/>
 <bvar><ci> x </ci></bvar>
 <condition>
 <reln><lt/>
 <apply><power/>
 <ci>x</ci>
 <cn>5</cn>
 </apply>
 <cn>3</cn>
 </reln>
 </condition>

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3.5

</apply>

The next example encodes "for all x,y such that xy < 1 and yx < x + y, x < Q(y)".

<apply><forall/>
 <bvar><ci>x</ci></bvar>
 <bvar><ci>y</ci></bvar>
 <condition>
 <apply><and/>
 <reln>
 <lt/>
 <apply><power/>
 <ci>x</ci>
 <ci>y</ci>
 </apply>
 <cn>1</cn>
 </reln>
 <reln>
 <lt/>
 <apply><power/>
 <ci>y</ci>
 <ci>x</ci>
 </apply>
 <apply><plus/>
 <ci>y</ci>
 <ci>x</ci>
 </apply>
 </reln>
 </apply>
 </condition>
 <reln><lt/>
 <ci> x </ci>
 <apply>
 <fn><ci> x </ci></fn>
 <ci> y </ci>
 </apply>
 </reln>
</apply>

A third example shows the use of quantifiers with condition. The following markup encodes "there exists x
< 3 such that x2 = 4".

<apply>
 <exists/>
 <bvar><ci> x </ci></bvar>
 <condition>
 <reln><lt/><ci>x</ci><cn>3</cn></reln>
 </condition>
 <reln>

 <eq/>
 <apply>
 <power/><ci>x</ci><cn>2</cn>
 </apply>
 <cn>4</cn>
 </reln>
</apply>

4.2.6 Syntax and Semantics

mappings semantics, annotation, annotation-xml

The use of content rather than presentation tagging for mathematics is sometimes referred to as "semantic
tagging" [Buswell 1996]. The parse-tree of a fully bracketed MathML content tagged element structure
corresponds directly to the expression-tree of the underlying mathematical expression. We therefore regard
the content tagging itself as encoding the syntax of the mathematical expression. This is, in general,
sufficient to obtain some rendering and even some symbolic manipulation (e.g., polynomial factorization).

However, even in such apparently simple expressions as X + Y, some additional information may be
required for applications such as computer algebra. Are X and Y integers,or functions, etc.? 'Plus' represents
addition over which field? This additional information is referred to as Semantic Mapping. In MathML, this
mapping is provided by the semantics, annotation and annotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic
mappings. semantics expects a variable number of child elements. The first is the element (which may
itself be a complex element structure) for which this additional semantic information is being defined. The
second and subsequent children, if any, are instances of the elements annotation and/or annotation-xml.

The semantics tags also accepts a definitionURL attribute for use by external processing applications. One
use might be a URL for a semantic content dictionary, for example. Since the semantic mapping
information might in some cases be provided entirely by the definitionURL attribute, the annotation or
annotation-xml elements are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer
algebra encodings, C programs, or whatever a processing application expects. annotation has an attribute
encoding defining the form in use. Note that the content model of annotation is PCDATA, so care must be
taken that the particular encoding does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed XML. For example, an
XML form of the OpenMath semantics could be given. Another possible use here is to embed, for example,
the presentation tag form of a construct given in content tag form in the first child element of semantics (or
vice versa). annotation-xml has an attribute encoding defining the form in use.

For Example:

<semantics>
 <apply> <divide/>
 <cn>123</cn>
 <cn>456</cn>
 </apply>

 <annotation encoding="Mathematica">
 N[123/456, 39]
 </annotation>

 <annotation encoding="TeX">
 $0.269736842105263157894736842105263157894\ldots$
 </annotation>

 <annotation encoding="Maple">
 evalf(123/456, 39);
 </annotation>

 <annotation-xml encoding="MathML-Presentation">
 <mrow>
 <mn> 0.269736842105263157894 </mn>
 <mover accent='true'>
 <mn> 736842105263157894 </mn>
 <mo> &obar; </mo>
 </mover>
 </mrow>
 </annotation-xml>

 <annotation-xml encoding="OpenMath">
 <OMA>..</OMA>
 </annotation-xml>
</semantics>

where <OMA>..</OMA> are the elements defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided
where there is some requirement to process or manipulate the underlying mathematics.

4.2.7 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized
encodings, there are no widely available, non-proprietary standard semantic mapping schemes. In part to
address this need, the goal of the OpenMath effort is to provide a platform-independent, vendor-neutral
standard for the exchange of mathematical objects between applications. Such mathematical objects include
semantic mapping information. The OpenMath group has defined an SGML syntax for the encoding of this
information [OpenMath, 1996]. This element set could provide the basis of one annotation-xml element
set.

An attraction of this mechanism is that the OpenMath syntax is specified in SGML, so that a MathML
expression together with its semantic annotations can be validated DTD-based parsers.

4.2.8 MathML element types

MathML functions, operators, and relations can all be thought of as mathematical functions if viewed in a
sufficiently abstract way. For example, the standard addition operator can be regarded as a function
mapping pairs of real numbers to real numbers. Similarly, a relation can be thought of as a function from

some space of ordered pairs into the set of values {true, false}. To be mathematically meaningful, the
domain and range of a function must be precisely specified. In practical terms, this means that functions
only make sense when applied to certain kinds of operands. For example, thinking of the standard addition
operator, it makes no sense to speak of "adding" a set to a function. Since MathML content markup seeks to
encode mathematical expressions in a way that can be unambiguously evaluated, it is no surprise that the
types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for
processing applications about the kinds of arguments expected by the MathML content elements denoting
functions, operators and relations. These operand types are defined in a dictionary of Default Semantic
Bindings for Content Elements given in Appendix F. For example, the MathML Content dictionary
specifies that for real scalar arguments the plus operator is the standard commutative addition operator over
a field. Elements such as cn and ci have type attributes with default values of "real". Thus some processors
will be able to use this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a
mechanism for typing arguments, a MathML compliant processor is not required to do any type checking.
In other words, a MathML processor will not generate errors if argument types are incorrect. If the
processor is a computer algebra system, it may be unable to evaluate an expression, but no MathML error is
generated.

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values

Content element attributes are all of the type CDATA, that is, any character string will be accepted as valid.
In addition, each attribute has a list of predefined values, which a content processor is expected to recognize
and process. The reason that the attribute values are not formally restricted to the list of predefined values is
to allow for extension. A processor encountering a value (not in the predefined list) which it does not
recognize may validly process it as the default value for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn
indicates numerical base of the number. Predefined values: any numeric string

Default = "10"

4.3.2.2 closure

interval
indicates closure of the interval. Predefined values: open, closed, open-closed, closed-open.

Default = "closed"

4.3.2.3 definitionURL

fn, declare, semantics,
any operator element

points to an external definition of the semantics of the function or construct being declared. The value
is a URL which should point to some kind of definition. This definition overrides the MathML
default semantics.

At present, MathML does not specify the format in which external semantic definitions should be
given. In particular, there is no requirement that the target of the URL be loadable and parsable. An
external definition could, for example, define the semantics in human-readable form.

Ideally, in most situations the definition pointed to by the definitionURL attribute would be some
standard, machine-readable format. However, there are several reasons why MathML does not
require such a format.

First, no such format currently exists. There are several projects underway to develop and implement
standard semantic encoding formats, most notably the OpenMath effort. But by nature, the
development of a comprehensive system of semantic encoding is a very large enterprise, and while
much work has been done, much additional work remains. Therefore, even though the defintionURL
is designed and intended for use with a formal semantic encoding language such as OpenMath, it is
premature to require any one particular format.

Another reason for leaving the format of the definitionURL attribute unspecified is that there will
always be situations where some non-standard format is preferable. This is particularly true in
situations where authors are describing new ideas.

It is anticipated that in the near term, there will be a variety of renderer-dependent implementations of
the definitionURL attribute. For example, a translation tool might simply prompt the user with the
specified definition in situations where the proper semantics have been overridden, and in this case,
human-readable definitions will be most useful. Other software may utilize OpenMath encodings.
Still other software may use proprietary encodings, or look for definitions in any of several formats.

As a consequence, authors need to be aware that there is no guarantee a generic renderer will be able
to take advantage of information pointed to by the definitionURL attribute. Of course, when
widely-accepted standardized semantic encodings are available, the definitions pointed to can be
replaced without modifying the original document. However, this is likely to be labor intensive.

There is no default value for the definitionURL attribute, i.e. the semantics are defined within the
MathML fragment, and/or by the MathML default semantics.

4.3.2.4 encoding

annotation, annotation-xml
indicates the encoding of the annotation. Predefined values MathML-Presentation,
MathML-Content. Other typical values: TeX, OpenMath

Default = "", i.e. unspecified.

4.3.2.5 nargs

declare

indicates number of arguments for function declarations. Pre-defined values: "nary", any numeric
string.

Default = "1"

4.3.2.6 occurrence

declare
indicates occurrence for operator declarations. Pre-defined values: prefix, infix, function-model

Default = "function-model"

4.3.2.7 order

list
indicates ordering on the list. Predefined values: lexicographic, numeric

Default = "numeric"

4.3.2.8 scope

declare
indicates scope of applicability of the declaration. Pre-defined values: local, global.

local means the containing MathML element.❍

global means the containing math element.❍

Default = "local"

At present, declarations cannot affect anything outside of the containing math element. Ideally, one
would like to make document-wide declarations by setting the value of the scope attribute to be
"global-document". However, the proper mechanism for document-wide declarations very much
depends on details of the way in which XML will be embedded in HTML, future XML style sheet
mechanisms, and the underlying document object model.

Since these supporting technologies are still in flux at present, the MathML specification does not
include "global-document" as a pre-defined value of the scope attribute. It is anticipated, however,
that this issue will be revisited in future revisions of MathML as supporting technologies stabilize. In
the near term, MathML implementors that wish to simulate the effect of a document-wide declaration
are encouraged to pre-process documents in order to distribute document-wide declarations to each
individual math element in the document.

4.3.2.9 type

cn
indicates type of the number. Predefined values: integer, rational, real, float, complex,
complex-polar, complex-cartesian, constant.

Default = "real"

Notes: Each data type implies that the data adheres to certain formating conventions, detailed below.
If the data fails to conform to the expected format, an error is generated. Details of the individual

formats are:

real: A real number is presented in decimal notation. Decimal notation consists of an optional sign
("+" or "-") followed by a string of digits possibly separated into an integer and a fractional part by a
"decimal point". Some examples are .3, 1, and -31.56. If a different BASE is specified, then the digits
are interpreted as being digits computed to that base.

A real number may also be presented in scientific notation. Such numbers have two parts (a mantissa
and an exponent) separated by e. The first part is a real number while the second part is an integer
exponent indicating a power of the base. For example, 12.3e5 represents 12.3 times 10 ^5.

integer: An integer is represented by an optional sign followed by a string of 1 or more "digits".
What a "digit" is depends on the base attribute. If base is present, it specifies the base for the digit
encoding, and it specifies it base ten. Thus base='16' specifies a hex encoding. When base > 10,
letters are added in alphabetical order as digits. The legitimate values for base are therefore between
2 and 36.

rational: A rational number is two integers separated by the <sep/> element. If base is present, it
specifies the base used for the digit encoding of both integers.

complex-cartesian: A complex number is of the form two real point numbers separated by <sep/>.

complex-polar: A complex number is specified in the form of a magnitude and an angle (in radians).
The raw data is in the form of two real numbers separated by <sep/>.

constant: The "constant" type is used to denote named constants. For example, an instance of <cn
type="constant">π</cn> should be interpreted as having the semantics of the
mathematical constant Pi. The data for a constant cn tag may be one of the following common
constants:

Symbol Value

π The usual π of trigonometry: approximately 3.141592653...

ⅇ (or ⅇ) The base for natural logarithms: approximately 2.718281828 ...

ⅈ (or ⅈ) Square root of -1.

γ Euler's constant: approximately .5772156649...

∞ (or &infty;) Infinity. Proper interpretation varies with context

&true; the logical constant 'TRUE'

&false; the logical constant 'FALSE'

&NotANumber; (or &NaN;) represents the result of an ill-defined floating point division

ci
indicates type of the identifier. Predefined values: integer, rational, real, float, complex,
complex-polar, complex-cartesian, constant, any content element name. The meaning of the
various attribute values is the same as that listed above for the cn element.

Default = "" , i.e. unspecified.

declare
indicates type of the identifier being declared. Predefined values: any content element name.

Default = "ci" , i.e. a generic identifier

set
indicates type of the set. Predefined values: normal, multiset. "multiset" indicates that repetitions are
allowed.

Default = "normal"
tendsto

indicates the direction from which the limiting value is approached. Predefined values: above, below,
two-sided.

Default = "above"

4.3.3 Attributes Modifying Content Markup Rendering

4.3.3.1 type

The type attribute, in addition to conveying semantic information, can be interpreted to provide rendering
information. For example in

<ci type="vector">V</ci>

a renderer could display a bold V for the vector.

4.3.3.2 General Attributes

All content elements support the following general attributes which can be used to modify the rendering of
the markup.

class●

style●

id●

other●

The class, style and id attributes are intended for compatibility with Cascading Style Sheets, as described in
2.3.4.

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the
semantics, you can always work out a presentation form. When an author's main goal is to mark up
re-usable, evaluatable mathematical expressions, the exact rendering of the expression is probably not
critical, provided that it is easily understandable. However, when an author's goal is more along the lines of
providing enough additional semantic information to make a document more accessible by facilitating
better visual rendering, voice rendering, or specialized processing, controlling the exact notation used
becomes more of an issue.

MathML elements accept an attribute other (see 7.2.3) which can be used to specify things not specifically
documented in MathML. On content tags, this attribute can be used by an author to express a preference
between equivalent forms for a particular content element construct, where the selection of the presentation
has nothing to do with the semantics. Examples might be

inline or displayed equations●

script style fractions●

use of x with a dot for a derivative over dx/dt●

Thus, if a particular renderer recognized a display attribute to select between script style and display style
fractions, an author might write

<apply other='display="scriptstyle"'>
 <divide/>
 <mn> 1 </mn>
 <mi> x </mi>
</apply>

to indicate that the rendering 1/x is preferred.

The information provided in the other attribute is intended for use by specific renderers or processors, and
therefore, the permitted values are determined by the renderer being used. It is legal for a renderer to ignore
this information. This might be intentional, in the case of a publisher imposing a house style, or simply
because the renderer does not understand them, or is unable to carry them out.

Next: Content Markup -- The Content Markup Elements
Up: Table of Contents

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4

Up: Table of Contents REC-MathML-19980407; revised 19990707

5. Mixing Presentation and Content
Markup

5.1 When to Use Mixed Markup

5.1.1 Why Two Different Kinds of Markup?❍

5.1.2 Reasons to Mix Markup❍

●

5.2 How to use Mixed Markup

5.2.1 Presentation Markup Contained in Content Markup❍

5.2.2 Content Markup Contained in Presentation Markup❍

●

5.3 Anticipating Macros for Combined Markup●

5.1 When to Use Mixed Markup
MathML offers authors elements for both content and presentation markup. Whether to use one
or the other, or a mixture of both, depends on what aspects of rendering and interpretation an
author wishes to control, and what kinds of re-use he or she wishes to facilitate.

5.1.1 Why Two Different Kinds of Markup?

Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in
documents:

Presentation markup captures notational structure. It encodes notational structure in a
sufficiently abstract way to facilitate rendering to various media. Thus, the same presentation
markup can be rendered with relative ease on screen in either wide and narrow windows, in
ASCII or graphics, in print, or it can be enunciated in a sensible way when spoken. It does this
by providing information such as grouping of expression parts, classification of symbols, etc.

Presentation markup does not directly concern itself with the mathematical structure or meaning
of an expression. In many situations, notational structure and mathematical structure are closely
related, so a sophisticated processing application may be able to heuristically infer
mathematical meaning from notational structure. However, in practice, the inference of
mathematical meaning from mathematical notation must often be left to the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another

context, especially evaluation by external applications.

Content markup captures mathematical structure. It encodes mathematical structure in a
sufficiently regular way in order to facilitate the assignment of mathematical meaning to an
expression by applications. Though the details of mapping from mathematical structure to
mathematical meaning are exceedingly complex, in practice, there is wide agreement about the
conventional meaning of many basic mathematical constructs. Consequently, much of the
meaning of a content expression is easily accessible to a processing application, independently
of where or how it is displayed to the reader. In many cases, content markup could be cut from
a web browser and pasted into a mathematical software tool (such as future versions of Axiom,
Maple or Mathematica) with confidence that sensible values will be computed.

Since content markup is not directly concerned with how an expression is displayed, a renderer
must infer how an expression should be presented to a reader. While a sufficiently sophisticated
renderer and style-sheet mechanism could in principle allow a user to read mathematical
documents using personalized notational preferences, in practice, rendering content expressions
with notational nuances still requires human intervention of some sort.

Employing content tags alone may limit the ability of the author to precisely control how an
expression is rendered.

It is important to emphasize that both content and presentation tags are necessary in order to
provide the full expressive capability one would like in a mathematical markup language. Often
the same mathematical notation is used to represent several completely different concepts. For
example, the notation xi may be intended (in polynomial algebra) as the i-th power of the
variable x, or (in vector analysis) as the i-th component of the vector x. In other cases, the same
mathematical concept may be displayed in one of various notations. For instance, the factorial
of a number might be expressed with an exclamation mark, a Gamma function, or a
Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the same
mathematical idea often has several notations. In order to provide authors with the ability to
precisely control notational nuances while at the same time encoding meanings in a machine
readable way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation
markup will generally be more satisfactory. If it is important that the meaning of an expression
can be dependably and automatically interpreted, then content markup will generally be more
satisfactory.

5.1.2 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either
presentation or content markup exclusively. For example, a programs for translating legacy
documents would most likely generate pure presentation markup. Similarly, an educational
software package might very well generate only content markup for evaluation in a computer

algebra system. However, in many other situations, there are advantages to mixing both
presentation and content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often
produce more accessible, more re-usable results. For example, an author writing about linear
algebra might write:

<mrow>
 <apply>
 <power/>
 <ci>x</ci><cn>2</cn>
 </apply>
 <mo>+</mo>
 <msup>
 <mi>v</mi><mn>2</mn>
 </msup>
</mrow>

where v is a vector and the superscript denotes a vector component, and x is a real variable. On
account of the linear algebra context, a visually impaired reader may have directed his or her
voice synthesis software to render superscripts as vector components. By explicitly encoding
the power, the content markup yields a much better voice rendering than would likely happen
by default.

If an author is primarily content-oriented, there are two reasons to intersperse presentation
markup. First, using presentation markup provides a way of modifying or refining how a
content expression is rendered. For example, one might write:

<reln>
 <in/>
 <ci><mi fontweight="bold">v</mi></ci>
 <ci>S</ci>
</reln>

In this case, the use of embedded presentation markup allows the author to specify that v should
be rendered in boldface.

A second reason to intersperse presentation in content markup is that there is a continually
growing list of areas of discourse which do not have pre-defined content elements for encoding
their objects and operators. As a consequence, any system of content markup inevitably requires
an extension mechanism which combines notation with semantics in some way. MathML
content markup specifies several ways of attaching an external semantic definitions to content
objects. However, it is necessary to use MathML presentation markup to specify how such
user-defined semantic extensions should be rendered.

For example, the "rank" operator from linear algebra is not included as a pre-defined MathML
content element. Thus, to express the statement

rank(uTv) = 1,

we use the mo presentation element inside a ci element to achieve the proper presentation,
along with a semantics element which binds a semantic definition to the symbol. The mo
element indicates to a renderer that it should use standard operator spacing around the content
identifier "rank", just as it would for "sin" or "log":

<reln>
 <eq/>
 <apply>
 <fn>
 <semantics>
 <ci><mo>rank</mo></ci>
 <annotation-xml encoding="OpenMath">
 <OMS CD="BasicLinAlg">matrix-rank</OMS>
 </annotation-xml>
 </semantics>
 </fn>
 <apply>
 <times/>
 <apply>
 <transpose/>
 <ci>u</ci>
 </apply>
 <ci>v</ci>
 </apply>
 </apply>
 <cn>1</cn>
</reln>

Here, the semantics of the presentation subexpressions have been given using symbols from
OpenMath content dictionaries (CD).

5.2 How to Mix Markup
The main consideration when presentation markup and content markup are mixed together in a
single expression is that the result should still make sense. When both kinds of markup are
contained in a presentation expression, this means it should be possible to render the resulting
mixed expressions simply and sensibly. Conversely, when mixed markup appears in a content
expression, it should be possible to simply and sensibly assign a semantic interpretation to the
expression as whole. These requirements place a few natural constraints on how presentation
and content markup can be mixed in a single expression, in order to avoid ambiguous or
otherwise problematic expressions.

Two motivating examples illustrate the kinds of problems that must be avoided in mixed
markup. Consider:

http://www.openmath.org/
http://www.openmath.org/V2/standard/cd.html

<mrow> <plus/> <mi> x </mi> <mi> y </mi> </mrow>

In this example, the content element plus has been indiscriminately embedded in a presentation
expression. Should the plus sign appear in its usual infix position, as it would in content
markup, or should it render as the first thing in the row? Neither choice is very satisfactory, and
consequently, this kind of mixing is not allowed. Similarly, consider:

<apply> <ci> x </ci> <mo> + </mo> <ci> y </ci> </apply>

As before, the mo element is problematic. Should a renderer infer that the usual arithmetic
operator is intended, and act as if the prefix content element plus had been used? Again, there is
no compelling answer, and thus this kind of mixing of content and presentation markup is also
prohibited.

5.2.1 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations which do not
effect the ability of content markup to unambiguously encode mathematical meaning. More
specifically, presentation markup may only appear in content markup in three ways:

within ci and cn token elements1.

within the fn element2.

within the semantics element3.

Any other presentation markup occurring within a content markup is a MathML error. More
detailed discussion of these three cases follows:

Presentation markup within token elements.

The token elements ci and cn are permitted to contain any sequence of #PCDATA,
presentation elements, and sep empty elements. Contiguous blocks of #PCDATA in ci
and fn elements are rendered as if they were wrapped in mi elements. A contiguous
blocks of #PCDATA within cn should be rendered as if wrapped in mn. If a token
element contains both #PCDATA and presentation elements, contiguous blocks of
#PCDATA (if any) are treated as if wrapped in mi or mn elements as appropriate, and
the resulting collection of presentation elements are rendered as if wrapped in an mrow
element.

The sep element is only meaningful in identifiers and numbers defined to be of complex
type, where it separates #PCDATA into real and imaginary parts. When a token elements
contains both sep elements and presentation elements, the sep elements are ignored.

Presentation markup within the fn element.

The fn element may contain either #PCDATA interspersed with presentation markup, or
content container elements. It is a MathML error for an fn element to contain both
presentation and content elements. When the fn element contains both raw data and

presentation markup, the same rendering rules that apply to content token elements
should be used.

Presentation markup within the semantics element.

One of the main purposes of the semantics element is to provide a mechanism for
incorporating arbitrary MathML expressions into content markup in a semantically
meaningful way. In particular, any valid presentation expression can be embedded in a
content expression by wrapping it in a semantics element. Of course, the intention is that
the meaning of the wrapped expression should be indicated by one or more annotation
elements also contained in the semantics element. Suggested rendering for a semantics
element is discussed in 4.2.6.

5.2.2 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the
resulting expression should still have an unambiguous rendering. In general, this means that
embedded content expressions must be semantically meaningful, since rendering of content
markup depends on its meaning. In practice, this basically translates into the condition that
content container elements are permitted, while other content elements such as operators,
relations, and qualifier elements are not.

As a rule, content elements other than containers derive part of their semantic meaning from the
surrounding context, such as whether an operator is being applied to arguments or not, or
whether a bvar element is qualifying an integral, and so on. Thus, in a presentation context,
these elements do not have a clearly defined meaning, and hence there is no obvious choice for
a rendering. Consequently, they are not allowed.

The complete list of content elements which may appear as a child in a presentation element is:

<ci> <cn> <apply> <fn> <lambda>
<reln> <interval> <list> <matrix> <matrixrow>
<set> <vector> <declare>

Note that within presentation markup, content expressions may only appear in locations where
it is valid for any MathML expression to appear. In particular, content expressions may not
appear within presentation token elements. In this regard mixing presentation and content are
asymmetrical.

For rendering purposes, when a permitted content element appears within a presentation
context, a processing application should treat it as if it were replaced with an mrow containing
a presentation encoding of the rendering the application would ordinarily generate for that
content markup. For example, consider:

<mfrac>
 <mi>x</mi>
 <interval closure="open-closed">

 <cn>1</cn>
 <cn>3</cn>
 </interval>
</mfrac>

In this case, a visual renderer would typically render the interval construct as (1,3]. Using
presentation markup, this might be encoded as:

<mfenced close="]">
 <mn>1</mn>
 <mn>3</mn>
</mfenced>

Consequently, the original mixed markup should be visually rendered as

<mfrac>
 <mi>x</mi>
 <mfenced close="]">
 <mn>1</mn>
 <mn>3</mn>
 </mfenced>
</mfrac>

5.3 Anticipating Macros for Combined Markup
The examples above show that introducing new mathematical content as combined
presentation-content pairs is verbose.

Certainly one can imagine generating this kind of markup with software tools, but it is at the
borderline of what might be deemed tolerable to do by hand.

This is one of the areas of the MathML specification which anticipates most strongly the use of
macros. With some kind of HTML/XML macro mechanism, it would be possible, for example,
to define macros

<rank/>

and

<tr>X</tr>

which respectively expand to

<fn>
 <semantics>
 <ci><mo>rank</mo></ci>
 <annotation-xml encoding="OpenMath">
 <OMS CD="BasicLinAlg">matrix-rank</OMS>
 </annotation-xml>
 </semantics>

</fn>

and

<apply>
 <transpose/>
 <ci>X</ci>
</apply>.

The sample encoding of

rank(uTv) = 1,

from section 5.1.3 could then be condensed to

<reln>
 <eq>
 </apply>
 <rank/>
 <apply>
 <times/>
 <tr>u</tr>
 <ci>v</ci>
 </apply>
 </apply>
 <cn>1</cn>
</reln>

From this example we see how the combination of presentation and content markup could
become much simpler and effective to generate as standard macro libraries become available.

Next: Entities, Characters and Fonts
Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

6. Entities, Characters and Fonts
6.1 Introduction

6.1.1 The Intent of Entity Names❍

6.1.2 The STIX Project❍

●

6.2 Entity Listings

6.2.1 Non-Marking Entities❍

6.2.2 Printing Entity List❍

6.2.3 Special Constants❍

6.2.4 Alphabetical Lists❍

6.2.5 ISO Entity Set Groupings

6.2.5.1 ISO Symbol Entity Sets■

6.2.5.2 ISO Math Font Entity Sets■

6.2.5.3 Other ISO Font Entity Sets■

❍

6.2.6 Additional Entity Set Grouping❍

●

6.1 Introduction

6.1.1 The Intent of Entity Names

Notation has proved very important for mathematics. Mathematics has grown in part because of
the succinctness and suggestiveness of its evolving notation. There have been many new signs
evolved for use in mathematical notation, and mathematicians have not held back from making
use of many symbols originally developed elsewhere. The result is that mathematics makes use
of a very large collection of symbols. It is difficult to write mathematics fluently if these
characters are not available for use in coding. It is difficult to read mathematics if glyphs are not
available for presentation on specific display devices.

This situation poses a problem for the W3C Math Working Group. It does not fall naturally
within the purview of a math for HTML specification and DTD production to worry about more
than the entities allowed in the DTD. Moreover, as experience has shown, a long list of entities
with no means to display them is of little use, and a cause of frequent frustrations in trying use a
standard. On the other hand, a large collection of glyphs or characters without a standard way to

refer to them is not of much use either.

The W3C Math Working Group has therefore taken on directly specification of part of the full
mechanism of proceeding from notation to final presentation, and is collaborating with
organizations undertaking specification of the rest.

For instance, we try to use entity names that are contained in ISO TR 9573, which supersedes
the ISO TR 8879 annex as far as math is concerned. There are considerations of mathematical
usage that do on occasion militate against this, and the TR 9573 lists need supplementing. We
hope to be able to agree with the TR 9573 WG on suitable extensions, in the course of the
revision of their document that they are presently undertaking.

The STIX project of the STIPUB group of scientific and technical publishers has also been
working toward a common collection of mathematical symbols and names. The W3C Math
Working Group expects to issue further updates on the matter of character entities as a
consequence of this project's useful work. For the latest character tables and fonts information,
see the W3C Math Working Group home page.

6.1.2 The STIX Project

The STIX project team leader, Nico Poppelier, is a member of the W3C Math Working Group.
The STIX project, set up by the STIPUB group of publishers, aims to formulate a collection of
characters needed in the course of scientific and technical publishing. A database of characters
in common use is being produced by collaborating publishing organizations. The team will
propose to the Unicode consortium the additions to the next revision of the Unicode character
set that this process shows are needed, together with the appropriate character codes. Finally the
STIX project will commission the production of a complete set of fonts covering those Unicode
characters for science and technology, to be made available to the public under license, but free
of charge. The STIPUB group recognizes that easy availability of the characters and fonts
greatly facilitates communication and publication.

6.2 Entity Listings

This chapter of the MathML proposal contains a listing of entities for use in MathML.

To provide more background on the characters used by mathematics we have used a larger
comparative database showing codes and meanings in other common math environments. The
W3C Math Working Group is very grateful to Elsevier Science and to Wolfram Research
(makers of Mathematica ®) for making available to us so much useful data.

6.2.1 Non-Marking Entities

Some character entities, although important for the quality of print rendering do not directly
have glyph marks that correspond. They are called here non-marking entities. Below we have a
table of those adopted for the purposes of MathML. Their roles are discussed in Chapters 3 and

http://www.w3.org/Math

4, respectively on Presentation and Content Markup. The values of the spaces given are
recommendations. Some of these characters do not already have Unicode values. Arbitrary
values up in the Private Zone E8 range have been assigned. The correspondence between the
spacing values mentioned below and those in the Unicode descriptions are not exact, but are
good matches.

Entity name Unicode Description

	 0009 tabulator stop; horizontal tabulation

 000A force a line break; line feed

&IndentingNewLine; E891 force a line break and indent appropriately on next line

⁠ E892 never break line here

&GoodBreak; E893 if a linebreak is needed, here is a good spot

&BadBreak; E894 if a linebreak is needed, try to avoid breaking here

&Space; 0020 one em of space in the current font

 00A0 space that is not a legal breakpoint

​ 200B space of no width at all

  200A space of width 1/18 em

  2009 space of width 3/18 em

  2005 space of width 4/18 em

   E897 space of width 5/18 em

​ E898 space of width -1/18 em

​ E899 space of width -3/18 em

​ E89A space of width -4/18 em

​ E89B space of width -5/18 em

⁣ E89C used as a separator, e.g., in indices (Section 3.2.4)

⁣ E89C short form of ⁣

⁢
E89E

marks multiplication when it is understood without a
mark (Section 3.2.4)

⁢ E89E short form of ⁢

⁡
E8A0

character showing function application in presentation
tagging (Section 3.2.4)

⁡ E8A0 short form of ⁡

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4

6.2.2 Printing Entity Listings

Since the situation concerning availability of character codes from Unicode and under ISO
9573-13 is not yet fully clear at the time of writing, we have decided to proceed conservatively.

We have taken the ISO 9573-13 proposal, as conveyed to us from Anders Berglund, and have
added a number of additional aliases based in the practice of the mathematical typesetting
community. Thus the main influence outside ISO has been the names to be found in the TeX
community.

To facilitate comprehension of a fairly large list of names, which totals over 2000 in this case,
we offer the same information in more than one form.

We have entities listed by name and sample glyphs for all of them. Each entity name is
accompanied by a code for a character grouping chosen from a list given below, a short verbal
description, and a Unicode hex code if there is a corresponding sample glyph to be found in ISO
10646. Those codes beginning with the hex digit E, e.g., E321, indicate assignments to the
private zone of Unicode. This indicates that the character in question is not at present an official
Unicode character. It is highly recommended that authors use entity names instead of Unicode
values, especially for those characters in the Unicode private zone, as those values may change.
It is hoped that most of these characters will become officially endorsed by Unicode and ISO
under its 10646 standard in due course. In any case we expect fonts for these characters to
become publicly available as the use of MathML develops. If the entity name is an alias then a
reference back to the ISO form is given if there is one, and to a preferred form if not. The ISO
or preferred forms have references to their alternates where they exist.

Newly Revised. The entity listings by alphabetical and Unicode order in section 6.2.4 have now
been brought more into line with the corresponding ISO character sets, in that if some part of a
set is included then the entire set is included. Also, ISOCHEM has been dropped. These
changes have also been reflected in the entity declarations in the DTD in Appendix A.

The tables of character sets with glyphs given in section 6.2.5 have not been revised from the
original tables. In cases where information section 6.2.4 and 6.2.5 conflict, the tables in 6.2.3
and the DTD should be considered normative.

6.2.3 Special Constants

To commence we list separately a few of the special characters which MathML has seen fit to
be a little radical in introducing. There are two for special constants and one for calculus. They
too must have private Unicode values.

Entity name Unicode Description

ⅅ F74B D for use in differentials, e.g., within integrals

ⅅ F74B short form of ⅅ

ⅆ F74C d for use in differentials, e.g., within integrals

ⅆ F74C short form of ⅆ

ⅇ F74D e for use for the exponential base of the natural logarithms

ⅇ F74D short form of ⅇ

&false; E8A7 logical constant false

ⅈ F74E i for use as a square root of -1

ⅈ F74E short form of ⅈ

&NotANumber; E8AA used in 4.3.2.9

&true; E8AB logical constant true

6.2.4 Alphabetical Lists

The first table offered is a very large ASCII listing of printing entity names, ordered
alphabetically, with upper-case preceding lower-case as in ASCII order. The Unicode numbers
beginning with E are arbitrary assignments in the Private Area where there is presently no
Unicode character available. When there is no Unicode offered at all it is because the characters
listed can be thought of as font variations of common Roman alphabetic characters.

There is also an ASCII listing of printing entities ordered by Unicode number. Next we have
collections of the entities in entity sets which are similar to the groupings in the corresponding
ISO documents.

6.2.5 ISO Entity Set Groupings

In addition, we list the above material in the groupings used by ISO 9573-13 with an additional
grouping of aliases introduced. This table makes explicit the entity groupings and provides links
to ASCII listings of the groups and HTML tabular listings which display the glyphs, insofar as
they are to be had, as well.

6.2.5.1 ISO Symbol Entity Sets

The symbols for mathematics that ISO have considered are organized, for both historical and
mnemonic reasons into groupings with somewhat descriptive names. In the tables below we
reproduce the newly proposed versions of these groups and give the corresponding Unicode
sample glyphs. For each ISO 9573-13 group we give first an Extended version in ASCII listing
which includes aliases, then a similar listing with sample glyphs, then the Basic ISO 9573-13
entity set and its version with included glyphs. The entries are organized alphabetically by
entity name.

It should be noted that the sample glyphs given here are in GIF files intended for viewing on a
monitor's screen at 72dpi. They are not suitable for printing, and in particular do not constitute a

http://www.w3.org/1999/07/REC-MathML-19990707/chap6/byalpha.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/bycodes.html

set of fonts covering the symbols of mathematics. In addition, it is important to note that the
Unicode numbers assigned in the private zone, beginning with hex digits E2 and above, are
arbitrary and only used here to ensure that sample glyphs are available for display. They do not
constitute suggested assignments of codes. Such a set of fonts is under development in more
than one context. The MathML Working Group is engaged in ensuring that fonts will be readily
publicly available.

This first block of entity sets includes mostly non-letter symbols, along with a few letters loaded
with mathematical semantics. At the end of the block we have included the table MMALIAS of
the aliases introduced by MathML, which mostly come from the TeX community, and
MMEXTRA with the additional character entities added by MathML. Note that some of the
blocks are place-holders for a possible future expansion of the tables.

Group Descriptive Name
ISOAMSA Added Math Symbols: Arrows Extended Glyphs | Basic Glyphs

ISOAMSB Added Math Symbols: Binary Operators Extended Glyphs | Basic Glyphs

ISOAMSC Added Math Symbols: Delimiters Extended Glyphs | Basic Glyphs

ISOAMSN Added Math Symbols: Negated Relations Extended Glyphs | Basic Glyphs

ISOAMSO Added Math Symbols: Ordinary Extended Glyphs | Basic Glyphs

ISOAMSR Added Math Symbols: Relations Extended Glyphs | Basic Glyphs

ISOTECH General Technical Extended Glyphs | Basic Glyphs

ISOPUB Publishing Extended Glyphs | Basic Glyphs
ISODIA Diacritical Marks Extended Glyphs | Basic Glyphs
ISONUM Numeric and Special Graphic Extended Glyphs | Basic Glyphs
ISOBOX Box and Line Drawing Basic Glyphs

MMALIAS MathML Aliases Basic Glyphs

MMEXTRA MathML Additions Basic Glyphs

6.2.5.2 ISO Math Font Entity Sets

Mathematical literature displays the common use of particular font styles. Characters
representing given letters which differ only in the glyph presentation are in principle not
different for the purposes of a character registry such as Unicode, which is not supposed to take
into account mere font differences. However usage has meant that both ISO and Unicode, like
mathematics, recognize them as different entities. Therefore we include lists for Greek, script,
open face (also known as double struck or blackboard bold), and fraktur (also known as gothic
or German) fonts.

Group Descriptive Name
ISOGRK3 Greek Symbols ASCII Glyphs

ISOMSCR Math Script Font ASCII Glyphs

http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSAe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSAe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSA1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSA2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSBe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSBe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSB1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSB2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSCe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSCe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSC1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSC2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSNe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSNe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSN1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSN2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSOe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSOe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSO1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSO2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSRe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSRe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSR1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOAMSR2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOTECHe1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOTECHe2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOTECH1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOTECH2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/MMALIAS1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/MMALIAS2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOGRK31.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOGRK32.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOMSCR1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOMSCR2.html

ISOMOPF Math Open Face Font ASCII Glyphs

ISOMFRK Math Fraktur Font ASCII Glyphs

6.2.5.3 Other ISO Font Entity Sets

For reference we provide a list of the names of several other ISO font entity sets which are
really normally used for text. ISOGRK4 is actually a collection of emboldened forms of the
Greek letters.

Group Descriptive Name
ISOGRK1 Greek Letters
ISOGRK2 Monotoniko Greek
ISOGRK4 Alternative Greek Symbols
ISOCYR1 Russian Cyrillic
ISOCYR2 Non-Russian Cyrillic

6.2.6 Additional Entity Set Grouping

In addition to the above listed, for the sake of completeness, we provide a table of other entities
not within the ISO lists which are referred to somewhere in this specification. It is not certain
that all these characters, though of mathematical significance, will reach incorporation within
Unicode. The W3C Math WG continues to wrestle with the problems of the characters of
mathematics.

&LeftSkeleton; E850 start of missing information

&RightSkeleton; E851 end of missing information

&LeftBracketingBar; F603 left vertical delimiter

&RightBracketingBar; E604 right vertical delimiter

&LeftDoubleBracketingBar; F605 left double vertical delimiter

&RightDoubleBracketingBar; F606 right double vertical delimiter

─ E859 short horizontal line

| E85A short vertical line

≔ E85B assignment operator

❘ E85C vertical separating operator

⫤ E30F alias for ⫤

⥰ F524
right double arrow with rounded head (looks like thin
superset)

⊏̸ E604 negated set-like partial order operator

⊐̸ E615 negated set-like partial order operator

http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOMOPF1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOMOPF2.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOMFRK1.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/ISOMFRK2.html

⊈ 2288 alias of ⊈

⊉ 2289 alias of ⊉

⥐ F50B left-down-right-down harpoon

⥞ F50E left-down harpoon from bar

⥖ F50C left-down harpoon to bar

⥟ F50F right-down harpoon from bar

⥗ F50D right-down harpoon to bar

⇤ 21E4 alias for ⇤

⥎ F505 left-up-right-up harpoon

↤ 21A4 alias for ↤

⥚ F509 left-up harpoon from bar

⥒ F507 left-up harpoon to bar

⇥ 21E5 alias for ⇥

⥛ F50A right-up harpoon from bar

⥓ F508 up-right harpoon to bar

⩵ F431 two consecutive equal signs

⪢ E2F7 alias for ≫

⧏ F410 not left triangle, vertical bar

⪡ E2FB alias for ≪

≭ 226D alias for &nasymp;

≂̸ E84E alias for ≂̸

≎̸ E616 alias for ≎̸

≏̸ E84D alias for ≏̸

⧏̸ F412 not left triangle, vertical bar

⪢̸ F428 not double greater-than sign

⪡̸ F423 not double less-than sign

&NotPrecedesTilde; E5DC alias for ⪯̸

⧐̸ E870 not vertical bar, right triangle

≿̸ E837 not succeeds or similar

⧐ F411 vertical bar, right triangle

∏ 220F alias for ∏

⋄ 22C4 alias for ⋄

⨯ E619 cross or vector product

□ 25A1 alias for □

⤓ F504 down arrow to bar

↧ 21A7 alias for ↧

⥡ F519 down-left harpoon from bar

⥙ F517 down-left harpoon to bar

⥑ F515 up-left-down-left harpoon

⥠ F518 up-left harpoon from bar

⥘ F516 up-left harpoon to bar

⥝ F514 down-right harpoon from bar

⥕ F512 down-right harpoon to bar

⥏ F510 up-right-down-right harpoon

⥜ F513 up-right harpoon from bar

⥔ F511 up-right harpoon to bar

↓ E87F short down arrow

↑ E880 sort up arrow

⤒ F503 up arrow to bar

↥ 21A5 ↥

̑ 0311 breve, inverted (non-spacing)

‾ 00AF over bar

⏞ F612 over brace

⎴ F614 over bracket

⏜ F610 over parenthesis

_ 0332 combining low line

⏟ F613 under brace

⎵ F615 under bracket

⏝ F611 under parenthesis

▫ F530 empty very small square

▪ F529 filled very small square

◻ F527 empty small square

◼ F528 filled small square

⧴ F51F rule-delayed (colon right arrow)

Next: The MathML Interface

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

7. The MathML Interface
7.1 Embedding MathML in HTML

7.1.1 The Top-Level math Element❍

7.1.2 Requirements for a MathML Browser Interface❍

7.1.3 Invoking Embedded Objects as Renderers❍

7.1.4 Invoking Other Applications❍

7.1.5 Mixing and Linking MathML and HTML❍

●

7.2 Generating, Processing and Rendering MathML

7.2.1 MathML Compliance❍

7.2.2 Handling Of Errors❍

7.2.3 An Attribute for Unspecified Data❍

●

7.3 Future Extensions

7.3.1 Macros and Style Sheets❍

7.3.2 XML Extensions to MathML❍

●

To be effective, MathML must work well with a wide variety of renderers, processors,
translators and editors. This chapter addresses some of the interface issues involved in
generating and rendering MathML. Since MathML exists primarily to encode mathematics in
Web documents, perhaps the most important interface issues are related to embedding MathML
in HTML.

There are three kinds of interface issues that arise in embedding MathML in HTML. First,
MathML must be semantically integrated into HTML. For example, there must be a mechanism
for browsers to recognize MathML markup as embedded content, and not as an HTML syntax
error. More generally, the semantic embedding of MathML in HTML is a special case of
embedding XML in HTML, which involves issues such as name space management, and
document validation.

Second, MathML rendering must be integrated into browser software. Until MathML is
rendered natively by browsers, rendering will typically be done by embedded elements.
However, to properly render mathematical notation in context in a Web document, improved
coordination between browsers and embedded elements will be necessary. For example,
embedded elements will need to be able to detect the ambient rendering environment, such as

baseline, font family and color scheme, and respond appropriately to reader input such as font
size changes. Support for printing is also essential.

Third, tools for generating MathML must be developed, including editors, translators, and
export capabilities in computer algebra systems, and other scientific software.. Since MathML
is designed to be powerful and flexible to accommodate a wide range of applications, while at
the same time remaining structured and explicit for easy processing, MathML expressions tend
to be lengthy, and prone to error when entered by hand. Therefore, special emphasis must be
given to insuring that MathML can be easily generated by user-friendly conversion and
authoring tools.

The W3C Math working group is committed to working with software vendors to develop a
wide range of equation editors and translation tools, and plans to continue to do so in the future.
In particular, the working group monitors the public www-math@w3.org mailing list, and will
attempt to provide support to software developers with questions about the MathML
specification. The working group also intends to try to stimulate the formation of MathML
developer and user groups. For current information about MathML tools, applications and user
support activities, consult the W3C Math home page.

7.1 Embedding MathML in HTML
MathML specifies a single top-level math element, which encapsulates each instance of
MathML markup within an HTML page. As such, the math element provides an attachment
point for information which affects a MathML expression as a whole. For example, the math
element is the logical place to attach style sheet or macro information in the future, when these
facilities become available for MathML.

Ideally, the math element should also serve as the interface for embedding MathML in HTML.
To function in this capacity, the math element would have to simultaneously signal the
semantic inclusion of MathML (XML) content in HTML, and provide the necessary machinery
for rendering its content in a browser either by invoking an embedded element, or by specifying
parameters for a native renderer in the browser. Both semantic inclusion and rendering present a
number of issues that extend beyond the boundaries of W3C Math. To a large extent, the issues
which arise for embedding MathML in HTML are the same as those for the more general
problem of embedding XML in HTML. Resolving these issues will require the efforts of a
number of World Wide Web Consortium Activities, including the HTML, XML, CSS and
DOM activities.

In order to produce a complete and self-contained description of MathML, this document only
specifies the attributes and usage of the math element as a top-level element for MathML, and
not as an interface element. The W3C Math working group intends to continue working closely
with other World Wide Web Consortium activities to insure that emerging standards for
embedding XML in HTML accommodate seamless integration of MathML in HTML. Section
7.1.2 lists requirements which an interface element for MathML would have to meet in order to

mailto:www-math@w3.org
http://www.w3.org/Math

fully integrate MathML into HTML. However, it is important to note that the MathML
specification is independent of the ultimate embedding mechanism.

7.1.1 The Top-Level math Element

As stated above, MathML specifies a single top-level math element. All other MathML content
must be contained in a math element; equivalently, every valid, complete MathML expression
must be contained in <math> tags. The math element must always be the outermost element in
a MathML expression; it is an error for one math element to contain another.

Applications which return subexpressions of other MathML expressions, for example as the
result of a cut-and-paste operation, should always wrap them in <math> tags. The presence of
enclosing <math> tags should be a reasonable heuristic test for MathML content. Similarly,
applications which insert MathML expressions in other MathML expressions must take care to
remove the <math> tags from the inner expressions.

The math element can contain an arbitrary number of children schemata. The children
schemata render by default as if they were contained in a mrow element.

The attributes of the math element are:

class="value"
style="value"

Provided for future Cascading Style Sheet compatibility.

macros="URL URL ..."

This attribute provides a way of pointing to external macro definition files. Macros are
not part of the MathML specification, but a macro mechanism is anticipated as a future
extension to MathML.

mode="display|inline"

The mode attribute specifies whether the enclosed MathML expression should be
rendered in a display style or an in-line style. The default is mode="inline".

7.1.2 Requirements for a MathML Browser Interface

The top-level math element described in the preceding section is concerned with encapsulating
MathML content and defining attributes which affect the entire enclosed expression. It is, in a
sense, "inward looking." However, to render MathML properly in a browser, and to integrate it
properly into an HTML document, an "outward looking" interface element is also required. This
interface element must be aware of its surrounding environment, and provide a mechanism for
passing information between the browser, and the MathML renderer.

As noted above, the MathML interface element and the MathML top-level element should
ideally be one and the same. The math element should not only serve to encapsulate MathML
content, it should signal the semantic embedding of MathML content to an HTML processor,
and admit additional attributes for controlling how the MathML renderer should interact with

the browser.

Since a general mechanism for embedding XML in HTML is anticipated in the near future
which may not be compatible with using the top-level math element for the interface element
as well, the remainder of this section describes attributes and functionality that a MathML
interface element should ultimately provide. In the near term, implementors attempting to
provide interim solutions for rendering MathML in browsers should try to give authors some
way of passing the following interface attributes to the renderer:

type="mime type"

The type attribute assigns a MIME type to the tag content. This attribute should ideally be
used to invoke an embedded element, such as a Java applet, plug-in or ActiveX control,
to render the tag content as described in the next section.

name="value"

Provided for scripting.

height=nn
width=nn
baseline=nn

Ideally, embedded elements will soon be able to dynamically negotiate height, width and
baseline alignment with browsers. However, these optional attributes are suggested as an
interim solution for software vendors that want to support MathML, but are unable to
provide dynamic resizing and alignment.

overflow="scroll|elide|truncate|scale"

In cases where size negotiation is not possible or fails (for example in the case of an
extremely long equation), this attribute is provided to suggest an alternative processing
method to the renderer.

scroll

The window provides a viewport into the larger complete display of the
mathematical expression. Horizontal or vertical scrollbars are added to the window
as necessary to allow the viewport to be moved to a different position.

elide

The display is abbreviated by removing enough of it so that the remainder fits into
the window. For example, a large polynomial might have the first and last terms
displayed with "+ ... +" between them. Advanced renderers may provide a facility
to zoom in on elided areas.

truncate

The display is abbreviated by simply truncating it at the right and bottom borders.
It is recommended that some indication of truncation is made to the viewer.

scale

The fonts used to display the mathematical expression are chosen so that the full
expression fits in the window. Note that this only happens if the expression is too

large. In the case of a window larger than necessary, the expression is shown at its
normal size within the larger window.

altimg=URL
alttext="value"

These attributes provide graceful fall-backs for browsers that do not support embedded
elements, or images respectively.

Attributes which apply to the MathML interface element necessarily take effect when the
document is first loaded, and therefore suffer the limitation that they cannot change in response
to reader interaction. The height and width attributes are good examples; if the reader changes
the current font size, the height and width of the embedded math fragments also need to change.
Therefore, in order to properly render MathML, an embedded element must be able to
communicate with the browser, and react to reader input.

At present, browser support for embedded elements is too limited to provide acceptable
rendering for MathML. The W3C Math working group is working closely with the Document
Object Model working group in an effort to provide better communication between embedded
MathML renderers and browsers. Some of the most needed improvements are:

Embedded elements must be able to determine the ambient style parameters, including
font characteristics, foreground and background colors, and link color schemes.
Embedded elements must also be able to align themselves to an arbitrary baseline, rather
than the existing top, middle, bottom alignment options.

●

Embedded elements must be able to detect and react to reader input. In particular,
embedded elements must be able to dynamically resize themselves when the ambient font
size changes.

●

Embedded elements must be able to print in context, and at high resolution.●

7.1.3 Invoking Embedded Objects as Renderers

Until MathML is natively supported by browsers, we anticipate that MathML rendering will be
carried out via embedded objects such as plug-ins, applets, or helper applications. In the near
term, the W3C Math working group advocates the use of MIME types to bind embedded
MathML to renderers. Mechanisms for assigning MIME types already exist in HTML, and
mechanisms for registering and automatically invoking embedded elements such as plug-ins
based on MIME type already exist in Web browsers.

The type attribute, described in the previous section as a requirement for the MathML interface
element, is intended to associate a MIME type with its content. The HTML element META is
proposed as a means of specifying document-wide default MIME types for an element.

We propose a simple MIME type naming convention which is flexible enough to accommodate
several common situations:

An author wishing to reach an as wide an audience as possible might like MathML to be
rendered by any available renderer.

●

An author targeting a specific audience might like indicate that a particular MathML be
used.

●

A reader might wish to specify which of several available renderers should be used.●

We propose that generic MathML be assigned the MIME type text/mathml, and for
browser registry, we suggest the standard file extension .mml be used. To invoke specific
renderers, we suggest assigning a MIME type of the following format:

text/mathml-renderer

Example:

A user downloads and installs renderer A, and registers it with the browser for the
text/mathml MIME type to process generic MathML. However renderer A also accepts
TeX as an input syntax, and therefore during the installation process, it requests to be registered
for application/x-tex as well. Later, the user discovers renderer B provides additional
features, such as cut and paste capability. Therefore, the user downloads, installs and registers
renderer B for the text/mathml-rendererB MIME type.

An author then creates a document that contains the the following line in the document header:

<META Content-math-Type="text/mathml">

Later, the document contains the following expressions:

<math>
 <msup><mi>x</mi><mn>2</mn></msup>
</math>

<math type="text/mathml-rendererB">
 <mi>α</mi><mo>=</mo><mn>0.4</mn>
</math>

When our hypothetical reader views this document, renderer A is invoked to process the first
expression, while renderer B is invoked for the second. Later, when our hypothetical reader
later views a document with MIME type application/x-tex, renderer A is again invoke,
this time in TeX processing mode.

7.1.4 Invoking Other Applications

Although rendering MathML expressions typically occurs in place in a Web browser, other
MathML processing functions take place more naturally in other applications. Particularly
common tasks include opening a MathML expression in an equation editor or computer algebra
system.

At present, there is no standard way of specifying that embedded content should be rendered
with one application, edited in another, and evaluated by a third. As work progresses on
coordination between browsers and embedded elements and the Document Object Model
(DOM), providing this kind of functionality should be a priority. Both authors and readers

should be able to indicate a preference about what MathML application to use in a given
context. For example, one might imagine that some mouse gesture over a MathML expression
would cause a browser to present the reader with a pop-up menu, showing the various kinds of
MathML processing available on the system, and the MathML processors recommended by the
author.

Since MathML will probably be widely generated by authoring tools, it is particularly important
that opening a MathML expression in an editor should be easy to do and to implement. In many
cases, it will be desirable for an authoring tool to record some information about its internal
state along with a MathML expression, so that an author can pick up editing where he or she
left off. The MathML specification does not explicitly contain provisions for recording
authoring tool information. In some circumstances, it may be possible to include authoring tool
information which applies to an entire document as meta data; interested readers are encouraged
to consult the W3C Metadata Activity for current information about metadata and resource
definition. For encoding authoring tool state information that applies to a particular MathML
instance, readers are referred to the possible use of the semantics element for this purpose.

7.1.5 Mixing and Linking MathML and HTML

In order to be fully integrated into HTML, it should be possible not only to embed MathML in
HTML, but also to embed HTML in MathML. However, the problem of supporting HTML in
MathML presents many difficulties. Moreover, the problems are not specific to MathML; they
are problems for XML applications in HTML generally. Therefore, at present, the MathML
specification does not permit any HTML elements within a MathML expression, although this
may be subject to change in a future revision of MathML, when.mechanisms for embedding
XML in HTML have been further developed.

In most cases, HTML elements either do not apply in mathematical contexts (headings,
paragraphs, lists, etc), or MathML already provides equivalent or better functionality
specifically tailored to mathematical content (tables, style changes, etc). However, there are two
notable exceptions.

Linking

MathML has no element which corresponds to the HTML anchor element a. In HTML, anchors
are used both to make links, and to provide locations to link to. MathML, as an XML
application, defines links by the use of the XML-LINK attribute. However, MathML at present
does not provide a way for other documents to make links into a MathML expression. One
reason for this omission is that linking into embedded XML content is better addressed as part
of a general mechanism for embedding XML in HTML. Moreover, until browsers either
natively implement MathML rendering, or substantially better coordination between embedded
elements and browsers becomes possible, there is no reasonable way of implementing links into
MathML expressions.

MathML linking elements are generic XML linking elements as described in the Extensible

http://www.w3.org/Metadata
http://www.w3.org/TR/WD-xml-link

Markup Language (XML): Part 2. Linking working draft. The reader is cautioned, however,
that this working draft is less mature than the XML syntax working draft, and is therefore more
subject to future revision. Since the MathML linking mechanism is defined in terms of the
XML linking specification, the same proviso holds for it as well.

A MathML element is designated as a link by the presence of the XML-LINK attribute. The
possible values for the this attribute are "simple", "extended", "locator", "group" and
"document". Although all of these values are valid, MathML renderers need only implement
"simple" XML links to be MathML compliant. How links are indicated to the reader is left to
the individual MathML processing application.

Elements which specify the value of the XML-LINK attribute as "simple" must also specify a
value for the HREF attribute. These two attributes fully specify a "simple" XML link. Thus, a
typical MathML link might look like:

<mrow XML-LINK="simple" HREF="http://www.w3.org"> ... </mrow>

MathML designates that almost all elements can be used as an XML linking element. The only
elements which cannot serve as linking elements are those such as the <sep/> element which
exist primarily to disambiguate other MathML constructs and in general do not correspond to
any part of a typical visual rendering. The full list of exceptional elements which cannot be used
as linking elements is given below in table 7.1.5.1.

<prescripts/> <none/> <sep/>

<power/> <malignmark/> <maligngroup/>

Table 7.1.5.1 MathML Elements Which Cannot Be Linking Elements

Images

The IMG element has no MathML equivalent. The decision to omit a general image inclusion
mechanism in MathML was based on several factors. First, a simple mechanism for including
images in MathML along the lines of the IMG element would not be more closely tied to
mathematical content or notation than the HTML IMG element itself. Therefore, such an
element would likely be superseded by the IMG element if it becomes possible to mix XML
and HTML generally.

Another reason for not providing an image facility is that MathML takes great pains to make the
notational structure and mathematical content it encodes easily available to processors while
information contained in images is only available to a human reader looking at a visual
representation. Thus, for example, in the MathML paradigm, it would be preferable to introduce
new glyphs by the creation of special symbol fonts, rather than simply including them as
images.

Finally, apart from the introduction of new glyphs, many of the situations where one might be
inclined to use an image amount to some sort of labeled diagram. For example, knot diagrams,

http://www.w3.org/TR/WD-xml-link

Venn diagrams, Dynkin diagrams, Feynman diagrams and complicated commutative diagrams
all fall into this category. As such, their content would be better encoded via some combination
of structured graphics and MathML markup. Because of the generality of the "labeled diagram"
construction, the definition of a markup language to encode such constructions extends beyond
the scope of the W3C Math activity. However, it may be possible to provide such functionality
in a future extension of MathML.

7.2 Generating, Processing and Rendering
MathML
Information is increasingly generated, processed and rendered by software tools. The
exponential growth of the Web is fueling the development of advanced systems for
automatically searching, categorizing, and interconnecting information. Thus, although
MathML can be written by hand and read by humans, the future of MathML is also tied to the
ability to process it with software tools.

Many different kinds of MathML editors, translators, processors and renderers will be
implemented. In addition to supporting the MathML core language, it is reasonable to assume
that some of these renderers will provide additional specialized capabilities. Consequently, it is
important to specify what one can and cannot expect from a generic MathML compliant
application, and in what ways MathML can be extended, or used to pass additional information
directly to specific application that can take advantage of it.

7.2.1 MathML Compliance

It is important to clearly specify what it means to be a MathML compliant processor. Specifying
MathML compliance serves two purposes. First, authors can be assured that their documents
will be generally accessible if they refrain from using proprietary extensions. Second, software
developers can be assured of the criteria for interoperability.

A well-formed MathML expression is a XML construct determined by the MathML DTD
together with the additional requirements given in the specifications of the MathML document.

We define a "MathML processor" to mean any application that can accept, produce, or
"roundtrip" a well-formed MathML expression. An example of an application that might
round-trip a MathML expression might be an editor that writes a new file even though no
modifications are made.

We specify three forms of MathML compliance:

A MathML-input-compliant processor must accept all well-formed MathML expressions.

For example a MathML-input-compliant validating parser which implements the
MathML specification returns a truth value. A MathML-input-compliant renderer
faithfully translates a MathML expression into application-specific form allowing native

1.

application operations to be performed.

A MathML-output-compliant processor must generate well-formed MathML.

An embedded MathML-output-compliant processor must return well-formed
MathML expressions when queried by the document object model API.

❍

In the case where cut-and-paste/drag-and-drop operations are implemented, a
MathML-output-compliant processor must return well-formed MathML
expressions.

❍

2.

A MathML-roundtrip-compliant processor must preserve MathML equivalence.3.

Two MathML expressions are "equivalent" if and only if both expressions have the same
interpretation (as stated by the MathML DTD and specification) under any circumstances, by
any MathML processor. Equivalence on an element-by-element basis is discussed elsewhere in
this document.

We note that being roundtrip-compliant may be very difficult for processors that convert
MathML input into an internal form that is structurally very different from the XML expression
model. The first generation of processors may very well be input-compliant and
output-compliant, but not roundtrip-compliant. Nevertheless, we expect roundtrip-compliant
processors to be eventually produced with the wide-spread acceptance of MathML.

Beyond the above, the MathML core specification makes no demands of individual processors.
However, in order to guide developers, the MathML specification includes advisory material;
for example, there are suggested rendering rules included in section 3. The remainder of this
section makes additional suggestions about a number of interface issues a MathML processor
should address in some fashion.

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements with
an illegal number or type of attributes or children schemata, it should nonetheless attempt to
render all the input in an intelligible way, i.e. to render normally those parts of the input which
were well-formed, and to render error messages (rendered as if enclosed in an <merror>
element) in place of ill-formed expressions.

MathML-output-compliant applications such as editors and translators may choose to generate
<merror> expressions to signal errors in their input. This is usually preferable to generating
well-formed, but possibly erroneous, MathML.

7.2.3 An Attribute for Unspecified Data

The MathML attributes described in the MathML specification are necessary for display and
content markup. Ideally, the MathML attributes should be an open-ended list so that users could
add specific attributes for specific renderers. However, this can't be done within the confines of
a single XML DTD. Although it can be done using extensions of the standard DTD, some

authors will wish to use nonstandard attributes while remaining strictly in compliance with the
standard DTD.

To allow this, this specification also allows the attribute other="..." for all elements, for use as a
hook to pass on renderer-specific information. In particular, it can be used as a hook for passing
information to audio renderers, computer algebra systems, and for pattern matching in any
future macro/extension mechanism. This idea is used in other languages. For example,
Postscript comments are widely used to pass information that is not part of Postscript.

At the same time, the intent of the other attribute is not to encourage software developers to use
this as a loophole for circumventing the MathML core markup conventions. We trust both
authors and applications will use the other attribute judiciously.

The value of the other attribute should be a string containing an attribute list in valid XML
format (i.e., attr1="val1" attr2="val2"; ..., with appropriate escaping of the double quotes).
Renderers which accept nonstandard attributes directly should also accept them when they
occur within the string value of the other attribute. This is not required for attributes
specifically documented by the MathML standard.

7.3 Future Extensions
MathML is in its infancy; it is to be expected that MathML will need to be extended and revised
in various ways. Some of these extensions can be easily foreseen; as noted repeatedly in this
chapter, the mechanisms for fully integrating MathML into HTML are not yet developed, and
these mechanisms may have a significant impact on some aspects of MathML

Similarly, there are several kinds of functionality that are fairly obvious candidates for future
MathML extensions. These include macros, style sheets, and perhaps a general "labeled
diagram" facility. However, there will also no doubt be other desirable extensions to MathML
which will only emerge as MathML is widely used. For these extensions, the W3C Math
working group relies on the extensible architecture of XML, and the common sense of the
larger Web community.

7.3.1 Macros and Style Sheets

The definition of a style sheet mechanism for XML is part of the ongoing XML activity at the
World Wide Web Consortium. Although it is too soon to say what this mechanism will
ultimately be like, it is likely that it will accommodate the needs of MathML. It is also possible
that such a style sheet mechanism will be sufficiently powerful to provide basic macro
capability as well.

Macros, however, play a very important and useful role in encoding mathematical content and
meaning. Moreover, it is difficult to devise a coherent, general macro system for MathML,
because there are so many distinct applications for MathML macros. Therefore, the W3C Math
working group plans to investigate the definition of a macro mechanism specifically tailored to

MathML, in addition to participating in general ongoing XML style sheet and macro facility
activities.

Some of the possible uses of MathML macros include:

Abbreviation: One common use of macros is for abbreviation. Authors needing to repeat
some complicated but constant notation can define a macro. This greatly facilitates hand
authoring. Macros that allow for substitution of parameters facilitate such usage even
further.

●

Extension of Content Markup: By defining macros for semantic objects, for example a
binomial coefficient, or a Bessel function, one can in effect extend the content markup for
MathML. Such a macro could include an explicit semantic binding, or such a binding
could be easily added by an external applications. Narrowly defined disciplines should be
able to easily introduce standardize content markup by using standard macro packages.
For example, the OpenMath project could release macro packages for attaching
OpenMath content markup up.

●

Rendering and Style Control: Another basic way in which macros are often used is to
provide a way of controlling style and rendering behavior by replacing high level macro
definitions. This is especially important for controlling the rendering behavior of HTML
Math content tags in a context sensitive way. Such a macroing capability is also
necessary to provide a way of attaching renderings to user defined XML extensions to the
MathML core.

●

Accessibility: Reader controlled style sheets are important in providing accessibility to
MathML. For example, a reader listening to a voice renderer might by default hear a bit
of MathML presentation markup read as "D sub x super 2 of f". Knowing the context to
be multivariable calculus, the reader may wish to use a style sheet or macro package
which instructs the renderer to render this <msubsup> element as "second derivative
with respect to x of f".

●

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for
rendering common math expressions. It is recognized that not all mathematical notation is
covered by this set of elements, that new notations are continually invented, and that
sub-communities within mathematics often have specialized notations; and furthermore that the
explicit extension of a standard is a necessarily slow and conservative process; this implies that
the MathML standard could never explicitly cover all the presentational forms used by every
sub-community of authors and readers of mathematics, much less encode all mathematical
content.

In order to facilitate the use of MathML by the widest possible audience, and to enable its
smooth evolution to encompass more notational forms and more mathematical content (perhaps
eventually covered by explicit extensions to the standard), the set of tags and attributes is
open-ended, in the sense described in this section.

MathML is described by an XML-compliant DTD, which necessarily limits the elements and
attributes to those which occur in the DTD. Renderers desiring to accept nonstandard elements
or attributes, and authors desiring to include these in documents, should accept or produce
documents which conform to an appropriately extended XML-compliant DTD which has the
standard MathML DTD as a subset.

MathML compliant renderers are allowed, but not required, to accept nonstandard elements and
attributes, and to render them in any way. If a renderer does not accept some or all nonstandard
tags, it is encouraged to either handle them as errors as described above for elements with the
wrong number of arguments, or to render their arguments as if they were arguments to an
mrow, in either case rendering all standard parts of the input normally.

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

Parsing MathML

MathML documents should be validated using the XML DTD below. Note in particular that the xml attribute
xml:space is not used, so whitespace characters in element content (ie. outside the presentation token elements
mi, mo, mn, mtext, mspace, mtext, ms , the content token elements ci, cn and annotation) are not significant.

If the MathML is parsed without a DTD (ie. as a well-formed XML fragment), it is the responsibility of the
processing application to treat these whitespace characters as not significant.

An SGML parser (such as nsgmls) can be used to validate MathML. In this case an SGML declaration defining
the constraints of XML applicable to an SGML parser must be used. See
http://www.w3.org/TR/NOTE-sgml-xml .

The MathML DTD
A zip file of the full DTD including entity declarations is provided for reference. Here we give the main body of
the DTD, without including the entity declarations. See Chapter 6 for a list of entity names ordered by name or
by unicode value.

<!-- Content model for content and presentation -->
<!-- and browser interface tags in MathML -->
<!-- initial draft 9.May.1997 syntax = XML -->
<!-- author = s.buswell sb@stilo.demon.co.uk -->
<!-- -->
<!-- revised 14.May.1997 by Robert Miner -->
<!-- revised 29.June.1997 and 2.July.1997 by s.buswell -->
<!-- -->
<!-- revised 15.December.1997 by s.buswell -->
<!-- revised 8.February.1998 by s.buswell -->
<!-- revised 4.april.1998 by s.buswell -->
<!-- 21.February.1999 entities and small revisions by d.carlisle -->
<!-- -->
<!-- W3C Recommendation 7 April 1998 -->
<!-- *** -->

<!-- general attribute definitions for class & style & id & other -->
<!-- : attributes shared by all mathml elements -->

<!ENTITY % att-globalatts 'class CDATA #IMPLIED
 style CDATA #IMPLIED
 id ID #IMPLIED
 other CDATA #IMPLIED' >

<!-- *** -->
<!-- Presentation element set -->

http://www.w3.org/TR/NOTE-sgml-xml
http://www.w3.org/1999/07/REC-MathML-19990707/mmlents.zip
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/byalpha.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap6/bycodes.html

<!-- presentation attribute definitions -->

<!ENTITY % att-fontsize 'fontsize CDATA #IMPLIED' >
<!ENTITY % att-fontweight 'fontweight (normal | bold) #IMPLIED' >
<!ENTITY % att-fontstyle 'fontstyle (normal | italic) #IMPLIED' >
<!ENTITY % att-fontfamily 'fontfamily CDATA #IMPLIED' >
<!ENTITY % att-color 'color CDATA #IMPLIED' >

<!ENTITY % att-fontinfo '%att-fontsize;
 %att-fontweight;
 %att-fontstyle;
 %att-fontfamily;
 %att-color;' >

<!ENTITY % att-form 'form (prefix | infix | postfix) #IMPLIED' >
<!ENTITY % att-fence 'fence (true | false) #IMPLIED' >
<!ENTITY % att-separator 'separator (true | false) #IMPLIED' >
<!ENTITY % att-lspace 'lspace CDATA #IMPLIED' >
<!ENTITY % att-rspace 'rspace CDATA #IMPLIED' >
<!ENTITY % att-stretchy 'stretchy (true | false) #IMPLIED' >
<!ENTITY % att-symmetric 'symmetric (true | false) #IMPLIED' >
<!ENTITY % att-maxsize 'maxsize CDATA #IMPLIED' >
<!ENTITY % att-minsize 'minsize CDATA #IMPLIED' >
<!ENTITY % att-largeop 'largeop (true | false) #IMPLIED' >
<!ENTITY % att-movablelimits 'movablelimits (true | false)
#IMPLIED' >
<!ENTITY % att-accent 'accent (true | false) #IMPLIED'>

<!ENTITY % att-opinfo '%att-form;
 %att-fence;
 %att-separator;
 %att-lspace;
 %att-rspace;
 %att-stretchy;
 %att-symmetric;
 %att-maxsize;
 %att-minsize;
 %att-largeop;
 %att-movablelimits;
 %att-accent;' >

<!ENTITY % att-width 'width CDATA #IMPLIED' >
<!ENTITY % att-height 'height CDATA #IMPLIED' >
<!ENTITY % att-depth 'depth CDATA #IMPLIED' >

<!ENTITY % att-sizeinfo '%att-width;
 %att-height;
 %att-depth;' >

<!ENTITY % att-lquote 'lquote CDATA #IMPLIED' >
<!ENTITY % att-rquote 'rquote CDATA #IMPLIED' >

<!ENTITY % att-linethickness 'linethickness CDATA #IMPLIED' >

<!ENTITY % att-scriptlevel 'scriptlevel CDATA #IMPLIED'>
<!ENTITY % att-displaystyle 'displaystyle (true | false)
#IMPLIED'>
<!ENTITY % att-scriptsizemultiplier 'scriptsizemultiplier CDATA
#IMPLIED' >
<!ENTITY % att-scriptminsize 'scriptminsize CDATA #IMPLIED'>
<!ENTITY % att-background 'background CDATA #IMPLIED' >

<!ENTITY % att-open 'open CDATA #IMPLIED' >
<!ENTITY % att-close 'close CDATA #IMPLIED' >
<!ENTITY % att-separators 'separators CDATA #IMPLIED' >

<!ENTITY % att-subscriptshift 'subscriptshift CDATA #IMPLIED'>
<!ENTITY % att-superscriptshift 'superscriptshift CDATA #IMPLIED' >

<!ENTITY % att-accentunder 'accentunder (true | false)
#IMPLIED'>

<!ENTITY % att-align 'align CDATA #IMPLIED' >
<!ENTITY % att-rowalign 'rowalign CDATA #IMPLIED' >
<!ENTITY % att-columnalign 'columnalign CDATA #IMPLIED' >
<!ENTITY % att-groupalign 'groupalign CDATA #IMPLIED' >
<!ENTITY % att-alignmentscope 'alignmentscope CDATA #IMPLIED' >

<!ENTITY % att-rowspacing 'rowspacing CDATA #IMPLIED' >
<!ENTITY % att-columnspacing 'columnspacing CDATA #IMPLIED' >
<!ENTITY % att-rowlines 'rowlines CDATA #IMPLIED' >
<!ENTITY % att-columnlines 'columnlines CDATA #IMPLIED' >
<!ENTITY % att-frame 'frame (none | solid | dashed)
#IMPLIED' >
<!ENTITY % att-framespacing 'framespacing CDATA #IMPLIED' >
<!ENTITY % att-equalrows 'equalrows CDATA #IMPLIED' >
<!ENTITY % att-equalcolumns 'equalcolumns CDATA #IMPLIED' >

<!ENTITY % att-tableinfo '%att-align;
 %att-rowalign;
 %att-columnalign;
 %att-groupalign;
 %att-alignmentscope;
 %att-rowspacing;
 %att-columnspacing;
 %att-rowlines;
 %att-columnlines;
 %att-frame;
 %att-framespacing;
 %att-equalrows;
 %att-equalcolumns;
 %att-displaystyle;' >

<!ENTITY % att-rowspan 'rowspan CDATA #IMPLIED' >
<!ENTITY % att-columnspan 'columnspan CDATA #IMPLIED' >

<!ENTITY % att-edge 'edge (left | right) #IMPLIED ' >

<!ENTITY % att-actiontype 'actiontype CDATA #IMPLIED' >
<!ENTITY % att-selection 'selection CDATA #IMPLIED ' >

<!-- presentation token schemata with content-->

<!ENTITY % ptoken "mi | mn | mo | mtext | ms" >

<!ATTLIST mi %att-fontinfo;
 %att-globalatts; >

<!ATTLIST mn %att-fontinfo;
 %att-globalatts; >

<!ATTLIST mo %att-fontinfo;
 %att-opinfo;
 %att-globalatts; >

<!ATTLIST mtext %att-fontinfo;
 %att-globalatts; >

<!ATTLIST ms %att-fontinfo;
 %att-lquote;
 %att-rquote;
 %att-globalatts; >

<!-- empty presentation token schemata -->

<!ENTITY % petoken "mspace" >
<!ELEMENT mspace EMPTY >

<!ATTLIST mspace %att-sizeinfo;
 %att-globalatts; >

<!-- presentation general layout schemata -->

<!ENTITY % pgenschema "mrow|mfrac|msqrt|mroot|
 mstyle|merror|mpadded| mphantom|mfenced" >

<!ATTLIST mrow %att-globalatts; >

<!ATTLIST mfrac %att-linethickness;
 %att-globalatts; >

<!ATTLIST msqrt %att-globalatts; >

<!ATTLIST mroot %att-globalatts; >

<!ATTLIST mstyle %att-fontinfo;
 %att-opinfo;
 %att-lquote;
 %att-rquote;
 %att-linethickness;
 %att-scriptlevel;
 %att-scriptsizemultiplier;
 %att-scriptminsize;
 %att-background;
 %att-open;
 %att-close;
 %att-separators;
 %att-subscriptshift;
 %att-superscriptshift;
 %att-accentunder;
 %att-tableinfo;
 %att-rowspan;
 %att-columnspan;
 %att-edge;
 %att-actiontype;
 %att-selection;
 %att-globalatts; >

<!ATTLIST merror %att-globalatts; >

<!ATTLIST mpadded %att-sizeinfo;
 %att-lspace;
 %att-globalatts; >

<!ATTLIST mphantom %att-globalatts; >

<!ATTLIST mfenced %att-open;
 %att-close;
 %att-separators;
 %att-globalatts; >

<!-- presentation layout schemata : scripts and limits -->

<!ENTITY % pscrschema "msub|msup|msubsup|
 munder|mover|munderover|mmultiscripts" >

<!ATTLIST msub %att-subscriptshift;
 %att-globalatts; >

<!ATTLIST msup %att-superscriptshift;
 %att-globalatts; >

<!ATTLIST msubsup %att-subscriptshift;
 %att-superscriptshift;

 %att-globalatts; >

<!ATTLIST munder %att-accentunder;
 %att-globalatts; >

<!ATTLIST mover %att-accent;
 %att-globalatts; >

<!ATTLIST munderover %att-accent;
 %att-accentunder;
 %att-globalatts; >

<!ATTLIST mmultiscripts
 %att-subscriptshift;
 %att-superscriptshift;
 %att-globalatts; >

<!-- presentation layout schemata: script empty elements -->

<!ENTITY % pscreschema "mprescripts|none" >

<!ELEMENT mprescripts EMPTY >
<!ATTLIST mprescripts %att-globalatts; >

<!ELEMENT none EMPTY >
<!ATTLIST none %att-globalatts; >

<!-- presentation layout schemata: tables -->

<!ENTITY % ptabschema "mtable|mtr|mtd" >

<!ATTLIST mtable %att-tableinfo;
 %att-globalatts; >

<!ATTLIST mtr %att-rowalign;
 %att-columnalign;
 %att-groupalign;
 %att-globalatts; >

<!ATTLIST mtd %att-rowalign;
 %att-columnalign;
 %att-groupalign;
 %att-rowspan;
 %att-columnspan;
 %att-globalatts; >

<!ENTITY % plschema "%pgenschema;|%pscrschema;|%ptabschema;" >

<!-- empty presentation layout schemata -->

<!ENTITY % peschema "maligngroup | malignmark" >

<!ELEMENT malignmark EMPTY >

<!ATTLIST malignmark %att-edge;
 %att-globalatts; >

<!ELEMENT maligngroup EMPTY >
<!ATTLIST maligngroup %att-groupalign;
 %att-globalatts; >

<!-- presentation action schemata -->

<!ENTITY % pactions "maction" >
<!ATTLIST maction %att-actiontype;
 %att-selection;
 %att-globalatts; >

<!-- Presentation entity for substitution into content tag constructs -->
<!-- excludes elements which are not valid as expressions -->

<!ENTITY % PresInCont "%ptoken; | %petoken; |
 %plschema; | %peschema; | %pactions;">

<!-- Presentation entity - all presentation constructs -->

<!ENTITY % Presentation "%ptoken; | %petoken; | %pscreschema; |
 %plschema; | %peschema; | %pactions;">

<!-- *** -->
<!-- Content element set -->
<!-- attribute definitions -->

<!ENTITY % att-base 'base CDATA "10"' >
<!ENTITY % att-closure 'closure CDATA "closed"' >
<!ENTITY % att-definition 'definitionURL CDATA ""' >
<!ENTITY % att-encoding 'encoding CDATA ""' >
<!ENTITY % att-nargs 'nargs CDATA "1"' >
<!ENTITY % att-occurrence 'occurrence CDATA "function-model"' >
<!ENTITY % att-order 'order CDATA "numeric"' >
<!ENTITY % att-scope 'scope CDATA "local"' >
<!ENTITY % att-type 'type CDATA #IMPLIED' >

<!-- content leaf token elements -->

<!ENTITY % ctoken "ci | cn" >

<!ATTLIST ci %att-type;
 %att-globalatts; >

<!ATTLIST cn %att-type;
 %att-base;

 %att-globalatts; >

<!-- content elements - specials -->

<!ENTITY % cspecial "apply | reln | lambda" >

<!ATTLIST apply %att-globalatts; >

<!ATTLIST reln %att-globalatts; >

<!ATTLIST lambda %att-globalatts; >

<!-- content elements - others -->

<!ENTITY % cother "condition | declare | sep" >

<!ATTLIST condition %att-globalatts; >

<!ATTLIST declare %att-type;
 %att-scope;
 %att-nargs;
 %att-occurrence;
 %att-definition;
 %att-globalatts; >

<!ELEMENT sep EMPTY >
<!ATTLIST sep %att-globalatts; >

<!-- content elements - semantic mapping -->

<!ENTITY % csemantics "semantics | annotation | annotation-xml" >

<!ATTLIST semantics %att-definition;
 %att-globalatts; >

<!ATTLIST annotation %att-encoding;
 %att-globalatts; >

<!ATTLIST annotation-xml %att-encoding;
 %att-globalatts; >

<!-- content elements - constructors -->

<!ENTITY % cconstructor "interval | list | matrix | matrixrow | set |
vector" >

<!ATTLIST interval %att-closure;
 %att-globalatts; >

<!ATTLIST set %att-globalatts; >

<!ATTLIST list %att-order;
 %att-globalatts; >

<!ATTLIST vector %att-globalatts; >

<!ATTLIST matrix %att-globalatts; >

<!ATTLIST matrixrow %att-globalatts; >

<!-- content elements - operators -->

<!ENTITY % cfuncop1ary "inverse | ident " >

<!ELEMENT inverse EMPTY >
<!ATTLIST inverse %att-definition;
 %att-globalatts; >

<!ENTITY % cfuncopnary "fn | compose" >

<!ATTLIST fn %att-definition;
 %att-globalatts; >

<!ELEMENT ident EMPTY >
<!ATTLIST ident %att-definition;
 %att-globalatts; >

<!ELEMENT compose EMPTY >
<!ATTLIST compose %att-definition;
 %att-globalatts; >

<!ENTITY % carithop1ary "abs | conjugate | exp | factorial" >

<!ELEMENT exp EMPTY >
<!ATTLIST exp %att-definition;
 %att-globalatts; >

<!ELEMENT abs EMPTY >
<!ATTLIST abs %att-definition;
 %att-globalatts; >

<!ELEMENT conjugate EMPTY >
<!ATTLIST conjugate %att-definition;
 %att-globalatts; >

<!ELEMENT factorial EMPTY >
<!ATTLIST factorial %att-definition;
 %att-globalatts; >

<!ENTITY % carithop1or2ary "minus" >

<!ELEMENT minus EMPTY >

<!ATTLIST minus %att-definition;
 %att-globalatts; >

<!ENTITY % carithop2ary "quotient | divide | power | rem" >

<!ELEMENT quotient EMPTY >
<!ATTLIST quotient %att-definition;
 %att-globalatts; >

<!ELEMENT divide EMPTY >
<!ATTLIST divide %att-definition;
 %att-globalatts; >

<!ELEMENT power EMPTY >
<!ATTLIST power %att-definition;
 %att-globalatts; >

<!ELEMENT rem EMPTY >
<!ATTLIST rem %att-definition;
 %att-globalatts; >

<!ENTITY % carithopnary "plus | times | max | min | gcd" >

<!ELEMENT plus EMPTY >
<!ATTLIST plus %att-definition;
 %att-globalatts; >

<!ELEMENT max EMPTY >
<!ATTLIST max %att-definition;
 %att-globalatts; >

<!ELEMENT min EMPTY >
<!ATTLIST min %att-definition;
 %att-globalatts; >

<!ELEMENT times EMPTY >
<!ATTLIST times %att-definition;
 %att-globalatts; >

<!ELEMENT gcd EMPTY >
<!ATTLIST gcd %att-definition;
 %att-globalatts; >

<!ENTITY % carithoproot "root" >

<!ELEMENT root EMPTY >
<!ATTLIST root %att-definition;
 %att-globalatts; >

<!ENTITY % clogicopquant "exists | forall" >

<!ELEMENT exists EMPTY >
<!ATTLIST exists %att-definition;
 %att-globalatts; >

<!ELEMENT forall EMPTY >
<!ATTLIST forall %att-definition;
 %att-globalatts; >

<!ENTITY % clogicopnary "and | or | xor" >

<!ELEMENT and EMPTY >
<!ATTLIST and %att-definition;
 %att-globalatts; >

<!ELEMENT or EMPTY >
<!ATTLIST or %att-definition;
 %att-globalatts; >

<!ELEMENT xor EMPTY >
<!ATTLIST xor %att-definition;
 %att-globalatts; >

<!ENTITY % clogicop1ary "not" >

<!ELEMENT not EMPTY >
<!ATTLIST not %att-definition;
 %att-globalatts; >

<!ENTITY % clogicop2ary "implies" >

<!ELEMENT implies EMPTY >
<!ATTLIST implies %att-definition;
 %att-globalatts; >

<!ENTITY % ccalcop "log | int | diff | partialdiff" >

<!ELEMENT log EMPTY >
<!ATTLIST log %att-definition;
 %att-globalatts; >

<!ELEMENT int EMPTY >
<!ATTLIST int %att-definition;
 %att-globalatts; >

<!ELEMENT diff EMPTY >
<!ATTLIST diff %att-definition;
 %att-globalatts; >

<!ELEMENT partialdiff EMPTY >
<!ATTLIST partialdiff %att-definition;
 %att-globalatts; >

<!ENTITY % ccalcop1ary "ln" >

<!ELEMENT ln EMPTY >
<!ATTLIST ln %att-definition;
 %att-globalatts; >

<!ENTITY % csetop2ary "setdiff" >

<!ELEMENT setdiff EMPTY >
<!ATTLIST setdiff %att-definition;
 %att-globalatts; >

<!ENTITY % csetopnary "union | intersect" >

<!ELEMENT union EMPTY >
<!ATTLIST union %att-definition;
 %att-globalatts; >

<!ELEMENT intersect EMPTY >
<!ATTLIST intersect %att-definition;
 %att-globalatts; >

<!ENTITY % cseqop "sum | product | limit" >

<!ELEMENT sum EMPTY >
<!ATTLIST sum %att-definition;
 %att-globalatts; >

<!ELEMENT product EMPTY >
<!ATTLIST product %att-definition;
 %att-globalatts; >

<!ELEMENT limit EMPTY >
<!ATTLIST limit %att-definition;
 %att-globalatts; >

<!ENTITY % ctrigop "sin | cos | tan | sec | csc | cot | sinh
 | cosh | tanh | sech | csch | coth
 | arcsin | arccos | arctan" >

<!ELEMENT sin EMPTY >
<!ATTLIST sin %att-definition;
 %att-globalatts; >

<!ELEMENT cos EMPTY >
<!ATTLIST cos %att-definition;
 %att-globalatts; >

<!ELEMENT tan EMPTY >
<!ATTLIST tan %att-definition;

 %att-globalatts; >

<!ELEMENT sec EMPTY >
<!ATTLIST sec %att-definition;
 %att-globalatts; >

<!ELEMENT csc EMPTY >
<!ATTLIST csc %att-definition;
 %att-globalatts; >

<!ELEMENT cot EMPTY >
<!ATTLIST cot %att-definition;
 %att-globalatts; >

<!ELEMENT sinh EMPTY >
<!ATTLIST sinh %att-definition;
 %att-globalatts; >

<!ELEMENT cosh EMPTY >
<!ATTLIST cosh %att-definition;
 %att-globalatts; >

<!ELEMENT tanh EMPTY >
<!ATTLIST tanh %att-definition;
 %att-globalatts; >

<!ELEMENT sech EMPTY >
<!ATTLIST sech %att-definition;
 %att-globalatts; >

<!ELEMENT csch EMPTY >
<!ATTLIST csch %att-definition;
 %att-globalatts; >

<!ELEMENT coth EMPTY >
<!ATTLIST coth %att-definition;
 %att-globalatts; >

<!ELEMENT arcsin EMPTY >
<!ATTLIST arcsin %att-definition;
 %att-globalatts; >

<!ELEMENT arccos EMPTY >
<!ATTLIST arccos %att-definition;
 %att-globalatts; >

<!ELEMENT arctan EMPTY >
<!ATTLIST arctan %att-definition;
 %att-globalatts; >

<!ENTITY % cstatopnary "mean | sdev | variance | median | mode" >

<!ELEMENT mean EMPTY >
<!ATTLIST mean %att-definition;
 %att-globalatts; >

<!ELEMENT sdev EMPTY >
<!ATTLIST sdev %att-definition;
 %att-globalatts; >

<!ELEMENT variance EMPTY >
<!ATTLIST variance %att-definition;
 %att-globalatts; >

<!ELEMENT median EMPTY >
<!ATTLIST median %att-definition;
 %att-globalatts; >

<!ELEMENT mode EMPTY >
<!ATTLIST mode %att-definition;
 %att-globalatts; >

<!ENTITY % cstatopmoment "moment" >

<!ELEMENT moment EMPTY >
<!ATTLIST moment %att-definition;
 %att-globalatts; >

<!ENTITY % clalgop1ary "determinant | transpose" >

<!ELEMENT determinant EMPTY >
<!ATTLIST determinant %att-definition;
 %att-globalatts; >

<!ELEMENT transpose EMPTY >
<!ATTLIST transpose %att-definition;
 %att-globalatts; >

<!ENTITY % clalgopnary "selector" >

<!ELEMENT selector EMPTY >
<!ATTLIST selector %att-definition;
 %att-globalatts; >

<!-- content elements - relations -->

<!ENTITY % cgenrel2ary "neq" >

<!ELEMENT neq EMPTY >
<!ATTLIST neq %att-definition;
 %att-globalatts; >

<!ENTITY % cgenrelnary "eq | leq | lt | geq | gt" >

<!ELEMENT eq EMPTY >
<!ATTLIST eq %att-definition;
 %att-globalatts; >

<!ELEMENT gt EMPTY >
<!ATTLIST gt %att-definition;
 %att-globalatts; >

<!ELEMENT lt EMPTY >
<!ATTLIST lt %att-definition;
 %att-globalatts; >

<!ELEMENT geq EMPTY >
<!ATTLIST geq %att-definition;
 %att-globalatts; >

<!ELEMENT leq EMPTY >
<!ATTLIST leq %att-definition;
 %att-globalatts; >

<!ENTITY % csetrel2ary "in | notin | notsubset | notprsubset" >

<!ELEMENT in EMPTY >
<!ATTLIST in %att-definition;
 %att-globalatts; >

<!ELEMENT notin EMPTY >
<!ATTLIST notin %att-definition;
 %att-globalatts; >

<!ELEMENT notsubset EMPTY >
<!ATTLIST notsubset %att-definition;
 %att-globalatts; >

<!ELEMENT notprsubset EMPTY >
<!ATTLIST notprsubset %att-definition;
 %att-globalatts; >

<!ENTITY % csetrelnary "subset | prsubset" >

<!ELEMENT subset EMPTY >
<!ATTLIST subset %att-definition;
 %att-globalatts; >

<!ELEMENT prsubset EMPTY >
<!ATTLIST prsubset %att-definition;
 %att-globalatts; >

<!ENTITY % cseqrel2ary "tendsto" >

<!ELEMENT tendsto EMPTY >
<!ATTLIST tendsto %att-definition;
 %att-type;
 %att-globalatts; >

<!-- content elements - quantifiers -->

<!ENTITY % cquantifier "lowlimit | uplimit | bvar | degree | logbase" >

<!ATTLIST lowlimit %att-globalatts; >

<!ATTLIST uplimit %att-globalatts; >

<!ATTLIST bvar %att-globalatts; >

<!ATTLIST degree %att-globalatts; >

<!ATTLIST logbase %att-globalatts; >

<!-- operator groups -->

<!ENTITY % cop1ary "%cfuncop1ary; | %carithop1ary; | %clogicop1ary;
 | %ccalcop1ary; | %ctrigop; | %clalgop1ary; " >

<!ENTITY % cop2ary "%carithop2ary; | %clogicop2ary;| %csetop2ary; " >

<!ENTITY % copnary "%cfuncopnary; | %carithopnary; | %clogicopnary;
 | %csetopnary; | %cstatopnary; | %clalgopnary; " >

<!ENTITY % copmisc "%carithoproot; | %carithop1or2ary; | %ccalcop;
 | %cseqop; | %cstatopmoment; | %clogicopquant;" >

<!-- relation groups -->

<!ENTITY % crel2ary "%cgenrel2ary; | %csetrel2ary; | %cseqrel2ary; " >

<!ENTITY % crelnary "%cgenrelnary; | %csetrelnary;" >

<!-- content constructs - all -->

<!ENTITY % Content "%ctoken; | %cspecial; | %cother; | %csemantics;
 |%cconstructor; | %cquantifier;
 |%cop1ary; |%cop2ary; |%copnary; |%copmisc;
 |%crel2ary; |%crelnary;" >

<!-- content constructs for substitution in presentation structures -->

<!ENTITY % ContInPres "ci | cn | apply | fn | lambda | reln
 | interval | list | matrix |matrixrow
 | set | vector | semantics" > <!--dpc-->

<!-- *** -->

<!-- recursive definition for content of expressions -->
<!-- include presentation tag constructs at lowest level -->
<!-- so presentation layout schemata hold presentation or Content -->
<!-- include Content tag constructs at lowest level -->
<!-- so Content tokens hold PCDATA or Presentation at leaf level -->
<!-- (for permitted substitutable elements in context) -->

<!ENTITY % ContentExpression "(%Content; | %PresInCont;)* " >
<!ENTITY % PresExpression "(%Presentation; | %ContInPres;)* " >
<!ENTITY % MathExpression "(%PresInCont; | %ContInPres;)* " >

<!-- content token elements (may hold embedded presentation constructs)
-->

<!ELEMENT ci (#PCDATA | %PresInCont;)* >
<!ELEMENT cn (#PCDATA | sep | %PresInCont;)* >

<!-- content special elements -->

<!ELEMENT apply (%ContentExpression;) >
<!ELEMENT reln (%ContentExpression;) >
<!ELEMENT lambda (%ContentExpression;) >

<!-- content other elements -->

<!ELEMENT condition (%ContentExpression;) >
<!ELEMENT declare (%ContentExpression;) >

<!-- content semantics elements -->

<!ELEMENT semantics (%ContentExpression;) >
<!ELEMENT annotation (#PCDATA) >
<!ELEMENT annotation-xml (%ContentExpression;) >

<!-- content constructor elements -->

<!ELEMENT interval (%ContentExpression;) >
<!ELEMENT set (%ContentExpression;) >
<!ELEMENT list (%ContentExpression;) >
<!ELEMENT vector (%ContentExpression;) >
<!ELEMENT matrix (%ContentExpression;) >
<!ELEMENT matrixrow (%ContentExpression;) >

<!-- content operator element (user-defined) -->

<!ELEMENT fn (%ContentExpression;) >

<!-- content quantifier elements -->

<!ELEMENT lowlimit (%ContentExpression;) >
<!ELEMENT uplimit (%ContentExpression;) >
<!ELEMENT bvar (%ContentExpression;) >
<!ELEMENT degree (%ContentExpression;) >
<!ELEMENT logbase (%ContentExpression;) >

<!-- *** -->
<!-- presentation layout schema contain tokens, layout and content
schema -->

<!ELEMENT mstyle (%PresExpression;) >
<!ELEMENT merror (%PresExpression;) >
<!ELEMENT mphantom (%PresExpression;) >
<!ELEMENT mrow (%PresExpression;) >
<!ELEMENT mfrac (%PresExpression;) >
<!ELEMENT msqrt (%PresExpression;) >
<!ELEMENT mroot (%PresExpression;) >
<!ELEMENT msub (%PresExpression;) >
<!ELEMENT msup (%PresExpression;) >
<!ELEMENT msubsup (%PresExpression;) >
<!ELEMENT mmultiscripts (%PresExpression;) >
<!ELEMENT munder (%PresExpression;) >
<!ELEMENT mover (%PresExpression;) >
<!ELEMENT munderover (%PresExpression;) >
<!ELEMENT mtable (%PresExpression;) >
<!ELEMENT mtr (%PresExpression;) >
<!ELEMENT mtd (%PresExpression;) >
<!ELEMENT maction (%PresExpression;) >
<!ELEMENT mfenced (%PresExpression;) >
<!ELEMENT mpadded (%PresExpression;) >

<!-- presentation tokens contain PCDATA or malignmark constructs -->

<!ELEMENT mi (#PCDATA | malignmark)* >
<!ELEMENT mn (#PCDATA | malignmark)* >
<!ELEMENT mo (#PCDATA | malignmark)* >
<!ELEMENT mtext (#PCDATA | malignmark)* >
<!ELEMENT ms (#PCDATA | malignmark)* >

<!-- *** -->
<!-- browser interface definition -->

<!-- attributes for top level math element -->

<!ENTITY % att-macros 'macros CDATA #IMPLIED' >
<!ENTITY % att-mode 'mode CDATA #IMPLIED' >

<!ENTITY % att-topinfo '%att-globalatts;
 %att-macros;
 %att-mode;' >

<!-- attributes for browser interface element element -->

<!ENTITY % att-name 'name CDATA #IMPLIED' >
<!ENTITY % att-baseline 'baseline CDATA #IMPLIED' >
<!ENTITY % att-overflow 'overflow
(scroll|elide|truncate|scale) "scroll"' >
<!ENTITY % att-altimg 'altimg CDATA #IMPLIED' >
<!ENTITY % att-alttext 'alttext CDATA #IMPLIED' >

<!ENTITY % att-browif '%att-type;
 %att-name;
 %att-height;
 %att-width;
 %att-baseline;
 %att-overflow;
 %att-altimg;
 %att-alttext; ' >

<!-- the top level math element -->
<!-- math contains MathML encoded mathematics -->
<!-- math has the browser info attributes iff it is the
 browser interface element also -->

<!ELEMENT math (%MathExpression;) >

<!ATTLIST math %att-topinfo;
 %att-browif; >

<!-- ENTITY sets -->

<!-- ISO 9573-13 -->

<!ENTITY % ent-isoamsa SYSTEM "isoamsa.ent" >
%ent-isoamsa;

<!ENTITY % ent-isoamsb SYSTEM "isoamsb.ent" >
%ent-isoamsb;

<!ENTITY % ent-isoamsc SYSTEM "isoamsc.ent" >
%ent-isoamsc;

<!ENTITY % ent-isoamsn SYSTEM "isoamsn.ent" >
%ent-isoamsn;

<!ENTITY % ent-isoamso SYSTEM "isoamso.ent" >
%ent-isoamso;

<!ENTITY % ent-isoamsr SYSTEM "isoamsr.ent" >
%ent-isoamsr;

<!ENTITY % ent-isogrk3 SYSTEM "isogrk3.ent" >
%ent-isogrk3;

<!ENTITY % ent-isogrk4 SYSTEM "isogrk4.ent" >
%ent-isogrk4;

<!ENTITY % ent-isomfrk SYSTEM "isomfrk.ent" >
%ent-isomfrk;

<!ENTITY % ent-isomopf SYSTEM "isomopf.ent" >
%ent-isomopf;

<!ENTITY % ent-isomscr SYSTEM "isomscr.ent" >
%ent-isomscr;

<!ENTITY % ent-isotech SYSTEM "isotech.ent" >
%ent-isotech;

<!-- ISO 8879 -->

<!ENTITY % ent-isobox SYSTEM "isobox.ent" >
%ent-isobox;

<!ENTITY % ent-isocyr1 SYSTEM "isocyr1.ent" >
%ent-isocyr1;

<!ENTITY % ent-isocyr2 SYSTEM "isocyr2.ent" >
%ent-isocyr2;

<!ENTITY % ent-isodia SYSTEM "isodia.ent" >
%ent-isodia;

<!ENTITY % ent-isogrk1 SYSTEM "isogrk1.ent" >
%ent-isogrk1;

<!ENTITY % ent-isogrk2 SYSTEM "isogrk2.ent" >
%ent-isogrk2;

<!ENTITY % ent-isolat1 SYSTEM "isolat1.ent" >
%ent-isolat1;

<!ENTITY % ent-isolat2 SYSTEM "isolat2.ent" >
%ent-isolat2;

<!ENTITY % ent-isonum SYSTEM "isonum.ent" >
%ent-isonum;

<!ENTITY % ent-isopub SYSTEM "isopub.ent" >

%ent-isopub;

<!-- MathML aliases for characters defined above -->

<!ENTITY % ent-mmlalias SYSTEM "mmlalias.ent" >
%ent-mmlalias;

<!-- MathML new characters -->

<!ENTITY % ent-mmlextra SYSTEM "mmlextra.ent" >
%ent-mmlextra;

<!-- end of ENTITY sets -->
<!-- end of DTD fragment -->
<!-- *** -->

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

Glossary
Argument
A child of a presentation layout schema. That is, "A is an argument of B" means "A is a child of
B and B is a presentation layout schema". Thus, token elements have no arguments, even if they
have children (which can only be <malignmark/>).

Attribute
A parameter used to specify some property of an SGML or XML element type. It is defined in
terms of an attribute name, attribute type, and a default value. A value may be specified for it on
a start-tag for that element type.

Axis
The axis is an imaginary alignment line upon which a fraction line is centered. Often, characters
that can stretch such as parenthesis, brackets, braces, summation signs, etc., and operators are
centered on the axis and are symmetric with respect to it.

Baseline
The baseline is an imaginary alignment line upon which a glyph without a descender rests. The
baseline is an intrinsic property of the glyph (namely a horizontal line). Often baselines are
aligned (joined) during typesetting.

Black box
The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or
expression.

Bounding box
The rectangular box of smallest size, taking into account the constraints on boxes allowed in a
particular context, which contains some specific part of a rendered display.

Box
A rectangular plane area considered to contain a character or further sub-boxes, used in
discussions of rendering for display. It is usually considered to have a baseline, height, depth
and width.

Cascading Style Sheets (CSS)
A mechanism that allows authors and readers to attach style (e.g. fonts, colors and spacing) to
HTML and XML documents.

Character
A member of a set of identifiers used for the organization, control or representation of text.

http://www.w3.org/TR/REC-CSS1.html

Character Data (CDATA)
A SGML/XML data type for raw data which does not include markup or entity references.
Attributes of type CDATA may contain entity references. These are expanded by an XML
processor before the attribute value is processed as CDATA.

Character or expression depth
Distance between the baseline and bottom edge of the character glyph or expression. Also
known as the descent.

Character or expression height
Distance between the baseline and top edge of the character glyph or expression. Also know as
the ascent.

Character or expression width
Horizontal distance taken by the character glyph as indicated in the font metrics, or the total
width of an expression.

Condition
A MathML content element used to place a mathematical condition on one or more variables.

Contained (element A is contained in element B)
A is part of B's content.

Container (Constructor)
A non-empty MathML Content element that is used to construct a mathematical object such as
a number, set, or list.

Content elements
MathML elements which explicitly specify the mathematical meaning of a portion of a
MathML expression (defined in Chapter 4 of the MathML standard).

Content token element
Content element having only PCDATA, <sep/> and Presentation expressions as content.
Represents either an identifier (ci) or a number (cn).

Context (of a given MathML expression)
Information provided during the rendering of some MathML data to the rendering process for
the given MathML expression; especially information about the MathML which surrounds that
expression.

Declaration
An instance of the declare element.

Depth
(of a box) The distance from the baseline of the box to the bottom edge of the box.

Direct subexpression (of a MathML expression "E")
A subexpression which is directly contained in E.

Directly contained (element A in element B)
A is a child of B (as defined in XML); i.e. A is contained in B, but not in any element which is
itself contained in B.

Document Object Model
A model in which the document or Web page is treated as an object repository. This model is
developed by the DOM Working Group (DOM (Member Only)) of the W3C.

Document Style Semantics and Specification Language (DSSSL)
A method of specify the formatting and transformation of SGML documents. ISO International
Standard 10179:1996.

Document Type Definition (DTD)
In SGML or XML a formal definition of the elements and the relationship among the data
elements (the structure) for a particular type of document.

Em
A font-relative measure encoded by the font. Before electronic typesetting, an 'em' was the
width of an 'M' in the font. In modern usage, an 'em' is either specified by the designer of the
font or is taken to be the height (point size) of the font. 'em's are typically used for font-relative
horizontal sizes.

Ex
A font-relative measure that is the height of an 'x' in the font. 'ex's are typically used for
font-relative vertical sizes.

Height
(of a box) The distance from the baseline of the box to the top edge of the box.

Inferred <mrow>
An <mrow> element which is "inferred" around the contents of certain layout schemata when
they have other than exactly one argument. Defined precisely in Section 3.1.5.

Embedded object
Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects
(e.g. ActiveX Controls and ActiveX Document embeddings), and plug-ins which reside in an
HTML document.

Embellished operator
An operator, including any "embellishment" it may have, such as superscripts or style
information. The "embellishment" is represented by a layout schema which contains the
operator itself. Defined precisely in Section 3.2.4.

Entity reference
A sequence of ASCII characters of the form &name; which represents some other data,
typically a non-ASCII character, a sequence of characters, or an external source of data, eg. a
file containing a set of standard entity definitions such as ISOLat1.

http://www.w3.org/MarkUp/DOM/Group/to_go_public/faq.html
http://www.jclark.com/dsssl

Extensible Markup Language (XML)
A simple dialect of SGML intended to enable generic SGML to be served, received, and
processed on the Web.

Fences
In typesetting, bracketing tokens like parentheses, braces, and brackets which usually appear in
matched pairs.

Font
A particular collection of glyphs of a typeface of a given size, weight and style, eg "Times
Roman Bold 12 point".

Glyph
The actual shape (bit pattern, outline) of a character image.

Input syntax layer
A planned MathML extension mechanism designed to facilitate hand entry of MathML content.

Indirectly contained
A is contained in B, but not directly contained in B.

Instance of MathML
A single instance of the toplevel element of MathML, and/or a single instance of embedded
MathML in some other
data format.

Inverse function
A mathematical function that, when composed with the original function acts like an identity
function.

Lambda Expression
A mathematical expression used to define a function in terms of variables and an expression in
those variables.

Layout schema (plural: schemata)
A presentation element defined in Sections 3.3 - 3.6, other than the empty elements defined
there (i.e. not the elements defined in 3.5.4 (about alignment) or the empty elements [none/] and
[mprescripts/] defined in 3.4.7 (about <mmultiscripts>)). The layout schemata are never empty
elements (though their content may contain nothing in some cases), are always expressions, and
all allow any MathML expressions as arguments (except for argument count requirements and
the requirement for a certain empty element in <mmultiscripts>).

Mathematical Markup Language (MathML)
The markup language (specified in this document) for describing mathematical expression
structure, together with a mathematical context.

MathML element

http://www.w3.org/TR/PR-xml

An XML element which forms part of the logical structure of a MathML document

MathML expression (within some well-formed MathML data)
A single instance of a presentation element, except for the empty elements <none/> or
<mprescripts/> or an instance of <malignmark/> within a token element (defined below); or a
single instance of certain of the content elements (see Section 4 for a precise definition of which
ones).

Multi-purpose Internet Mail Extensions (MIME)
A set of specifications that offers a way to interchange text in languages with different character
sets, and multi-media content among many different computer systems that use Internet mail
standards.

Operator -- Content element
A mathematical object that is applied to arguments using the apply element.

Operator -- an <mo> element
Used to represent ordinary operators, fences, separators in MathML presentation. (<mo>, a
token element, is defined in Section 3.2.4.)

OpenMath
A general representation language for communicating mathematical objects between
application programs.

Parsed Character Data (PCDATA)
An SGML/XML data type for raw data occurring in a context where text is parsed and markup
(for instance entity references and element start/end tags) is recognised.

Pt
Point (pt), 1 pt = 1/72 inch. Points are typically used to specify absolute sizes for font-related
objects.

Pre-defined function
One of the empty elements defined in section 4.2.3 and used with the apply construct to build
function applications.

Presentation elements
MathML tags and entities intended to express the syntactic structure of math notation (defined
in Chapter 3 of the MathML standard).

Presentation layout schema
A presentation element that can have other MathML elements as content.

Presentation token elements
A presentation element that can contain only parsed character data or the <malignmark/>
element.

Qualifier

http://www.openmath.org/

A MathML content element that is used to specify the value of a specific named parameter in
the application of selected pre-defined functions.

Relation
A MathML content element used to construct expressions such as a < b.

Render
Faithfully translate into application-specific form allowing native application operations to be
performed.

Scope of a Declaration
The portion of a MathML document to over which a particular definition is active.

Selected subexpression (of an <maction> element)
The argument of an <maction> element (a layout schema defined in Section 3.6) which is (at
any given time) "selected" within the viewing state of a MathML renderer, or by the selection
attribute when the element exists only in MathML data. Defined precisely in Section 3.6.

Spacelike (MathML expression)
A MathML expression which is ignored by the suggested rendering rules for MathML
presentation elements when they determine operator forms and effective operator rendering
attributes based on operator positions in <mrow> elements. Defined precisely in Section 3.2.6.

Standard Generalized Markup Language (SGML)
An ISO standard (ISO 8879:1986) which provides a formal mechanism for the definition of
document structure via DTDs (Document Type Definitions), and a notation for the markup of
document instances conforming to a DTD.

Subexpression (of a MathML expression "E")
A MathML expression contained (directly or indirectly) in E's content.

Suggested rendering rules for MathML presentation elements
Defined throughout Chapter 3; the ones which use other terms defined here occur mainly in
Section 3.2.4, but also in 3.6 and perhaps elsewhere.

TeX
A software system written by Donald Knuth for typesetting documents.

Token element
Presentation token element or a Content token element. (See above.)

Toplevel element (of MathML)
<math> (defined in Chapter 7)

Typeface
A typeface is a specific design of a set of letters, numbers and symbols, such as "Times Roman"
or "Chicago".

http://www.sil.org/sgml/sgml.html
http://sunserver.cs.umr.edu/unixinfo/general/packages/latex/texfaq.html

Well-Formed MathML data
MathML data which (1) conforms to the MathML DTD; (2) obeys the additional rules defined
in the MathML standard for the legal contents and attribute values of each MathML element;
(3) Satisfies the EBNF grammar for content elements.

Width
The distance from the left edge of the box to the right edge of the box.

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

Operator Dictionary
The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and accents in
MathML, all of which are represented by <mo> elements. For brevity, all such elements will be called simply "operators" in
this Appendix.

Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing below. The grouping, and the order of
the groups, is significant for the proper grouping of subexpressions using <mrow> (Section 3.3.1); the rule described there is
especially relevant to the automatic generation of MathML by conversion from other formats for displayed math, such as
TeX, which don't always specify how subexpressions nest.

The format of the table entries is: the <mo> element content between double quotes (start and end tags not shown), followed
by the attribute list in XML format, starting with the form attribute, followed by the default rendering attributes which should
be used for <mo> elements with the given content and form attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of attributes in Section
3.2.4.

Note that the characters "&" and "<" are represented in the following table entries by the entity references "&" and
"<" respectively, as would be necessary if they appeared in the content of an actual <mo> element (or any other MathML
or XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

could be expressed as an <mo> element by:

 <mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the content for readability, which is
optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element <mo
form="prefix"> (</mo> alone, or simply <mo> (</mo> in a position for which form="prefix" would be
inferred (see below), is equivalent to giving the element with all attributes as shown above.

Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element content and form attribute value,
together. Operators with more than one possible form have more than one entry. The MathML specification describes how
the renderer chooses ("infers") which form to use when no form attribute is given; see "Default value of form attribute" in
Section 3.2.4.

Having made that choice, or with the form attribute explicitly specified in the <mo> element's start tag, the MathML
renderer uses the remaining attributes from the dictionary entry for the appropriate single form of that operator, ignoring the
entries for the other possible forms.

Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented by XML-style entity references using
the syntax "&character-name;"; the complete list of characters and character names is given in Chapter 6. Many
characters can be referred to by more than one name; often, memorable names composed of full words have been provided in

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#define-proper-grouping
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#rule-for-grouping
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#sec3.2.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap3_2.html#default-value-of-form-attribute

MathML, as well as one or more names used in other standards, such as Unicode. The characters in the operators in this
dictionary are generally listed under their full-word names when these exist. For example, the integral operator is named
below by the one-character sequence "∫", but could equally well be named "∫". The choice of name for a given
character in MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in Chapter 6. If this is not true, it is an error in this
specification. If such an error exists, Chapter 6 should be taken as definitive, rather than this appendix.

Notes on lspace and rspace attributes

The values for lspace and rspace given here range from 0 to 6/18 em in units of 1/18 em. For the invisible operators whose
content is "⁢" or "⁡", it is suggested that MathML renderers choose spacing in a
context-sensitive way (which is an exception to the static values given in the following table). For
<mo>⁡</mo>, the total spacing (lspace + rspace) in expressions such as "sin x" (where the right
operand doesn't start with a fence) should be greater than 0; for <mo>⁢</mo>, the total spacing
should be greater than 0 when both operands (or the nearest tokens on either side, if on the baseline) are identifiers displayed
in a non-slanted font (i.e., under the suggested rules, when both operands are multi-character identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. when scriptlevel is greater than 0;
see Section 3.3.4), as is the case in TeX.

Operator dictionary entries

"(" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
")" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"[" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"]" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"{" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"}" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"”" form="postfix" fence="true" lspace="0em"
rspace="0em"
"’" form="postfix" fence="true" lspace="0em"
rspace="0em"
"⟨" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"&LeftBracketingBar;" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"⌈" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"⟦" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"&LeftDoubleBracketingBar;" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"⌊" form="prefix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"“" form="prefix" fence="true" lspace="0em"
rspace="0em"
"‘" form="prefix" fence="true" lspace="0em"
rspace="0em"
"⟩" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"

http://www.w3.org/1999/07/REC-MathML-19990707/chap3_3.html#sec3.3.4

"&RightBracketingBar;" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"⌉" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"⟧" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"&RightDoubleBracketingBar;" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"⌋" form="postfix" fence="true" stretchy="true"
lspace="0em" rspace="0em"
"&LeftSkeleton;" form="prefix" fence="true" lspace="0em"
rspace="0em"
"&RightSkeleton;" form="postfix" fence="true" lspace="0em"
rspace="0em"

"⁣" form="infix" separator="true" lspace="0em"
rspace="0em"

"," form="infix" separator="true" lspace="0em"
rspace=".33333em"

"─" form="infix" stretchy="true" minsize="0"
lspace="0em" rspace="0em"
"|" form="infix" stretchy="true" minsize="0"
lspace="0em" rspace="0em"

";" form="infix" separator="true" lspace="0em"
rspace=".27777em"
";" form="postfix" separator="true" lspace="0em"
rspace="0em"

":=" form="infix" lspace=".27777em"
rspace=".27777em"
"≔" form="infix" lspace=".27777em"
rspace=".27777em"

"∵" form="infix" lspace=".27777em"
rspace=".27777em"
"∴" form="infix" lspace=".27777em"
rspace=".27777em"

"❘" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"

"//" form="infix" lspace=".27777em"
rspace=".27777em"

"∷" form="infix" lspace=".27777em"
rspace=".27777em"

"&" form="prefix" lspace="0em" rspace=".27777em"
"&" form="postfix" lspace=".27777em" rspace="0em"

"*=" form="infix" lspace=".27777em"
rspace=".27777em"
"-=" form="infix" lspace=".27777em"
rspace=".27777em"

"+=" form="infix" lspace=".27777em"
rspace=".27777em"
"/=" form="infix" lspace=".27777em"
rspace=".27777em"

"->" form="infix" lspace=".27777em"
rspace=".27777em"

":" form="infix" lspace=".27777em"
rspace=".27777em"

".." form="postfix" lspace=".22222em" rspace="0em"
"..." form="postfix" lspace=".22222em" rspace="0em"

"∋" form="infix" lspace=".27777em"
rspace=".27777em"

"⫤" form="infix" lspace=".27777em"
rspace=".27777em"
"⊨" form="infix" lspace=".27777em"
rspace=".27777em"
"⊤" form="infix" lspace=".27777em"
rspace=".27777em"
"⊣" form="infix" lspace=".27777em"
rspace=".27777em"
"⊢" form="infix" lspace=".27777em"
rspace=".27777em"

"⇒" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥰" form="infix" lspace=".27777em"
rspace=".27777em"

"|" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"||" form="infix" lspace=".22222em"
rspace=".22222em"
"⩔" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"

"&&" form="infix" lspace=".27777em"
rspace=".27777em"
"⩓" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"

"&" form="infix" lspace=".27777em"
rspace=".27777em"

"!" form="prefix" lspace="0em" rspace=".27777em"
"⫬" form="prefix" lspace="0em" rspace=".27777em"

"∃" form="prefix" lspace="0em" rspace=".27777em"
"∀" form="prefix" lspace="0em" rspace=".27777em"
"∄" form="prefix" lspace="0em" rspace=".27777em"

"∈" form="infix" lspace=".27777em"
rspace=".27777em"

"∉" form="infix" lspace=".27777em"
rspace=".27777em"
"∌" form="infix" lspace=".27777em"
rspace=".27777em"
"⊏̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋢" form="infix" lspace=".27777em"
rspace=".27777em"
"⊐̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋣" form="infix" lspace=".27777em"
rspace=".27777em"
"⊂⃒" form="infix" lspace=".27777em"
rspace=".27777em"
"⊈" form="infix" lspace=".27777em"
rspace=".27777em"
"⊃⃒" form="infix" lspace=".27777em"
rspace=".27777em"
"⊉" form="infix" lspace=".27777em"
rspace=".27777em"
"∋" form="infix" lspace=".27777em"
rspace=".27777em"
"⊏" form="infix" lspace=".27777em"
rspace=".27777em"
"⊑" form="infix" lspace=".27777em"
rspace=".27777em"
"⊐" form="infix" lspace=".27777em"
rspace=".27777em"
"⊒" form="infix" lspace=".27777em"
rspace=".27777em"
"⋐" form="infix" lspace=".27777em"
rspace=".27777em"
"⊆" form="infix" lspace=".27777em"
rspace=".27777em"
"⊃" form="infix" lspace=".27777em"
rspace=".27777em"
"⊇" form="infix" lspace=".27777em"
rspace=".27777em"

"⇐" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇔" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇒" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥐" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥞" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↽" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥖" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥟" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇁" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"

"⥗" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"←" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇤" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇆" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↔" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥎" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↤" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥚" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↼" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥒" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↙" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↘" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"→" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇥" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇄" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↦" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥛" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⇀" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⥓" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"←" form="infix" lspace=".27777em"
rspace=".27777em"
"→" form="infix" lspace=".27777em"
rspace=".27777em"
"↖" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"↗" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"

"=" form="infix" lspace=".27777em"
rspace=".27777em"
"<" form="infix" lspace=".27777em"
rspace=".27777em"
">" form="infix" lspace=".27777em"
rspace=".27777em"
"!=" form="infix" lspace=".27777em"
rspace=".27777em"
"==" form="infix" lspace=".27777em"
rspace=".27777em"

"<=" form="infix" lspace=".27777em"
rspace=".27777em"
">=" form="infix" lspace=".27777em"
rspace=".27777em"
"≡" form="infix" lspace=".27777em"
rspace=".27777em"
"≍" form="infix" lspace=".27777em"
rspace=".27777em"
"≐" form="infix" lspace=".27777em"
rspace=".27777em"
"∥" form="infix" lspace=".27777em"
rspace=".27777em"
"⩵" form="infix" lspace=".27777em"
rspace=".27777em"
"≂" form="infix" lspace=".27777em"
rspace=".27777em"
"⇌" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"≥" form="infix" lspace=".27777em"
rspace=".27777em"
"⋛" form="infix" lspace=".27777em"
rspace=".27777em"
"≧" form="infix" lspace=".27777em"
rspace=".27777em"
"⪢" form="infix" lspace=".27777em"
rspace=".27777em"
"≷" form="infix" lspace=".27777em"
rspace=".27777em"
"⩾" form="infix" lspace=".27777em"
rspace=".27777em"
"≳" form="infix" lspace=".27777em"
rspace=".27777em"
"≎" form="infix" lspace=".27777em"
rspace=".27777em"
"≏" form="infix" lspace=".27777em"
rspace=".27777em"
"⊲" form="infix" lspace=".27777em"
rspace=".27777em"
"⧏" form="infix" lspace=".27777em"
rspace=".27777em"
"⊴" form="infix" lspace=".27777em"
rspace=".27777em"
"≤" form="infix" lspace=".27777em"
rspace=".27777em"
"⋚" form="infix" lspace=".27777em"
rspace=".27777em"
"≦" form="infix" lspace=".27777em"
rspace=".27777em"
"≶" form="infix" lspace=".27777em"
rspace=".27777em"
"⪡" form="infix" lspace=".27777em"
rspace=".27777em"
"⩽" form="infix" lspace=".27777em"
rspace=".27777em"
"≲" form="infix" lspace=".27777em"
rspace=".27777em"
"≫" form="infix" lspace=".27777em"

rspace=".27777em"
"≪" form="infix" lspace=".27777em"
rspace=".27777em"
"≢" form="infix" lspace=".27777em"
rspace=".27777em"
"≭" form="infix" lspace=".27777em"
rspace=".27777em"
"∦" form="infix" lspace=".27777em"
rspace=".27777em"
"≠" form="infix" lspace=".27777em"
rspace=".27777em"
"≂̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≯" form="infix" lspace=".27777em"
rspace=".27777em"
"≱" form="infix" lspace=".27777em"
rspace=".27777em"
"≧̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≫̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≹" form="infix" lspace=".27777em"
rspace=".27777em"
"⩾̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≵" form="infix" lspace=".27777em"
rspace=".27777em"
"≎̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≏̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋪" form="infix" lspace=".27777em"
rspace=".27777em"
"⧏̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋬" form="infix" lspace=".27777em"
rspace=".27777em"
"≮" form="infix" lspace=".27777em"
rspace=".27777em"
"≰" form="infix" lspace=".27777em"
rspace=".27777em"
"&NotLessFullEqual;" form="infix" lspace=".27777em"
rspace=".27777em"
"≸" form="infix" lspace=".27777em"
rspace=".27777em"
"≪̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⩽̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≴" form="infix" lspace=".27777em"
rspace=".27777em"
"⪢̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⪡̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⊀" form="infix" lspace=".27777em"
rspace=".27777em"

"⪯̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋠" form="infix" lspace=".27777em"
rspace=".27777em"
"&NotPrecedesTilde;" form="infix" lspace=".27777em"
rspace=".27777em"
"⋫" form="infix" lspace=".27777em"
rspace=".27777em"
"⧐̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋭" form="infix" lspace=".27777em"
rspace=".27777em"
"⊁" form="infix" lspace=".27777em"
rspace=".27777em"
"⪰̸" form="infix" lspace=".27777em"
rspace=".27777em"
"⋡" form="infix" lspace=".27777em"
rspace=".27777em"
"≿̸" form="infix" lspace=".27777em"
rspace=".27777em"
"≁" form="infix" lspace=".27777em"
rspace=".27777em"
"≄" form="infix" lspace=".27777em"
rspace=".27777em"
"≇" form="infix" lspace=".27777em"
rspace=".27777em"
"≉" form="infix" lspace=".27777em"
rspace=".27777em"
"∤" form="infix" lspace=".27777em"
rspace=".27777em"
"≺" form="infix" lspace=".27777em"
rspace=".27777em"
"⪯" form="infix" lspace=".27777em"
rspace=".27777em"
"≼" form="infix" lspace=".27777em"
rspace=".27777em"
"≾" form="infix" lspace=".27777em"
rspace=".27777em"
"∷" form="infix" lspace=".27777em"
rspace=".27777em"
"∝" form="infix" lspace=".27777em"
rspace=".27777em"
"⇋" form="infix" stretchy="true"
lspace=".27777em" rspace=".27777em"
"⊳" form="infix" lspace=".27777em"
rspace=".27777em"
"⧐" form="infix" lspace=".27777em"
rspace=".27777em"
"⊵" form="infix" lspace=".27777em"
rspace=".27777em"
"≻" form="infix" lspace=".27777em"
rspace=".27777em"
"⪰" form="infix" lspace=".27777em"
rspace=".27777em"
"≽" form="infix" lspace=".27777em"
rspace=".27777em"
"≿" form="infix" lspace=".27777em"

rspace=".27777em"
"∼" form="infix" lspace=".27777em"
rspace=".27777em"
"≃" form="infix" lspace=".27777em"
rspace=".27777em"
"≅" form="infix" lspace=".27777em"
rspace=".27777em"
"≈" form="infix" lspace=".27777em"
rspace=".27777em"
"⊥" form="infix" lspace=".27777em"
rspace=".27777em"
"∣" form="infix" lspace=".27777em"
rspace=".27777em"

"⊔" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"
"⋃" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"
"⊎" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"

"-" form="infix" lspace=".22222em"
rspace=".22222em"
"+" form="infix" lspace=".22222em"
rspace=".22222em"
"⋂" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"
"∓" form="infix" lspace=".22222em"
rspace=".22222em"
"±" form="infix" lspace=".22222em"
rspace=".22222em"
"⊓" form="infix" stretchy="true"
lspace=".22222em" rspace=".22222em"

"⋁" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"⊖" form="prefix" largeop="true"
movablelimits="true" lspace="0em" rspace=".16666em"
"⊕" form="prefix" largeop="true"
movablelimits="true" lspace="0em" rspace=".16666em"
"∑" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"⋃" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"⊎" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"lim" form="prefix" movablelimits="true"
lspace="0em" rspace=".16666em"
"max" form="prefix" movablelimits="true"
lspace="0em" rspace=".16666em"
"min" form="prefix" movablelimits="true"
lspace="0em" rspace=".16666em"

"⊖" form="infix" lspace=".16666em"
rspace=".16666em"
"⊕" form="infix" lspace=".16666em"
rspace=".16666em"

"∲" form="prefix" largeop="true" stretchy="true"
lspace="0em" rspace="0em"
"∮" form="prefix" largeop="true" stretchy="true"
lspace="0em" rspace="0em"
"∳" form="prefix" largeop="true" stretchy="true"
lspace="0em" rspace="0em"
"∯" form="prefix" largeop="true" stretchy="true"
lspace="0em" rspace="0em"
"∫" form="prefix" largeop="true" stretchy="true"
lspace="0em" rspace="0em"

"⋓" form="infix" lspace=".16666em"
rspace=".16666em"

"⋒" form="infix" lspace=".16666em"
rspace=".16666em"

"≀" form="infix" lspace=".16666em"
rspace=".16666em"

"⋀" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"⊗" form="prefix" largeop="true"
movablelimits="true" lspace="0em" rspace=".16666em"
"∐" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"∏" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"
"⋂" form="prefix" largeop="true"
movablelimits="true" stretchy="true" lspace="0em" rspace=".16666em"

"∐" form="infix" lspace=".16666em"
rspace=".16666em"

"⋆" form="infix" lspace=".16666em"
rspace=".16666em"

"⊙" form="prefix" largeop="true"
movablelimits="true" lspace="0em" rspace=".16666em"

"*" form="infix" lspace=".16666em"
rspace=".16666em"
"⁢" form="infix" lspace="0em" rspace="0em"

"·" form="infix" lspace=".16666em"
rspace=".16666em"

"⊗" form="infix" lspace=".16666em"
rspace=".16666em"

"⋁" form="infix" lspace=".16666em"
rspace=".16666em"

"⋀" form="infix" lspace=".16666em"
rspace=".16666em"

"⋄" form="infix" lspace=".16666em"
rspace=".16666em"

"∖" form="infix" stretchy="true"
lspace=".16666em" rspace=".16666em"

"/" form="infix" stretchy="true"
lspace=".16666em" rspace=".16666em"

"-" form="prefix" lspace="0em" rspace=".05555em"
"+" form="prefix" lspace="0em" rspace=".05555em"
"∓" form="prefix" lspace="0em" rspace=".05555em"
"±" form="prefix" lspace="0em" rspace=".05555em"

"." form="infix" lspace="0em" rspace="0em"

"⨯" form="infix" lspace=".11111em"
rspace=".11111em"

"**" form="infix" lspace=".11111em"
rspace=".11111em"

"⊙" form="infix" lspace=".11111em"
rspace=".11111em"

"∘" form="infix" lspace=".11111em"
rspace=".11111em"

"□" form="prefix" lspace="0em" rspace=".11111em"

"∇" form="prefix" lspace="0em" rspace=".11111em"
"∂" form="prefix" lspace="0em" rspace=".11111em"

"ⅅ" form="prefix" lspace="0em" rspace=".11111em"
"ⅆ" form="prefix" lspace="0em" rspace=".11111em"

"√" form="prefix" stretchy="true" lspace="0em"
rspace=".11111em"

"⇓" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⟸" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⟺" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⟹" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⇑" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⇕" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"↓" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⤓" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⇵" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"

"↧" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥡" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⇃" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥙" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥑" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥠" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"↿" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥘" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⟵" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⟷" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⟶" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥯" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥝" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⇂" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥕" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥏" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥜" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"↾" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥔" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"↓" form="infix" lspace=".11111em"
rspace=".11111em"
"↑" form="infix" lspace=".11111em"
rspace=".11111em"
"↑" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⤒" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⇅" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"↕" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"⥮" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"
"↥" form="infix" stretchy="true"
lspace=".11111em" rspace=".11111em"

"^" form="infix" lspace=".11111em"
rspace=".11111em"

"<>" form="infix" lspace=".11111em"
rspace=".11111em"

"'" form="postfix" lspace=".11111em" rspace="0em"

"!" form="postfix" lspace=".11111em" rspace="0em"
"!!" form="postfix" lspace=".11111em" rspace="0em"

"~" form="infix" lspace=".11111em"
rspace=".11111em"

"@" form="infix" lspace=".11111em"
rspace=".11111em"

"--" form="postfix" lspace=".11111em" rspace="0em"
"--" form="prefix" lspace="0em" rspace=".11111em"
"++" form="postfix" lspace=".11111em" rspace="0em"
"++" form="prefix" lspace="0em" rspace=".11111em"

"⁡" form="infix" lspace="0em" rspace="0em"

"?" form="infix" lspace=".11111em"
rspace=".11111em"

"_" form="infix" lspace=".11111em"
rspace=".11111em"

"˘" form="postfix" accent="true" lspace="0em"
rspace="0em"
"¸" form="postfix" accent="true" lspace="0em"
rspace="0em"
"`" form="postfix" accent="true" lspace="0em"
rspace="0em"
"˙" form="postfix" accent="true" lspace="0em"
rspace="0em"
"˝" form="postfix" accent="true" lspace="0em"
rspace="0em"
"&DiacriticalLeftArrow;" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"&DiacriticalLeftRightArrow;" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"&DiacriticalLeftRightVector;" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"&DiacriticalLeftVector;" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"´" form="postfix" accent="true" lspace="0em"
rspace="0em"
"&DiacriticalRightArrow;" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"&DiacriticalRightVector;" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"˜" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"¨" form="postfix" accent="true" lspace="0em"
rspace="0em"
"̑" form="postfix" accent="true" lspace="0em"

rspace="0em"
"ˇ" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"^" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"‾" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⏞" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⎴" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⏜" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⃛" form="postfix" accent="true" lspace="0em"
rspace="0em"
"_" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⏟" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⎵" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"
"⏝" form="postfix" accent="true" stretchy="true"
lspace="0em" rspace="0em"

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

Working Group Membership
The W3C Math working group is presently co-chaired by Patrick Ion of the AMS, and Angel
Diaz of IBM. Contact the co-chairs if you are interested in joining the group. For the present
membership see its working group home page.

At the time of release of the MathML 1.0 the working group was co-chaired by Ion and Robert
Miner then of the Geometry Center. Since that time several changes in membership have taken
place. In the course of the update, in addition to people listed in the original membership below,
corrections have been offered by David Carlisle, Don Gignac, Kostya Serebriany, Ben Hinkle,
Sebastian Rahtz, Sam Dooley and others.

Members of the working group that proposed MathML 1.0 were:

Adobe

T. V. Raman

American Mathematical Society , Providence RI

Ralph Youngen

Design Science Inc.

Paul Topping

Elsevier Science

Nico Poppelier

Geometry Technologies, Inc.

Robert Miner

IBM Research Division, Yorktown Heights, NY

Robert S. Sutor, Angel Diaz

Mathematical Reviews (American Mathematical Society), Ann Arbor MI

Patrick Ion

Mathsoft, Cambridge, MA

Stephen Glim

University of Waterloo

Ka-Ping Yee

INRIA, Sophia Antipolis

mailto:ion@ams.org
mailto:aldiaz@us.ibm.com
mailto:aldiaz@us.ibm.com
http://www.w3c.org/Math/
mailto:rminer@geom.umn.edu
mailto:rminer@geom.umn.edu
http://www.adobe.com/
mailto:raman@adobe.com
http://www.ams.org/
mailto:rey@ams.org
http://www.mathtype.com/mathtype/
mailto:pault@mathtype.com
http://www.elsevier.nl/
mailto:n.poppelier@elsevier.nl
http://www.geomtech.com/
mailto:rminer@geomtech.com
http://www.software.ibm.com/general/www.ics.raleigh/
mailto:sutor@watson.ibm.com
mailto:diaz@watson.ibm.com
http://www.ams.org/
mailto:ion@math.ams.org
http://www.mathsoft.com/
mailto:sglim@mathsoft.com
http://www.uwaterloo.ca/
mailto:kryee@novice.uwaterloo.ca
http://www.inria.fr/Equipes/SAFIR-eng.html

Stéphane Dalmas

Stilo Technologies

Stephen Buswell

SoftQuad, Surrey, BC

Lauren Wood

Texterity Corporation

Ronald Whitney

University of Western Ontario

Stephen Watt

Waterloo Maple Inc.

Stan Devitt

W3C

Dave Raggett, Arnaud Le Hors

Wolfram Research

Steven Hunt, Brenda Hunt, Bruce Smith, Neil Soiffer

Up: Table of Contents

mailto:stephane.dalmas@sophia.inria.fr
http://www.stilo.com/
mailto:sb@stilo.com
http://www.sq.com/
mailto:lauren@sq.com
http://www.texterity.com/
mailto:rwhitney@texterity.com
http://www.csd.uwo.ca/
mailto:watt@csd.uwo.ca
http://www.maplesoft.com/
mailto:jsdevitt@maplesoft.com
http://www.w3.org/
mailto:dsr@w3.org
mailto:lehors@w3.org
http://www.wri.com/
mailto:steveh@wolfram.com
mailto:brendah@wolfram.com
mailto:bruce@wolfram.com
mailto:soiffer@wolfram.com

Up: Table of Contents REC-MathML-19980407; revised 19990707

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation
===

// Notes
//
// This defines the valid expression trees in content markup
//
// ** it does not define attribute validation -
// ** this has to be done on top
//
// Presentation_tags is a placeholder for a valid
// presentation element start tag or end tag
//
// #PCDATA is the XML parsed character data
//
// symbols beginning with '_' eg. _mmlarg are internal symbols
// (recursive grammar usually required for recognition)
//
// all-lowercase symbols eg. 'ci' are terminal symbols
// representing MathML content elements
//
// symbols beginning with Uppercase are terminals
// representating other tokens
//
// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997
// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998

// whitespace definitions including presentation_tags

Presentation_tags ::= "presentation" //placeholder

Space ::= #x09 | #xoA | #xoD | #x20 //tab, lf, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space

// only for content validation
// characters

Char ::= Space | [#x21 - #xFFFD]
 | [#x00010000 - #x7FFFFFFFF] //valid XML chars

// start and end tag functions
// start(%x) returns a valid start tag for the element %x
// end(%x) returns a valid end tag for the element %x
// empty(%x) returns a valid empty tag for the element %x

//
// start(ci) ::= "<ci>"
// end(cn) ::= "</cn>"
// empty(plus) ::= "<plus/>"
//
// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.

_start(%x) ::= "<%x" (Char - '>')* ">"
// returns a valid start tag for the element %x

_end(%x) ::= "<%x" Space* ">"
// returns a valid end tag for the element %x

_empty(%x) ::= "<%x" (Char - '>')* "/>"
// returns a valid empty tag for the element %x

_sg(%x) ::= S _start(%x)
// start tag preceded by optional whitespace

_eg(%x) ::= _end(%x) S

// end tag followed by optional whitespace

_ey(%x) ::= S _empty(%x) S
// empty tag preceded and followed by optional whitespace

// mathml content constructs
// allow declare within generic argument type so we can insert it anywhere

_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= declare* _container declare*

_container ::= _token | _special | _constructor
_token ::= ci | cn
_special ::= apply | lambda | reln
_constructor ::= interval | list | matrix | matrixrow | set | vector

_other ::= condition | declare | sep

_qualifier ::= lowlimit | uplimit | bvar | degree | logbase

// relations

_relation ::= _genrel | _setrel | _seqrel2ary
_genrel ::= _genrel2ary | _genrelnary
_genrel2ary ::= ne
_genrelnary ::= eq | leq | lt | geq | gt

_setrel ::= _seqrel2ary | _setrelnary
_setrel2ary ::= in | notin | notsubset | notprsubset
_setrelnary ::= subset | prsubset

_seqrel2ary ::= tendsto

//operators

_operator ::= _funcop | _sepop | _arithop | _calcop
 | _seqop | _trigop | _statop | _lalgop
 | _logicop | _setop

_funcop ::= _funcop1ary | _funcopnary
_funcop1ary ::= inverse | ident
_funcopnary ::= fn| compose // general user-defined function is n-ary

// arithmetic operators
// (note minus is both 1ary and 2ary)

_arithop ::= _arithop1ary | _arithop2ary | _arithopnary | root
_arithop1ary ::= abs | conjugate | exp | factorial | minus
_arithop2ary ::= quotient | divide | minus | power | rem
_arithopnary ::= plus | times | max | min | gcd

// calculus

_calcop ::= _calcop1ary | log | int | diff | partialdiff
_calcop1ary ::= ln

// sequences and series

_seqop ::= sum | product | limit

// trigonometry

_trigop ::= sin | cos | tan | sec | csc | cot | sinh
 | cosh | tanh | sech | csch | coth
 | arcsin | arccos | arctan

// statistics operators

_statop ::= _statopnary | moment
_statopnary ::= mean | sdev | variance | median | mode

// linear algebra operators

_lalgop ::= _lalgop1ary | _lalgopnary
_lalgop1ary ::= determinant | transpose
_lalgopnary ::= selector

// logical operators

_logicop ::= _logicop1ary | _logicopnary | _logicop2ary | _logicopquant
_logicop1ary ::= not
_logicop2ary ::= implies
_logicopnary ::= and | or | xor
_logicopquant ::= forall | exists

// set theoretic operators

_setop ::= _setop2ary | _setopnary
_setop2ary ::= setdiff
_setopnary ::= union | intersect

// operator groups

_unaryop ::= _func1ary | _arithop1ary | _trigop | _lalgop1ary
 | _calcop1ary | _logicop1ary

_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary
_naryop ::= _arithopnary | _statopnary | _logicopnary
 | _lalgopnary | _setopnary | _funcopnary

_ispop ::= int | sum | product
_diffop ::= diff | partialdiff

_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary
_naryrel ::= _genrelnary | _setrelnary

//separator

sep ::= _ey(sep)

// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.

_mdatai ::= (#PCDATA | Presentation_tags)*
_mdatan ::= (#PCDATA | sep | Presentation_tags)*

ci ::= _sg(ci) _mdatai _eg(ci)
cn ::= _sg(cn) _mdatan _eg(cn)

// condition - constraints constraints. contains either
// a single reln (relation), or
// an apply holding a logical combination of relations, or
// a set (over which the operator should be applied)

condition ::= _sg(condition) reln | apply | set _eg(condition)

// domains for integral, sum , product

_ispdomain ::= (lowlimit uplimit?)
 | uplimit
 | interval
 | condition

// apply construct

apply ::= _sg(apply) _applybody _eg(apply)

_applybody ::= (_unaryop _mmlarg)
//1-ary ops
 | (_binaryop _mmlarg _mmlarg)
//2-ary ops

 | (_naryop _mmlarg*)
//n-ary ops, enumerated arguments
 | (_naryop bvar* condition _mmlarg)
//n-ary ops, condition defines argument list
 | (_ispop bvar? _ispdomain? _mmlarg)
//integral, sum, product
 | (_diffop bvar* _mmlarg)
//differential ops
 | (log logbase? _mmlarg)
//logs
 | (moment degree? _mmlarg*)
//statistical moment
 | (root degree? _mmlarg)
//radicals - default is square-root
 | (limit bvar* lowlimit? condition? _mmlarg)
//limits
 | (_logicopquant bvar+ condition? (reln | apply))
//quantifier with explicit bound variables

// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation

reln ::= _sg(reln) _relnbody _eg(reln)

_relnbody ::= (_binaryrel bvar* condition? _mmlarg _mmlarg)
 | (_naryrel bvar* condition? _mmlarg*)

// fn construct

fn ::= _sg(fn) _fnbody _eg(fn)
_fnbody ::= Presentation_tags | container

// lambda construct - note at least 1 bvar must be present

lambda ::= _sg(lambda) _lambdabody _eg(lambda)

_lambdabody ::= bvar+ _container //multivariate lambda calculus

//declare construct

declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody ::= ci (fn | constructor)?

// constructors

interval ::= _sg(interval) _mmlarg _mmlarg _eg(interval)
//start, end define interval

set ::= _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)

_lsbody ::= _mmlarg* //enumerated arguments
 | (bvar* condition _mmlarg) //condition constructs arguments

matrix ::= _sg(matrix) matrixrow* _eg(matrix)

matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow)
//allows matrix of operators

vector ::= _sg(vector) _mmlarg* _eg(vector)

//qualifiers - note the contained _mmlarg could be a reln

lowlimit ::= _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit ::= _sg(uplimit) _mmlarg _eg(uplimit)
bvar ::= _sg(bvar) ci degree? _eg(bvar)
degree ::= _sg(degree) _mmlarg _eg(degree)
logbase ::= _sg(logbase) _mmlarg _eg(logbase)

//relations and operators
// (one declaration for each operator and relation element)

_relation ::= _ey(%relation) //eg. <eq/> <lt/>
_operator ::= _ey(%operator) //eg. <exp/> <times/>

//the top level math element

math ::= _sg(math) mmlall* _eg(math)

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

F. Content Element Definitions

F.1. About Content Markup Elements
Every content element must have a mathematical definition associated with it in some form. The purpose of this appendix is to
provide default definitions. (An index to the definitions is provided later in this document.) For this release of MathML definitions
have not been restricted to any one format. There are several reasons for allowing flexibility at this time.

Many mathematical constructs are not yet implemented in any computation based system. However, MathML must still allow
authors to associate mathematical constructs with definitions for archival purposes and so that work on such implementations
can begin.

1.

The task of defining a mathematical object, and establishing an association with a particular definition does not logically
depend on the existence of an implementation in a computational system. It is a perfectly legitimate mathematical activity
independent of whether it is ever implemented. Providing a record of those author specified associations is integral part of the
role of MathML.

2.

The task of designing a machine readable language suitable for recording semantic descriptions is an onerous one that goes
substantially beyond the scope of this particular recommendation. It also overlaps substantially with efforts groups such as the
OpenMath Consortium. (See also: North American OpenMath Initiative, and The European OpenMath Consortium)

3.

The feasibilty of implementing a particular object in a particular comptational system and the details of particular implementations
have very little to do with the requirement that there actually be a mathematical definition. An author's decision to use content
elements is a decision to work with defined objects. The definitions may be as vague as claiming that, say F, is an unknown, but
differentiable function from the real numbers to the real numbers, or as complicated as requiring that F to be an elaborate new
function or operation as defined in some recent research paper. The primary role of MathML content elements is to provide a
mechanism for recording the fact that a particular structure has a particular mathematical meaning. If a definition is implemented in a
computational system, this is a bonus.

Of course, default definitions and semantics should be chosen to be as useful as possible. Where possible they should be already
implemented or easy to implement and all other things being equal, an author would be well advised to use a definition that is in
common use. This is no different from noting that most well written mathematical communications (in any format) benefit
substantially from the author's use of widely used and understood terms.

A requirement that there be a definition is also very different from a requirement that a definition be provided in some specific
manner. Before requiring a particular approach to definitions one needs to consider such issues as:

providing a language for defining semantics.1.

deciding if it is reasonable to require the use of such a syntax. (Authors may not have the time or expertise to provide a formal
description in a new and unfamiliar language.)

2.

not being constrained by the limitations of existing computational systems.3.

In order to leave open the discussion of such fundamental issues we have deliberately limited the support for new or author defined
definitions to support for specifying an appropriate "definitionURL.". The format of the content of that URL is unspecified. It might
be the URL of a mathematical paper whose whole purpose is to define a new operator, or even a simple reference to a traditional text.
If the author's mathematical operator matches exactly with an operator in a particular computational system, an appropriate definition
might be a MathML semantics element establishing a correspondence between two encodings. Whatever is chosen, the only
essential feature is that the definition be provided.

This rest of this appendix provides detailed descriptions of the default semantics associated with each of the MathML content
elements. Since this is exactly the role intended for the encodings under development by the OpenMath Consortium and one of our
goals is to foster international cooperation in suchstandardization efforts we have presented the default definitions in a format
modeled on OpenMath's content dictionaries . While the actual details differ somewhat from the OpenMath specification, the
underlying principles are the same and this is being used as input to ongoing discussions underway with the OpenMath Consortium
aimed at ensuring that the OpenMath encodings will be capable of conveying the necessary information.

http://www.openmath.org/
http://naomi.math.ca/
http://www.nag.co.uk/projects/OpenMath.html
http://www.openmath.org/
http://www.openmath.org/

F.1.1. The Structure of an MMLdefinition.

Each MathML element is described using an XML format. The top element is MMLdefinition. The sub-elements identify the
various parts of the description and include:

name
PCDATA providing the name of the MathML element.

description
A text based description of the object that an element represents. Thiscross will often include cross references to more
traditional texts or papers or existing papers on the Web.

functorclass
Each MathML element must be classified according to its mathematical role.

punctuation -Some elements exist simply as an aid to parsing. For example the sep element is used to separate the CDATA
defining a rational number into two parts in a manner that is easily parsed by an XML application. These objects are refered to
as punctuation.

modifier -Some elements exist simply to modify the properties of an existing element or mathematical object. For example the
declare construct is used to reset the default attribute values, or to associate a name with a specific instance of an object. These
kinds of elements are referred to as modifiers and the result is of the same type, but with different attributes.

constructor - The remaining objects which "contain" sub-elements are all object constructors of some sort or another. They
combine the sub-elements into a compound mathematical object such as a constant, set, list, or an expression representing a
function application. For example, the lambda element is actually a constructor which constructs a function definition from a
list of variables and an expression, while the fn element is a constructor that, in effect, sets the type of an object to function and
if necessary, provides an external definition. Any use of apply produces an object of type apply whose sub-type is determined
by the first operand and its properties. The signature of a constructor indicates the type of its sub-elements and the type (and
sometimes subtype) of the resulting object.

function (operator) - The MathML objects represented by empty XML elements are functions or operators. These function
definitions are parameterized by their XML attribute values and are used as the first argument to an apply or reln. Functions
are classified according to how they are used.. For example the empty <sin/> element represents the unary mathematical
function sine. In every case, element attributes may be used to further qualify the object. The <plus/> element is an nary
operator. The result of using a function or operator is an expression which represents an object in a certain algebraic domain.

parameter -Another class of objects are the named parameters. For example, these named objects are used to identify bounds
of integration, or differentiation variables.

MMLattribute
Some of the XML attributes of a MathML content element have a direct impact on the mathematical semantics of the object.
For example the type attribute of the cn element is used to determine what type of constant (integer, real, etc.) is being
constructed. Only those attributes that affect the mathematical properties of an object are listed here and typically they also
appear explicitly in the signature.

signature
The signature is systematic representation which associates the different possible combinations of attributes and function
arguments to the different kinds of mathematical objects that are constructed. The possible combinations of parameter and
argument types (the left-hand side) each result in an object of some type (the right-hand side). It in effect describes how to
resolve operator overloading.

For constructors (including parameters), the left-hand side of the signature describes the types of the child elements and the
right-hand side describes the type of object that is constructed. For functions, the left-hand side of the signature indicates the
types of the parameters and arguments that would be expected when it is applied, or used to construct a relation, and the
right-hand side represents the mathematical type of the object constructed by the <apply>. Modifiers modify the the attributes
of an existing object.. For example a symbol might become a symbol of type vector.

The signature must be able to record specific attribute values and argument types on the left, and and parameterized types on
the right.. The syntax used for signatures is of the general form:

[<attribute name>=<attributevalue>](<list of argument types>)
--> <mathematical result type>(<mathematical subtype>).

The MMLattributes, if any, appear in the form <attribute name> = <attribute value>. They are separated notationally from
the rest of the arguments by square braces. The possible values are usually taken from an enumerated list, and the signature is
usually affected by selection of a specific value.

For the actual function arguments and named parameters on the left, the focus is on the mathematical types involved. The
function argument types are presented in a syntax similar to that used for a DTD, with the one main exception.. The types of
the named parameters appear in the signature as <elementname>=<type> in a manner analogous for that used for attribute
values. For example, if the argument is named (e.g., bvar) then it is represented in the signature by an equation as in:

[<attribute name>=<attributevalue>](bvar=symbol,<argument list>) -->
<mathematical result type>(<mathematical subtype>)

No mathematical evaluation ever takes place in MathML. Every MathML content element either refers to a defined object such
as a mathematical function or it combines such objects in some way to build a new object. For purposes of the signature, the
constructed object represents an object of a certain type parameterized type. For example the result of applying <plus/> to
arguments is an expression which respresents a sum. The type of the resulting expression depends on the types of the operands,
and the values of the MathML attributes.

example
Examples of the use of this object in MathML and possibly other syntax are included in these elements.

property
This element describes the mathematical properties of such objects.. For simple associations of values with specific instances
of an object, the first child is an instance of the object being defined. The second is a value or approx (approximation) element
which contains a MathML description of this particular value. More elaborate conditions on the object are expressed using the
MathML syntax.

MathML Dictionary: Version 1.0
February 10, 1998

F. Content Element Definitions
F.1. About Content Markup Elements

F.1.1. The Structure of an MMLdefinition.■

❍

F.2. Definitions of MathML Content Elements

F.2.1. Leaf Elements

F.2.1.1. <cn>■

F.2.1.2. <ci>■

■

F.2.2. Basic Content Element

F.2.2.1. <apply>■

F.2.2.2. <reln>■

F.2.2.3. <fn>■

F.2.2.4. <interval>■

F.2.2.5. <inverse>■

F.2.2.6. <sep>■

F.2.2.7. <condition>■

F.2.2.8. <declare>■

F.2.2.9. <lambda>■

F.2.2.10. <compose/>■

F.2.2.11. <ident/>■

■

F.2.3. Arithmetic, Algebra and Logic

F.2.3.1. <quotient/>■

F.2.3.2. <exp/>■

F.2.3.3. <factorial/>■

F.2.3.4. <divide/>■

F.2.3.5. <max/>■

■

❍

●

F.2.3.6. <min/>■

F.2.3.7. <minus/>■

F.2.3.8. <plus/>■

F.2.3.9. <power/>■

F.2.3.10. <rem/>■

F.2.3.11. <times/>■

F.2.3.12. <root/>■

F.2.3.13. <gcd/>■

F.2.3.14. 13<and/>■

F.2.3.15. <or/>■

F.2.3.16. <xor/>■

F.2.3.17. <not/>■

F.2.3.18. <implies/>■

F.2.3.19. <forall/>■

F.2.3.20. <exists/>■

F.2.3.21. <abs/>■

F.2.3.22. <conjugate/>■

F.2.4. Relations

F.2.4.1. <eq/>■

F.2.4.2. 2<neq/>■

F.2.4.3. 3<gt/>■

F.2.4.4. 4<lt/>■

F.2.4.5. 5<geq/>■

F.2.4.6. 6<leq/>■

■

F.2.5. Calculus

F.2.5.1. <ln/>■

F.2.5.2. <log/>■

F.2.5.3. <int/>■

F.2.5.4. <diff/>■

F.2.5.5. <partialdiff/>■

F.2.5.6. <lowlimit/>■

F.2.5.7. <uplimit/>■

F.2.5.8. <bvar/>■

F.2.5.9. <degree/>■

■

F.2.6. Theory of Sets

F.2.6.1. <set>■

F.2.6.2. <list>■

F.2.6.3. <union/>■

F.2.6.4. <intersect/>■

F.2.6.5. <in/>■

F.2.6.6. <notin/>■

F.2.6.7. <subset/>■

F.2.6.8. <prsubset/>■

F.2.6.9. <notsubset/>■

■

F.2.6.10. <notprsubset/>■

F.2.6.11. <setdiff/>■

F.2.7. Sequences and Series

F.2.7.1. <sum/>■

F.2.7.2. <product/>■

F.2.7.3. <limit/>■

F.2.7.4. <tendsto/>■

■

F.2.8. Trigonometry

F.2.8.1. <sin/>■

F.2.8.2. <cos/>■

F.2.8.3. <tan/>■

F.2.8.4. <sec/>■

F.2.8.5. <csc/>■

F.2.8.6. <cot/>■

F.2.8.7. <sinh/>■

F.2.8.8. <cosh/>■

F.2.8.9. <tanh/>■

F.2.8.10. <sech/>■

F.2.8.11. <csch/>■

F.2.8.12. <coth/>■

F.2.8.13. <arcsin/>■

F.2.8.14. <arccos/>■

F.2.8.15. <arctan/>■

■

F.2.9. Statistics

F.2.9.1. <mean/>■

F.2.9.2. <sdev/>■

F.2.9.3. <variance/>■

F.2.9.4. <median/>■

F.2.9.5. <mode/>■

F.2.9.6. <moment/>■

■

F.2.10. Lineary Algebra

F.2.10.1. <vector>■

F.2.10.2. <matrix>■

F.2.10.3. <matrixrow>■

F.2.10.4. <determinant/>■

F.2.10.5. <transpose/>■

F.2.10.6. <selector/>■

■

F.2. Definitions of MathML Content Elements

F.2.1. Leaf Elements

F.2.1.1. <cn>

<MMLdefinition>

<name> cn </name>
<description>
 A numerical constant. The mathematical type of number
 is given as an attribute. The default type is "real".
 Numbers such as rational, complex or real, require two
 parts for a complete specification. The parts of such
 a number are separated by an empty "sep" element.

 There are a number of pre-defined constants including:
 π &Exponential; &ComplexI &true; &false; &NaN;
 the properties of some of which are outlined below.

 The &NaN; is IEEE's "Not a Number", as defined in
 IEEE 854 standard for Floating point arithmetic.
</description>
<functorclass> constant </functorclass>
<MMLattribute>
 <name> type </name>
 <value> integer | rational | complex-cartesian
 | complex-polar | real
 </value>
 <default> real </default>
</MMLattribute>
<MMLattribute>
 <name> base </name>
 <value> positive_integer </value>
 <default> 10 </default>
</MMLattribute>
<signature> [type=integer](numstring) -> constant(integer) </signature>
<signature> [base=basevalue](numstring) -> constant(integer) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=complex-cartesian](numstring,numstring) -> constant(complex)
</signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=real](π) -> constant(real) </signature>
<signature> [definition](numstring,numstring) -> constant(userdefined) </signature>
<signature> (γ) -> constant</signature>
<example> <cn> 245 </cn> </example>
<example> <cn type="integer"> 245 </cn> </example>
<example> <cn type="integer" base="16"> A </cn></example>
<example> <cn type="rational"> 245 <sep> 351 </cn> </example>
<example> <cn type="complex-cartesian"> 1 <sep/> 2 </cn> </example>
<example> <cn> 245 </cn> </example>

<property> <approx>
 <cn> π </cn>
 <cn> 3.141592654 </cn>
</approx></property>

<property> <approx>
 <cn> γ </cn>
 <cn> .5772156649 </cn>
</approx> </property>

<property> <reln><identity/>
 <cn>ⅈ </cn>
 <apply><root><cn>-1</cn><cn>2</cn></apply>
</reln>
</property>

<property> <reln><approx>
<cn> ⅇ </cn><cn>2.718281828 </cn>
</reln> </property>
<property> <apply><forall/>
 <bvar><ci type=boolean>p</ci></bvar>
 apply><and/>
 <ci>p</ci><cn>&true;</cn></apply>
 <ci>p</ci>
 </apply>
</property>
<property> <apply><forall/>
 <bvar><ci type=boolean>p</ci></bvar>
 <apply><or/>
 <ci>p</ci><cn>&true;</cn></apply>
 <cn>&true;</cn>
 </apply>
</property>

 <bvar><ci type=boolean>p</ci></bvar>
 <apply><or/>
 <ci>p</ci><cn>&true;</cn></apply>
 <cn>&true;</cn>
 </apply>
</property>

<property>
 <identity>
 <apply><not/><cn> &true; </apply>
 <cn> &false; </cn>
 </identity>
</property>

<property> <reln><identity/>
 <cn base="16"> A </cn> <cn> 10 </cn> </reln> </property>
<property> <reln><identity/>
 <cn base="16"> B </cn> <cn> 11 </cn> </reln></property>
<property> <reln><identity/>

 <cn base="16"> C </cn> <cn> 12 </cn> </reln></property>
<property> <reln><identity/>
 <cn base="16"> D </cn> <cn> 13 </cn> </reln></property>
<property> <reln><identity/>
 <cn base="16"> E </cn> <cn> 14 </cn> </reln></property>
<property> <reln><identity/>
 <cn base="16"> F </cn> <cn> 15 </cn> </reln></property>
</MMLdefinition>

F.2.1.2. <ci>

<MMLdefinition>
<name> ci </name>
<description>
 A symbolic name constructor. The type attribute can
 be set to any valid MathML type.
</description>
<functorclass> constructor , unary </functorclass>
<MMLattribute>
 <name> type </name>
 <value> constant | matrix | set | vector | list | MathMLtype </value>
 <default> real </default>
</MMLattribute>

<signature> ({string|mmlpresentation}) -> symbol(constant) </signature>
<signature> [type=MathMLType]({string|mmlpresentation}) -> symbol(MathMLType)
</signature>
<example><ci> xyz </ci> </example>
<example><ci> type="vector"> V </ci> </example>
</MMLdefinition>

F.2.2. Basic Content Element

F.2.2.1. <apply>

<MMLdefinition>
<name> apply </name>
<description>
 This is the MathML constructor for function application.
 The first argument is applied to the remaining arguments.
 It may be the case that some of the child elements are
 named elements. (See the signature.)
</description>
<functorclass> constructor , nary </functorclass>
<signature> (function,anything*) -> application </signature>
<example><apply><plus/><ci>x</ci><cn>1</cn></apply></example>
<example><apply><sin/><ci>x</ci></apply></example>
</MMLdefinition>

F.2.2.2. <reln>

<MMLdefinition>
<name> reln </name>
<description>
 This is the MathML constructor for expressing a relation between
 two or more mathematical objects. The first argument indicates
 the type of "relation" between the remaining arguments. (See the signature.)
 No assumptions are made about the truth value of such a relation.
 Typically, the relation is used as a component in the construction
 of some logical assertion. Relations may be combined into
 sets, etc. just like any other mathematical object.

</description>
<functorclass> constructor </functorclass>
<signature> (function,anything*) -> reln </signature>
<example><reln><and/><ci>P</ci><ci>Q</ci></reln></example>
<example><reln><lt/><ci>x</ci><ci>y</ci></reln></example>
</MMLdefinition>

F.2.2.3. <fn>

<MMLdefinition>
<name> fn </name>
<description>
 This is the MathML constructor for building new function
 names. The "name" can be a general MathML content element.
 It identifies that object as "usable" in a function
 context.

 By setting its definitionURL value, you can
 associate it with a particular function definition.

 Use the MathML Declare to associate a name with a lambda
 construct.
</description>

<MMLattribute>
 <name>definitionURL</name>
 <value> URL </value>
 <default> none </default>
</MMLattribute>
<functorclass> constructor </functorclass>
<signature> (anything) -> function </signature>
<signature> [definitionURL=functiondef](anything) ->
 function(definitionURL=functiondef)
</signature>
<example><fn><ci>F</ci></fn></example>
<example><fn definitionURL="http://www.w3c/...">
 <lt/><ci>G</ci></fn>
</example>

<!--Declaring Id to be the identity function.-->

<example>
 <declare><fn><ci>Id</ci></fn><lambda><ci>x</ci><ci>x</ci></declare>
</example>
</MMLdefinition>

F.2.2.4. <interval>

<MMLdefinition>
<name> interval </name>
<description>
 This is the MathML constructor element for building an interval
 on the real line. While an interval could be expressed by
 combining relations appropriately, they occur explicitly because
 of their frequence of occurrence in common use.
</description>
<MMLattribute>
 <name>type</name>
 <value> closed | open | open-closed | closed-open </value>
 <default> closed </default>
</MMLattribute>
<functorclass> constructor , binary </functorclass>
<signature> [type=intervaltype](expression,expression) -> interval </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

F.2.2.5. <inverse>

<MMLdefinition>
<name> inverse </name>
<description>
 This MathML element is applied to a function in order to
 construct a new function that is to be interpreted as the
 inverse function of the original function. For a particular
 function F, inverse(F) composed with F behaves like the
 identity map on the domain of F and F composed with inverse(F)
 should be an identity function on a suitably restricted
 subset of the Range of F.

 The MathML definitionURL attribute should be used to resolve
 notational ambiguities, or to restrict the inverse to a
 particular domain or make it one-sided.
</description>
<MMLattribute>

 <name>definitionURL</name>
 <value> CDATA </value>
 <default> none </default>

<!--none corresponds to using the default MathML definition ...-->

</MMLattribute>
<functorclass> operator, unary </functorclass>
<signature> (function) -> function </signature>
<signature> [definitionURL=URL](function) ->
 function(definition) </signature>
<example><apply><inverse/><sin/></apply></example>
<example>
 <apply>
 <inverse definitionURL="www.w3c.org/MathML/Content/arcsin"/>
 <sin/>
 </apply>
</example>
<property><apply><forall/>
 <bvar><ci>y</ci></bvar>
 <apply><sin/>
 <apply>
 <apply><inverse/><sin/></apply>
 <ci>y</ci>
 </apply>
 </apply>
 <value><ci>y</ci></value>
</apply>
</property>
<property>
<apply>
 <apply><inverse/><sin/></apply>
 <apply>
 <sin/>
 <ci>x</ci>
 </apply>
</apply>
<value><ci>x</ci></value>
</property>
<property>F(inverse(F)(y))<value>y</value></property>
</MathMLdefinition>

F.2.2.6. <sep>

<MathMLdefinition>
<name> sep </name>
<description>
 This is the MathML infix constructor used to sub-divide PCDATA into
 separate components. for example, this is used in the description of
 a multipart number such as a rational or a complex number.
</description>
<functorclass> punctuation </functorclass>
<example><cn type="complex-polar">123<sep/>456</cn></example>
<example><cn>123</cn></example>
</MathMLdefinition>

F.2.2.7. <condition>

<MathMLdefinition>
<name> condition </name>
<description>

 This is the MathML constructor for building conditions.
 A condition differs from a relation in how it is used.
 A relation is simply an expression, while a condition
 is used as a predicate to place a conditions on a bound
 variables.

 For a compound condition use relations or apply
 operators such as "and" or "or" or a set of
 relations).
</description>
<functorclass> constructor, unary </functorclass>
<signature> ({reln|apply|set}) -> predicate </signature>
<example>
<condition>
 <reln><lt/>
 <apply><power/>
 <ci>x</ci><cn>5</cn>
 </apply>
 <cn>3</cn>
 </reln>
</condition>
</example>
</MathMLdefinition>

F.2.2.8. <declare>

<MathMLdefinition>
<name> declare </name>
<description>
 This is the MathML constructor for redefining the properties and
 values with mathematical objects. For example V may be a name
 delcared to be a vector, or V may be a name which stands for a
 particular vector.

 The attribute values of the declare statement are assigned as the
 corresponding default attribute values of the first object.

</description>
<functorclass> modifier , (unary | binary) </functorclass>
<MMLattribute>
<name>definitionURL</definition>
<value> Any valid URL </value>
</MMLattribute>
<MMLattribute>
<name>type</name><value> MathMLType </value>
</MMLattribute>
<MMLattribute>
<name>nargs</name><value> number of arguments for an object of type fn </value>
</MMLattribute>

<signature> [attributename=attributevalue](anything)
 -> anything(attributevalue) </signature>

<!-- The two argument form updates the properties of the first
object to be those of the second. The attribute values override the
properties of the "value".
-->

<signature> [attributename=attributevalue](anything,anything)
 -> anything(attributevalue) </signature>

<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MathMLdefinition>

F.2.2.9. <lambda>

<MathMLdefinition>
 <name> lambda </name>
 <description> The operation of lambda calculus that makes a
 function from an expression and a variable. The definition
 at this level uses only one variable. Lambda is a binary
 function, where the first argument is the variable and
 the second argument is a the expression.
 Lambda(x, F) is written as \lambda x [F] in the lambda
 calculus literature.
 The lambda function can be viewed as the inverse of function
 application.

 Although the expression F may contain x, the lambda expression
 is interpreted to be free of x. That is, the x variable is
 a variable local to the environment of the definition of
 the function or operator. Formally, lambda(x,F) is free of
 x, and any substitutions, evaluations or tests for x in
 lambda(x,F) should not happen.

 A lambda expression on an arbitrary function applied to a
 simple argument is equivalent to the arbitrary function.
 E.g. lambda(x, f(x)) == f. This is a common shortcut.

</description>
 <functorclass> Nary , Constructor </functorclass>
 <property>
 <lambda><ci>x</ci>
 <apply><fn><ci>F</ci></fn><ci>x</ci></apply>
 </lambda>
 <value> <fn><ci>F</ci></fn> </value>
 </property>

<!-- Constructing a variant of the sine function -->

 <example>
 <lambda>
 <ci> x </ci>
 <apply><sin/>
 <apply><plus/>
 <ci> x </ci>
 <cn> 3 </cn>
 </apply>
 </lambda>
 </example>

<!-- the identity operator -->

 <example>
 <lambda><ci> x </ci> <ci> x </ci> </lambda>
 </example>

 <property>
 <reln><identity/>
 <lambda><ci>x</ci>
 <apply><fn><ci>F</ci></fn><ci>x</ci></apply>

 </lambda>
 <fn><ci>F</ci></fn>
 </reln>
 </property>
<MathMLdefinition>

F.2.2.10. <compose/>

<MathMLdefinition>
<name> compose </name>
<description>
 This is the MathML constructor for composing functions.
 In order for a composition to be meaningful, the range of
 the first function must be the domain of the second function,
 etc. .

 The result is a new function whose domain is the domain of
 the first function and whose range is the range of the last
 function and whose definition is equivalent to applying
 each function to the previous outcome in turn as in:

 (f @ g)(x) == f(g(x)).

 This function is often denoted by a small circle infix
 operator.
</description>

<functorclass> Nary , Operator </functorclass>

<signature> (fn*) -> fn </signature>

<example>
<apply><compose/>
 <fn><ci> f </ci></fn>
 <fn><ci> g </ci></fn>
 </apply></example>

<property>
<apply><forall>
 <bvar><ci>x</ci></bvar>
 <reln><eq/>
 <apply>
 <apply><compose/>
 <ci>f</ci>
 <ci>g</ci>
 </apply>
 <ci>x</ci>
 </apply>
 <apply><ci>f</ci>
 <apply><ci>g</ci>
 <ci>x</ci>
 </apply>
 </apply>
 </reln>
</apply>
</property>
</MathMLdefinition>

F.2.2.11. <ident/>

<MathMLdefinition>
<name> ident </name>
<description>
 This is the MathML constructor for the identity function.
 This function has the property that

 f(x) = x, for all x in its domain.

</description>

<functorclass> Nary , Operator </functorclass>

<signature> (symbol) -> symbol </signature>

<example>
<apply><ident/>
 <ci> f </ci>
 <ci> x </ci>
</apply>
</example>

<property>
<apply><forall>
 <bvar><ci>x</ci></bvar>
 <reln><eq/>
 <apply><ident/>
 <ci>f</ci>
 <ci>x</ci>
 </apply>
 <ci>x</ci>
 </reln>
</apply>
</property>
</MathMLdefinition>

F.2.3. Arithmetic, Algebra and Logic

F.2.3.1. <quotient/>

<MMLdefinition>
<name> quotient </name>
 <description> Integer quotient, the result of integer
 division. For arguments a and b, it returns q,
 where a = b*q+r, |r| < |b| and a*r ≥ 0 (or
 the sign of r is the same as the sign of a).
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (integer, integer) -> integer </signature>
 <signature> (symbolic, symbolic) -> symbolic </signature>

<!--
ForAll(bvar(a,b),identity(a ,b*Quotient(a,b) + Remainder(a,b))
-->
 <property>
 <apply><forall/>
 <bvar><ci>a</ci></bvar>
 <bvar><ci>b</ci></bvar>
 <reln/><eq/>
 <ci>a</ci>
 <apply><plus/>
 <apply><times/>

 <ci>b</ci>
 <apply><quotient/><ci>a</ci><ci>b</ci></apply>
 </apply>
 <apply><rem/><ci>a</ci><ci>b</ci></apply>
 </apply>
 <reln>
 </apply>
 </property>

 <!-- 1 = quotient(5,4) -->

 <property>
 <apply><identity/>
 <apply><quotient/>
 <ci>5</ci>
 <ci>4</ci>
 </apply>
 <ci>1</ci>
 <apply>
 </property>
</MMLdefinition>

F.2.3.2. <exp/>

<MMLdefinition>
 <name> exp </name>
 <description> The exponential function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.2]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property><reln><eq/>
 <apply><exp/><cn>0</cn></apply>
 <cn>1</cn></reln>
 </property>
 <property><apply><identity/>
 <apply><exp/><ci>x</ci></apply>
 <apply><power/>
 <cn>ExponentialE;</cn><ci>x</ci>
 </apply>
 </apply>
 </property>
 <property> exp(x) = limit((1+x/n)^n, n, infinity) </property>

</MMLdefinition>

F.2.3.3. <factorial/>

<MMLdefinition>
 <name>
 factorial
 </name>
 <description>
 This element is used to construct factorials
 as in n! = n * (n-1) * (n-2) ... 1 .
 </description>
 <functorclass> Unary , function </functorclass>
 <signature> (algebraic) -> algebraic </signature>

 <example> <apply><factorial/><ci>n</ci></apply> </example>

 <!-- for all n > 0, n! = n*(n-1)! -->

 <property><apply><forall/>
 <bvar><ci>n<ci></bvar>
 <condition>
 <reln><gt/><ci>n</ci><cn>0</cn></reln>
 </condition>
 <reln><eq/>
 <apply><factorial/><ci>n</ci></apply>
 <apply><times/>
 <ci>n</ci>
 <apply><factorial/>
 <apply><minus/><ci>n</ci><cn>1</cn></apply>
 </apply>
 </apply>
 </reln>
 </property>
 </MMLdefinition>

F.2.3.4. <divide/>

<MMLdefinition>
 <name> divide </name>
 <description>
 The MathML operator that is used to construct
 a "divided by" b. If a and b are from an algebraic
 domain with a non-commutative times then this is defined
 as a * (b)^(-1). The result is from the same algebraic
 domain as the operands.
 </description>
 <MMLattribute>
 <name> type </name>
 <value> non-commutative </name>
 <default> none </default>
 </MMLattribute>
 <functorclass> binary , function </functorclass>
 <signature> (complex, complex) -> complex </signature>
 <signature> (real, real) -> real </signature>
 <signature> (rational, rational) -> rational </signature>
 <signature> (integer, integer) -> rational </signature>
 <signature> (symbolic, symbolic) -> symbolic </signature>
 <example>
 <apply> <divide/>
 <ci> a </ci>
 <ci> b </ci>
 </apply>
 </example>
 <property>
 <apply><forall/>
 <bvar>a</bvar>
 <reln><eq/>
 <apply> <divide/>
 <ci> a </ci>
 <ci> 0 </ci>
 <ci>Error, Division by 0</ci>
 </apply>
 </property>
 </MMLdefinition>

F.2.3.5. <max/>

<MMLdefinition>
 <name> max </name>
 <description>
 Represent the maximum of a set of elements. The elements
 may be given explicitly or described by membership in
 some set. To be well defined, the elements must all be
 comparable. </description>
 <functorclass> function </functorclass>
 <signature> (ordered_set_element *) -> ordered_set_element </signature>
 <signature> (condition) -> ordered_set_element </signature>
 <example>
 <apply><max/><cn>2</cn><cn>3</cn> <cn>5</cn> </apply>
 </example>
 <example>
 <apply><max/>
 <condition>
 <bvar><ci>x</ci></bvar>
 <reln> <notin/>
 <ci> x </ci>
 <ci type="set"> B </ci>
 </reln>
 </condition>
 </apply>
 </example>
 </MMLdefinition>

F.2.3.6. <min/>

<MMLdefinition>
 <name> min </name>
 <description>
 Represent the minimum of a set of elements. The elements
 may be given explicitly or described by membership in
 some set. To be well defined, the elements must all be
 comparable. </description>
 <functorclass> function </functorclass>
 <signature> (ordered_set_element *) -> ordered_set_element </signature>
 <signature> (condition) -> ordered_set_element </signature>
 <example>
 <apply><min/><cn>2</cn><cn>3</cn> <cn>5</cn> </apply>
 </example>
 <example>
 <apply><min/>
 <condition>
 <bvar><ci>x</ci></bvar>
 <reln> <notin/>
 <ci> x </ci>
 <ci type="set"> B </ci>
 </reln>
 </condition>
 </apply>
 </example>
 </MMLdefinition>

F.2.3.7. <minus/>

<MMLdefinition>
 <name> minus </name>
 <description>

 The subtraction operator of a group. </description>
 <MMLattribute>
 <name> definitionURL </name>
 <value> URL </name>
 <default> none </default>
 </MMLattribute>
 <functorclass>
 Operator , (Unary | Binary)
 </functorclass>
 <signature>(real,real) -> real</signature>
 <signature>(integer,integer) -> integer</signature>
 <signature>(rational,rational) -> rational</signature>
 <signature>(complex,complex) -> complex</signature>

<!--
 Note that complex-cartesian is a data input format,
 but the resulting data type is complex. !
-->

 <signature> (vector,vector) -> vector</signature>
 <signature>(matrix,matrix) -> matrix</signature>
 <signature>(real) -> real </signature>
 <signature>(integer) -> integer </signature>
 <signature>(complex) -> complex </signature>
 <signature>(rational) -> rational </signature>
 <signature>(vector) -> vector </signature>
 <signature>(matrix) -> matrix </signature>
 <example>
 <apply><minus/><cn>3</cn><cn>5</cn></apply>
 </example>
 <example>
 <apply><minus/><cn>3</cn></apply>
 </example>

<!-- Definition of the unary operator (-1) = -(1) -->

<property>
 <reln><eq/>
 <bvar><ci>n</ci>
 <apply><minus/><cn>1</cn></apply>
 <cn>-1</cn>
 </reln>
 </property>
 </MMLdefinition>

F.2.3.8. <plus/>

<MMLdefinition>
<name> plus </name>
<description> The N-ary addition operator of an
algebraic structure.

If no operands are provided, the expression represents
the additive identity.

If one operand a is provided, the expression represents
a.

If two or more operands are provided, the expression
represents the group element corresponding to a left
associative binary pairing of the operands.

Issues with regard to the "value" of mixed operands
are left up to the target system. If the author wishes
to refer to specific type coercion rules, then
the definitionURL attribute should be used to refer
to a suitable specification.
</description>

<functorclass> Operator , Nary </functorclass>
<signature>(real,real) -> real</signature>
<signature>(integer,integer) -> integer</signature>
<signature>(rational,rational) -> rational</signature>
<signature> (vector,vector) -> vector</signature>
<signature>(matrix,matrix) -> matrix</signature>
<signature>(complex,complex) -> complex</signature>
<signature>(symbolic,symbolic) -> symbolic </signature>

<signature> real -> real </signature>
<signature> rational -> rational </signature>
<signature> integer -> integer </signature>
<signature> symbolic -> symbolic </signature>
<signature>(real) -> real </signature>
<signature>(integer) -> integer </signature>
<signature>(complex) -> complex </signature>
<signature>(rational) -> rational </signature>
<signature>(vector) -> vector </signature>
<signature>(matrix) -> matrix </signature>

<example><apply><plus/><cn>3</cn></apply></example>
<example><apply><plus/><cn>3</cn><cn>5</cn></apply></example>
<example><apply><plus/><cn>3</cn><cn>5</cn><cn>7</cn></apply></example>

<!-- The properties for more restricted algebraic structures should
be defined using a definitionURL
-->

<property> +() = 0 </property>
<property> +(a) = a </property>
<property> ForAll(a,Commutative, a + b = b + a)</property>
</MMLdefinition>

F.2.3.9. <power/>

<MMLdefinition>
<name> power </name>
<description> The powering operator </description>
<functorclass> binary, operator </functorclass>
<signature> (complex complex) -> complex </signature>
<signature> (real real) -> complex </signature>
<signature> (rational rational) -> complex </signature>
<signature> (rational integer) -> rational </signature>
<signature> (integer integer) -> rational </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<property> ForAll(a,Condition(a<>0),a^0=1) </property>
<property> ForAll(a,a^1=a) </property>
<property> ForAll(a,1^a=1) </property>
<property>ForAll(a,0^0=Undefined)</property>
 </MMLdefinition>

F.2.3.10. <rem/>

<MMLdefinition>
<name> rem </name>
<description> Integer remainder, the result of integer
division. For arguments a and b, it returns r,
where a = b*q+r, |r| < |b| and a*r ≥ 0 (the
sign of r is the same as the sign of a when both are
non-zero).
</description>
<functorclass> binary, function </functorclass>
<signature> (integer integer) -> integer </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<property> a = b*rem(a,b) + rem(a,b) </property>
<property>rem(a,0) = Division_by_Zero</property>
</MMLdefinition>

F.2.3.11. <times/>

<MMLdefinition>
<name> times </name>
<description> The multiplication operator of any
ring.
</description>
<functorclass> N-ary, Operator </functorclass>
<signature> (complex complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<property>ForAll(bvars(a,b),condition(in({a,b},Commutative)),a*b=b*a)</property>
<property>ForAll(bvars(a,b,c),Associative,a*(b*c)=(a*b)*c), associativity </property>
<property> a*1=a </property>
<property> 1*a=a </property>
<property> a*0=0 </property>
<property> 0*a=0 </property>
</MMLdefinition>

F.2.3.12. <root/>

<MMLdefinition>
 <name> root </name>
 <description>
 Construct the nth root of an object.
 The first argument "a" is the object and the
 second object "n" denotes the root, as in

 (a) ^ (1/n)

 </description>
 <MMLattribute>
 <name> type </name>
 <value> real | complex | principle_branch </name>
 <default> real </default>
 </MMLattribute>
 <functorclass> binary , function </functorclass>
 <signature> (anything , symbol) -> root </signature>
 <example>
 <apply> <root/>
 <ci> a </ci>
 <ci> n </ci>
 </apply>
 </example>

 <property> Forall(bvars(a,n),root(a,n) = a^(1/n)) </property>
 </MMLdefinition>

F.2.3.13. <gcd/>

<MMLdefinition>
 <name> gcd </name>
 <description>
 This represents the greatest common divisor
 of its arguments.
 </description>
 <MMLattribute>
 <name> type </name>
 <value> anything </name>
 <default> integer </default>
 </MMLattribute>
 <functorclass> Function , Nary </functorclass>
 <signature> [type=typevalue](typevalue*) -> typevalue </signature>
 <example>
 <apply><gcd/><cn>12</cn> <cn>17</cn></apply>
 </example>
 <property>Forall(p,q,(is(p,prime) and is(q,prime)) , gcd(p,q)=1 </property>
 </MMLdefinition>

F.2.3.14. <and/>

<MMLdefinition>
 <name> and </name>
 <description>
 This is the logical "and" operator.
 </description>
 <functorclass> function, Nary </functorclass>
 <signature> (boolean*) -> boolean </signature>
 <example> <apply><and/><ci>p</ci><ci>q</ci></apply> </example>
 <property> identity(true and p , p) </property>
 <property> identity(p and q , q and p) </property>
 </MMLdefinition>

F.2.3.15. <or/>

<MMLdefinition>
<name> or </name>
<description> The logical "or" operator.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<signature> [type=boolean](symbolic symbolic)
 -> symbolic </signature>
<property> identity(true or p , true) </property>
 ...
</MMLdefinition>

F.2.3.16. <xor/>

<MMLdefinition>
<name> or </name>
<description> The logical "xor" operator.
</description>
<functorclass> Binary, Function </functorclass>
<signature> (boolean,boolean) -> boolean </signature>
<signature> [type=boolean](symbolic symbolic)

 -> symbolic </signature>
<property> ...</property>
</MMLdefinition>

F.2.3.17. <not/>

<MMLdefinition>
<name> not </name>
<description> The logical "not" operator.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (boolean) -> boolean </signature>
<signature> [type=boolean](symbolic)
 -> symbolic </signature>
<property> ... </property>
</MMLdefinition>

F.2.3.18. <implies/>

<MMLdefinition>
<Name> implies </Name>
<description> The implies operator. This represents
the construction "A implies B".
</description>
<functorclass> Binary, relation </functorclass>
<signature> (boolean,boolean) -> boolean </signature>

<property> <apply></forall>
 <bvar><ci>A</ci></bvar>
 <bvar><ci>B</ci></bvar>
 <reln><eq/>
 <apply><implies/>
 <ci>A</ci>
 <ci>B</ci>
 </apply>
 <apply><or/>
 <ci>B</ci>
 <apply><not/>
 <ci> A </ci>
 </apply>
 </apply>
 </reln>
 </property>
</MMLdefinition>

F.2.3.19. <forall/>

<MMLdefinition>
<name> forall </name>
<description> The logical "For all" quantifier.
</description>
<functorclass> Nary, Operator </functorclass>
<signature> (bvar*,condition?,(reln|apply)) -> boolean </signature>
<property> ... </property>
</MMLdefinition>

F.2.3.20. <exists/>

<MMLdefinition>

<name> exists </name>
<description> The logical "There exists" quantifier.
</description>
<functorclass> Nary, Operator </functorclass>
<signature> (bvar*,condition?,(reln|apply)) -> boolean </signature>
<property> ... </property>
</MMLdefinition>

F.2.3.21. <abs/>

<MMLdefinition>
<name> exists </name>
<description> The absolute value of a number.
</description>
<functorclass> Unary, Operator </functorclass>
<signature> (algebraic) -> algebraic </signature>
<property> ... </property>
</MMLdefinition>

F.2.3.22. <conjugate/>

<MMLdefinition>
<name> conjugate </name>
<description> The "conjugate" arithmetic operator
used to represent the conjugate of a complex number.
</description>
<functorclass> Unary, Operator </functorclass>
<signature> (algebraic) -> algebraic </signature>
<property> ... </property>
</MMLdefinition>

F.2.4. Relations

F.2.4.1. <eq/>

<MMLdefinition>
<Name> eq </Name>
<description> The equality operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

F.2.4.2. 2<neq/>

<MMLdefinition>
<Name> neq </Name>
<description> The notequals operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

F.2.4.3. <gt/>

<MMLdefinition>
<Name> gt </Name>

<description> The equality operator. </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

F.2.4.4. <lt/>

<MMLdefinition>
<Name> lt </Name>
<description> The inequality equality operator "<" </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic, symbolic*) -> boolean </signature>
</MMLdefinition>

F.2.4.5. <geq/>

<MMLdefinition>
<Name> geq </Name>
<description> The inequality operator. >= </description>
<functorclass> Nary, relation </functorclass>
<signature> (symbolic, symbolic*) -> boolean </signature>
<property> ... Commutative ? ... </property>
</MMLdefinition>

F.2.4.6. <leq/>

<MMLdefinition>
<Name> leq </Name>
<description> The inequality operator </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

F.2.5. Calculus

F.2.5.1. <ln/>

 <MMLdefinition>
 <Name> ln </Name>
 <description> The logarithmic function. Also called
 the natural logarithm.
 The inverse of the exponential function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.1]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <property>
 Error("logarithm has a singularity at 0")
 </property>

 <signature> Intersect(real,positive) -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> ln(1) = 0 </property>
 <property> ln(exp(x)) = x, "for real x" </property>
 <property> exp(ln(x)) = x, always </property>
 </MMLdefinition>

F.2.5.2. <log/>

 <MMLdefinition>
 <Name> log </Name>
 <description> The logarithmic function (base 10), or any
 any other user specified base. Also called
 the natural logarithm.
 The inverse of the exponential function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.1]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> (real,logbase) -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>
 Error("logarithm has a singularity at 0")
 </property>
 </MMLdefinition>

F.2.5.3. <int/>

 <MMLdefinition>
 <Name> int </Name>
 <description>
 The definite or indefinite integral of a function or algebraic
 expression.

 There are several forms of calling sequences depending on
 the nature of the areguments, and whether or not it is a
 definite integral.

 </description>
 <functorclass> Binary , Function </functorclass>
 <signature> (function) -> function </signature>
 <signature> (algebraic,bvar) -> algebraic </signature>
 <signature> (algebraic,bvar,interval) -> algebraic </signature>
 <signature> (algebraic,bvar,condition) -> algebraic </signature>
 </MMLdefinition>

F.2.5.4. <diff/>

 <MMLdefinition>
 <Name> diff </Name>
 <description>
 For expressions, this represents the derivative of
 its first argument evaluated at the second argument.
 For Unary functions (only one argument) it represents
 f'.
 </description>
 <functorclass> (Unary | Binary) , Function </functorclass>

 <signature> (algebraic,bvar) -> algebraic </signature>
 <property>Forall(x,diff(sin(x) , x) = cos(x)) </property>
 <property>Forall(x,diff(x , x) = 1) </property>
 <property>Forall(x,diff(x^2 , x) = 2x) </property>
 <property>identity(diff(sin) , cos) </property>
 </MMLdefinition>

F.2.5.5. <partialdiff/>

 <MMLdefinition>
 <Name> partialdiff </Name>
 <description>
 For expressions, this represents the derivative of
 its first argument evaluated at the second argument.
 For Unary functions (only one argument) it represents
 f'.
 </description>
 <functorclass> (Binary) , Function </functorclass>
 <signature> (algebraic,bvar) -> algebraic </signature>
 <property>Forall(x,diff(sin(x*y) , x) = cos(x)) </property>
 <property>Forall(x,y,diff(x*y , x) = diff(x,x)*y + diff(y,x)*x)
</property>
 <property>Forall(x,a,b,diff(a + b , x) = diff(a,x) + diff(b,x))
</property>
 <property>identity(diff(sin) , cos) </property>
 </MMLdefinition>

F.2.5.6. <lowlimit/>

 <MMLdefinition>
 <Name> lowlimit </Name>
 <description> Construct a lower limit. Limits
 are used in some integrals as alternative way
 of describing the region over which an integral
 is computed. (i.e., a connected component of the
 real line.)
 </description>
 <functorclass> Constructor </functorclass>
 <signature> (anything*) -> list </signature>
 </MMLdefinition>

F.2.5.7. <uplimit/>

 <MMLdefinition>
 <Name> uplimit </Name>
 <description> Construct a an upper limit. Limits
 are used in some integrals as alternative way
 of describing the region over which an integral
 is computed. (i.e., a connected component of the
 real line.)
 </description>
 <functorclass> Constructor </functorclass>
 <signature> (anything*) -> list </signature>
 </MMLdefinition>

F.2.5.8. <bvar/>

 <MMLdefinition>
 <Name> bvar </Name>
 <description>
The bvar element is the container element
for the "bound variable" of an operation.
For example, in an integral it specifies the
variable of integration. In a derivative, it
indicates which variable with respect to
which a function is being differentiated.

When the bvar element is used to quantifiy a derivative,
the bvar element may contain a child degree element which
specifies the order of the derivative with respect to that
variable. The bvar element is also used for the internal
variable in sums and products.
 </description>
 <functorclass> Constructor </functorclass>
 <signature> (symbol) -> symbol </signature>
 <example> <bvar><ci>x</ci></bvar></example>
 </MMLdefinition>

F.2.5.9. <degree/>

 <MMLdefinition>
 <Name> degree </Name>
 <description> A parameter used by some
 MathML data-types to specify that, for example,
 a bound variable is repeated several times.
 </description>
 <functorclass> Constructor </functorclass>
 <signature> (algebraic) -> algebraic </signature>
 <example> <degree><ci>x</ci></degree></example>

 <property> ... </property>
 </MMLdefinition>

F.2.6. Theory of Sets

F.2.6.1. <set>

 <MMLdefinition>
 <Name> set </Name>
 <description> Construct a set. </description>
 <functorclass> Nary, Constructor </functorclass>
 <signature> (anything*) -> set </signature>
 </MMLdefinition>

F.2.6.2. <list>

 <MMLdefinition>
 <Name> list </Name>
 <description> Construct a list. </description>
 <functorclass> Nary, Constructor </functorclass>
 <signature> (anything*) -> list </signature>
 </MMLdefinition>

F.2.6.3. <union/>

 <MMLdefinition>
 <Name> union </Name>
 <description> The union of two sets. </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set*) -> set </signature>
 </MMLdefinition>

F.2.6.4. <intersect/>

 <MMLdefinition>
 <Name> intersection </Name>
 <description> The intersection of two sets. </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set set) -> set </signature>
 </MMLdefinition>

F.2.6.5. <in/>

 <MMLdefinition>
 <Name> in </Name>
 <description>
 The membership testing operation (also commonly
 called "in" or "including"). Returns true if the first
 argument is part of the second argument. The second
 argument must be a set.
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (anything, set) -> boolean </signature>
 </MMLdefinition>

F.2.6.6. <notin/>

 <MMLdefinition>
 <Name> notin </Name>
 <description>
 The membership exclusion operation (also commonly
 called "notin" or "including").
 It is defined as "not in".
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (anything set) -> boolean </signature>
 </MMLdefinition>

F.2.6.7. <subset/>

 <MMLdefinition>
 <Name> subset </Name>
 <description>
 Boolean function whose value is determined by
 whether or not one set is a subset of another.
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set*) -> boolean </signature>
 </MMLdefinition>

F.2.6.8. <prsubset/>

 <MMLdefinition>
 <Name> prsubset </Name>
 <description>
 Boolean function whose value is determined by
 whether or not one set is a proper subset of another.
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set, set) -> boolean </signature>
 <property>...</property>
 </MMLdefinition>

F.2.6.9. <notsubset/>

 <MMLdefinition>
 <Name> notsubset </Name>
 <description>
 Boolean function whose value is the complement
 of "subset".
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set, set) -> boolean </signature>
 <property>...</property>
 </MMLdefinition>

F.2.6.10. <notprsubset/>

 <MMLdefinition>
 <Name> notprsubset </Name>
 <description>
 Boolean function whose value is the complement
 of "proper subset".
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set, set) -> boolean </signature>
 <property>...</property>
 </MMLdefinition>

F.2.6.11. <setdiff/>

 <MMLdefinition>
 <Name> setdiff </Name>
 <description>
 Function indicating the difference of two sets.
 </description>
 <functorclass> Binary, Function </functorclass>
 <signature> (set, set) -> set </signature>
 <property>...</property>
 </MMLdefinition>

F.2.7. Sequences and Series

F.2.7.1. <sum/>

<MMLdefinition>
<Name> sum </Name>
<description>

The sum element denotes the summation operator. Upper and lower
limits for the sum, and more generally a domains for the bound variables
are specified using uplimit, lowlimit or a condition on the bound
variables. The index for the summation is specified by a bvar element.

The sum element takes the attribute definition which can be used to
override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> sum </signature>
<signature> ... </signature>
</MMLdefinition>

F.2.7.2. <product/>

<MMLdefinition>
<Name> product </Name>
<description>
The product element denotes the product operator. Upper and lower
limits for the product, and more generally a domains for the bound
variables are specified using uplimit, lowlimit or a condition on the
bound variables. The index for the product is specified by a bvar
element.

The product element takes the attribute definition which can be used
to override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic)
 -> product </signature>
<signature> ... </signature>
<signature> ... </signature>
</MMLdefinition>

F.2.7.3. <limit/>

<MMLdefinition>
<Name> limit </Name>
<description>
The sum element denotes the summation operator.
Upper and lower limits for the sum, and more
generally a domains for the bound variables are
specified using uplimit, lowlimit or a condition
on the bound variables. The index for the summation is
specified by a bvar element.
</description>
<functorclass> Nary, Function </functorclass>
<signature> (bvar*,(lowlimit | condition*),algebraic)
 -> limit </signature>
</MMLdefinition>

F.2.7.4. <tendsto/>

<MMLdefinition>
<Name> tendsto </Name>
<description> tendsto is used to specify how a limit is
computed. It accepts a type attribute that determines the
manner in which it tends to a value.

</description>
<functorclass> binary, Function </functorclass>
<signature> (symbol,anything) -> condition(limit) </signature>
<signature> [type=direction](symbol,anything) ->
 condition(limit) </signature>
</MMLdefinition>

F.2.8. Trigonometry

F.2.8.1. <sin/>

 <MMLdefinition>
 <Name> sin </Name>
 <description> The circular trigonometric function sine
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> sin(0) = 0 </property>
 <property> sin(integer*Pi) = 0 </property>
 <property> sin((Z+1/2)*Pi) = (-1)^Z, "for integer Z" </property>
 <property> -1 <= sin(real) </property>
 <property> sin(real) <= 1 </property>
 <property> sin(3*x)=-4*sin(x)^3+3*sin(x), "triple angle formula"
 <Reference> ditto, [4.3.27] </Reference>
 </property>
 </MMLdefinition>

F.2.8.2. <cos/>

 <MMLdefinition>
 <Name> cos </Name>
 <description> The cosine function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> cos(0) = 1 </property>
 <property> cos(integer*Pi+Pi/2) = 0 </property>
 <property> cos(Z*Pi) = (-1)^Z, "for integer Z" </property>
 <property> -1 <= cos(real) </property>
 <property> cos(real) <= 1 </property>
 </MMLdefinition>

F.2.8.3. <tan/>

 <MMLdefinition>
 <Name> tan </Name>
 <description> The tangent function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>

 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> tan(integer*Pi) = 0 </property>
 <property> tan(x) = sin(x)/cos(x) </property>
 </MMLdefinition>

F.2.8.4. <sec/>

 <MMLdefinition>
 <Name> sec </Name>
 <description> The secant function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> sec(x) = 1/cos(x) </property>
 </MMLdefinition>

F.2.8.5. <csc/>

 <MMLdefinition>
 <Name> csc </Name>
 <description> The cosecant function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> csc(x) = 1/sin(x) </property>
 </MMLdefinition>

F.2.8.6. <cot/>

 <MMLdefinition>
 <Name> cot </Name>
 <description> The cotangent function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> cot(integer*Pi+Pi/2) = 0 </property>
 <property> cot(x) = cos(x)/sin(x) </property>
 </MMLdefinition>

F.2.8.7. <sinh/>

 <MMLdefinition>

 <Name> sinh </Name>
 <description> The hyperbolic sine function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>...</property>
 </MMLdefinition>

F.2.8.8. <cosh/>

 <MMLdefinition>
 <Name> sinh </Name>
 <description> The hyperbolic sine function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>...</property>
 </MMLdefinition>

F.2.8.9. <tanh/>

 <MMLdefinition>
 <Name> tanh </Name>
 <description> The hyperbolic tangent function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>...</property>
 </MMLdefinition>

F.2.8.10. <sech/>

 <MMLdefinition>
 <Name> sech </Name>
 <description> The hyperbolic secant function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>...</property>
 </MMLdefinition>

F.2.8.11. <csch/>

 <MMLdefinition>
 <Name> csch </Name>
 <description> The hyperbolic cosecant function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>...</property>
 </MMLdefinition>

F.2.8.12. <coth/>

 <MMLdefinition>
 <Name> coth </Name>
 <description> The hyperbolic cotangent function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.3]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property>...</property>
 </MMLdefinition>

F.2.8.13. <arcsin/>

 <MMLdefinition>
 <Name> arcsin </Name>
 <description> The inverse of the sine function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.4]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> sin(arcsin(x)) = x </property>
 <property> arcsin(sin(x)) = x, "for x between -Pi/2 and Pi/2" </property>
 </MMLdefinition>

F.2.8.14. <arccos/>

 <MMLdefinition>
 <Name> arccos </Name>
 <description> The inverse of the cosine function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.4]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> cos(arccos(x)) = x </property>

 <property> arccos(cos(x)) = x, "for x between 0 and Pi" </property>
 </MMLdefinition>

F.2.8.15. <arctan/>

 <MMLdefinition>
 <Name> arctan </Name>
 <description> The inverse of the tangent function.
 <Reference> M. Abramowitz and I. Stegun, Handbook of
 Mathematical Functions, [4.4]
 </Reference>
 </description>
 <functorclass> Unary, Function </functorclass>
 <signature> real -> real </signature>
 <signature> symbolic -> symbolic </signature>
 <property> tan(arctan(x)) = x </property>
 <property> arctan(tan(x)) = x, "for x between -Pi/2 and Pi/2" </property>
 </MMLdefinition>

F.2.9. Statistics

F.2.9.1. <mean/>

<MMLdefinition>
 <Name> mean </Name>
 <description>
 Given k unspecified scalar arguments they are treated as equiprobable
 values of a random variable and the mean is computed as:

 mean(a1, a2, ... an) Sum(ai, i=1... n)/ n.

 (see section 7.7 in CRC's Standard Mathematical tables and Formulae).

 More generally, if the first argument is a symbol X of type
 "discrete_random_variable", this is the 1st moment of the
 random variable X and is defined as

 E[X] = Sum(x*f(x), x in S)

 where the probability that x = x_i is P(x = x_i) = f(x_i) .

 The arguments are either all data, all discrete random variables,
 or all continuous random variables.

 The generalizes to continuous distributions and
 k dimenions following the definitions provided in the reference:

 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
 </Reference>
 </description>
 <MMLattribute>
 <name>type</name>
 <values> random_variable | continuous_random_variable | data </value>
 <default> data </default>
 </MMLattribute>
 <functorclass>Nary , Operator </functorclass>
 <signature>(scalar*) -> scalar</signature>
 <signature>(scalar(type=data)*) -> scalar</signature>
 <signature>(symbol(type=random_variable)*) -> scalar</signature>

 <signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>
 <property> </property>
</MMLdefinition>

F.2.9.2. <sdev/>

<MMLdefinition>
 <Name> sdev </Name>
 <description>
 This represents the standard deviation.

 Given k unspecified scalar arguments they are treated as equiprobable
 values of a random variable and the "standard deviation" is
 computed as the square root of the second moment about the mean U.

 sdev(a1, a2, ... an)^2 = E((X - U)^2).

 If the first argument is a symbol X of type
 "discrete_random_variable", then all arguments are treated as
 discrete random variables, instead of data and the second moment
 about the mean is computed as

 Sum((x_i - U)^2 * f(x_i) , x_i in S)
 as

 where the probability that x = x_i is P(x = x_i) = f(x_i) .

 The arguments are either all data, all discrete random variables,
 or all continuous random variables.

 The generalizes to continuous distributions and to
 k dimenions following the definitions found in:

 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
 </Reference>
 </description>
 <MMLattribute>
 <name>type</name>
 <values> random_variable | continuous_random_variable | data </value>
 <default> data </default>
 </MMLattribute>
 <functorclass>Nary , Operator </functorclass>
 <signature>(scalar*) -> scalar</signature>
 <signature>(scalar(type=data)*) -> scalar</signature>
 <signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
 <signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>
 <property> </property>
</MMLdefinition>

F.2.9.3. <variance/>

<MMLdefinition>
 <Name> variance </Name>
 <description>
 This computes the second centered moment, also known as the variance.

 Given k unspecified scalar arguments they are treated as equiprobable
 values of a random variable and the "variance" is
 computed as the second moment about the mean U.

 variance(a1, a2, ... an) = E((X - U)^2).

 If the first argument is a symbol X of type
 "discrete_random_variable", then all arguments are treated as
 discrete random variables, instead of data and the second moment
 about the mean is computed as in section [7.7] (see reference below.)

 Sum((x_i - U)^2 * f(x_i) , x_i in S)
 as

 where the probability that x = x_i is P(x = x_i) = f(x_i) .

 The arguments are either all data, all discrete random variables,
 or all continuous random variables.

 The generalizes to continuous distributions and to
 k dimenions following the definitions found in:

 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]
 </Reference>
 </description>
 <MMLattribute>
 <name>type</name>
 <values> random_variable | continuous_random_variable | data </value>
 <default> data </default>
 </MMLattribute>
 <functorclass>Nary , Operator </functorclass>
 <signature>(scalar*) -> scalar</signature>
 <signature>(scalar(type=data)*) -> scalar</signature>
 <signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
 <signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>
</MMLdefinition>

F.2.9.4. <median/>

<MMLdefinition>
 <Name> median </Name>
 <description>
 This represents the median of n data values.
 If n =2k + 1 then the mode is x_k.
 If n = 2k then the median is (x_k + x_(k+1)/2).
 (Note this discription assumes that the data has been
 sorted into ascending order.)

 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]
 </Reference>
 </description>
 <functorclass>Nary , Operator</functorclass>
 <signature>(scalar*) -> scalar</signature>
</MMLdefinition>

F.2.9.5. <mode/>

<MMLdefinition>
 <Name> mode </Name>
 <description>
 This represents the mode of n data values.

 The mode is the data value that occurs with the
 greatest frequency.

 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]
 </Reference>
 </description>
 <functorclass>Nary , Operator</functorclass>
 <signature>(scalar*) -> scalar</signature>
</MMLdefinition>

F.2.9.6. <moment/>

<MMLdefinition>
 <Name> moment </Name>
 <description>
 This computes the ith moment of a set of data, or a random variable..

 Given k scalar arguments of unspecified type, they are treated
 as equiprobable values of a random variable. and the "moments" are
 computed as the second moment about the mean U.

 moment(degree=i, scalar*)= E(X^i).

 If the first data argument x1 is a symbol X of type
 "discrete_random_variable", then all arguments are treated as
 discrete random variables, instead of data and the ith moment
 about the mean is computed as

 Sum((x)^i * f(x) , x in S)

where the probability that x = x_i is P(x = x_i) = f(x_i) .

 The arguments are either all data, all discrete random variables,
 or all continuous random variables.

 The generalizes to continuous distributions and to
 k dimenions following the definitions found in:

 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2]
 </Reference>
 </description>
 <MMLattribute>
 <name>type</name>
 <values> random_variable | continuous_random_variable | data </value>
 <default> data </default>
 </MMLattribute>
 <functorclass>Nary , Operator </functorclass>
 <signature>(degree,scalar*) -> scalar</signature>
 <signature>(degree,scalar(type=data)*) -> scalar</signature>
 <signature>(degree,symbol(type=discrete_random_variable)*) -> scalar</signature>
 <signature>(degree, symbol(type=continuous_random_variable)*) -> scalar</signature>
</MMLdefinition>

F.2.10. Lineary Algebra

F.2.10.1. <vector>

<MMLdefinition>
 <Name> vector </Name>

 <description>
 A vector is an ordered n-tuple of values
 representing an element of an n-dimensional
 vector space. The "values" are all from the
 same ring, typically real or complex. They may
 be numbers, symbols, or general algebraic expressions.

 The type attribute can be used to specify the type of
 vector that is represented.
 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]
 </Reference>
 </description>
 <MMLattribute>
 <name> type </name>
 <value> real | complex | symbolic | anything </value>
 <default> real </default>
 </MMLattribute>
 <MMLattribute>
 <name> other </name>
 <value> row | column </value>
 <default> row </default>
 </MMLattribute>
 <functorclass> constructor , N-ary </functorclass>
 <signature>
 ((cn|ci|apply)*) -> vector(type=real)
 </signature>
 <signature>
 [type=vectortype]((cn|ci|apply)*) -> vector(type=vectortype)
 </signature>

 <property> <!-- scalar multiplication-->
 <apply><forall/>
 <bvar><ci>b</ci></bvar>
 <bvar><ci>v1</ci></bvar>
 <bvar><ci>v2</ci></bvar>
 <reln>
 <apply><times/>
 <ci>ci>b</ci>
 <vector><ci>ci>v1</ci><ci>ci>v2</ci></vector>
 </apply>
 <vector>
 <apply><ci>b</ci><ci>v1</ci></apply>
 <apply><ci>b</ci><ci>v2</ci></apply>
 </vector>
 </reln>
 </apply>
 </property>
 <property> vector addition </property>
 <property> distributive over scalars</property>
 <property> associativity.</property>
 <property> Matrix * column vector </property>
 <property> row vector * Matrix </property>
 </property>
</MMLdefinition>

F.2.10.2. <matrix>

<MMLdefinition>
 <Name> matrix </Name>
 <description>

 This is the constructor for a matrix. The matrix is
 constructed from matrix rows. The type and properties
 spell out the normal interaction with vectors and
 scalars.
 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.1]
 </Reference>

 </description>
 <MMLattribute>
 <name>type</name>
 <value>real | complex | integer | symbolic | anything </value>
 <default> real </default>
 </MMLattribute>
 <functorclass>constructor , N-ary </functorclass>
 <signature>(matrixrow*) -> matrix</signature>
 <signature>
 [type=matrixtype](matrixrow*) ->
 matrix(type=matrixtype)</signature>
 <property>scalar multiplication </property>
 <property>Matrix*column vector</property>
 <property>Addition</property>
 <property>Matrix*Matrix</property>
</MMLdefinition>

F.2.10.3. <matrixrow>

<MMLdefinition>
 <Name> matrixrow </Name>
 <description>
 This is a constructor for describing the rows of a matrix.
 This only occurs inside a matrix. Its "type" is determined
 from the containing matrix element.
 </description>
 <functorclass>constructor , N-ary</functorclass>
 <signature>(cn|ci|apply)->matrixrow </signature>
</MMLdefinition>

F.2.10.4. <determinant/>

<MMLdefinition>
 <Name>determinant</Name>
 <description>The "determinant" of a matrix.
 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.4]
 </Reference>
 </description>
 <functorclass>Unary, operator</functorclass>
 <signature>(matrix)-> scalar </signature>
 </MMLdefinition>

F.2.10.5. <transpose/>

<MMLdefinition>
 <Name> transpose </Name>
 <description>The transpose of a matrix or vector.
 <Reference> CRC Standard Mathematical Tables and Formulae,
 editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4] and [2.5.1]
 </Reference>
 </description>
 <functorclass>Unary, Operator</functorclass>

 <signature>(vector)->vector(other=row)</signature>
 <signature>[other=column](vector)->vector(other=row)</signature>
 <signature>[other=row](vector)->vector(other=column)</signature>
 <signature>(matrix)->matrix</signature>
 <property>transpose(transpose(A))= A</property>
 <property>transpose(transpose(V))= V</property>
</MMLdefinition>

F.2.10.6. <selector/>

<MMLdefinition>
 <Name> selector </Name>
 <description>
 The operator used to extract sub-objects from vectors, matrices
 matrix rows and lists.

 Elements are accessed by providing one index element for each
 dimension. For Matrices, sub-matrices are selected by providing
 one fewer index items. For a matrix A and a column vector V :

 select(i,j , A) is the i,j th element of A.
 select(i , A) is the matrixrow formed from the ith row of A.
 select(i , V) is the ith element of V.
 select(V) is the sequence of all elements of V.
 select(A) is the sequence of all elements of A, extracted row
 by row.
 select(i,L) is the ith element of a list.
 select(L) is the sequence of elements of a list.
 </description>
 <functorclass>N-ary, operator)</functorclass>
 <signature>(scalar,scalar,matrix)->scalar</signature>
 <signature>(scalar,matrix)->matrixrow</signature>
 <signature>(matrix)->scalar* </property>
 <signature>(scalar,(vector|list|matrixrow))->scalar</signature>
 <signature>(vector|list|matrixrow)->scalar*</signature>
 <property>
 Forall(
 bvar(A(type=matrix)),bvar(V(type=vector)),
 select(A) = select(V)
)
 </property>
 <property>For all vectors V, V = vector(select(V))</property>
</MMLdefinition>

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

MathML 1.0 Changes

Changes from the 7 April 1998 Specification

Editorial changes

Title page and abstract

Errata and Translatation pages were added. The available formats section was moved and
expanded. A link to MathML 1.0 Changes (this document) was added. The phrase "upon
which MathML is based" has been added to the sentence "The fundamental eXtensible
Markup Language (XML) 1.0 specification has been adopted as a W3C
Recommendation" for clarification.

Section 4.2.3.4

Missing discussions of the max, min, forall and exists operators which belong in this
section were added.

Section 4.2.5

The categorical assertion that a condition element must always be accompanied by one
or more bvar elements was modified to take into account the exceptional usage with min
and max. The first two examples were extended to show the surrounding apply elements
so that they would be complete MathML expressions instead of fragments.

Section 4.4.10.6

A note was added explaining that even though select is classified as an n-ary operator, it
can only take one, two or three arguments. The definition of the ordering of elements in a
sequence of matrix elements was also clarified.

Chapter 6

A new section 6.2.6, "Additional Entity Set Grouping", and corresponding table of
contents entry were added. This table collects together entities referred to in the MathML
1.0 specification, but which are not included in the ISO entity lists.

Section 6.2

In order to provide complete and technically valid entity declarations in the MathML 1.0
DTD, entities without current Unicode points have been assigned values in the Unicode
Private Zone. The text and tables of values has been amended accordingly.

The entity lists in Section 6.2.4 have been updated to be more in line with the ISO
character sets, in that if some part of a set is included then the entire set is included. Also,

http://www.w3.org/1999/07/REC-MathML-19990707/Overview.html
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.2.5
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10.6

ISOCHEM has been dropped. These changes have also been reflected in the entity
declarations in the DTD in Appendix A.

Section 6.2.6

This section was added for completeness, as described above.

Appendix A. The MathML DTD

A parseable, online version of the DTD has been added in addition to the preformatted
HTML version. In addition, complete entity declarations have been added.

Appendix B. Glossary

The definition of "Attribute" was reworded to be more technically correct, and less
misleading. A broken link to a fonts FAQ was removed.

Error Corrections

Section 2.2.2

A bogus over element was changed to divide, and a spurious occurrence attribute was
removed, and a missing '/' character in an end apply element tag in the second example.

Section 4.2.1.4

A bad link to appendix F was fixed.

Section 4.2.1.6

Quotes were added around the vector attribute in the first example.

Section 4.2.1.7

A missing '/' character was added to a bvar end tag.

Section 4.2.1.8

A bad link to section 4.2.3.4 was fixed.

Section 4.2.2.3

Missing '/' characters were added to end tags for bvar, uplimit and lowlimit.
Section 4.2.3

<var> was changed to <variance>, and <select> was changed to <selector>.

Section 4.2.3.4

A missing '/' character was added to an apply element end tag in the first example. A
missing '/' character was added to an degree element end tag in the diff example, and a
missing ci element was added around the function identifier f. The sentence "Qualifier
schemata are always optional." was removed, as the quantifiers forall and exists require a
bound variable.

Section 4.2.6

The outdated AM_APP element was replaced with the more current OMA element.

Section 4.3.2.4

A misspelling of xml-annotation was corrected.

Section 4.4

The var and select elements were renamed to variance and selector throughout, to avoid
a namespace collision with HTML. Missing trailing '/' characters denoting an empty
element were added for ln, log, inverse, mean, sdev, variance, median, mode and
moment. The same error was corrected in the corresponding section heading when
necessary.

Section 4.4.1.1

Missing quotes around attribute values were added.

Section 4.4.2.8

A missing bvar element was added to the lambda construct in the fourth example. A
missing '>' character was added to the function declaration in the first example.

Section 4.4.2.9

Misplaced '/' characters were corrected in lambda elements in the examples. Out of order
qualifiers for the int element in the example were corrected by moving the apply element
to the end.

Section 4.4.2.10

Missing '/' characters were added to the end tags of apply elements in the last two
examples. An extra '<' character was removed from the fourth example.

Section 4.4.3.18

The textual equivalent of the second example was changed to use the words "such that"
in place of "where" for clarity and for agreement with 4.2.5. A missing power element
was added in the second example. A missing '/' was added to an apply end tag, a nesting
problem in the reln element, and a missing apply construct in the second condition were
corrected in the third example.

Section 4.4.3.21

A missing '/' was added to the conjugate tag in the first example.

Section 4.4.4.6

A garbled reln tag was corrected in the example.

Section 4.4.5.3

Missing '/' characters were added to the end tags of qualifier schemata in all three
examples.

Section 4.4.5.4

A misleading omission of reference to the fact that the diff operator can take an optional
degree element was corrected to be as in 4.4.5.5. The default rendering was improved.

Section 4.4.5.5

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.1.1
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.9
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.2.10
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3.18
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.3.21
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.4.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.4
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.5

Missing '/' characters were added to degree, bvar and ci end tags in the first example. A
missing exponent in the numerator of the first differential operator in the sample equation
has been added. An incorrect exponent in the default rendering was corrected.

Section 4.4.5.6

Missing '/' characters were added to the end tags of qualifier schemata in the example.

Section 4.4.5.7

A missing '/' character was added to the end tag of the bvar in the example.

Section 4.4.5.8

An incorrect diff element was changed to an int element in the second example.

Section 4.4.5.9

An incorrect diff element was changed to a partialdiff element in the example.

Section 4.4.7.2

A missing '/' was added to a bvar tag in the second example.

Section 4.4.9.3

As noted above, var has been renamed to variance to avoid a namespace collision with
HTML.

Section 4.4.9.6

An incorrectly place degree element was moved in the example.

Section 4.4.10.6

As noted above, select has been renamed to selector to avoid a namespace collision with
HTML. A missing '/' was added to the end tag for the selector element.

Section 4.4.11.2

The outdated AM_APP element was replaced with the more current OMA element.

Section 5.1.2

A garbled msup element in the first example was corrected. A missing '/' character was
added to the eq element in the fourth example. An outdated OMSymbol element was
replaced with the more current OMS element. A missing '/' character was added to the
times element in the fourth example.

Section 5.3

An outdated OMSymbol element was replaced with the more current OMS element.
Missing '/' characters were added to the transpose and times elements.

Section 7.1.3

Missing '/' characters were added to the mi element in the mathml-rendererB example.

Section 7.1.5

Missing emboldening of the anchor tag name was added.

http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.7
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.8
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.5.9
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.7.2
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.9.3
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.9.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.10.6
http://www.w3.org/1999/07/REC-MathML-19990707/chap4_4.html#sec4.4.11.2

Appendix B. Glossary

Some inconsistent capitalization was corrected in the definitions of Pt, Ex and Em. An
extra '(' was removed from the SGML definition. Several instances "schema" were
replaced by the plural "schemata". The phrase "free variable" was changed to "variable"
in the definition of lambda expression, since the variables referred to are not free. The
second use of the word "construct" in the definition of Pre-defined function was changed
to "build". The second use of the word "sizes" in the definition of Pt was changed to
"objects". The word "of" was changed to "or" in the definition of Token element.
Definitions for Box and Bounding Box were added.

Appendix D. Working Group Membership

The first paragraph has been modified to include a reference to the current working group
co-chairs, and a pointer to the current working group membership. A new paragraph has
been added crediting a number of people who helped identify the errors corrected in this
revision. Finally, a broken link to the American Mathematical Society has been corrected.

Appendix F

The var and select elements were renamed to variance and selector throughout, to avoid
a namespace collision with HTML. Missing '/' characters were added to selector elements
where they were missing from the corresponding select elements.

Section F.2.1.1

A missing ';' was added to the "complex i" entity in the description. A missing '/' was
added to the sep tag in the second example. A missing '/' was added to the root element
in the third property, a missing '<' character was added to an apply in the fifth property,
an erroneous apply end tag was removed from the sixth property and a partial duplication
of that property was corrected, and a missing cn end tag was added in the seventh
property. Also, missing quotes were added to the "boolean" type attribute throughout.

Section F.2.2.3

A missing end tag was for the lambda element in the last example.

Section F.2.2.5

Garbled shorthand was expanded into proper markup in the last property.

Section F.2.2.9

A missing apply end tag was added to the variant sine function example.

Section F.2.2.10

A missing '/' was added to the forall element in the first property.

Section F.2.2.11

A missing '/' was added to the forall element in the first property.

Section F.2.3.1

Reversed start and end tags for the reln element were switched. A missing '/' was added
to the last apply end tag in the second property.

Section F.2.3.2

A missing end tags for the apply element was added, and a missing '/' was added to a ci
end tag, in the property.

Section F.2.3.4

Missing ci tags were added withing the bvar in the property, and garbled nesting of the
reln element was corrected.

Section F.2.3.7

A missing bvar end tag was added in the property.

Section F.2.3.18

A misplaced '/' character in the forall element was corrected, and a missing apply end tag
was added in the property.

Section F.2.9.3

<var> was changed to <variance>.

Section F.2.10.6

<select> was changed to <selector>.

Section F.2.10.5

A missing name sub-element was added to the MMLdefinition for transpose.

Up: Table of Contents

Up: Table of Contents REC-MathML-19980407; revised 19990707

References

Buswell, S. , Healey , E.R. Pike, and M. Pike; "SGML and the Semantic Representation of
Mathematics",
UIUC Digital Library Initiative SGML Mathematics Workshop, May 1996 and SGML Europe
96 Conference, Munich 1996

Cajori, Florian; "A History of Mathematical Notations", vol. I & II. Open Court Publishing Co.,
La Salle Illinois, 1928 & 1929; republished Dover Publications Inc., New York, 1993, xxviii +
820 pp. ISBN 0-486-67766-4 (pbk.)

Carroll, Lewis [Rev. C. L. Dodgson]; "Through the Looking Glass and What Alice Found
There", Macmillian & Co., 1871

Chaudry,T.W., P.R.Barrett, and C.Batey; "The Printing of Mathematics. Aids for authors and
editors and rules for compositors and readers at the University Press, Oxford", Oxford
University Press, London, 1954, ix + 105 pp.

Drucker,Peter; Forbes, 10 Mar 1997 [quoted by Gene Klotz]

Higham, Nicholas J.; Handbook of writing for the mathematical sciences. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1993. xii+241 pp. ISBN: 0-89871-314-5

Knuth, Donald E.; The TEXbook. American Mathematical Society, Providence, RI and

Addison-Wesley Publ. Co., Reading, MA, 1986, ix + 483 pp. ISBN: 0-201-13448-9

Lie, Håkon Wium and Bert Bos; Cascading Style Sheets, level 1, W3C Recommendation, 17
Dec 1996, http://www.w3.org/pub/WWW/TR/REC-CSS1

OpenMath Release 1, December 1996; www.openmath.org

Pierce, John R.; "An Introduction to Information Theory". Symbols, Signals and Noise.",
Revised edition of "Symbols, Signals and Noise: the Nature and Process of Communication"
(1961). Dover Publications Inc., New York, 1980, xii + 305 pp. ISBN 0-486-24061-4

Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley; "Standard DTD's and Scientific
Publishing" , EPSIG News 5 (1992) #3, September 1992, 10-19.

Raggett, Dave, Arnaud Le Hors and Ian Jacobs; HTML 4.0 Specification, 18 Dec 1997,
http://www.w3.org/TR/REC-html40/; section on data types

http://www.w3.org/TR/REC-CSS1
http://www.openmath.org/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/types.html

Spivak, M. D.; The Joy of TEX, A gourmet guide to typesetting with the AMS-TEX macro

package. American Mathematical Society, Providence, RI, MA 1986, xviii + 290 pp. ISBN:
0-8218-2999-8

Swanson, Ellen; Mathematics into type. Copy editing and proofreading of mathematics for
editorial assistants and authors. Revised edition. American Mathematical Society, Providence,
R.I., 1979. x+90 pp. ISBN: 0-8218-0053-1

Up: Table of Contents

	Mathematical Markup Language (Math ML) Specification 1.01
	W3C Recommendation, revision of 7 July 1999
	Abstract
	Status of this document
	Available formats
	Available languages
	Errata

	Table of contents (limited)
	Table of Contents (detailed)
	1. Introduction
	1.1 Mathematics and its Notation
	1.2 Origins and Goals
	1.2.1 The History of MathML
	1.2.2 Limitations of HTML
	1.2.3 Requirements for Math Markup
	1.2.4 Design Goals of MathML

	1.3 The Role of MathML on the Web
	1.3.1 Layered Design of Mathematical Web Services
	1.3.2 Relation to Other Web Technology

	2. MathML Fundamentals
	MathML Overview
	2.1.1 Taxonomy of MathML Elements
	2.1.2 Expression Trees and Token Elements
	2.1.3 Presentation Markup
	2.1.4 Content Markup
	2.1.5 Mixing Presentation and Content

	2.2 Some MathML Examples
	2.2.1 Presentation Examples
	2.2.2 Content Examples
	2.2.3 Mixed Markup Examples

	2.3 MathML Syntax and Grammar
	2.3.1 An XML Syntax Primer
	2.3.2 Children vs. Arguments
	2.3.3 MathML Attribute Values
	2.3.4 Attributes Shared by all MathML Elements
	2.3.5 Collapsing Whitespace in Input

	3. Presentation Markup
	3.1 Introduction
	3.1.1 What Presentation Elements Represent
	3.1.2 Terminology Used In This Chapter
	3.1.3 Required Arguments
	3.1.4 Elements with Special Behaviors
	3.1.5 Summary of Presentation Elements

	4. Content Markup
	4.1 Introduction
	4.1.1 The Intent of Content Markup
	4.1.2 The Scope of Content Markup
	4.1.3 Basic Concepts of Content Markup

	4.2 Content Element Usage Guide
	4.2.1 Overview of Syntax and Usage
	4.2.2 Containers
	4.2.3 Functions, Operators and Qualifiers
	4.2.4 Relations
	4.2.5 Conditions
	4.2.6 Syntax and Semantics
	4.2.7 Semantic Mappings
	4.2.8 MathML element types

	4.3 Content Element Attributes
	4.3.1 Content Element Attribute Values
	4.3.2 Attributes Modifying Content Markup Semantics
	4.3.3 Attributes Modifying Content Markup Rendering

	5. Mixing Presentation and Content Markup
	5.1 When to Use Mixed Markup
	5.1.1 Why Two Different Kinds of Markup?
	5.1.2 Reasons to Mix Markup

	5.2 How to Mix Markup
	5.2.1 Presentation Markup Contained in Content Markup
	5.2.2 Content Markup Contained in Presentation Markup

	5.3 Anticipating Macros for Combined Markup

	6. Entities, Characters and Fonts
	6.1 Introduction
	6.1.1 The Intent of Entity Names
	6.1.2 The STIX Project
	6.2 Entity Listings
	6.2.1 Non-Marking Entities
	6.2.2 Printing Entity Listings
	6.2.3 Special Constants
	6.2.4 Alphabetical Lists
	6.2.5 ISO Entity Set Groupings
	6.2.6 Additional Entity Set Grouping

	7. The MathML Interface
	7.1 Embedding MathML in HTML
	7.1.1 The Top-Level math Element
	7.1.2 Requirements for a MathML Browser Interface
	7.1.3 Invoking Embedded Objects as Renderers
	7.1.4 Invoking Other Applications
	7.1.5 Mixing and Linking MathML and HTML

	7.2 Generating, Processing and Rendering MathML
	7.2.1 MathML Compliance
	7.2.2 Handling of Errors
	7.2.3 An Attribute for Unspecified Data

	7.3 Future Extensions
	7.3.1 Macros and Style Sheets
	7.3.2 XML Extensions to MathML

	Appendices
	A. DTD for MathML
	B. Glossary
	C. Operator Dictionary
	D. Working Group Membership
	E. Informal EBNF Grammar for Content Elements
	F. Content Element Definitions
	F.1. About Content Markup Elements
	F.1.1. The Structure of an MMLdefinition.

	F.2. Definitions of MathML Content Elements
	F.2.1. Leaf Elements
	F.2.2. Basic Content Element
	F.2.3. Arithmetic, Algebra and Logic
	F.2.4. Relations
	F.2.5. Calculus
	F.2.6. Theory of Sets
	F.2.7. Sequences and Series
	F.2.8. Trigonometry
	F.2.9. Statistics
	F.2.10. Lineary Algebra

	G. MathML 1.0 Changes
	Changes from the 7 April 1998 Specification
	Editorial changes
	Error Corrections

	References

	
	World Wide Web Consortium Title Page

