
Mathematical Markup Language (MathML)
Version 4.0
W3C Working Draft 19 November 2024

▾ More details about this document

This version:
https://www.w3.org/TR/2024/WD-mathml4-20241119/

Latest published version:
https://www.w3.org/TR/mathml4/

Latest editor's draft:
https://w3c.github.io/mathml/

History:
https://www.w3.org/standards/history/mathml4/
Commit history

Editor:
David Carlisle (NAG)

Former editors:
Patrick Ion
Robert Miner (deceased)

Feedback:
GitHub w3c/mathml (pull requests, new issue, open issues)

Latest MathML Recommendation
https://www.w3.org/TR/MathML/

Copyright © 1998-2024 World Wide Web Consortium. W3C® liability, trademark and permissive document license rules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is a markup language for describing
mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathematics to be
served, received, and processed on the World Wide Web, just as [HTML] has enabled this functionality for text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who will be
developing or implementing renderers or editors using it, or software that will communicate using MathML as a protocol for
input or output. It is not a User's Guide but rather a reference document.

MathML can be used to encode both mathematical notation and mathematical content. About thirty-eight of the MathML
tags describe abstract notational structures, while another about one hundred and seventy provide a way of unambiguously
specifying the intended meaning of an expression. Additional chapters discuss how the MathML content and presentation
elements interact, and how MathML renderers might be implemented and should interact with browsers. Finally, this
document addresses the issue of special characters used for mathematics, their handling in MathML, their presence in
Unicode, and their relation to fonts. This version is outdated!

For the latest version, please look at https://www.w3.org/TR/mathml4/.
▴ expand

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

1 of 434 26/08/2025, 11:30

https://www.w3.org/
https://www.w3.org/
https://www.w3.org/standards/types#WD
https://www.w3.org/standards/types#WD
https://www.w3.org/TR/2024/WD-mathml4-20241119/
https://www.w3.org/TR/2024/WD-mathml4-20241119/
https://www.w3.org/TR/mathml4/
https://www.w3.org/TR/mathml4/
https://w3c.github.io/mathml/
https://w3c.github.io/mathml/
https://www.w3.org/standards/history/mathml4/
https://www.w3.org/standards/history/mathml4/
https://github.com/w3c/mathml/commits/
https://github.com/w3c/mathml/commits/
https://github.com/davidcarlisle
https://github.com/davidcarlisle
https://github.com/w3c/mathml/
https://github.com/w3c/mathml/
https://github.com/w3c/mathml/pulls/
https://github.com/w3c/mathml/pulls/
https://github.com/w3c/mathml/issues/new/choose
https://github.com/w3c/mathml/issues/new/choose
https://github.com/w3c/mathml/issues/
https://github.com/w3c/mathml/issues/
https://www.w3.org/TR/MathML/
https://www.w3.org/TR/MathML/
https://www.w3.org/policies/#copyright
https://www.w3.org/policies/#copyright
https://www.w3.org/
https://www.w3.org/
https://www.w3.org/policies/#Legal_Disclaimer
https://www.w3.org/policies/#Legal_Disclaimer
https://www.w3.org/policies/#W3C_Trademarks
https://www.w3.org/policies/#W3C_Trademarks
https://www.w3.org/copyright/software-license-2023/
https://www.w3.org/copyright/software-license-2023/
https://www.w3.org/TR/mathml4/
https://www.w3.org/TR/mathml4/

While MathML is human-readable, authors typically will use equation editors, conversion programs, and other specialized
software tools to generate MathML. Several versions of such MathML tools exist, both freely available software and
commercial products, and more are under development.

MathML was originally specified as an XML application and most of the examples in this specification assume that syntax.
Other syntaxes are possible, most notably [HTML] specifies the syntax for MathML in HTML. Unless explicitly noted, the
examples in this specification are also valid HTML syntax.

Status of This Document

This section describes the status of this document at the time of its publication. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at https://www.w3.org/TR/.

Public discussion of MathML and issues of support through the W3C for mathematics on the Web takes place on the public
mailing list of the Math Working Group (list archives). To subscribe send an email to www-math-request@w3.org with the
word subscribe in the subject line. Alternatively, report an issue at this specification's GitHub repository.

A fuller discussion of the document's evolution can be found in I. Changes.

Some sections are collapsed and may be expanded to reveal more details. The following button may be used to expand all
such sections. Expand All Sections

This document was published by the Math Working Group as a Working Draft using the Recommendation track.

Publication as a Working Draft does not imply endorsement by W3C and its Members.

This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to
cite this document as other than work in progress.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must
disclose the information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 03 November 2023 W3C Process Document.

Issue 304: Potential presentation MathML items to
deprecate in MathML 4

Issue 180: "decimalpoint" value definition

Issue 284: Make the sample presentation of Strict Content
use intent

Issue 247: Spec should specify what char to use for
accents/lines

Issue 178: Make MathML attributes ASCII case-
insensitive

Issue 361: structuring common attributes

Table of Contents

Issue summary

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

2 of 434 26/08/2025, 11:30

https://www.w3.org/TR/
https://www.w3.org/TR/
https://www.w3.org/TR/
https://www.w3.org/TR/
mailto:www-math@w3.org
mailto:www-math@w3.org
mailto:www-math@w3.org
mailto:www-math@w3.org
https://lists.w3.org/Archives/Public/www-math/
https://lists.w3.org/Archives/Public/www-math/
mailto:www-math-request@w3.org
mailto:www-math-request@w3.org
https://github.com/w3c/mathml
https://github.com/w3c/mathml
https://www.w3.org/groups/wg/math
https://www.w3.org/groups/wg/math
https://www.w3.org/policies/process/20231103/#recs-and-notes
https://www.w3.org/policies/process/20231103/#recs-and-notes
https://www.w3.org/policies/patent-policy/
https://www.w3.org/policies/patent-policy/
https://www.w3.org/policies/patent-policy/
https://www.w3.org/policies/patent-policy/
https://www.w3.org/groups/wg/math/ipr
https://www.w3.org/groups/wg/math/ipr
https://www.w3.org/groups/wg/math/ipr
https://www.w3.org/groups/wg/math/ipr
https://www.w3.org/policies/patent-policy/#def-essential
https://www.w3.org/policies/patent-policy/#def-essential
https://www.w3.org/policies/patent-policy/#sec-Disclosure
https://www.w3.org/policies/patent-policy/#sec-Disclosure
https://www.w3.org/policies/patent-policy/#sec-Disclosure
https://www.w3.org/policies/patent-policy/#sec-Disclosure
https://www.w3.org/policies/patent-policy/#sec-Disclosure
https://www.w3.org/policies/process/20231103/
https://www.w3.org/policies/process/20231103/
https://www.w3.org/policies/process/20231103/
https://www.w3.org/policies/process/20231103/
https://www.w3.org/policies/process/20231103/

1.
1.1
1.2
1.3
1.4

2.
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.5.1

2.1.5.2

2.1.5.3

2.1.6
2.1.7
2.2
2.2.1

3.
3.1
3.1.1
3.1.2
3.1.3
3.1.3.1

3.1.3.2

3.1.4
3.1.5
3.1.5.1

3.1.5.2

3.1.6
3.1.7
3.1.7.1

3.1.7.2

3.1.8
3.1.8.1

3.1.8.2

3.1.8.3

3.1.8.4

3.1.8.5

3.1.8.6

Abstract

Status of This Document
Issue summary

Introduction
Mathematics and its Notation
Overview
Relation to MathML Core
MathML Notes

MathML Fundamentals
MathML Syntax and Grammar

General Considerations
MathML and Namespaces
Children versus Arguments
MathML and Rendering
MathML Attribute Values

Syntax notation used in the MathML specification

Length Valued Attributes

Default values of attributes

Attributes Shared by all MathML Elements
Collapsing Whitespace in Input

The Top-Level <math> Element
Attributes

Presentation Markup
Introduction

Presentation MathML Structure
Terminology Used In This Chapter
Required Arguments

Inferred <mrow>s

Table of argument requirements

Elements with Special Behaviors
Directionality

Overall Directionality of Mathematics Formulas

Bidirectional Layout in Token Elements

Displaystyle and Scriptlevel
Linebreaking of Expressions

Control of Linebreaks

Examples of Linebreaking

Summary of Presentation Elements
Token Elements

General Layout Schemata

Script and Limit Schemata

Tables and Matrices

Elementary Math Layout

Enlivening Expressions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

3 of 434 26/08/2025, 11:30

3.1.9
3.1.9.1

3.2
3.2.1

3.2.1.1

3.2.2
3.2.2.1

3.2.3
3.2.3.1

3.2.3.2

3.2.3.3

3.2.4
3.2.4.1

3.2.4.2

3.2.4.3

3.2.4.4

3.2.5
3.2.5.1

3.2.5.2

3.2.5.3

3.2.5.4

3.2.5.5

3.2.5.6

3.2.5.7

3.2.6
3.2.6.1

3.2.6.2

3.2.6.3

3.2.7
3.2.7.1

3.2.7.2

3.2.7.3

3.2.7.4

3.2.7.5

3.2.8
3.2.8.1

3.2.8.2

3.3
3.3.1
3.3.1.1

3.3.1.2

3.3.1.3

3.3.1.4

3.3.2
3.3.2.1

3.3.2.2

Mathematics attributes common to presentation elements
MathML Core Attributes

Token Elements

Token Element Content Characters, <mglyph/>not-core

Using images to represent symbols <mglyph/>not-core

Mathematics style attributes common to token elements
Embedding HTML in MathML

Identifier <mi>core

Description

Attributes

Examples

Number <mn>core

Description

Attributes

Examples

Numbers that should not be written using <mn> alone

Operator, Fence, Separator or Accent <mo>core

Description

Attributes

Examples with ordinary operators

Examples with fences and separators

Invisible operators

Detailed rendering rules for <mo> elements

Stretching of operators, fences and accents

Text <mtext>core

Description

Attributes

Examples

Space <mspace/>core

Description

Attributes

Examples

Definition of space-like elements

Legal grouping of space-like elements

String Literal <ms>core

Description

Attributes

General Layout Schemata
Horizontally Group Sub-Expressions <mrow>core

Description

Attributes

Proper grouping of sub-expressions using <mrow>

Examples

Fractions <mfrac>core

Description

Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

4 of 434 26/08/2025, 11:30

3.3.2.3

3.3.3
3.3.3.1

3.3.3.2

3.3.3.3

3.3.4
3.3.4.1

3.3.4.2

3.3.4.3

3.3.5
3.3.5.1

3.3.5.2

3.3.5.3

3.3.6
3.3.6.1

3.3.6.2

3.3.6.3

3.3.6.4

3.3.7
3.3.7.1

3.3.7.2

3.3.7.3

3.3.8

3.3.8.1

3.3.8.2

3.3.8.3

3.3.9

3.3.9.1

3.3.9.2

3.3.9.3

3.4
3.4.1
3.4.1.1

3.4.1.2

3.4.2
3.4.2.1

3.4.2.2

3.4.3
3.4.3.1

3.4.3.2

3.4.3.3

3.4.4
3.4.4.1

3.4.4.2

3.4.4.3

3.4.5

Examples

Radicals <msqrt>core, <mroot>core

Description

Attributes

Examples

Style Change <mstyle>core

Description

Attributes

Examples

Error Message <merror>core

Description

Attributes

Example

Adjust Space Around Content <mpadded>core

Description

Attributes

Meanings of size and position attributes

Examples

Making Sub-Expressions Invisible <mphantom>core

Description

Attributes

Examples

Expression Inside Pair of Fences <mfenced>not-core

Description

Attributes

Examples

Enclose Expression Inside Notation <menclose>not-core

Description

Attributes

Examples

Script and Limit Schemata
Subscript <msub>core

Description

Attributes

Superscript <msup>core

Description

Attributes

Subscript-superscript Pair <msubsup>core

Description

Attributes

Examples

Underscript <munder>core

Description

Attributes

Examples

Overscript <mover>core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

5 of 434 26/08/2025, 11:30

3.4.5.1

3.4.5.2

3.4.5.3

3.4.6
3.4.6.1

3.4.6.2

3.4.6.3

3.4.7
3.4.7.1

3.4.7.2

3.4.7.3

3.5
3.5.1
3.5.1.1

3.5.1.2

3.5.1.3

3.5.2
3.5.2.1

3.5.2.2

3.5.2.3

3.5.3
3.5.3.1

3.5.3.2

3.5.4

3.5.4.1

3.5.4.2

3.5.4.3

3.5.4.4

3.5.4.5

3.5.4.6

3.5.4.7

3.6
3.6.1

3.6.1.1

3.6.1.2

3.6.2

3.6.2.1

3.6.2.2

3.6.3

3.6.3.1

3.6.3.2

3.6.4

3.6.4.1

3.6.4.2

3.6.5

3.6.5.1

Description

Attributes

Examples

Underscript-overscript Pair <munderover>core

Description

Attributes

Examples

Prescripts and Tensor Indices <mmultiscripts>core, <mprescripts/>core

Description

Attributes

Examples

Tabular Math
Table or Matrix <mtable>core

Description

Attributes

Examples

Row in Table or Matrix <mtr>core

Description

Attributes

Equation Numbering

Entry in Table or Matrix <mtd>core

Description

Attributes

Alignment Markers <maligngroup/>, <malignmark/>not-core

Removal Notice

Description

Specifying alignment groups

Table cells that are not divided into alignment groups

Specifying alignment points using <malignmark/>

MathML representation of an alignment example

A simple alignment algorithm

Elementary Math

Stacks of Characters <mstack>not-core

Description

Attributes

Long Division <mlongdiv>not-core

Description

Attributes

Group Rows with Similar Positions <msgroup>not-core

Description

Attributes

Rows in Elementary Math <msrow>not-core

Description

Attributes

Carries, Borrows, and Crossouts <mscarries>not-core

Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

6 of 434 26/08/2025, 11:30

3.6.5.2

3.6.6

3.6.6.1

3.6.6.2

3.6.7

3.6.7.1

3.6.7.2

3.6.8
3.6.8.1

3.6.8.2

3.6.8.3

3.6.8.4

3.7
3.7.1
3.7.1.1

3.8

4.
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.2
4.2.1
4.2.1.1

4.2.1.2

4.2.1.3

4.2.2
4.2.2.1

4.2.2.2

4.2.2.3

4.2.3
4.2.3.1

4.2.3.2

4.2.3.3

4.2.4

4.2.5
4.2.5.1

4.2.5.2

4.2.6
4.2.6.1

4.2.6.2

4.2.6.3

4.2.6.4

Attributes

A Single Carry <mscarry>not-core

Description

Attributes

Horizontal Line <msline/>not-core

Description

Attributes

Elementary Math Examples
Addition and Subtraction

Multiplication

Long Division

Repeating decimal

Enlivening Expressions
Bind Action to Sub-Expression

Attributes

Semantics and Presentation

Content Markup
Introduction

The Purpose of Content Markup
Content Expressions
Expression Concepts
Variable Binding
Strict Content MathML
Content Dictionaries

Content MathML Elements Encoding Expression Structure
Numbers <cn>

Rendering <cn>,<sep/>-Represented Numbers

Strict uses of <cn>

Non-Strict uses of <cn>

Content Identifiers <ci>
Strict uses of <ci>

Non-Strict uses of <ci>

Rendering Content Identifiers

Content Symbols <csymbol>
Strict uses of <csymbol>

Non-Strict uses of <csymbol>

Rendering Symbols

String Literals <cs>

Function Application <apply>
Strict Content MathML

Rendering Applications

Bindings and Bound Variables <bind> and <bvar>
Bindings

Bound Variables

Renaming Bound Variables

Rendering Binding Constructions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

7 of 434 26/08/2025, 11:30

4.2.7
4.2.7.1

4.2.7.2

4.2.7.3

4.2.7.4

4.2.8

4.2.9

4.2.10

4.3
4.3.1
4.3.1.1

4.3.1.2

4.3.2

4.3.3
4.3.3.1

4.3.3.2

4.3.3.3

4.3.4
4.3.5
4.3.5.1

4.3.5.2

4.3.5.3

4.3.5.4

4.3.5.5

4.3.5.6

4.3.5.7

4.3.5.8

4.3.5.9

4.3.5.10

4.3.5.11

4.3.5.12

4.3.5.13

4.3.6
4.3.6.1

4.3.6.2

4.3.6.3

4.3.6.4

4.3.6.5

4.3.7
4.3.7.1

4.3.7.2

4.3.7.3

4.3.7.4

4.3.7.5

4.3.7.6

Structure Sharing <share>
The share element

An Acyclicity Constraint

Structure Sharing and Binding

Rendering Expressions with Structure Sharing

Attribution via semantics

Error Markup <cerror>

Encoded Bytes <cbytes>
Content MathML for Specific Structures

Container Markup
Container Markup for Constructor Symbols

Container Markup for Binding Constructors

Bindings with <apply>
Qualifiers

Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>

Uses of <degree>

Uses of <momentabout> and <logbase>

Operator Classes
N-ary Operators

N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/>

N-ary Sum <sum/>

N-ary Product <product/>

N-ary Functional Operators: <compose/>

N-ary Logical Operators: <and/>, <or/>, <xor/>

N-ary Linear Algebra Operators: <selector/>

N-ary Set Operators: <union/>, <intersect/>, <cartesianproduct/>

N-ary Matrix Constructors: <vector/>, <matrix/>, <matrixrow/>

N-ary Set Theoretic Constructors: <set>, <list>

N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

N-ary Set Theoretic Relations: <subset/>, <prsubset/>

N-ary/Unary Arithmetic Operators: <min/>, <max/>

N-ary/Unary Statistical Operators: <mean/>, <median/>, <mode/>, <sdev/>, <variance/>

Binary Operators
Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>, <root/>

Binary Logical Operators: <implies/>, <equivalent/>

Binary Relations: <neq/>, <approx/>, <factorof/>, <tendsto/>

Binary Linear Algebra Operators: <vectorproduct/>, <scalarproduct/>, <outerproduct/>

Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

Unary Operators
Unary Logical Operators: <not/>

Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>,
<floor/>, <ceiling/>, <exp/>, <minus/>, <root/>

Unary Linear Algebra Operators: <determinant/>, <transpose/>

Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

Unary Set Operators: <card/>

Unary Elementary Operators: <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>, <sinh/>, <cosh/>, <tanh/>,
<sech/>, <csch/>, <coth/>, <arcsin/>, <arccos/>, <arctan/>, <arccosh/>, <arccot/>, <arccoth/>,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

8 of 434 26/08/2025, 11:30

4.3.7.7

4.3.7.8

4.3.7.9

4.3.8
4.3.8.1

4.3.8.2

4.3.8.3

4.3.9
4.3.9.1

4.3.9.2

4.3.10
4.3.10.1

4.3.10.2

4.3.10.3

4.3.10.4

4.3.10.5

5.
5.1
5.2
5.3
5.4
5.5
5.5.1
5.6
5.7
5.7.1
5.7.2

6.
6.1
6.2
6.3
6.4
6.5
6.5.1
6.6
6.6.1
6.6.2
6.7
6.7.1
6.7.2
6.7.3

6.8

<arccsc/>, <arccsch/>, <arcsec/>, <arcsech/>, <arcsinh/>, <arctanh/>

Unary Vector Calculus Operators: <divergence/>, <grad/>, <curl/>, <laplacian/>

Moment <moment/>, <momentabout>

Logarithm <log/> , <logbase>

Unary Qualified Calculus Operators
Integral <int/>

Differentiation <diff/>

Partial Differentiation <partialdiff/>

Constants
Arithmetic Constants: <exponentiale/>, <imaginaryi/>, <notanumber/>, <true/>, <false/>, <pi/>,
<eulergamma/>, <infinity/>

Set Theory Constants: <integers/>, <reals/>, <rationals/>, <naturalnumbers/>, <complexes/>,
<primes/>, <emptyset/>

Special Element forms
Quantifiers: <forall/>, <exists/>

Lambda <lambda>

Interval <interval>

Limits <limit/>

Piecewise declaration <piecewise>, <piece>, <otherwise>

Annotating MathML: intent
The Grammar for intent
Intent Concept Dictionaries
Intent Properties
Using Intent Concepts and Properties
Intent Error Handling

Intent Error Recovery
A Warning about literalcore and propertycore

Intent Examples
CSS and Style
Tables

Annotating MathML: semantics
Annotation keys
Alternate representations
Content equivalents
Annotation references
The <semantics> element

Description

The <annotation> element
Description
Attributes

The <annotation-xml> element
Description
Attributes

Using annotation-xml in HTML documents
Combining Presentation and Content Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

9 of 434 26/08/2025, 11:30

6.8.1
6.8.2
6.9
6.9.1
6.9.2

7.
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.5
7.5.1

8.
8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3

A.
A.1
A.2
A.2.1
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6
A.3
A.4

Presentation Markup in Content Markup
Content Markup in Presentation Markup

Parallel Markup
Top-level Parallel Markup
Parallel Markup via Cross-References

Interactions with the Host Environment
Introduction
Invoking MathML Processors

Recognizing MathML in XML
Recognizing MathML in HTML
Resource Types for MathML Documents
Names of MathML Encodings

Transferring MathML
Basic Transfer Flavor Names and Contents
Recommended Behaviors when Transferring
Discussion
Examples

Combining MathML and Other Formats
Mixing MathML and XHTML
Mixing MathML and non-XML contexts
Mixing MathML and HTML
Linking
MathML and Graphical Markup

Using CSS with MathML
Order of processing attributes versus style sheets

Characters, Entities and Fonts
Introduction
Mathematical Alphanumeric Symbols
Non-Marking Characters
Anomalous Mathematical Characters

Keyboard Characters
Pseudo-scripts
Combining Characters

Parsing MathML
Validating MathML
Using the RelaxNG Schema for MathML

MathML Core
Presentation MathML
Strict Content MathML
Content MathML
Full MathML
Legacy MathML

Using the MathML DTD
Using the MathML XML Schema

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

10 of 434 26/08/2025, 11:30

B.
B.1
B.2
B.3
B.3.1
B.3.2

C.
C.1
C.2
C.3
C.3.1
C.3.1.1

C.4
C.4.1
C.4.1.1

C.4.1.2

C.4.2
C.4.2.1

C.4.2.2

C.4.2.3

C.4.2.4

C.4.2.5

C.4.2.6

C.4.2.7

C.4.2.8

C.4.2.9

D.
D.1
D.1.1
D.1.2
D.1.3
D.2
D.3
D.4
D.5

E.
E.1
E.2
E.3

F.
F.1
F.2
F.2.1

Operator Dictionary
Indexing of the operator dictionary
Notes on lspace and rspace attributes
Operator dictionary entries

Compressed view
Sortable Table View

MathML Accessibility
Introduction
Accessibility benefits of using MathML
Accessibility Guidance

User Agents
Accessibility tree

Content Authors
Overarching guidance

Always use markup

Use intent and arg attributes

Specific Markup Guidance
Invisible Operators

Proper Grouping of Sub-expressions

Spacing

Numbers

Superscripts and Subscripts

Elementary Math Notation

Fill-in-the-Blanks

Tables and Lists

Natural-language Mathematics

Conformance
MathML Conformance

MathML Test Suite and Validator
Deprecated MathML 1.x and MathML 2.x Features
MathML Extension Mechanisms and Conformance

Handling of Errors
Attributes for unspecified data
Privacy Considerations
Security Considerations

The Content MathML Operators
The Content MathML Constructors
The Content MathML Attributes
The Content MathML Operators

The Strict Content MathML Transformation
Rewrite non-strict bind
Rewrite idiomatic qualifiers

Derivatives

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

11 of 434 26/08/2025, 11:30

F.2.2
F.2.3
F.2.4
F.2.5
F.2.6
F.2.7
F.3
F.3.1
F.3.2

F.3.3

F.4
F.4.1
F.4.2
F.4.3
F.4.4
F.5
F.5.1
F.5.2
F.5.3
F.5.4
F.6
F.6.1
F.6.2
F.6.3
F.6.4
F.7
F.7.1
F.7.2
F.8
F.8.1

F.8.2
F.8.3
F.8.4

F.9
F.9.1

F.9.2

F.9.3

G.
G.1

H.
H.1
H.2

I.
I.1

Integrals
Limits
Sums and Products
Roots
Logarithms
Moments

Rewrite to domainofapplication
Intervals

Multiple conditions

Multiple domainofapplications
Normalize container markup

Sets and Lists
Intervals, vectors, matrices
Lambda expressions
Piecewise functions

Rewrite domainofapplication qualifiers
N-ary/unary operators
Quantifiers
Integrals
Sums and products

Eliminate domainofapplication
Restricted function
Predicate on list
Apply to list
Such that

Rewrite token elements
Numbers
Token presentation

Rewrite operators
Rewrite the minus operator
Rewrite the set operators
Rewrite the statistical operators

Rewrite the emptyset operator
Rewrite attributes

Rewrite the type attribute

Rewrite definitionURL and encoding attributes
Rewrite attributes

MathML Index
Index of elements

Working Group Membership and Acknowledgments
The Math Working Group Membership
Acknowledgments

Changes
Changes between MathML 3.0 Second Edition and MathML 4.0

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

12 of 434 26/08/2025, 11:30

J.
J.1
J.2

References
Normative references
Informative references

This section is non-normative.

Mathematics and its notations have evolved over several centuries, or even millennia. To the experienced reader,
mathematical notation conveys a large amount of information quickly and compactly. And yet, while the symbols and
arrangements of the notations have a deep correspondence to the semantic structure and meaning of the mathematics being
represented, the notation and semantics are not the same. The semantic symbols and structures are subtly distinct from those
of the notation.

Thus, there is a need for a markup language which can represent both the traditional displayed notations of mathematics, as
well as its semantic content. While the traditional rendering is useful to sighted readers, the markup language must also
support accessibility. The semantic forms must support a variety of computational purposes. Both forms should be
appropriate to all educational levels from elementary to research.

MathML is a markup language for describing mathematics. It uses XML syntax when used standalone or within other XML,
or HTML syntax when used within HTML documents. Conceptually, MathML consists of two main strains of markup:
Presentation markup is used to display mathematical expressions; and Content markup is used to convey mathematical
meaning. These two strains, along with other external representations, can be combined using parallel markup.

This specification is organized as follows: 2. MathML Fundamentals discusses Fundamentals common to Presentation and
Content markup; 3. Presentation Markup and 4. Content Markup cover Presentation and Content markup, respectively; 5.
Annotating MathML: intent discusses how markup may be annotated, particularly for accessibility; 6. Annotating MathML:
semantics discusses how markup may be annotated so that Presentation, Content and other formats may be combined; 7.
Interactions with the Host Environment addresses how MathML interacts with applications; Finally, a discussion of special
symbols, and issues regarding characters, entities and fonts, is given in 8. Characters, Entities and Fonts.

The specification of MathML is developed in two layers. MathML Core ([MathML-Core]) covers (most of) Presentation
Markup, with the focus being the precise details of displaying mathematics in web browsers. MathML Full, this

1. Introduction

1.1 Mathematics and its Notation

1.2 Overview

1.3 Relation to MathML Core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

13 of 434 26/08/2025, 11:30

specification, extends MathML Core primarily by defining Content MathML, in 4. Content Markup. It also defines
extensions to Presentation MathML consisting of additional attributes, elements or enhanced syntax of attributes. These are
defined for compatibility with legacy MathML, as well as to cover 3.1.7 Linebreaking of Expressions, 3.6 Elementary Math
and other aspects not included in level 1 of MathML Core but which may be incorporated into future versions of MathML
Core.

This specification covers both MathML Core and its extensions; features common to both are indicated with core, whereas
extensions are indicated with not-core.

It is intended that MathML Full is a proper superset of MathML Core. Moreover, it is intended that any valid Core Markup
be considered as valid Full Markup as well. It is also intended that an otherwise conforming implementation of MathML
Core, which also implements parts or all of the extensions of MathML Full, should continue to be considered a conforming
implementation of MathML Core.

In addition to these two specifications, the Math WG group has developed the non-normative Notes on MathML that
contains additional examples and information to help understand best practices when using MathML.

The basic ‘syntax’ of MathML is defined using XML syntax, but other syntaxes that can encode labeled trees are possible.
Notably the HTML parser may also be used with MathML. Upon this, we layer a ‘grammar’, being the rules for allowed
elements, the order in which they can appear, and how they may be contained within each other, as well as additional
syntactic rules for the values of attributes. These rules are defined by this specification, and formalized by a RelaxNG
schema [RELAXNG-SCHEMA] in A. Parsing MathML. Derived schema in other formats, DTD (Document Type
Definition) and XML Schema [XMLSchemas] are also provided.

MathML's character set consists of any Unicode characters [Unicode] allowed by the syntax being used. (See for example
[XML] or [HTML].) The use of Unicode characters for mathematics is discussed in 8. Characters, Entities and Fonts.

The following sections discuss the general aspects of the MathML grammar as well as describe the syntaxes used for
attribute values.

1.4 MathML Notes

2. MathML Fundamentals

2.1 MathML Syntax and Grammar

2.1.1 General Considerations

2.1.2 MathML and Namespaces

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

14 of 434 26/08/2025, 11:30

https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://w3c.github.io/mathml-core/spec.html
https://w3c.github.io/mathml-core/spec.html
https://w3c.github.io/mathml-core/spec.html
https://w3c.github.io/mathml-docs/notes-on-mathml/
https://w3c.github.io/mathml-docs/notes-on-mathml/

An XML namespace [Namespaces] is a collection of names identified by a URI. The URI for the MathML namespace is:

http://www.w3.org/1998/Math/MathML

To declare a namespace when using the XML serialisation of MathML, one uses an xmlns attribute, or an attribute with an
xmlns prefix.

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>

</math>

When the xmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate other
elements and attributes with a particular namespace. When embedding MathML within HTML using XML syntax, one
might use:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
 ...
<m:math><m:mrow>...</m:mrow></m:math>

 ...
</body>

HTML does not support namespace extensibility in the same way. The HTML parser has in-built knowledge of the HTML,
SVG, and MathML namespaces. xmlns attributes are just treated as normal attributes. Thus, when using the HTML
serialisation of MathML, prefixed element names must not be used. xmlns=http://www.w3.org/1998/Math/MathML
may be used on the math element; it will be ignored by the HTML parser. If a MathML expression is likely to be in contexts
where it may be parsed by an XML parser or an HTML parser, it SHOULD use the following form to ensure maximum
compatibility:

<math xmlns="http://www.w3.org/1998/Math/MathML">
 ...
</math>

There are presentation elements that conceptually accept only a single argument, but which for convenience have been
written to accept any number of children; then we infer an mrow containing those children which acts as the argument to the
element in question; see 3.1.3.1 Inferred <mrow>s.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the number of
arguments required and their order, as well as other constraints on the content, are specified. This information is also
tabulated for the presentation elements in 3.1.3 Required Arguments.

2.1.3 Children versus Arguments

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

15 of 434 26/08/2025, 11:30

Web Platform implementations of [MathML-Core] should follow the detailed layout rules specified in that document.

This document only recommends (i.e., does not require) specific ways of rendering Presentation MathML; this is in order to
allow for medium-dependent rendering and for implementations not using the CSS based Web Platform.

MathML elements take attributes with values that further specialize the meaning or effect of the element. Attribute names
are shown in a monospaced font throughout this document. The meanings of attributes and their allowed values are
described within the specification of each element. The syntax notation explained in this section is used in specifying
allowed values.

To describe the MathML-specific syntax of attribute values, the following conventions and notations are used for most
attributes in the present document.

2.1.4 MathML and Rendering

2.1.5 MathML Attribute Values

2.1.5.1 Syntax notation used in the MathML specification

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

16 of 434 26/08/2025, 11:30

Notation What it matches

unsigned-
integer

As defined in [MathML-Core], an integer, whose first character is neither U+002D HYPHEN-
MINUS character (-) nor U+002B PLUS SIGN (+).

positive-
integer

An unsigned-integer not consisting solely of "0"s (U+0030), representing a positive integer

integer an optional "-" (U+002D), followed by an unsigned-integer, and representing an integer

unsigned-
number

value as defined in [CSS-VALUES-3] number, whose first character is neither U+002D HYPHEN-
MINUS character (-) nor U+002B PLUS SIGN (+), representing a non-negative terminating decimal
number (a type of rational number)

number
an optional prefix of "-" (U+002D), followed by an unsigned number, representing a terminating
decimal number (a type of rational number)

character a single non-whitespace character

string an arbitrary, nonempty and finite, string of characters

length a length, as explained below, 2.1.5.2 Length Valued Attributes

namedspace a named length, namedspace, as explained in 2.1.5.2 Length Valued Attributes

color a color, using the syntax specified by [CSS-Color-3]

id
an identifier, unique within the document; must satisfy the NAME syntax of the XML
recommendation [XML]

idref
an identifier referring to another element within the document; must satisfy the NAME syntax of the
XML recommendation [XML]

URI

a Uniform Resource Identifier [RFC3986]. Note that the attribute value is typed in the schema as
anyURI which allows any sequence of XML characters. Systems needing to use this string as a URI
must encode the bytes of the UTF-8 encoding of any characters not allowed in URI using %HH
encoding where HH are the byte value in hexadecimal. This ensures that such an attribute value may
be interpreted as an IRI, or more generally a LEIRI; see [IRI].

italicized
word

values as explained in the text for each attribute; see 2.1.5.3 Default values of attributes

"literal" quoted symbol, literally present in the attribute value (e.g. "+" or '+')

The ‘types’ described above, except for string, may be combined into composite patterns using the following operators. The
whole attribute value must be delimited by single (') or double (") quotation marks in the marked up document. Note that
double quotation marks are often used in this specification to mark up literal expressions; an example is the "-" in line 5 of
the table above.

In the table below a form f means an instance of a type described in the table above. The combining operators are shown in
order of precedence from highest to lowest:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

17 of 434 26/08/2025, 11:30

https://www.w3.org/TR/css-values-3/#integer-value
https://www.w3.org/TR/css-values-3/#integer-value
https://www.w3.org/TR/css-values-3/#integer-value
https://www.w3.org/TR/css-values-3/#number
https://www.w3.org/TR/css-values-3/#number
https://www.w3.org/TR/css-values-3/#number

Notation What it matches

(𝑓) same 𝑓

𝑓 ? an optional instance of 𝑓

𝑓 * zero or more instances of 𝑓, with separating whitespace characters

𝑓 + one or more instances of 𝑓, with separating whitespace characters

𝑓1𝑓2⋯𝑓𝑛 one instance of each form 𝑓𝑖, in sequence, with no separating whitespace

𝑓1, 𝑓2, …, 𝑓𝑛 one instance of each form 𝑓𝑖, in sequence, with separating whitespace characters (but no commas)

𝑓1 | 𝑓2 | ⋯ | 𝑓𝑛 any one of the specified forms 𝑓𝑖

The notation we have chosen here is in the style of the syntactical notation of the RelaxNG used for MathML's basic
schema, A. Parsing MathML.

Since some applications are inconsistent about normalization of whitespace, for maximum interoperability it is advisable to
use only a single whitespace character for separating parts of a value. Moreover, leading and trailing whitespace in attribute
values should be avoided.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this subset are not
errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the renderer) to the closest value
within the allowed subset. The set of allowed values may depend on the renderer, and is not specified by MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign ('-'), e.g., number or
integer, it is not a syntax error when one is provided in cases where a negative value is not sensible. Instead, the value
should be handled by the processing application as described in the preceding paragraph. An explicit plus sign ('+') is not
allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted '+' or "+"), and its
presence can change the meaning of the attribute value (as documented with each attribute which permits it).

Most presentation elements have attributes that accept values representing lengths to be used for size, spacing or similar
properties. [MathML-Core] accepts lengths only in the <length-percentage> syntax defined in [CSS-VALUES-3].
MathML Full extends length syntax by accepting also a namedspace being one of:

2.1.5.2 Length Valued Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

18 of 434 26/08/2025, 11:30

https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage

Positive space Negative space Value

veryverythinmathspace negativeveryverythinmathspace ±1/18 em

verythinmathspace negativeverythinmathspace ±2/18 em

thinmathspace negativethinmathspace ±3/18 em

mediummathspace negativemediummathspace ±4/18 em

thickmathspace negativethickmathspace ±5/18 em

verythickmathspace negativeverythickmathspace ±6/18 em

veryverythickmathspace negativeveryverythickmathspace ±7/18 em

In MathML 3, the attributes on mpadded allowed three pseudo-units, height, depth, and width (taking the place of one
of the usual CSS units) denoting the original dimensions of the content. It also allowed a deprecated usage with lengths
specified as a number without a unit which was interpreted as a multiple of the reference value. These forms are considered
invalid in MathML 4.

Two additional aspects of relative units must be clarified, however. First, some elements such as 3.4 Script and Limit
Schemata or mfrac implicitly switch to smaller font sizes for some of their arguments. Similarly, mstyle can be used to
explicitly change the current font size. In such cases, the effective values of an em or ex inside those contexts will be
different than outside. The second point is that the effective value of an em or ex used for an attribute value can be affected
by changes to the current font size. Thus, attributes that affect the current font size, such as mathsize and scriptlevel,
must be processed before evaluating other length valued attributes.

Default values for MathML attributes are, in general, given along with the detailed descriptions of specific elements in the
text. Default values shown in plain text in the tables of attributes for an element are literal, but when italicized are
descriptions of how default values can be computed.

Default values described as inherited are taken from the rendering environment, as described in 3.3.4 Style Change
<mstyle>, or in some cases (which are described individually) taken from the values of other attributes of surrounding
elements, or from certain parts of those values. The value used will always be one which could have been specified
explicitly, had it been known; it will never depend on the content or attributes of the same element, only on its environment.
(What it means when used may, however, depend on those attributes or the content.)

Default values described as automatic should be computed by a MathML renderer in a way which will produce a high-
quality rendering; how to do this is not usually specified by the MathML specification. The value computed will always be

2.1.5.2.1 ADDITIONAL NOTES ABOUT UNITS

2.1.5.3 Default values of attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

19 of 434 26/08/2025, 11:30

one which could have been specified explicitly, had it been known, but it will usually depend on the element content and
possibly on the context in which the element is rendered.

Other italicized descriptions of default values which appear in the tables of attributes are explained individually for each
attribute.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the tables of
attribute value syntax for each element, but are around attribute values in examples in the text, so that the pieces of code
shown are correct.

Note that, in general, there is no mechanism in MathML to simulate the effect of not specifying attributes which are
inherited or automatic. Giving the words “inherited” or “automatic” explicitly will not work, and is not generally allowed.
Furthermore, the mstyle element (3.3.4 Style Change <mstyle>) can even be used to change the default values of
presentation attributes for its children.

Note also that these defaults describe the behavior of MathML applications when an attribute is not supplied; they do not
indicate a value that will be filled in by an XML parser, as is sometimes mandated by DTD-based specifications.

In general, there are a number of properties of MathML rendering that may be thought of as overall properties of a
document, or at least of sections of a large document. Examples might be mathsize (the math font size: see 3.2.2
Mathematics style attributes common to token elements), or the behavior in setting limits on operators such as integrals or
sums (e.g., movablelimits or displaystyle), or upon breaking formulas over lines (e.g. linebreakstyle); for such
attributes see several elements in 3.2 Token Elements. These may be thought to be inherited from some such containing
scope. Just above we have mentioned the setting of default values of MathML attributes as inherited or automatic; there is a
third source of global default values for behavior in rendering MathML, a MathML operator dictionary. A default example is
provided in B. Operator Dictionary. This is also discussed in 3.2.5.6.1 The operator dictionary and examples are given in
3.2.5.2.1 Dictionary-based attributes.

In addition to the attributes described specifically for each element, the attributes in the following table are allowed on every
MathML element. Also allowed are attributes from the xml namespace, such as xml:lang, and attributes from namespaces
other than MathML, which are ignored by default.

2.1.6 Attributes Shared by all MathML Elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

20 of 434 26/08/2025, 11:30

Name values default

idcore id none

Establishes a unique identifier associated with the element to support linking, cross-references and parallel
markup. See xref and 6.9 Parallel Markup.

xrefnot-core idref none

References another element within the document. See id and 6.9 Parallel Markup.

classcore string none

Associates the element with a set of style classes for use with [CSS21]. See 7.5 Using CSS with MathML
for discussion of the interaction of MathML and CSS.

stylecore string none

Associates style information with the element for use with [CSS21]. See 7.5 Using CSS with MathML for
discussion of the interaction of MathML and CSS.

hrefnot-core URI none

Can be used to establish the element as a hyperlink to the specified URI.

All MathML presentation elements accept intent and arg attributes to support specifying “intent”. These are more fully
described in 5. Annotating MathML: intent.

Name values default

intentcore intent expression none

The intent attribute is more fully described in 5. Annotating MathML: intent. It may be used on
presentation elements to give information about the intended meaning of the expression, mainly for guiding
audio or braille accessible renderings.

argcore name none

The arg attribute is more fully described in 5. Annotating MathML: intent. It may be used to name an
element to be referenced from an intent expression on an ancestor element.

See also 3.2.2 Mathematics style attributes common to token elements for a list of MathML attributes which can be used on
most presentation token elements.

In MathML, as in XML, “whitespace” means simple spaces, tabs, newlines, or carriage returns, i.e., characters with

2.1.7 Collapsing Whitespace in Input

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

21 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-id
https://w3c.github.io/mathml-core/spec.html#dfn-id
https://w3c.github.io/mathml-core/spec.html#dfn-id
https://w3c.github.io/mathml-core/spec.html#dfn-id
https://w3c.github.io/mathml-core/spec.html#dfn-class
https://w3c.github.io/mathml-core/spec.html#dfn-class
https://w3c.github.io/mathml-core/spec.html#dfn-class
https://w3c.github.io/mathml-core/spec.html#dfn-class
https://w3c.github.io/mathml-core/spec.html#dfn-style
https://w3c.github.io/mathml-core/spec.html#dfn-style
https://w3c.github.io/mathml-core/spec.html#dfn-style
https://w3c.github.io/mathml-core/spec.html#dfn-style

hexadecimal Unicode codes U+0020, U+0009, U+000A, or U+000D, respectively; see also the discussion of whitespace in
Section 2.3 of [XML].

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there.
Whitespace occurring within the content of token elements, except for <cs>, is normalized as follows. All whitespace at the
beginning and end of the content is removed, and whitespace internal to content of the element is collapsed canonically, i.e.,
each sequence of 1 or more whitespace characters is replaced with one space character (U+0020, sometimes called a blank
character).

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
Theorem
1:
</mtext>

Theorem 1:

is equivalent to <mtext>Theorem 1:</mtext> or <mtext>Theorem 1:</mtext>.

Authors wishing to encode white space characters at the start or end of the content of a token, or in sequences other than a
single space, without having them ignored, must use non-breaking space U+00A0 (or nbsp) or other non-marking
characters that are not trimmed. For example, compare the above use of an mtext element with

<mtext>
 <!--nbsp-->Theorem <!--nbsp-->1:
</mtext>

 Theorem 1:

When the first example is rendered, there is nothing before “Theorem”, one Unicode space character between “Theorem”
and “1:”, and nothing after “1:”. In the second example, a single space character is to be rendered before “Theorem”; two
spaces, one a Unicode space character and one a Unicode no-break space character, are to be rendered before “1:”; and there
is nothing after the “1:”.

Note that the value of the xml:space attribute is not relevant in this situation since XML processors pass whitespace in
tokens to a MathML processor; it is the requirements of MathML processing which specify that whitespace is trimmed and
collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn, cs, csymbol and
annotation, an mspace element should be used, as opposed to an mtext element containing only whitespace entities.

MathML specifies a single top-level or root math element, which encapsulates each instance of MathML markup within a

2.2 The Top-Level <math> Element

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

22 of 434 26/08/2025, 11:30

document. All other MathML content must be contained in a math element; in other words, every valid MathML expression
is wrapped in outer <math> tags. The math element must always be the outermost element in a MathML expression; it is an
error for one math element to contain another. These considerations also apply when sub-expressions are passed between
applications, such as for cut-and-paste operations; see 7.3 Transferring MathML.

The math element can contain an arbitrary number of child elements. They render by default as if they were contained in an
mrow element.

The math element accepts any of the attributes that can be set on 3.3.4 Style Change <mstyle>, including the common
attributes specified in 2.1.6 Attributes Shared by all MathML Elements. In particular, it accepts the dir attribute for setting
the overall directionality; the math element is usually the most useful place to specify the directionality (see 3.1.5
Directionality for further discussion). Note that the dir attribute defaults to ltr on the math element (but inherits on all
other elements which accept the dir attribute); this provides for backward compatibility with MathML 2.0 which had no
notion of directionality. Also, it accepts the mathbackground attribute in the same sense as mstyle and other presentation
elements to set the background color of the bounding box, rather than specifying a default for the attribute (see 3.1.9
Mathematics attributes common to presentation elements).

In addition to those attributes, the math element accepts:

2.2.1 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

23 of 434 26/08/2025, 11:30

Name values default

displaycore "block" | "inline" inline

specifies whether the enclosed MathML expression should be rendered as a separate vertical
block (in display style) or inline, aligned with adjacent text. When display=block,
displaystyle is initialized to true, whereas when display=inline, displaystyle is
initialized to false; in both cases scriptlevel is initialized to 0 (see 3.1.6 Displaystyle and
Scriptlevel). Moreover, when the math element is embedded in a larger document, a block math
element should be treated as a block element as appropriate for the document type (typically as a
new vertical block), whereas an inline math element should be treated as inline (typically
exactly as if it were a sequence of words in normal text). In particular, this applies to spacing
and linebreaking: for instance, there should not be spaces or line breaks inserted between inline
math and any immediately following punctuation. When the display attribute is missing, a
rendering agent is free to initialize as appropriate to the context.

maxwidthnot-core length available width

specifies the maximum width to be used for linebreaking. The default is the maximum width
available in the surrounding environment. If that value cannot be determined, the renderer
should assume an infinite rendering width.

overflownot-core "linebreak" | "scroll" | "elide" | "truncate" | "scale" linebreak

specifies the preferred handing in cases where an expression is too long to fit in the allowed
width. See the discussion below.

altimgnot-core URI none

provides a URI referring to an image to display as a fall-back for user agents that do not support
embedded MathML.

altimg-widthnot-core length width of altimg

specifies the width to display altimg, scaling the image if necessary; see altimg-height.

altimg-heightnot-core length height of altimg

specifies the height to display altimg, scaling the image if necessary; if only one of the
attributes altimg-width and altimg-height are given, the scaling should preserve the
image's aspect ratio; if neither attribute is given, the image should be shown at its natural size.

altimg-valignnot-core length | "top" | "middle" | "bottom" 0ex

specifies the vertical alignment of the image with respect to adjacent inline material. A positive
value of altimg-valign shifts the bottom of the image above the current baseline, while a
negative value lowers it. The keyword "top" aligns the top of the image with the top of adjacent
inline material; "center" aligns the middle of the image to the middle of adjacent material;
"bottom" aligns the bottom of the image to the bottom of adjacent material (not necessarily the
baseline). This attribute only has effect when display=inline. By default, the bottom of the
image aligns to the baseline.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

24 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-display
https://w3c.github.io/mathml-core/spec.html#dfn-display
https://w3c.github.io/mathml-core/spec.html#dfn-display
https://w3c.github.io/mathml-core/spec.html#dfn-display

alttextcore string none

provides a textual alternative as a fall-back for user agents that do not support embedded
MathML or images.

cdgroupnot-core URI none

specifies a CD group file that acts as a catalogue of CD bases for locating OpenMath content
dictionaries of csymbol, annotation, and annotation-xml elements in this math element;
see 4.2.3 Content Symbols <csymbol>. When no cdgroup attribute is explicitly specified, the
document format embedding this math element may provide a method for determining CD
bases. Otherwise the system must determine a CD base; in the absence of specific information
http://www.openmath.org/cd is assumed as the CD base for all csymbol, annotation,
and annotation-xml elements. This is the CD base for the collection of standard CDs
maintained by the OpenMath Society.

In cases where size negotiation is not possible or fails (for example in the case of an expression that is too long to fit in the
allowed width), the overflow attribute is provided to suggest a processing method to the renderer. Allowed values are:

Value Meaning

"linebreak"
The expression will be broken across several lines. See 3.1.7 Linebreaking of Expressions for further
discussion. not-core

"scroll"
The window provides a viewport into the larger complete display of the mathematical expression.
Horizontal or vertical scroll bars are added to the window as necessary to allow the viewport to be
moved to a different position. not-core

"elide"
The display is abbreviated by removing enough of it so that the remainder fits into the window. For
example, a large polynomial might have the first and last terms displayed with “+ ... +” between them.
Advanced renderers may provide a facility to zoom in on elided areas. not-core

"truncate"
The display is abbreviated by simply truncating it at the right and bottom borders. It is recommended
that some indication of truncation is made to the viewer. not-core

"scale"
The fonts used to display the mathematical expression are chosen so that the full expression fits in the
window. Note that this only happens if the expression is too large. In the case of a window larger than
necessary, the expression is shown at its normal size within the larger window. not-core

This chapter specifies the “presentation” elements of MathML, which can be used to describe the layout structure of

3. Presentation Markup

3.1 Introduction

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

25 of 434 26/08/2025, 11:30

mathematical notation.

Most of Presentation Markup is included in [MathML-Core]. That specification should be consulted for the precise details of
displaying the elements and attributes that are part of core when displayed in web browsers. Outside of web browsers,
MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for medium-
dependent rendering and for individual preferences of style. Non browser-based renderers are free to use their own layout
rules as long as the renderings are intelligible.

The names used for presentation elements are suggestive of their visual layout. However, mathematical notation has a long
history of being reused as new concepts are developed. Because of this, an element such as mfrac may not actually be a
fraction and the intent attribute should be used to provide information for auditory renderings.

This chapter describes all of the presentation elements and attributes of MathML along with examples that might clarify
usage.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same way as
titles, sections, and paragraphs capture the higher-level syntactic structure of a textual document. Because of this, a single
row of identifiers and operators will often be represented by multiple nested mrow elements rather than a single mrow. For
example, “𝑥 + 𝑎 / 𝑏” typically is represented as:

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>

</mrow>
</mrow>

𝑥 + 𝑎 / 𝑏

Similarly, superscripts are attached to the full expression constituting their base rather than to the just preceding character.
This structure permits better-quality rendering of mathematics, especially when details of the rendering environment, such
as display widths, are not known ahead of time to the document author. It also greatly eases automatic interpretation of the
represented mathematical structures.

Certain characters are used to name identifiers or operators that in traditional notation render the same as other symbols or
are rendered invisibly. For example, the characters U+2146, U+2147 and U+2148 represent differential d, exponential e and
imaginary i, respectively and are semantically distinct from the same letters used as simple variables. Likewise, the
characters U+2061, U+2062, U+2063 and U+2064 represent function application, invisible times, invisible comma and
invisible plus . These usually render invisibly but represent significant information that may influence visual spacing and
linebreaking, and may have distinct spoken renderings. Accordingly, authors should use these characters (or corresponding
entities) wherever applicable.

3.1.1 Presentation MathML Structure

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

26 of 434 26/08/2025, 11:30

The complete list of MathML entities is described in [Entities].

The presentation elements are divided into two classes. Token elements represent individual symbols, names, numbers,
labels, etc. Layout schemata build expressions out of parts and can have only elements as content. These are subdivided into
General Layout, Script and Limit, Tabular Math and Elementary Math schemata. There are also a few empty elements used
only in conjunction with certain layout schemata.

All individual “symbols” in a mathematical expression should be represented by MathML token elements (e.g., <mn>24</
mn>). The primary MathML token element types are identifiers (mi, e.g. variables or function names), numbers (mn), and
operators (mo, including fences, such as parentheses, and separators, such as commas). There are also token elements used
to represent text or whitespace that has more aesthetic than mathematical significance and other elements representing
“string literals” for compatibility with computer algebra systems.

The layout schemata specify the way in which sub-expressions are built into larger expressions such as fraction and scripted
expressions. Layout schemata attach special meaning to the number and/or positions of their children. A child of a layout
schema is also called an argument of that element. As a consequence of the above definitions, the content of a layout schema
consists exactly of a sequence of zero or more elements that are its arguments.

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed
descriptions of element syntax given below, the number of required arguments is implicitly indicated by giving names for
the arguments at various positions. A few elements have additional requirements on the number or type of arguments, which
are described with the individual element. For example, some elements accept sequences of zero or more arguments — that
is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements in which they appear. See 3.2.7
Space <mspace/> for a discussion of the proper use of such space-like elements.

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, mpadded, mphantom,
menclose, mtd, mscarry, and math) conceptually accept a single argument, but actually accept any number of children. If
the number of children is 0 or is more than 1, they treat their contents as a single inferred mrow formed from all their
children, and treat this mrow as the argument.

For example,

3.1.2 Terminology Used In This Chapter

3.1.3 Required Arguments

3.1.3.1 Inferred <mrow>s

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

27 of 434 26/08/2025, 11:30

<msqrt>
<mo> - </mo>
<mn> 1 </mn>

</msqrt>

−1√

is treated as if it were

<msqrt>
<mrow>
<mo> - </mo>
<mn> 1 </mn>

</mrow>
</msqrt>

−1√

This feature allows MathML data not to contain (and its authors to leave out) many mrow elements that would otherwise be
necessary.

For convenience, here is a table of each element's argument count requirements and the roles of individual arguments when
these are distinguished. An argument count of 1* indicates an inferred mrow as described above. Although the math element
is not a presentation element, it is listed below for completeness.

3.1.3.2 Table of argument requirements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

28 of 434 26/08/2025, 11:30

Element
Required argument
count

Argument roles (when these differ by position)

mrow 0 or more

mfrac 2 numerator denominator

msqrt 1*

mroot 2 base index

mstyle 1*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

menclose 1*

msub 2 base subscript

msup 2 base superscript

msubsup 3 base subscript superscript

munder 2 base underscript

mover 2 base overscript

munderover 3 base underscript overscript

mmultiscripts 1 or more
base (subscript superscript)* [<mprescripts/> (presubscript
presuperscript)*]

mtable 0 or more rows 0 or more mtr elements

mtr 0 or more 0 or more mtd elements

mtd 1*

mstack 0 or more

mlongdiv 3 or more divisor result dividend (msrow | msgroup | mscarries | msline)*

msgroup 0 or more

msrow 0 or more

mscarries 0 or more

mscarry 1*

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

29 of 434 26/08/2025, 11:30

maction 1 or more depend on actiontype attribute

math 1*

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are discussed in
the detailed element descriptions below. However, for convenience, some of the most important classes of special behavior
are listed here.

Certain elements are considered space-like; these are defined in 3.2.7 Space <mspace/>. This definition affects some of the
suggested rendering rules for mo elements (3.2.5 Operator, Fence, Separator or Accent <mo>).

Certain elements, e.g. msup, are able to embellish operators that are their first argument. These elements are listed in 3.2.5
Operator, Fence, Separator or Accent <mo>, which precisely defines an “embellished operator” and explains how this affects
the suggested rendering rules for stretchy operators.

In the notations familiar to most readers, both the overall layout and the textual symbols are arranged from left to right
(LTR). Yet, as alluded to in the introduction, mathematics written in Hebrew or in locales such as Morocco or Persia, the
overall layout is used unchanged, but the embedded symbols (often Hebrew or Arabic) are written right to left (RTL).
Moreover, in most of the Arabic speaking world, the notation is arranged entirely RTL; thus a superscript is still raised, but
it follows the base on the left rather than the right.

MathML 3.0 therefore recognizes two distinct directionalities: the directionality of the text and symbols within token
elements and the overall directionality represented by Layout Schemata. These two facets are discussed below.

NOTE

Probably need to add a little discussion of vertical languages here (and their current lack of support)

The overall directionality for a formula, basically the direction of the Layout Schemata, is specified by the dir attribute on
the containing math element (see 2.2 The Top-Level <math> Element). The default is ltr. When dir=rtl is used, the
layout is simply the mirror image of the conventional European layout. That is, shifts up or down are unchanged, but the
progression in laying out is from right to left.

For example, in a RTL layout, sub- and superscripts appear to the left of the base; the surd for a root appears at the right,
with the bar continuing over the base to the left. The layout details for elements whose behavior depends on directionality
are given in the discussion of the element. In those discussions, the terms leading and trailing are used to specify a side of an

3.1.4 Elements with Special Behaviors

3.1.5 Directionality

3.1.5.1 Overall Directionality of Mathematics Formulas

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

30 of 434 26/08/2025, 11:30

object when which side to use depends on the directionality; i.e. leading means left in LTR but right in RTL. The terms left
and right may otherwise be safely assumed to mean left and right.

The overall directionality is usually set on the math, but may also be switched for an individual subexpression by using the
dir attribute on mrow or mstyle elements. When not specified, all elements inherit the directionality of their container.

The text directionality comes into play for the MathML token elements that can contain text (mtext, mo, mi, mn and ms) and
is determined by the Unicode properties of that text. A token element containing exclusively LTR or RTL characters is
displayed straightforwardly in the given direction. When a mixture of directions is involved, such as RTL Arabic and LTR
numbers, the Unicode bidirectional algorithm [Bidi] should be applied. This algorithm specifies how runs of characters with
the same direction are processed and how the runs are (re)ordered. The base, or initial, direction is given by the overall
directionality described above (3.1.5.1 Overall Directionality of Mathematics Formulas) and affects how weakly directional
characters are treated and how runs are nested. (The dir attribute is thus allowed on token elements to specify the initial
directionality that may be needed in rare cases.) Any mglyph or malignmark elements appearing within a token element
are effectively neutral and have no effect on ordering.

The important thing to notice is that the bidirectional algorithm is applied independently to the contents of each token
element; each token element is an independent run of characters.

Other features of Unicode and scripts that should be respected are ‘mirroring’ and ‘glyph shaping’. Some Unicode
characters are marked as being mirrored when presented in a RTL context; that is, the character is drawn as if it were
mirrored or replaced by a corresponding character. Thus an opening parenthesis, ‘(’, in RTL will display as ‘)’. Conversely,
the solidus (/ U+002F) is not marked as mirrored. Thus, an Arabic author that desires the slash to be reversed in an inline
division should explicitly use reverse solidus (\ U+005C) or an alternative such as the mirroring DIVISION SLASH
(U+2215).

Additionally, calligraphic scripts such as Arabic blend, or connect sequences of characters together, changing their
appearance. As this can have a significant impact on readability, as well as aesthetics, it is important to apply such shaping if
possible. Glyph shaping, like directionality, applies to each token element's contents individually.

Note that for the transfinite cardinals represented by Hebrew characters, the code points U+2135-U+2138 (ALEF SYMBOL,
BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used in MathML, not the alphabetic look-alike code
points. These code points are strong left-to-right.

So-called ‘displayed’ formulas, those appearing on a line by themselves, typically make more generous use of vertical space
than inline formulas, which should blend into the adjacent text without intruding into neighboring lines. For example, in a
displayed summation, the limits are placed above and below the summation symbol, while when it appears inline the limits
would appear in the sub- and superscript position. For similar reasons, sub- and superscripts, nested fractions and other
constructs typically display in a smaller size than the main part of the formula. MathML implicitly associates with every
presentation node a displaystyle and scriptlevel reflecting whether a more expansive vertical layout applies and the
level of scripting in the current context.

3.1.5.2 Bidirectional Layout in Token Elements

3.1.6 Displaystyle and Scriptlevel

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

31 of 434 26/08/2025, 11:30

These values are initialized by the math element according to the display attribute. They are automatically adjusted by the
various script and limit schemata elements, and the elements mfrac and mroot, which typically set displaystyle false
and increment scriptlevel for some or all of their arguments. (See the description for each element for the specific rules
used.) They also may be set explicitly via the displaystyle and scriptlevel attributes on the mstyle element or the
displaystyle attribute of mtable. In all other cases, they are inherited from the node's parent.

The displaystyle affects the amount of vertical space used to lay out a formula: when true, the more spacious layout of
displayed equations is used, whereas when false a more compact layout of inline formula is used. This primarily affects the
interpretation of the largeop and movablelimits attributes of the mo element. However, more sophisticated renderers are
free to use this attribute to render more or less compactly.

The main effect of scriptlevel is to control the font size. Typically, the higher the scriptlevel, the smaller the font
size. (Non-visual renderers can respond to the font size in an analogous way for their medium.) Whenever the
scriptlevel is changed, whether automatically or explicitly, the current font size is multiplied by the value of
scriptsizemultiplier to the power of the change in scriptlevel. However, changes to the font size due to
scriptlevel changes should never reduce the size below scriptminsize to prevent scripts becoming unreadably small.
The default scriptsizemultiplier is approximately the square root of 1/2 whereas scriptminsize defaults to 8
points; these values may be changed on mstyle; see 3.3.4 Style Change <mstyle>. Note that the scriptlevel attribute
of mstyle allows arbitrary values of scriptlevel to be obtained, including negative values which result in increased font
sizes.

The changes to the font size due to scriptlevel should be viewed as being imposed from ‘outside’ the node. This means
that the effect of scriptlevel is applied before an explicit mathsize (see 3.2.2 Mathematics style attributes common to
token elements) on a token child of mfrac. Thus, the mathsize effectively overrides the effect of scriptlevel. However,
that change to scriptlevel changes the current font size, which affects the meaning of an em length (see 2.1.5.2 Length
Valued Attributes) and so the scriptlevel still may have an effect in such cases. Note also that since mathsize is not
constrained by scriptminsize, such direct changes to font size can result in scripts smaller than scriptminsize.

Note that direct changes to current font size, whether by CSS or by the mathsize attribute (see 3.2.2 Mathematics style
attributes common to token elements), have no effect on the value of scriptlevel.

TeX's \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle correspond to displaystyle and scriptlevel as true
and 0, false and 0, false and 1, and false and 2, respectively. Thus, math's display=block corresponds to
\displaystyle, while display=inline corresponds to \textstyle.

MathML provides support for both automatic and manual (forced) linebreaking of expressions to break excessively long
expressions into several lines. All such linebreaks take place within mrow (including inferred mrow; see 3.1.3.1 Inferred
<mrow>s) or mfenced. The breaks typically take place at mo elements and also, for backwards compatibility, at mspace.
Renderers may also choose to place automatic linebreaks at other points such as between adjacent mi elements or even
within a token element such as a very long mn element. MathML does not provide a means to specify such linebreaks, but if
a renderer chooses to linebreak at such a point, it should indent the following line according to the indentation attributes that

3.1.7 Linebreaking of Expressions

3.1.7.1 Control of Linebreaks

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

32 of 434 26/08/2025, 11:30

are in effect at that point.

Automatic linebreaking occurs when the containing math element has overflow=linebreak and the display engine
determines that there is not enough space available to display the entire formula. The available width must therefore be
known to the renderer. Like font properties, one is assumed to be inherited from the environment in which the MathML
element lives. If no width can be determined, an infinite width should be assumed. Inside of an mtable, each column has
some width. This width may be specified as an attribute or determined by the contents. This width should be used as the line
wrapping width for linebreaking, and each entry in an mtable is linewrapped as needed.

ISSUE 304 (CLOSED): Potential presentation MathML items to deprecate in MathML 4
(mspace's @linebreak)

Forced linebreaks are specified by using linebreak=newline on an mo or mspace element. Both automatic and manual
linebreaking can occur within the same formula.

Automatic linebreaking of subexpressions of mfrac, msqrt, mroot and menclose and the various script elements is not
required. Renderers are free to ignore forced breaks within those elements if they choose.

Attributes on mo and possibly on mspace elements control linebreaking and indentation of the following line. The aspects of
linebreaking that can be controlled are:

• Where — attributes determine the desirability of a linebreak at a specific operator or space, in particular whether a
break is required or inhibited. These can only be set on mo and mspace elements. (See 3.2.5.2.2 Linebreaking
attributes.)

• Operator Display/Position — when a linebreak occurs, determines whether the operator will appear at the end of the
line, at the beginning of the next line, or in both positions; and how much vertical space should be added after the
linebreak. These attributes can be set on mo elements or inherited from mstyle or math elements. (See 3.2.5.2.2
Linebreaking attributes.)

• Indentation — determines the indentation of the line following a linebreak, including indenting so that the next line
aligns with some point in a previous line. These attributes can be set on mo elements or inherited from mstyle or math
elements. (See 3.2.5.2.3 Indentation attributes.)

When a math element appears in an inline context, it may obey whatever paragraph flow rules are employed by the
document's text rendering engine. Such rules are necessarily outside of the scope of this specification. Alternatively, it may
use the value of the math element's overflow attribute. (See 2.2.1 Attributes.)

▸ Show Section

The following example demonstrates forced linebreaks and forced alignment:

3.1.7.2 Examples of Linebreaking

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

33 of 434 26/08/2025, 11:30

https://github.com/w3c/mathml/issues/304
https://github.com/w3c/mathml/issues/304
https://github.com/w3c/mathml/issues/304
https://github.com/w3c/mathml/issues/304
https://github.com/w3c/mathml/issues/304

<mrow>
<mrow> <mi>f</mi> <mo>⁡<!--ApplyFunction--></mo> <mo>(</mo> <mi>x</mi> <mo>)</mo>
<mo id='eq1-equals'>=</mo>
<mrow>
<msup>
<mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow>
<mn>4</mn>
</msup>
<mo linebreak='newline' linebreakstyle='before'

indentalign='id' indenttarget='eq1-equals'>=</mo>
<mrow>
<msup> <mi>x</mi> <mn>4</mn> </msup>
<mo id='eq1-plus'>+</mo>
<mrow> <mn>4</mn> <mo>⁢<!--InvisibleTimes--></mo> <msup> <mi>x</mi> <mn>3</mn>
<mo>+</mo>
<mrow> <mn>6</mn> <mo>⁢<!--InvisibleTimes--></mo> <msup> <mi>x</mi> <mn>2</mn>
<mo linebreak='newline' linebreakstyle='before'

indentalignlast='id' indenttarget='eq1-plus'>+</mo>
<mrow> <mn>4</mn> <mo>⁢<!--InvisibleTimes--></mo> <mi>x</mi> </mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mrow>
</mrow>

This displays as

Note that because indentalignlast defaults to indentalign, in the above example indentalign could have been
used in place of indentalignlast. Also, the specifying linebreakstyle='before' is not needed because that is the
default value.

3.1.8 Summary of Presentation Elements

3.1.8.1 Token Elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

34 of 434 26/08/2025, 11:30

mi identifier

mn number

mo operator, fence, or separator

mtext text

mspace space

ms string literal

Additionally, the mglyph element may be used within Token elements to represent non-standard symbols as images.

mrow group any number of sub-expressions horizontally

mfrac form a fraction from two sub-expressions

msqrt form a square root (radical without an index)

mroot form a radical with specified index

mstyle style change

merror enclose a syntax error message from a preprocessor

mpadded adjust space around content

mphantom make content invisible but preserve its size

mfenced surround content with a pair of fences

menclose enclose content with a stretching symbol such as a long division sign

3.1.8.2 General Layout Schemata

3.1.8.3 Script and Limit Schemata

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

35 of 434 26/08/2025, 11:30

msub attach a subscript to a base

msup attach a superscript to a base

msubsup attach a subscript-superscript pair to a base

munder attach an underscript to a base

mover attach an overscript to a base

munderover attach an underscript-overscript pair to a base

mmultiscripts attach prescripts and tensor indices to a base

mtable table or matrix

mtr row in a table or matrix

mtd one entry in a table or matrix

maligngroup and malignmark alignment markers

mstack columns of aligned characters

mlongdiv similar to msgroup, with the addition of a divisor and result

msgroup a group of rows in an mstack that are shifted by similar amounts

msrow a row in an mstack

mscarries row in an mstack whose contents represent carries or borrows

mscarry one entry in an mscarries

msline horizontal line inside of mstack

3.1.8.4 Tables and Matrices

3.1.8.5 Elementary Math Layout

3.1.8.6 Enlivening Expressions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

36 of 434 26/08/2025, 11:30

maction bind actions to a sub-expression

In addition to the attributes listed in 2.1.6 Attributes Shared by all MathML Elements, all MathML presentation elements
accept the following classes of attribute.

Presentation elements also accept all the Global Attributes specified by [MathML-Core].

These attributes include the following two attributes that are primarily intended for visual media. They are not expected to
affect the intended semantics of displayed expressions, but are for use in highlighting or drawing attention to the affected
subexpressions. For example, a red "x" is not assumed to be semantically different than a black "x", in contrast to variables
with different mathvariant values (see 3.2.2 Mathematics style attributes common to token elements).

Name values default

mathcolorcore color inherited

Specifies the foreground color to use when drawing the components of this element, such as the
content for token elements or any lines, surds, or other decorations. It also establishes the
default mathcolor used for child elements when used on a layout element.

mathbackgroundcore color | "transparent" transparent

Specifies the background color to be used to fill in the bounding box of the element and its
children. The default, "transparent", lets the background color, if any, used in the current
rendering context to show through.

Since MathML expressions are often embedded in a textual data format such as HTML, the MathML renderer should inherit
the foreground color used in the context in which the MathML appears. Note, however, that MathML (in contrast to
[MathML-Core]) doesn't specify the mechanism by which style information is inherited from the rendering environment.
See 3.2.2 Mathematics style attributes common to token elements for more details.

Note that the suggested MathML visual rendering rules do not define the precise extent of the region whose background is
affected by the mathbackground attribute, except that, when the content does not have negative dimensions and its
drawing region should not overlap with other drawing due to surrounding negative spacing, should lie behind all the
drawing done to render the content, and should not lie behind any of the drawing done to render surrounding expressions.
The effect of overlap of drawing regions caused by negative spacing on the extent of the region affected by the
mathbackground attribute is not defined by these rules.

3.1.9 Mathematics attributes common to presentation elements

3.1.9.1 MathML Core Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

37 of 434 26/08/2025, 11:30

https://www.w3.org/TR/mathml-core/#global-attributes
https://www.w3.org/TR/mathml-core/#global-attributes
https://w3c.github.io/mathml-core/spec.html#dfn-mathcolor
https://w3c.github.io/mathml-core/spec.html#dfn-mathcolor
https://w3c.github.io/mathml-core/spec.html#dfn-mathcolor
https://w3c.github.io/mathml-core/spec.html#dfn-mathcolor
https://w3c.github.io/mathml-core/spec.html#dfn-mathbackground
https://w3c.github.io/mathml-core/spec.html#dfn-mathbackground
https://w3c.github.io/mathml-core/spec.html#dfn-mathbackground
https://w3c.github.io/mathml-core/spec.html#dfn-mathbackground

Token elements in presentation markup are broadly intended to represent the smallest units of mathematical notation which
carry meaning. Tokens are roughly analogous to words in text. However, because of the precise, symbolic nature of
mathematical notation, the various categories and properties of token elements figure prominently in MathML markup. By
contrast, in textual data, individual words rarely need to be marked up or styled specially.

Token elements represent identifiers (mi), numbers (mn), operators (mo), text (mtext), strings (ms) and spacing (mspace).
The mglyph element may be used within token elements to represent non-standard symbols by images. Preceding detailed
discussion of the individual elements, the next two subsections discuss the allowable content of token elements and the
attributes common to them.

Character data in MathML markup is only allowed to occur as part of the content of token elements. Whitespace between
elements is ignored. With the exception of the empty mspace element, token elements can contain any sequence of zero or
more Unicode characters, or mglyph or malignmark elements. The mglyph element is used to represent non-standard
characters or symbols by images; the malignmark element establishes an alignment point for use within table constructs,
and is otherwise invisible (see 3.5.4 Alignment Markers <maligngroup/>, <malignmark/>not-core).

Characters can be either represented directly as Unicode character data, or indirectly via numeric or character entity
references. Unicode contains a number of look-alike characters. See [MathML-Notes] for a discussion of which characters
are appropriate to use in which circumstance.

Token elements (other than mspace) should be rendered as their content, if any (i.e. in the visual case, as a closely-spaced
horizontal row of standard glyphs for the characters or images for the mglyphs in their content). An mspace element is
rendered as a blank space of a width determined by its attributes. Rendering algorithms should also take into account the
mathematics style attributes as described below, and modify surrounding spacing by rules or attributes specific to each type
of token element. The directional characteristics of the content must also be respected (see 3.1.5.2 Bidirectional Layout in
Token Elements).

NOTE: mglyph is not in MathML-Core

mglyph is not supported in [MathML-Core]. In a Web Platform Context it is recommended that the HTML img element
is used. This is allowed in token elements when MathML is embedded in (X)HTML.

For existing MathML using mglyph a Javascript polyfill is provided for Web documents that implements mglyph using
img.

3.2 Token Elements

3.2.1 Token Element Content Characters, <mglyph/>not-core

3.2.1.1 Using images to represent symbols <mglyph/>not-core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

38 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-polyfills/
https://w3c.github.io/mathml-polyfills/

The mglyph element provides a mechanism for displaying images to represent non-standard symbols. It may be used within
the content of the token elements mi, mn, mo, mtext or ms where existing Unicode characters are not adequate.

Unicode defines a large number of characters used in mathematics and, in most cases, glyphs representing these characters
are widely available in a variety of fonts. Although these characters should meet almost all users needs, MathML recognizes
that mathematics is not static and that new characters and symbols are added when convenient. Characters that become well
accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, but that is often a
lengthy process.

Note that the glyph's src attribute uniquely identifies the mglyph; two mglyphs with the same values for src should be
considered identical by applications that must determine whether two characters/glyphs are identical.

The mglyph element accepts the attributes listed in 3.1.9 Mathematics attributes common to presentation elements, but note
that mathcolor has no effect. The background color, mathbackground, should show through if the specified image has
transparency.

mglyph also accepts the additional attributes listed here.

3.2.1.1.1 DESCRIPTION

3.2.1.1.2 ATTRIBUTES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

39 of 434 26/08/2025, 11:30

Name values default

srcnot-core URI required

Specifies the location of the image resource; it may be a URI relative to the base-URI of the source of
the MathML, if any.

widthnot-core length from image

Specifies the desired width of the glyph; see height.

heightnot-core length from image

Specifies the desired height of the glyph. If only one of width and height are given, the image should
be scaled to preserve the aspect ratio; if neither are given, the image should be displayed at its natural
size.

valignnot-core length 0ex

Specifies the baseline alignment point of the image with respect to the current baseline. A positive value
shifts the bottom of the image above the current baseline while a negative value lowers it. A value of 0
(the default) means that the baseline of the image is at the bottom of the image.

altnot-core string required

Provides an alternate name for the glyph. If the specified image can't be found or displayed, the renderer
may use this name in a warning message or some unknown glyph notation. The name might also be
used by an audio renderer or symbol processing system and should be chosen to be descriptive.

▸ Show Section

The following example illustrates how a researcher might use the mglyph construct with a set of images to work with braid
group notation.

<mrow>
<mi><mglyph src="my-braid-23" alt="2 3 braid"/></mi>
<mo>+</mo>
<mi><mglyph src="my-braid-132" alt="1 3 2 braid"/></mi>
<mo>=</mo>
<mi><mglyph src="my-braid-13" alt="1 3 braid"/></mi>

</mrow>

This might render as:

3.2.1.1.3 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

40 of 434 26/08/2025, 11:30

In addition to the attributes defined for all presentation elements (3.1.9 Mathematics attributes common to presentation
elements), MathML includes two mathematics style attributes as well as a directionality attribute valid on all presentation
token elements, as well as the math and mstyle elements; dir is also valid on mrow elements. The attributes are:

Name values default

mathvariantcore "normal" | "bold" | "italic" | "bold-italic" | "double-struck" | "bold-fraktur" |
"script" | "bold-script" | "fraktur" | "sans-serif" | "bold-sans-serif" | "sans-serif-
italic" | "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" | "looped" |
"stretched"

normal
(except on
<mi>)

Specifies the logical class of the token. Note that this class is more than styling, it typically conveys
semantic intent; see the discussion below.

mathsizecore "small" | "normal" | "big" | length inherited

Specifies the size to display the token content. The values small and big choose a size smaller or
larger than the current font size, but leave the exact proportions unspecified; normal is allowed for
completeness, but since it is equivalent to 100% or 1em, it has no effect.

dircore "ltr" | "rtl" inherited

specifies the initial directionality for text within the token: ltr (Left To Right) or rtl (Right To
Left). This attribute should only be needed in rare cases involving weak or neutral characters; see
3.1.5.1 Overall Directionality of Mathematics Formulas for further discussion. It has no effect on
mspace.

The mathvariant attribute defines logical classes of token elements. Each class provides a collection of typographically-
related symbolic tokens. Each token has a specific meaning within a given mathematical expression and, therefore, needs to
be visually distinguished and protected from inadvertent document-wide style changes which might change its meaning.
Each token is identified by the combination of the mathvariant attribute value and the character data in the token element.

When MathML rendering takes place in an environment where CSS is available, the mathematics style attributes can be
viewed as predefined selectors for CSS style rules. See 7.5 Using CSS with MathML for discussion of the interaction of
MathML and CSS. Also, see [MathMLforCSS] for discussion of rendering MathML by CSS and a sample CSS style sheet.
When CSS is not available, it is up to the internal style mechanism of the rendering application to visually distinguish the
different logical classes. Most MathML renderers will probably want to rely on some degree on additional, internal style
processing algorithms. In particular, the mathvariant attribute does not follow the CSS inheritance model; the default
value is normal (non-slanted) for all tokens except for mi with single-character content. See 3.2.3 Identifier <mi> for
details.

3.2.2 Mathematics style attributes common to token elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

41 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathsize
https://w3c.github.io/mathml-core/spec.html#dfn-mathsize
https://w3c.github.io/mathml-core/spec.html#dfn-mathsize
https://w3c.github.io/mathml-core/spec.html#dfn-mathsize
https://w3c.github.io/mathml-core/spec.html#dfn-dir
https://w3c.github.io/mathml-core/spec.html#dfn-dir
https://w3c.github.io/mathml-core/spec.html#dfn-dir
https://w3c.github.io/mathml-core/spec.html#dfn-dir

Renderers have complete freedom in mapping mathematics style attributes to specific rendering properties. However, in
practice, the mathematics style attribute names and values suggest obvious typographical properties, and renderers should
attempt to respect these natural interpretations as far as possible. For example, it is reasonable to render a token with the
mathvariant attribute set to sans-serif in Helvetica or Arial. However, rendering the token in a Times Roman font
could be seriously misleading and should be avoided.

In principle, any mathvariant value may be used with any character data to define a specific symbolic token. In practice,
only certain combinations of character data and mathvariant values will be visually distinguished by a given renderer. For
example, there is no clear-cut rendering for a "fraktur alpha" or a "bold italic Kanji" character, and the mathvariant values
"initial", "tailed", "looped", and "stretched" are appropriate only for Arabic characters.

Certain combinations of character data and mathvariant values are equivalent to assigned Unicode code points that
encode mathematical alphanumeric symbols. These Unicode code points are the ones in the Arabic Mathematical Alphabetic
Symbols block U+1EE00 to U+1EEFF, Mathematical Alphanumeric Symbols block U+1D400 to U+1D7FF, listed in the
Unicode standard, and the ones in the Letterlike Symbols range U+2100 to U+214F that represent "holes" in the alphabets in
the SMP, listed in 8.2 Mathematical Alphanumeric Symbols. These characters are described in detail in section 2.2 of UTR
#25. The description of each such character in the Unicode standard provides an unstyled character to which it would be
equivalent except for a font change that corresponds to a mathvariant value. A token element that uses the unstyled
character in combination with the corresponding mathvariant value is equivalent to a token element that uses the
mathematical alphanumeric symbol character without the mathvariant attribute. Note that the appearance of a
mathematical alphanumeric symbol character should not be altered by surrounding mathvariant or other style
declarations.

Renderers should support those combinations of character data and mathvariant values that correspond to Unicode
characters, and that they can visually distinguish using available font characters. Renderers may ignore or support those
combinations of character data and mathvariant values that do not correspond to an assigned Unicode code point, and
authors should recognize that support for mathematical symbols that do not correspond to assigned Unicode code points
may vary widely from one renderer to another.

Since MathML expressions are often embedded in a textual data format such as HTML, the surrounding text and the
MathML must share rendering attributes such as font size, so that the renderings will be compatible in style. For this reason,
most attribute values affecting text rendering are inherited from the rendering environment, as shown in the “default”
column in the table above. (In cases where the surrounding text and the MathML are being rendered by separate software,
e.g. a browser and a plug-in, it is also important for the rendering environment to provide the MathML renderer with
additional information, such as the baseline position of surrounding text, which is not specified by any MathML attributes.)
Note, however, that MathML doesn't specify the mechanism by which style information is inherited from the rendering
environment.

If the requested mathsize of the current font is not available, the renderer should approximate it in the manner likely to
lead to the most intelligible, highest quality rendering. Note that many MathML elements automatically change the font size
in some of their children; see the discussion in 3.1.6 Displaystyle and Scriptlevel.

MathML can be combined with other formats as described in 7.4 Combining MathML and Other Formats. The
recommendation is to embed other formats in MathML by extending the MathML schema to allow additional elements to be
children of the mtext element or other leaf elements as appropriate to the role they serve in the expression (see 3.2.3

3.2.2.1 Embedding HTML in MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

42 of 434 26/08/2025, 11:30

http://www.unicode.org/charts/PDF/U1EE00.pdf
http://www.unicode.org/charts/PDF/U1EE00.pdf
http://www.unicode.org/charts/PDF/U1EE00.pdf
http://www.unicode.org/charts/PDF/U1EE00.pdf
http://www.unicode.org/charts/PDF/U1D400.pdf
http://www.unicode.org/charts/PDF/U1D400.pdf
http://www.unicode.org/charts/PDF/U2100.pdf
http://www.unicode.org/charts/PDF/U2100.pdf
http://www.unicode.org/reports/tr25/
http://www.unicode.org/reports/tr25/
http://www.unicode.org/reports/tr25/
http://www.unicode.org/reports/tr25/

Identifier <mi>, 3.2.4 Number <mn>, and 3.2.5 Operator, Fence, Separator or Accent <mo>). The directionality, font size,
and other font attributes should inherit from those that would be used for characters of the containing leaf element (see 3.2.2
Mathematics style attributes common to token elements).

Here is an example of embedding SVG inside of mtext in an HTML context:

<mtable>
<mtr>
<mtd>
<mtext><input type="text" placeholder="what shape is this?"/></mtext>
</mtd>
</mtr>
<mtr>
<mtd>
<mtext>
<svg xmlns="http://www.w3.org/2000/svg" width="4cm" height="4cm" viewBox="0 0 400 400"
<rect x="1" y="1" width="398" height="398" style="fill:none; stroke:blue"/>
<path d="M 100 100 L 300 100 L 200 300 z" style="fill:red; stroke:blue; stroke-width:3"
</svg>
</mtext>
</mtd>
</mtr>
</mtable>

what shape is this?

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers can include
variables, function names, and symbolic constants. A typical graphical renderer would render an mi element as its content
(see 3.2.1 Token Element Content Characters, <mglyph/>not-core), with no extra spacing around it (except spacing associated
with neighboring elements).

Not all “mathematical identifiers” are represented by mi elements — for example, subscripted or primed variables should be
represented using msub or msup respectively. Conversely, arbitrary text playing the role of a “term” (such as an ellipsis in a
summed series) should be represented using an mi element.

3.2.3 Identifier <mi>core

3.2.3.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

43 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mi
https://w3c.github.io/mathml-core/spec.html#dfn-mi
https://w3c.github.io/mathml-core/spec.html#dfn-mi
https://w3c.github.io/mathml-core/spec.html#dfn-mi
https://w3c.github.io/mathml-core/spec.html#dfn-mi

It should be stressed that mi is a presentation element, and as such, it only indicates that its content should be rendered as an
identifier. In the majority of cases, the contents of an mi will actually represent a mathematical identifier such as a variable
or function name. However, as the preceding paragraph indicates, the correspondence between notations that should render
as identifiers and notations that are actually intended to represent mathematical identifiers is not perfect. For an element
whose semantics is guaranteed to be that of an identifier, see the description of ci in 4. Content Markup.

mi elements accept the attributes listed in 3.2.2 Mathematics style attributes common to token elements, but in one case with
a different default value:

Name values default

mathvariantcore "normal" | "bold" | "italic" | "bold-italic" | "double-struck" | "bold-fraktur" |
"script" | "bold-script" | "fraktur" | "sans-serif" | "bold-sans-serif" | "sans-
serif-italic" | "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |
"looped" | "stretched"

(depends on
content;
described below)

Specifies the logical class of the token. The default is normal (non-slanted) unless the content is a
single character, in which case it would be italic.

Note that for purposes of determining equivalences of Math Alphanumeric Symbol characters (see 8.2 Mathematical
Alphanumeric Symbols) the value of the mathvariant attribute should be resolved first, including the special defaulting
behavior described above.

▸ Show Section

<mi>x</mi>

𝑥

<mi>D</mi>

𝐷

<mi>sin</mi>

3.2.3.2 Attributes

3.2.3.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

44 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant
https://w3c.github.io/mathml-core/spec.html#dfn-mathvariant

sin

<mi mathvariant='script'>L</mi>

ℒ

<mi></mi>

An mi element with no content is allowed; <mi></mi> might, for example, be used by an “expression editor” to represent a
location in a MathML expression which requires a “term” (according to conventional syntax for mathematics) but does not
yet contain one.

Identifiers include function names such as “sin”. Expressions such as “sin x” should be written using the character U+2061
(entity af or ApplyFunction) as shown below; see also the discussion of invisible operators in 3.2.5 Operator, Fence,
Separator or Accent <mo>.

<mrow>
<mi> sin </mi>
<mo> ⁡<!--ApplyFunction--> </mo>
<mi> x </mi>

</mrow>

sin 𝑥

Miscellaneous text that should be treated as a “term” can also be represented by an mi element, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> … </mi>
<mo> + </mo>
<mi> n </mi>

</mrow>

1 + … + 𝑛

When an mi is used in such exceptional situations, explicitly setting the mathvariant attribute may give better results than
the default behavior of some renderers.

The names of symbolic constants should be represented as mi elements:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

45 of 434 26/08/2025, 11:30

<mi> π </mi>
<mi> ⅈ </mi>
<mi> ⅇ </mi>

𝜋ⅈⅇ

An mn element represents a “numeric literal” or other data that should be rendered as a numeric literal. Generally speaking, a
numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned integer or real number. A
typical graphical renderer would render an mn element as its content (see 3.2.1 Token Element Content Characters,
<mglyph/>not-core), with no extra spacing around them (except spacing from neighboring elements such as mo). mn elements
are typically rendered in an unslanted font.

The mathematical concept of a “number” can be quite subtle and involved, depending on the context. As a consequence, not
all mathematical numbers should be represented using mn; examples of mathematical numbers that should be represented
differently are shown below, and include complex numbers, ratios of numbers shown as fractions, and names of numeric
constants.

Conversely, since mn is a presentation element, there are a few situations where it may be desirable to include arbitrary text
in the content of an mn that should merely render as a numeric literal, even though that content may not be unambiguously
interpretable as a number according to any particular standard encoding of numbers as character sequences. As a general
rule, however, the mn element should be reserved for situations where its content is actually intended to represent a numeric
quantity in some fashion. For an element whose semantics are guaranteed to be that of a particular kind of mathematical
number, see the description of cn in 4. Content Markup.

mn elements accept the attributes listed in 3.2.2 Mathematics style attributes common to token elements.

▸ Show Section

<mn> 2 </mn>

3.2.4 Number <mn>core

3.2.4.1 Description

3.2.4.2 Attributes

3.2.4.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

46 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mn
https://w3c.github.io/mathml-core/spec.html#dfn-mn
https://w3c.github.io/mathml-core/spec.html#dfn-mn
https://w3c.github.io/mathml-core/spec.html#dfn-mn
https://w3c.github.io/mathml-core/spec.html#dfn-mn

2

<mn> 0.123 </mn>

0.123

<mn> 1,000,000 </mn>

1,000,000

<mn> 2.1e10 </mn>

2.1e10

<mn> 0xFFEF </mn>

0xFFEF

<mn> MCMLXIX </mn>

MCMLXIX

<mn> twenty-one </mn>

twenty-one

Many mathematical numbers should be represented using presentation elements other than mn alone; this includes complex
numbers, negative numbers, ratios of numbers shown as fractions, and names of numeric constants.

3.2.4.4 Numbers that should not be written using <mn> alone

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

47 of 434 26/08/2025, 11:30

▸ Show Section

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢<!--InvisibleTimes--> </mo>
<mi> ⅈ </mi>

</mrow>
</mrow>

2 + 3ⅈ

<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>

1
2

<mrow><mo>-</mo><mn>2</mn></mrow>

−2

<mi> π </mi>

𝜋

<mi> ⅇ </mi>

ⅇ

3.2.4.4.1 EXAMPLES OF COMPLEX REPRESENTATIONS OF NUMBERS

3.2.5 Operator, Fence, Separator or Accent <mo>core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

48 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mo
https://w3c.github.io/mathml-core/spec.html#dfn-mo
https://w3c.github.io/mathml-core/spec.html#dfn-mo
https://w3c.github.io/mathml-core/spec.html#dfn-mo
https://w3c.github.io/mathml-core/spec.html#dfn-mo

An mo element represents an operator or anything that should be rendered as an operator. In general, the notational
conventions for mathematical operators are quite complicated, and therefore MathML provides a relatively sophisticated
mechanism for specifying the rendering behavior of an mo element. As a consequence, in MathML the list of things that
should “render as an operator” includes a number of notations that are not mathematical operators in the ordinary sense.
Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as braces, parentheses,
and “absolute value” bars; separators such as comma and semicolon; and mathematical accents such as a bar or tilde over a
symbol. We will use the term "operator" in this chapter to refer to operators in this broad sense.

Typical graphical renderers show all mo elements as the content (see 3.2.1 Token Element Content Characters, <mglyph/
>not-core), with additional spacing around the element determined by its attributes and further described below. Renderers
without access to complete fonts for the MathML character set may choose to render an mo element as not precisely the
characters in its content in some cases. For example, <mo> ≤ </mo> might be rendered as <= to a terminal. However, as a
general rule, renderers should attempt to render the content of an mo element as literally as possible. That is, <mo> ≤ </mo>
and <mo> <= </mo> should render differently. The first one should render as a single character representing a less-
than-or-equal-to sign, and the second one as the two-character sequence <=.

A key feature of the mo element is that its default attribute values are set on a case-by-case basis from an “operator
dictionary” as explained below. In particular, default value for stretch, symmetric and accent can usually be found in
the operator dictionary and therefore need not be specified on each mo element.

Note that some mathematical operators are represented not by mo elements alone, but by mo elements “embellished” with
(for example) surrounding superscripts; this is further described below. Conversely, as presentation elements, mo elements
can contain arbitrary text, even when that text has no standard interpretation as an operator; for an example, see the
discussion “Mixing text and mathematics” in 3.2.6 Text <mtext>. See also 4. Content Markup for definitions of MathML
content elements that are guaranteed to have the semantics of specific mathematical operators.

Note also that linebreaking, as discussed in 3.1.7 Linebreaking of Expressions, usually takes place at operators (either before
or after, depending on local conventions). Thus, mo accepts attributes to encode the desirability of breaking at a particular
operator, as well as attributes describing the treatment of the operator and indentation in case a linebreak is made at that
operator.

mo elements accept the attributes listed in 3.2.2 Mathematics style attributes common to token elements and the additional
attributes listed here. Since the display of operators is so critical in mathematics, the mo element accepts a large number of
attributes; these are described in the next three subsections.

Most attributes get their default values from an enclosing mstyle element, math element, from the containing document, or
from 3.2.5.6.1 The operator dictionary. When a value that is listed as “inherited” is not explicitly given on an mo, mstyle
element, math element, or found in the operator dictionary for a given mo element, the default value shown in parentheses is
used.

3.2.5.1 Description

3.2.5.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

49 of 434 26/08/2025, 11:30

3.2.5.2.1 DICTIONARY-BASED ATTRIBUTES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

50 of 434 26/08/2025, 11:30

Name values default

formcore "prefix" | "infix" | "postfix" set by position of operator in an mrow

Specifies the role of the operator in the enclosing expression. This role and the operator content
affect the lookup of the operator in the operator dictionary which affects the spacing and other
default properties; see 3.2.5.6.2 Default value of the form attribute.

lspacecore length set by dictionary (thickmathspace)

Specifies the leading space appearing before the operator; see 3.2.5.6.4 Spacing around an
operator. (Note that before is on the right in a RTL context; see 3.1.5 Directionality.)

rspacecore length set by dictionary (thickmathspace)

Specifies the trailing space appearing after the operator; see 3.2.5.6.4 Spacing around an operator.
(Note that after is on the left in a RTL context; see 3.1.5 Directionality.)

stretchycore "true" | "false" set by dictionary (false)

Specifies whether the operator should stretch to the size of adjacent material; see 3.2.5.7 Stretching
of operators, fences and accents.

symmetriccore "true" | "false" set by dictionary (false)

Specifies whether the operator should be kept symmetric around the math axis when stretchy. Note
this property only applies to vertically stretched symbols. See 3.2.5.7 Stretching of operators,
fences and accents.

maxsizecore length set by dictionary (unbounded)

Specifies the maximum size of the operator when stretchy; see 3.2.5.7 Stretching of operators,
fences and accents. If not given, the maximum size is unbounded. Unitless or percentage values
indicate a multiple of the reference size, being the size of the unstretched glyph. MathML 4
deprecates "infinity" as possible value as it is the same as not providing a value.

minsizecore length set by dictionary (100%)

Specifies the minimum size of the operator when stretchy; see 3.2.5.7 Stretching of operators,
fences and accents. Unitless or percentage values indicate a multiple of the reference size, being
the size of the unstretched glyph.

largeopcore "true" | "false" set by dictionary (false)

Specifies whether the operator is considered a ‘large’ operator, that is, whether it should be drawn
larger than normal when displaystyle=true (similar to using TeX's \displaystyle).
Examples of large operators include U+222B and U+220F (entities int and prod). See 3.1.6
Displaystyle and Scriptlevel for more discussion.

movablelimitscore "true" | "false" set by dictionary (false)

Specifies whether under- and overscripts attached to this operator ‘move’ to the more compact
sub- and superscript positions when displaystyle is false. Examples of operators that typically

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

51 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-form
https://w3c.github.io/mathml-core/spec.html#dfn-form
https://w3c.github.io/mathml-core/spec.html#dfn-form
https://w3c.github.io/mathml-core/spec.html#dfn-form
https://w3c.github.io/mathml-core/spec.html#dfn-lspace
https://w3c.github.io/mathml-core/spec.html#dfn-lspace
https://w3c.github.io/mathml-core/spec.html#dfn-lspace
https://w3c.github.io/mathml-core/spec.html#dfn-lspace
https://w3c.github.io/mathml-core/spec.html#dfn-rspace
https://w3c.github.io/mathml-core/spec.html#dfn-rspace
https://w3c.github.io/mathml-core/spec.html#dfn-rspace
https://w3c.github.io/mathml-core/spec.html#dfn-rspace
https://w3c.github.io/mathml-core/spec.html#dfn-stretchy
https://w3c.github.io/mathml-core/spec.html#dfn-stretchy
https://w3c.github.io/mathml-core/spec.html#dfn-stretchy
https://w3c.github.io/mathml-core/spec.html#dfn-stretchy
https://w3c.github.io/mathml-core/spec.html#dfn-symmetric
https://w3c.github.io/mathml-core/spec.html#dfn-symmetric
https://w3c.github.io/mathml-core/spec.html#dfn-symmetric
https://w3c.github.io/mathml-core/spec.html#dfn-symmetric
https://w3c.github.io/mathml-core/spec.html#dfn-maxsize
https://w3c.github.io/mathml-core/spec.html#dfn-maxsize
https://w3c.github.io/mathml-core/spec.html#dfn-maxsize
https://w3c.github.io/mathml-core/spec.html#dfn-maxsize
https://w3c.github.io/mathml-core/spec.html#dfn-minsize
https://w3c.github.io/mathml-core/spec.html#dfn-minsize
https://w3c.github.io/mathml-core/spec.html#dfn-minsize
https://w3c.github.io/mathml-core/spec.html#dfn-minsize
https://w3c.github.io/mathml-core/spec.html#dfn-largeop
https://w3c.github.io/mathml-core/spec.html#dfn-largeop
https://w3c.github.io/mathml-core/spec.html#dfn-largeop
https://w3c.github.io/mathml-core/spec.html#dfn-largeop
https://w3c.github.io/mathml-core/spec.html#dfn-movablelimits
https://w3c.github.io/mathml-core/spec.html#dfn-movablelimits
https://w3c.github.io/mathml-core/spec.html#dfn-movablelimits
https://w3c.github.io/mathml-core/spec.html#dfn-movablelimits

sub- and superscript positions when displaystyle is false. Examples of operators that typically
have movablelimits=true are U+2211 and U+220F (entitites sum, prod), as well as lim. See
3.1.6 Displaystyle and Scriptlevel for more discussion.

accentnot-core "true" | "false" set by dictionary (false)

Specifies whether this operator should be treated as an accent (diacritical mark) when used as an
underscript or overscript; see munder, mover and munderover.
Note: for compatibility with MathML Core, use accent=true on the enclosing mover and
munderover in place of this attribute.

The following attributes affect when a linebreak does or does not occur, and the appearance of the linebreak when it does
occur.

3.2.5.2.2 LINEBREAKING ATTRIBUTES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

52 of 434 26/08/2025, 11:30

Name values default

linebreaknot-core "auto" | "newline" | "nobreak" | "goodbreak" |
"badbreak"

auto

Specifies the desirability of a linebreak occurring at this operator: the default auto
indicates the renderer should use its default linebreaking algorithm to determine whether to
break; newline is used to force a linebreak; for automatic linebreaking, nobreak forbids
a break; goodbreak suggests a good position; badbreak suggests a poor position.

lineleadingnot-core length inherited (100%)

Specifies the amount of vertical space to use after a linebreak. For tall lines, it is often
clearer to use more leading at linebreaks. Rendering agents are free to choose an
appropriate default.

linebreakstylenot-core "before" | "after" | "duplicate" |
"infixlinebreakstyle"

set by dictionary (before)

Specifies whether a linebreak occurs ‘before’ or ‘after’ the operator when a linebreak
occurs on this operator; or whether the operator is duplicated. before causes the operator
to appear at the beginning of the new line (but possibly indented); after causes it to
appear at the end of the line before the break. duplicate places the operator at both
positions. infixlinebreakstyle uses the value that has been specified for infix
operators; this value (one of before, after or duplicate) can be specified by the
application or bound by mstyle (before corresponds to the most common style of
linebreaking).

linebreakmultcharnot-core string inherited (⁢)

Specifies the character used to make an ⁢ operator visible at a linebreak.
For example, linebreakmultchar="·" would make the multiplication visible as a
center dot.

linebreak values on adjacent mo and mspace elements do not interact; linebreak=nobreak on an mo does not, in itself,
inhibit a break on a preceding or following (possibly nested) mo or mspace element and does not interact with the
linebreakstyle attribute value of the preceding or following mo element. It does prevent breaks from occurring on either
side of the mo element in all other situations.

The following attributes affect indentation of the lines making up a formula. Primarily these attributes control the
positioning of new lines following a linebreak, whether automatic or manual. However, indentalignfirst and
indentshiftfirst also control the positioning of a single line formula without any linebreaks. When these attributes
appear on mo or mspace they apply if a linebreak occurs at that element. When they appear on mstyle or math elements,
they determine defaults for the style to be used for any linebreaks occurring within. Note that except for cases where heavily

3.2.5.2.3 INDENTATION ATTRIBUTES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

53 of 434 26/08/2025, 11:30

marked-up manual linebreaking is desired, many of these attributes are most useful when bound on an mstyle or math
element.

Note that since the rendering context, such as the available width and current font, is not always available to the author of
the MathML, a renderer may ignore the values of these attributes if they result in a line in which the remaining width is too
small to usefully display the expression or if they result in a line in which the remaining width exceeds the available
linewrapping width.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

54 of 434 26/08/2025, 11:30

Name values default

indentalignnot-core "left" | "center" | "right" | "auto" | "id" inherited (auto)

Specifies the positioning of lines when linebreaking takes place within an mrow; see below for
discussion of the attribute values.

indentshiftnot-core length inherited (0)

Specifies an additional indentation offset relative to the position determined by
indentalign. When the value is a percentage value, the value is relative to the horizontal
space that a MathML renderer has available, this is the current target width as used for
linebreaking as specified in 3.1.7 Linebreaking of Expressions. Note: numbers without units
were allowed in MathML 3 and treated similarly to percentage values, but unitless numbers
are deprecated in MathML 4.

indenttargetnot-core idref inherited (none)

Specifies the id of another element whose horizontal position determines the position of
indented lines when indentalign=id. Note that the identified element may be outside of the
current math element, allowing for inter-expression alignment, or may be within invisible
content such as mphantom; it must appear before being referenced, however. This may lead to
an id being unavailable to a given renderer or in a position that does not allow for alignment.
In such cases, the indentalign should revert to auto.

indentalignfirstnot-core "left" | "center" | "right" | "auto" | "id" | "indentalign" inherited (indentalign)

Specifies the indentation style to use for the first line of a formula; the value indentalign
(the default) means to indent the same way as used for the general line.

indentshiftfirstnot-core length | "indentshift" inherited (indentshift)

Specifies the offset to use for the first line of a formula; the value indentshift (the default)
means to use the same offset as used for the general line. Percentage values and numbers
without unit are interpreted as described for indentshift.

indentalignlastnot-core "left" | "center" | "right" | "auto" | "id" | "indentalign" inherited (indentalign)

Specifies the indentation style to use for the last line when a linebreak occurs within a given
mrow; the value indentalign (the default) means to indent the same way as used for the
general line. When there are exactly two lines, the value of this attribute should be used for the
second line in preference to indentalign.

indentshiftlastnot-core length | "indentshift" inherited (indentshift)

Specifies the offset to use for the last line when a linebreak occurs within a given mrow; the
value indentshift (the default) means to indent the same way as used for the general line.
When there are exactly two lines, the value of this attribute should be used for the second line
in preference to indentshift. Percentage values and numbers without unit are interpreted as
described for indentshift.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

55 of 434 26/08/2025, 11:30

The legal values of indentalign are:

Value Meaning

left Align the left side of the next line to the left side of the line wrapping width

center Align the center of the next line to the center of the line wrapping width

right Align the right side of the next line to the right side of the line wrapping width

auto
(default) indent using the renderer's default indenting style; this may be a fixed amount or one that varies
with the depth of the element in the mrow nesting or some other similar method.

id
Align the left side of the next line to the left side of the element referenced by the idref (given by
indenttarget); if no such element exists, use auto as the indentalign value

▸ Show Section

<mo> + </mo>

+

<mo> < </mo>

<

<mo> ≤ </mo>

≤

<mo> <= </mo>

<=

<mo> ++ </mo>

3.2.5.3 Examples with ordinary operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

56 of 434 26/08/2025, 11:30

++

<mo> ∑ </mo>

∑

<mo> .NOT. </mo>

.NOT.

<mo> and </mo>

and

<mo> ⁢<!--InvisibleTimes--> </mo>

<mo mathvariant='bold'> + </mo>

+

▸ Show Section

Note that the mo elements in these examples don't need explicit stretchy or symmetric attributes, since these can be
found using the operator dictionary as described below. Some of these examples could also be encoded using the mfenced
element described in 3.3.8 Expression Inside Pair of Fences <mfenced>not-core.

(a+b)

3.2.5.4 Examples with fences and separators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

57 of 434 26/08/2025, 11:30

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
<mo>) </mo>

</mrow>

(𝑎 + 𝑏)

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

</mrow>
<mo>) </mo>

</mrow>

[0, 1)

f(x,y)

<mrow>
<mi> f </mi>
<mo> ⁡<!--ApplyFunction--> </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

𝑓(𝑥, 𝑦)

3.2.5.5 Invisible operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

58 of 434 26/08/2025, 11:30

Certain operators that are “invisible” in traditional mathematical notation should be represented using specific characters (or
entity references) within mo elements, rather than simply by nothing. The characters used for these “invisible operators” are:

Character Entity name Short name

U+2061 ApplyFunction af

U+2062 InvisibleTimes it

U+2063 InvisibleComma ic

U+2064

▸ Show Section

The MathML representations of the examples in the above table are:

<mrow>
<mi> f </mi>
<mo> ⁡<!--ApplyFunction--> </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>

𝑓(𝑥)

<mrow>
<mi> sin </mi>
<mo> ⁡<!--ApplyFunction--> </mo>
<mi> x </mi>

</mrow>

sin 𝑥

3.2.5.5.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

59 of 434 26/08/2025, 11:30

<mrow>
<mi> x </mi>
<mo> ⁢<!--InvisibleTimes--> </mo>
<mi> y </mi>

</mrow>

𝑥𝑦

<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣<!--InvisibleComma--> </mo>
<mn> 2 </mn>

</mrow>
</msub>

𝑚12

<mrow>
<mn> 2 </mn>
<mo> ⁤ </mo>
<mfrac>
<mn> 3 </mn>
<mn> 4 </mn>

</mfrac>
</mrow>

2 3
4

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token elements, so the
rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. The description below is
given to make the intended effect of the various rendering attributes as clear as possible. Detailed layout rules for browser
implementations for operators are given in MathML Core.

3.2.5.6 Detailed rendering rules for <mo> elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

60 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#operator-fence-separator-or-accent-mo
https://w3c.github.io/mathml-core/spec.html#operator-fence-separator-or-accent-mo

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictable,
traditional notational usage. Typically, this usage amounts to certain default attribute values for mo elements with specific
contents and a specific form attribute. Since these defaults vary from symbol to symbol, MathML anticipates that renderers
will have an “operator dictionary” of default attributes for mo elements (see B. Operator Dictionary) indexed by each mo
element's content and form attribute. If an mo element is not listed in the dictionary, the default values shown in parentheses
in the table of attributes for mo should be used, since these values are typically acceptable for a generic operator.

Some operators are “overloaded”, in the sense that they can occur in more than one form (prefix, infix, or postfix), with
possibly different rendering properties for each form. For example, “+” can be either a prefix or an infix operator. Typically,
a visual renderer would add space around both sides of an infix operator, while only in front of a prefix operator. The form
attribute allows specification of which form to use, in case more than one form is possible according to the operator
dictionary and the default value described below is not suitable.

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring the
value of the form attribute from the context. If it is not specified, and there is more than one possible form in the dictionary
for an mo element with given content, the renderer should choose which form to use as follows (but see the exception for
embellished operators, described later):

• If the operator is the first argument in an mrow with more than one argument (ignoring all space-like arguments (see
3.2.7 Space <mspace/>) in the determination of both the length and the first argument), the prefix form is used;

• if it is the last argument in an mrow with more than one argument (ignoring all space-like arguments), the postfix form
is used;

• if it is the only element in an implicit or explicit mrow and if it is in a script position of one of the elements listed in 3.4
Script and Limit Schemata, the postfix form is used;

• in all other cases, including when the operator is not part of an mrow, the infix form is used.

Note that the mrow discussed above may be inferred; see 3.1.3.1 Inferred <mrow>s.

Opening fences should have form="prefix", and closing fences should have form="postfix"; separators are usually
“infix”, but not always, depending on their surroundings. As with ordinary operators, these values do not usually need to be
specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms that is
available there, in the order of preference: infix, postfix, prefix; if no forms are available for the given mo element content,
the renderer should use the defaults given in parentheses in the table of attributes for mo.

3.2.5.6.1 THE OPERATOR DICTIONARY

3.2.5.6.2 DEFAULT VALUE OF THE form ATTRIBUTE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

61 of 434 26/08/2025, 11:30

There is one exception to the above rules for choosing an mo element's default form attribute. An mo element that is
“embellished” by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes behaves
differently. It is the embellished operator as a whole (this is defined precisely, below) whose position in an mrow is examined
by the above rules and whose surrounding spacing is affected by its form, not the mo element at its core; however, the
attributes influencing this surrounding spacing are taken from the mo element at the core (or from that element's dictionary
entry).

For example, the “+4” in 𝑎 +4 𝑏 should be considered an infix operator as a whole, due to its position in the middle of an
mrow, but its rendering attributes should be taken from the mo element representing the “+”, or when those are not specified
explicitly, from the operator dictionary entry for <mo form="infix"> + </mo>. The precise definition of an
“embellished operator” is:

• an mo element;

• or one of the elements msub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, or
semantics (6.5 The <semantics> element), whose first argument exists and is an embellished operator;

• or one of the elements mstyle, mphantom, or mpadded, such that an mrow containing the same arguments would be
an embellished operator;

• or an maction element whose selected sub-expression exists and is an embellished operator;

• or an mrow whose arguments consist (in any order) of one embellished operator and zero or more space-like elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in the
above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cases it
will not be necessary for the author to specify a form attribute.

The amount of horizontal space added around an operator (or embellished operator), when it occurs in an mrow, can be
directly specified by the lspace and rspace attributes. Note that lspace and rspace should be interpreted as leading and
trailing space, in the case of RTL direction. By convention, operators that tend to bind tightly to their arguments have
smaller values for spacing than operators that tend to bind less tightly. This convention should be followed in the operator
dictionary included with a MathML renderer.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, as is done in
TeX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous ways for
their rendering medium. For example, more space might translate into a longer pause in an audio rendering.

3.2.5.6.3 EXCEPTION FOR EMBELLISHED OPERATORS

3.2.5.6.4 SPACING AROUND AN OPERATOR

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

62 of 434 26/08/2025, 11:30

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of other
elements: stretchy, symmetric, maxsize, and minsize. If an operator has the attribute stretchy=true, then it (that
is, each character in its content) obeys the stretching rules listed below, given the constraints imposed by the fonts and font
rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and quite possibly will
only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character or
operator; rather, when stretchy=true it should be stretched in each direction for which stretching is possible and
reasonable for that character. It is up to the renderer to know in which directions it is reasonable to stretch a character, if it
can stretch the character. Most characters can be stretched in at most one direction by typical renderers, but some renderers
may be able to stretch certain characters, such as diagonal arrows, in both directions independently.

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two attributes are given as
multipliers of the operator's normal size in the direction or directions of stretching, or as absolute sizes using units. For
example, if a character has maxsize=300%, then it can grow to be no more than three times its normal (unstretched) size.

The symmetric attribute governs whether the height and depth above and below the axis of the character are forced to be
equal (by forcing both height and depth to become the maximum of the two). An example of a situation where one might set
symmetric=false arises with parentheses around a matrix not aligned on the axis, which frequently occurs when
multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, whereas stretching
the parentheses symmetrically would cause them to protrude beyond one edge of the matrix. The symmetric attribute only
applies to characters that stretch vertically (otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core is stretched to a size
based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments were not present.
For example, the parentheses in the following example (which would typically be set to be stretchy by the operator
dictionary) will be stretched to the same size as each other, and the same size they would have if they were not underlined
and overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>

</munder>
<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mover>
<mo>) </mo>
<mo> ‾ </mo>

</mover>
</mrow>

(
_
𝑎
𝑏)‾

3.2.5.7 Stretching of operators, fences and accents

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

63 of 434 26/08/2025, 11:30

Note that this means that the stretching rules given below must refer to the context of the embellished operator as a whole,
not just to the mo element itself.

▸ Show Section

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value is
stretchy=true.

<mrow>
<mo maxsize="100%">(</mo>
<mfrac>
<msup><mi>a</mi><mn>2</mn></msup>
<msup><mi>b</mi><mn>2</mn></msup>

</mfrac>
<mo maxsize="100%">)</mo>

</mrow>

(𝑎
2

𝑏2)

The above should render as as opposed to the default rendering .

Note that each parenthesis is sized independently; if only one of them had maxsize=100%, they would render with different
sizes.

The general rules governing stretchy operators are:

• If a stretchy operator is a direct sub-expression of an mrow element, or is the sole direct sub-expression of an mtd
element in some row of a table, then it should stretch to cover the height and depth (above and below the axis) of the
non-stretchy direct sub-expressions in the mrow element or table row, unless stretching is constrained by minsize or
maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.

• The preceding rules also apply in situations where the mrow element is inferred.

• The rules for symmetric stretching only apply if symmetric=true and if the stretching occurs in an mrow or in an mtr
whose rowalign value is either baseline or axis.

3.2.5.7.1 EXAMPLE OF STRETCHY ATTRIBUTES

3.2.5.7.2 VERTICAL STRETCHING RULES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

64 of 434 26/08/2025, 11:30

The following algorithm specifies the height and depth of vertically stretched characters:

1. Let maxheight and maxdepth be the maximum height and depth of the non-stretchy siblings within the same mrow or
mtr. Let axis be the height of the math axis above the baseline.

Note that even if a minsize or maxsize value is set on a stretchy operator, it is not used in the initial calculation of
the maximum height and depth of an mrow.

2. If symmetric=true, then the computed height and depth of the stretchy operator are:

height=max(maxheight-axis, maxdepth+axis) + axis
depth =max(maxheight-axis, maxdepth+axis) - axis

Otherwise the height and depth are:

height= maxheight
depth = maxdepth

3. If the total size = height+depth is less than minsize or greater than maxsize, increase or decrease both height and depth
proportionately so that the effective size meets the constraint.

By default, most vertical arrows, along with most opening and closing fences are defined in the operator dictionary to stretch
by default.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table
row containing the stretchy operator covers exactly one row. (Equivalently, the value of the rowspan attribute is assumed to
be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the case, the operator
should only be stretched vertically to cover those table cells that are entirely within the set of table rows that the operator's
cell covers. Table cells that extend into rows not covered by the stretchy operator's table cell should be ignored. See 3.5.3.2
Attributes for details about the rowspan attribute.

• If a stretchy operator, or an embellished stretchy operator, is a direct sub-expression of an munder, mover, or
munderover element, or if it is the sole direct sub-expression of an mtd element in some column of a table (see
mtable), then it, or the mo element at its core, should stretch to cover the width of the other direct sub-expressions in
the given element (or in the same table column), given the constraints mentioned above.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table
column containing the stretchy operator covers exactly one column. (Equivalently, the value of the columnspan attribute is
assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the case,
the operator should only be stretched horizontally to cover those table cells that are entirely within the set of table columns
that the operator's cell covers. Table cells that extend into columns not covered by the stretchy operator's table cell should be

3.2.5.7.3 HORIZONTAL STRETCHING RULES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

65 of 434 26/08/2025, 11:30

ignored. See 3.5.3.2 Attributes for details about the rowspan attribute.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commutative diagrams laid out
using mtable. The rules for the horizontal stretchiness include scripts to make examples such as the following work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>

</munder>
<mi> y </mi>

</mrow>

𝑥 →<<<<<
maps to

𝑦

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are no other
expressions whose size it should stretch to match), then it has the standard (unstretched) size determined by the font and
current mathsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described above) are also
stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes of all elements in the
containing object, if they can grow that large. If the value of minsize or maxsize prevents that, then the specified (min or
max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators should stretch to the
maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior. Of course,
limitations in fonts or font rendering may result in the final, stretched sizes being only approximately the same.

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, the mtext element is
intended to denote commentary text.

Note that text with a clearly defined notational role might be more appropriately marked up using mi or mo.

An mtext element can also contain “renderable whitespace”, i.e. invisible characters that are intended to alter the
positioning of surrounding elements. In non-graphical media, such characters are intended to have an analogous effect, such

3.2.5.7.4 RULES COMMON TO BOTH VERTICAL AND HORIZONTAL STRETCHING

3.2.6 Text <mtext>core

3.2.6.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

66 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mtext
https://w3c.github.io/mathml-core/spec.html#dfn-mtext
https://w3c.github.io/mathml-core/spec.html#dfn-mtext
https://w3c.github.io/mathml-core/spec.html#dfn-mtext
https://w3c.github.io/mathml-core/spec.html#dfn-mtext

as introducing positive or negative time delays or affecting rhythm in an audio renderer. However, see 2.1.7 Collapsing
Whitespace in Input.

mtext elements accept the attributes listed in 3.2.2 Mathematics style attributes common to token elements.

See also the warnings about the legal grouping of “space-like elements” in 3.2.7 Space <mspace/>, and about the use of
such elements for “tweaking” in [MathML-Notes].

▸ Show Section

<mrow>
<mtext> Theorem 1: </mtext>
<mtext>  <!--ThinSpace--> </mtext>
<mtext>  <!--ThickSpace--> <!--ThickSpace--> </mtext>
<mtext> /* a comment */ </mtext>

</mrow>

Theorem 1:   /* a comment */

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used to make
linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen so that they
typically will have no effect on rendering. Thus, the mspace element is generally used with one or more attribute values
explicitly specified.

Note the warning about the legal grouping of “space-like elements” given below, and the warning about the use of such
elements for “tweaking” in [MathML-Notes]. See also the other elements that can render as whitespace, namely mtext,
mphantom, and maligngroup.

3.2.6.2 Attributes

3.2.6.3 Examples

3.2.7 Space <mspace/>core

3.2.7.1 Description

3.2.7.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

67 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mspace
https://w3c.github.io/mathml-core/spec.html#dfn-mspace
https://w3c.github.io/mathml-core/spec.html#dfn-mspace
https://w3c.github.io/mathml-core/spec.html#dfn-mspace
https://w3c.github.io/mathml-core/spec.html#dfn-mspace

In addition to the attributes listed below, mspace elements accept the attributes described in 3.2.2 Mathematics style
attributes common to token elements, but note that mathvariant and mathcolor have no effect and that mathsize only
affects the interpretation of units in sizing attributes (see 2.1.5.2 Length Valued Attributes). mspace also accepts the
indentation attributes described in 3.2.5.2.3 Indentation attributes.

Name values default

widthcore length 0em

Specifies the desired width of the space.

heightcore length 0ex

Specifies the desired height (above the baseline) of the space.

depthcore length 0ex

Specifies the desired depth (below the baseline) of the space.

Linebreaking was originally specified on mspace in MathML2, but much greater control over linebreaking and indentation
was add to mo in MathML 3. Linebreaking on mspace is deprecated in MathML 4.

▸ Show Section

<mspace height="3ex" depth="2ex"/>

A number of MathML presentation elements are “space-like” in the sense that they typically render as whitespace, and do
not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements often
function in somewhat exceptional ways in other MathML expressions. For example, space-like elements are handled
specially in the suggested rendering rules for mo given in 3.2.5 Operator, Fence, Separator or Accent <mo>. The following
MathML elements are defined to be “space-like”:

• an mtext, mspace, maligngroup, or malignmark element;

• an mstyle, mphantom, or mpadded element, all of whose direct sub-expressions are space-like;

• a semantics element whose first argument exists and is space-like;

• an maction element whose selected sub-expression exists and is space-like;

• an mrow all of whose direct sub-expressions are space-like.

3.2.7.3 Examples

3.2.7.4 Definition of space-like elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

68 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#attribute-mspace-width
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-width
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-width
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-width
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-height
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-height
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-height
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-height
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mspace-depth

Note that an mphantom is not automatically defined to be space-like, unless its content is space-like. This is because
operator spacing is affected by whether adjacent elements are space-like. Since the mphantom element is primarily intended
as an aid in aligning expressions, operators adjacent to an mphantom should behave as if they were adjacent to the contents
of the mphantom, rather than to an equivalently sized area of whitespace.

Authors who insert space-like elements or mphantom elements into an existing MathML expression should note that such
elements are counted as arguments, in elements that require a specific number of arguments, or that interpret different
argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argument of that
element by introducing an mrow for that purpose. For example, to allow for vertical alignment on the right edge of the base
of a superscript, the expression

<msup>
<mi> x </mi>
<malignmark edge="right"/>
<mn> 2 </mn>

</msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>

</mrow>
<mn> 2 </mn>

</msup>

See also the warning about “tweaking” in [MathML-Notes].

The ms element is used to represent “string literals” in expressions meant to be interpreted by computer algebra systems or
other systems containing “programming languages”. By default, string literals are displayed surrounded by double quotes,
with no extra spacing added around the string. As explained in 3.2.6 Text <mtext>, ordinary text embedded in a
mathematical expression should be marked up with mtext, or in some cases mo or mi, but never with ms.

3.2.7.5 Legal grouping of space-like elements

3.2.8 String Literal <ms>core

3.2.8.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

69 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-ms
https://w3c.github.io/mathml-core/spec.html#dfn-ms
https://w3c.github.io/mathml-core/spec.html#dfn-ms
https://w3c.github.io/mathml-core/spec.html#dfn-ms
https://w3c.github.io/mathml-core/spec.html#dfn-ms

Note that the string literals encoded by ms are made up of characters, mglyphs and malignmarks rather than “ASCII
strings”. For example, <ms>&</ms> represents a string literal containing a single character, &, and <ms>&amp;</
ms> represents a string literal containing 5 characters, the first one of which is &.

The content of ms elements should be rendered with visible “escaping” of certain characters in the content, including at least
the left and right quoting characters, and preferably whitespace other than individual space characters. The intent is for the
viewer to see that the expression is a string literal, and to see exactly which characters form its content. For example,
<ms>double quote is "</ms> might be rendered as "double quote is \"".

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of 2.1.7 Collapsing
Whitespace in Input, so whitespace intended to remain in the content should be encoded as described in that section.

ms elements accept the attributes listed in 3.2.2 Mathematics style attributes common to token elements, and additionally:

Name values default

lquotenot-core string U+0022 (entity quot)

Specifies the opening quote to enclose the content (not necessarily ‘left quote’ in RTL context).

rquotenot-core string U+0022 (entity quot)

Specifies the closing quote to enclose the content (not necessarily ‘right quote’ in RTL context).

Besides tokens there are several families of MathML presentation elements. One family of elements deals with various
“scripting” notations, such as subscript and superscript. Another family is concerned with matrices and tables. The
remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals, or deal
with general functions such as setting style properties and error handling.

An mrow element is used to group together any number of sub-expressions, usually consisting of one or more mo elements
acting as “operators” on one or more other expressions that are their “operands”.

3.2.8.2 Attributes

3.3 General Layout Schemata

3.3.1 Horizontally Group Sub-Expressions <mrow>core

3.3.1.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

70 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mrow
https://w3c.github.io/mathml-core/spec.html#dfn-mrow
https://w3c.github.io/mathml-core/spec.html#dfn-mrow
https://w3c.github.io/mathml-core/spec.html#dfn-mrow
https://w3c.github.io/mathml-core/spec.html#dfn-mrow

Several elements automatically treat their arguments as if they were contained in an mrow element. See the discussion of
inferred mrows in 3.1.3 Required Arguments. See also mfenced (3.3.8 Expression Inside Pair of Fences <mfenced>not-core),
which can effectively form an mrow containing its arguments separated by commas.

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which the
arguments occur within a context with LTR directionality, or right to left within a context with RTL directionality. The dir
attribute can be used to specify the directionality for a specific mrow, otherwise it inherits the directionality from the context.
For aural agents, the arguments would be rendered audibly as a sequence of renderings of the arguments. The description in
3.2.5 Operator, Fence, Separator or Accent <mo> of suggested rendering rules for mo elements assumes that all horizontal
spacing between operators and their operands is added by the rendering of mo elements (or, more generally, embellished
operators), not by the rendering of the mrows they are contained in.

MathML provides support for both automatic and manual linebreaking of expressions (that is, to break excessively long
expressions into several lines). All such linebreaks take place within mrows, whether they are explicitly marked up in the
document, or inferred (see 3.1.3.1 Inferred <mrow>s), although the control of linebreaking is effected through attributes on
other elements (see 3.1.7 Linebreaking of Expressions).

mrow elements accept the attribute listed below in addition to those listed in 3.1.9 Mathematics attributes common to
presentation elements.

Name values default

dircore "ltr" | "rtl" inherited

specifies the overall directionality ltr (Left To Right) or rtl (Right To Left) to use to layout the children of
the row. See 3.1.5.1 Overall Directionality of Mathematics Formulas for further discussion.

Sub-expressions should be grouped by the document author in the same way as they are grouped in the mathematical
interpretation of the expression; that is, according to the underlying “syntax tree” of the expression. Specifically, operators
and their mathematical arguments should occur in a single mrow; more than one operator should occur directly in one mrow
only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g. for a single
parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separated by + and -. A
precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligent
linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by computer algebra
systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other than
pure visual rendering difficult or impossible, any grouping of expressions using mrow is allowed in MathML syntax; that is,

3.3.1.2 Attributes

3.3.1.3 Proper grouping of sub-expressions using <mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

71 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-dir
https://w3c.github.io/mathml-core/spec.html#dfn-dir
https://w3c.github.io/mathml-core/spec.html#dfn-dir
https://w3c.github.io/mathml-core/spec.html#dfn-dir

renderers should not assume the rules for proper grouping will be followed.

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent in all ways to the
single argument occurring alone, provided there are no attributes on the mrow element. If there are attributes on the mrow
element, no requirement of equivalence is imposed. This equivalence condition is intended to simplify the implementation
of MathML-generating software such as template-based authoring tools. It directly affects the definitions of embellished
operator and space-like element and the rules for determining the default value of the form attribute of an mo element; see
3.2.5 Operator, Fence, Separator or Accent <mo> and 3.2.7 Space <mspace/>. See also the discussion of equivalence of
MathML expressions in D.1 MathML Conformance.

A precise rule for when and how to nest sub-expressions using mrow is especially desirable when generating MathML
automatically by conversion from other formats for displayed mathematics, such as TeX, which don't always specify how
sub-expressions nest. When a precise rule for grouping is desired, the following rule should be used:

Two adjacent operators, possibly embellished, possibly separated by operands (i.e. anything other than operators), should
occur in the same mrow only when the leading operator has an infix or prefix form (perhaps inferred), the following operator
has an infix or postfix form, and the operators have the same priority in the operator dictionary (B. Operator Dictionary). In
all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) that includes just one of two successive operators with the
forms mentioned above (which means that either operator could in principle act on the intervening operand or operands), it
is necessary to decide which operator acts on those operands directly (or would do so, if they were present). Ideally, this
should be determined from the original expression; for example, in conversion from an operator-precedence-based format, it
would be the operator with the higher precedence.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way of
generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule is defined in 3.2.5 Operator, Fence, Separator or Accent <mo>.)

▸ Show Section

As an example, 2x+y-z should be written as:

3.3.1.3.1 <mrow> OF ONE ARGUMENT

3.3.1.3.2 PRECISE RULE FOR PROPER GROUPING

3.3.1.4 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

72 of 434 26/08/2025, 11:30

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢<!--InvisibleTimes--> </mo>
<mi> x </mi>

</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>

</mrow>

2𝑥 + 𝑦 − 𝑧

The proper encoding of (x, y) furnishes a less obvious example of nesting mrows:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>

(𝑥, 𝑦)

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought of as fence and
separator “operators”, do not act together on their arguments.

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficients
and Legendre symbols. The syntax for mfrac is

<mfrac> numerator denominator </mfrac>

The mfrac element sets displaystyle to false, or if it was already false increments scriptlevel by 1, within
numerator and denominator. (See 3.1.6 Displaystyle and Scriptlevel.)

3.3.2 Fractions <mfrac>core

3.3.2.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

73 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mfrac
https://w3c.github.io/mathml-core/spec.html#dfn-mfrac
https://w3c.github.io/mathml-core/spec.html#dfn-mfrac
https://w3c.github.io/mathml-core/spec.html#dfn-mfrac
https://w3c.github.io/mathml-core/spec.html#dfn-mfrac

mfrac elements accept the attributes listed below in addition to those listed in 3.1.9 Mathematics attributes common to
presentation elements. The fraction line, if any, should be drawn using the color specified by mathcolor.

Name values default

linethicknesscore length | "thin" | "medium" | "thick" medium

Specifies the thickness of the horizontal “fraction bar”, or “rule”. The default value is medium;
thin is thinner, but visible; thick is thicker. The exact thickness of these is left up to the
rendering agent. However, if OpenType Math fonts are available then the renderer should set
medium to the value MATH.MathConstants.fractionRuleThickness (the default in
MathML-Core).
Note: MathML Core does only allow <length-percentage> values.

numalignnot-core "left" | "center" | "right" center

Specifies the alignment of the numerator over the fraction.

denomalignnot-core "left" | "center" | "right" center

Specifies the alignment of the denominator under the fraction.

bevellednot-core "true" | "false" false

Specifies whether the fraction should be displayed in a bevelled style (the numerator slightly
raised, the denominator slightly lowered and both separated by a slash), rather than "build up"
vertically. See below for an example.

Thicker lines (e.g. linethickness="thick") might be used with nested fractions; a value of "0" renders without the bar
such as for binomial coefficients.

In a RTL directionality context, the numerator leads (on the right), the denominator follows (on the left) and the diagonal
line slants upwards going from right to left (see 3.1.5.1 Overall Directionality of Mathematics Formulas for clarification).
Although this format is an established convention, it is not universally followed; for situations where a forward slash is
desired in a RTL context, alternative markup, such as an mo within an mrow should be used.

▸ Show Section

Here is an example which makes use of different values of linethickness:

3.3.2.2 Attributes

3.3.2.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

74 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-linethickness
https://w3c.github.io/mathml-core/spec.html#dfn-linethickness
https://w3c.github.io/mathml-core/spec.html#dfn-linethickness
https://w3c.github.io/mathml-core/spec.html#dfn-linethickness
https://www.w3.org/TR/mathml-core/#fractions-mfrac
https://www.w3.org/TR/mathml-core/#fractions-mfrac
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage

<mfrac linethickness="3px">
<mrow>
<mo> (</mo>
<mfrac linethickness="0">
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mo>) </mo>
<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
</mrow>
<mfrac>
<mi> c </mi>
<mi> d </mi>

</mfrac>
</mfrac>

(𝑎
𝑏)

𝑎

𝑏
𝑐

𝑑

This example illustrates bevelled fractions:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

75 of 434 26/08/2025, 11:30

<mfrac>
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>
<mo> = </mo>
<mfrac bevelled="true">
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>

A more generic example is:

<mfrac>
<mrow>
<mn> 1 </mn>
<mo> + </mo>
<msqrt>
<mn> 5 </mn>

</msqrt>
</mrow>
<mn> 2 </mn>

</mfrac>

1 + 5√

2

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

76 of 434 26/08/2025, 11:30

These elements construct radicals. The msqrt element is used for square roots, while the mroot element is used to draw
radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts a single argument, possibly being an inferred
mrow of multiple children; see 3.1.3 Required Arguments. The mroot element increments scriptlevel by 2, and sets
displaystyle to false, within index, but leaves both attributes unchanged within base. The msqrt element leaves both
attributes unchanged within its argument. (See 3.1.6 Displaystyle and Scriptlevel.)

Note that in a RTL directionality, the surd begins on the right, rather than the left, along with the index in the case of mroot.

msqrt and mroot elements accept the attributes listed in 3.1.9 Mathematics attributes common to presentation elements.
The surd and overbar should be drawn using the color specified by mathcolor.

▸ Show Section

Square roots and cube roots

3.3.3 Radicals <msqrt>core, <mroot>core

3.3.3.1 Description

3.3.3.2 Attributes

3.3.3.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

77 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-msqrt
https://w3c.github.io/mathml-core/spec.html#dfn-msqrt
https://w3c.github.io/mathml-core/spec.html#dfn-msqrt
https://w3c.github.io/mathml-core/spec.html#dfn-msqrt
https://w3c.github.io/mathml-core/spec.html#dfn-msqrt
https://w3c.github.io/mathml-core/spec.html#dfn-mroot
https://w3c.github.io/mathml-core/spec.html#dfn-mroot
https://w3c.github.io/mathml-core/spec.html#dfn-mroot
https://w3c.github.io/mathml-core/spec.html#dfn-mroot
https://w3c.github.io/mathml-core/spec.html#dfn-mroot

<mrow>
<mrow>
<msqrt>
<mi>x</mi>

</msqrt>
<mroot>
<mi>x</mi>
<mn>3</mn>

</mroot>
<mrow>
<mo>=</mo>
<msup>
<mi>x</mi>
<mrow>
<mrow>
<mn>1</mn>
<mo>/</mo>
<mn>2</mn>

</mrow>
<mo>+</mo>
<mrow>
<mn>1</mn>
<mo>/</mo>
<mn>3</mn>

</mrow>
</mrow>

</msup>
</mrow>

𝑥√ 𝑥3√ = 𝑥1/2+1/3

The mstyle element is used to make style changes that affect the rendering of its contents. As a presentation element, it
accepts the attributes described in 3.1.9 Mathematics attributes common to presentation elements. Additionally, it can be
given any attribute accepted by any other presentation element, except for the attributes described below. Finally, the
mstyle element can be given certain special attributes listed in the next subsection.

The mstyle element accepts a single argument, possibly being an inferred mrow of multiple children; see 3.1.3 Required
Arguments.

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the elements it contains.
Style changes work in one of several ways, depending on the way in which default values are specified for an attribute. The

3.3.4 Style Change <mstyle>core

3.3.4.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

78 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mstyle
https://w3c.github.io/mathml-core/spec.html#dfn-mstyle
https://w3c.github.io/mathml-core/spec.html#dfn-mstyle
https://w3c.github.io/mathml-core/spec.html#dfn-mstyle
https://w3c.github.io/mathml-core/spec.html#dfn-mstyle

cases are:

• Some attributes, such as displaystyle or scriptlevel (explained below), are inherited from the surrounding
context when they are not explicitly set. Specifying such an attribute on an mstyle element sets the value that will be
inherited by its child elements. Unless a child element overrides this inherited value, it will pass it on to its children,
and they will pass it to their children, and so on. But if a child element does override it, either by an explicit attribute
setting or automatically (as is common for scriptlevel), the new (overriding) value will be passed on to that
element's children, and then to their children, etc, unless it is again overridden.

• Other attributes, such as linethickness on mfrac, have default values that are not normally inherited. That is, if the
linethickness attribute is not set on the mfrac element, it will normally use the default value of medium, even if it
was contained in a larger mfrac element that set this attribute to a different value. For attributes like this, specifying a
value with an mstyle element has the effect of changing the default value for all elements within its scope. The net
effect is that setting the attribute value with mstyle propagates the change to all the elements it contains directly or
indirectly, except for the individual elements on which the value is overridden. Unlike in the case of inherited
attributes, elements that explicitly override this attribute have no effect on this attribute's value in their children.

• Another group of attributes, such as stretchy and form, are computed from operator dictionary information, position
in the enclosing mrow, and other similar data. For these attributes, a value specified by an enclosing mstyle overrides
the value that would normally be computed.

Note that attribute values inherited from an mstyle in any manner affect a descendant element in the mstyle's content only
if that attribute is not given a value by the descendant element. On any element for which the attribute is set explicitly, the
value specified overrides the inherited value. The only exception to this rule is when the attribute value is documented as
specifying an incremental change to the value inherited from that element's context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained above, only matters
when the attribute is set on some element within the mstyle's contents that has descendants also setting it. Thus it never
matters for attributes, such as mathsize, which can only be set on token elements (or on mstyle itself).

MathML specifies that when the attributes height, depth or width are specified on an mstyle element, they apply only
to mspace elements, and not to the corresponding attributes of mglyph, mpadded, or mtable. Similarly, when rowalign
or columnalign are specified on an mstyle element, they apply only to the mtable element, and not the mtr, mtd, and
maligngroup elements. When the lspace attribute is set with mstyle, it applies only to the mo element and not to
mpadded. To be consistent, the voffset attribute of the mpadded element can not be set on mstyle. When the align
attribute is set with mstyle, it applies only to the munder, mover, and munderover elements, and not to the mtable and
mstack elements. The attributes src and alt on mglyph, and actiontype on maction, cannot be set on mstyle.

As a presentation element, mstyle directly accepts the mathcolor and mathbackground attributes. Thus, the
mathbackground specifies the color to fill the bounding box of the mstyle element itself; it does not specify the default
background color. This is an incompatible change from MathML 2, but it is more useful and intuitive. Since the default for
mathcolor is inherited, this is no change in its behavior.

As stated above, mstyle accepts all attributes of all MathML presentation elements which do not have required values. That
is, all attributes which have an explicit default value or a default value which is inherited or computed are accepted by the
mstyle element. This group of attributes is not accepted in MathML Core.

3.3.4.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

79 of 434 26/08/2025, 11:30

mstyle elements accept the attributes listed in 3.1.9 Mathematics attributes common to presentation elements.

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every MathML element as
part of its rendering environment:

Name values default

scriptlevelcore ("+" | "-")? unsigned-integer inherited

Changes the scriptlevel in effect for the children. When the value is given without a
sign, it sets scriptlevel to the specified value; when a sign is given, it increments ("+")
or decrements ("-") the current value. (Note that large decrements can result in negative
values of scriptlevel, but these values are considered legal.) See 3.1.6 Displaystyle
and Scriptlevel.

displaystylecore "true" | "false" inherited

Changes the displaystyle in effect for the children. See 3.1.6 Displaystyle and
Scriptlevel.

scriptsizemultipliernot-core number 0.71

Specifies the multiplier to be used to adjust font size due to changes in scriptlevel.
See 3.1.6 Displaystyle and Scriptlevel.

scriptminsizenot-core length 8pt

Specifies the minimum font size allowed due to changes in scriptlevel. Note that this
does not limit the font size due to changes to mathsize. See 3.1.6 Displaystyle and
Scriptlevel.

infixlinebreakstylenot-core "before" | "after" | "duplicate" before

Specifies the default linebreakstyle to use for infix operators; see 3.2.5.2.2 Linebreaking
attributes

decimalpointnot-core character .

Specifies the character used to determine the alignment point within mstack and mtable
columns when the "decimalpoint" value is used to specify the alignment. The default, ".",
is the decimal separator used to separate the integral and decimal fractional parts of
floating point numbers in many countries. (See 3.6 Elementary Math and 3.5.4 Alignment
Markers <maligngroup/>, <malignmark/>not-core).

If scriptlevel is changed incrementally by an mstyle element that also sets certain other attributes, the overall effect of
the changes may depend on the order in which they are processed. In such cases, the attributes in the following list should be
processed in the following order, regardless of the order in which they occur in the XML-format attribute list of the mstyle
start tag: scriptsizemultiplier, scriptminsize, scriptlevel, mathsize.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

80 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-scriptlevel
https://w3c.github.io/mathml-core/spec.html#dfn-scriptlevel
https://w3c.github.io/mathml-core/spec.html#dfn-scriptlevel
https://w3c.github.io/mathml-core/spec.html#dfn-scriptlevel
https://w3c.github.io/mathml-core/spec.html#dfn-displaystyle
https://w3c.github.io/mathml-core/spec.html#dfn-displaystyle
https://w3c.github.io/mathml-core/spec.html#dfn-displaystyle
https://w3c.github.io/mathml-core/spec.html#dfn-displaystyle

▸ Show Section

In a continued fraction, the nested fractions should not shrink. Instead, they should remain the same size. This can be
accomplished by resetting displaystyle and scriptlevel for the children of each mfrac using mstyle as shown
below:

3.3.4.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

81 of 434 26/08/2025, 11:30

<mrow>
<mi>π</mi>
<mo>=</mo>
<mfrac>
<mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> </mstyle>
<mstyle displaystyle="true" scriptlevel="0">
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mstyle displaystyle="true" scriptlevel="0">
<msup> <mn>1</mn> <mn>2</mn> </msup>

</mstyle>
<mstyle displaystyle="true" scriptlevel="0">
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle displaystyle="true" scriptlevel="0">
<msup> <mn>3</mn> <mn>2</mn> </msup>

</mstyle>
<mstyle displaystyle="true" scriptlevel="0">
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle displaystyle="true" scriptlevel="0">
<msup> <mn>5</mn> <mn>2</mn> </msup>

</mstyle>
<mstyle displaystyle="true" scriptlevel="0">
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mstyle displaystyle="true" scriptlevel="0">
<msup> <mn>7</mn> <mn>2</mn> </msup>

</mstyle>
<mstyle displaystyle="true" scriptlevel="0">
<mn>2</mn>
<mo>+</mo>
<mo>⋱</mo>

</mstyle>
</mfrac>

</mstyle>
</mfrac>

</mstyle>
</mfrac>

</mstyle>
</mfrac>

</mstyle>
</mfrac>

</mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

82 of 434 26/08/2025, 11:30

𝜋 = 4

1 + 12

2 + 32

2 + 52

2 + 72

2 + ⋱

The merror element displays its contents as an “error message”. This might be done, for example, by displaying the
contents in red, flashing the contents, or changing the background color. The contents can be any expression or expression
sequence.

merror accepts a single argument possibly being an inferred mrow of multiple children; see 3.1.3 Required Arguments.

The intent of this element is to provide a standard way for programs that generate MathML from other input to report syntax
errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for easy hand entry will be
developed to generate MathML, it is important that they have the ability to indicate that a syntax error occurred at a certain
point. See D.2 Handling of Errors.

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input with
an merror element containing a description of the error, while processing the surrounding expressions normally as far as
possible. By this means, the error message will be rendered where the erroneous input would have appeared, had it been
correct; this makes it easier for an author to determine from the rendered output what portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any program, the format should be
designed to make as clear as possible (to a human viewer of the rendered error message) what was wrong with the input and
how it can be fixed. If the erroneous input contains correctly formatted subsections, it may be useful for these to be
preprocessed normally and included in the error message (within the contents of the merror element), taking advantage of
the ability of merror to contain arbitrary MathML expressions rather than only text.

merror elements accept the attributes listed in 3.1.9 Mathematics attributes common to presentation elements.

▸ Show Section

3.3.5 Error Message <merror>core

3.3.5.1 Description

3.3.5.2 Attributes

3.3.5.3 Example

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

83 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-merror
https://w3c.github.io/mathml-core/spec.html#dfn-merror
https://w3c.github.io/mathml-core/spec.html#dfn-merror
https://w3c.github.io/mathml-core/spec.html#dfn-merror
https://w3c.github.io/mathml-core/spec.html#dfn-merror

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element mfrac), it might
generate the error message

<merror>
<mtext> Unrecognized element: mfraction; arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>

</merror>

Unrecognized element: mfraction; arguments were: 1 + 5√ and 2

Note that the preprocessor's input is not, in this case, valid MathML, but the error message it outputs is valid MathML.

An mpadded element renders the same as its child content, but with the size of the child's bounding box and the relative
positioning point of its content modified according to mpadded's attributes. It does not rescale (stretch or shrink) its content.
The name of the element reflects the typical use of mpadded to add padding, or extra space, around its content. However,
mpadded can be used to make more general adjustments of size and positioning, and some combinations, e.g. negative
padding, can cause the content of mpadded to overlap the rendering of neighboring content. See [MathML-Notes] for
warnings about several potential pitfalls of this effect.

The mpadded element accepts a single argument which may be an inferred mrow of multiple children; see 3.1.3 Required
Arguments.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal space (width
and lspace).

mpadded elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common

3.3.6 Adjust Space Around Content <mpadded>core

3.3.6.1 Description

3.3.6.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

84 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mpadded
https://w3c.github.io/mathml-core/spec.html#dfn-mpadded
https://w3c.github.io/mathml-core/spec.html#dfn-mpadded
https://w3c.github.io/mathml-core/spec.html#dfn-mpadded
https://w3c.github.io/mathml-core/spec.html#dfn-mpadded

to presentation elements.

Name values default

heightcore length same as content

Sets or increments the height of the mpadded element. See below for discussion.

depthcore length same as content

Sets or increments the depth of the mpadded element. See below for discussion.

widthcore length same as content

Sets or increments the width of the mpadded element. See below for discussion.

lspacecore length 0em

Sets the horizontal position of the child content. See below for discussion.

voffsetcore length 0em

Sets the vertical position of the child content. See below for discussion.

NOTE: mpadded lengths in MathML 3

While [MathML-Core] supports the above attributes, it only allows the value to be a valid <length-percentage>. As
described in length MathML 4 extends this syntax to allow namedspace.

MathML 3 also allowed additional extensions:

• A leading "+" or "-" denoted a relative increment or decrement from the default value. This is not supported
however the same fuunctionality is now available in standard CSS <length-percentage> syntax:
height="calc(100%+10pt)".

• MathML 3 also specified the pseudo-units height, depth and width. These are not supported in MathML 4
however the main use cases are addressed using percentage values, height="0.5height" is equivalent to
height="50%.

These attributes specify the size of the bounding box of the mpadded element relative to the size of the bounding box of its
child content, and specify the position of the child content of the mpadded element relative to the natural positioning of the
mpadded element. The typographical layout parameters determined by these attributes are described in the next subsection.
Depending on the form of the attribute value, a dimension may be set to a new value, or specified relative to the child
content's corresponding dimension. Values may be given as multiples or percentages of any of the dimensions of the normal
rendering of the child content using so-called pseudo-units, or they can be set directly using standard units, see 2.1.5.2
Length Valued Attributes.

The corresponding dimension is set to the following length value. specifying a length that would produce a net negative
value for these attributes has the same effect as setting the attribute to zero. In other words, the effective bounding box of an
mpadded element always has non-negative dimensions. However, negative values are allowed for the relative positioning

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

85 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-height
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-height
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-height
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-height
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-depth
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-width
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-width
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-width
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-width
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-lspace
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-lspace
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-lspace
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-lspace
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-voffset
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-voffset
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-voffset
https://w3c.github.io/mathml-core/spec.html#attribute-mpadded-voffset
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage
https://www.w3.org/TR/css-values-3/#typedef-length-percentage

attributes lspace and voffset.

The content of an mpadded element defines a fragment of mathematical notation, such as a character, fraction, or
expression, that can be regarded as a single typographical element with a natural positioning point relative to its natural
bounding box.

The size of the bounding box of an mpadded element is defined as the size of the bounding box of its content, except as
modified by the mpadded element's height, depth, and width attributes. The natural positioning point of the child
content of the mpadded element is located to coincide with the natural positioning point of the mpadded element, except as
modified by the lspace and voffset attributes. Thus, the size attributes of mpadded can be used to expand or shrink the
apparent bounding box of its content, and the position attributes of mpadded can be used to move the content relative to the
bounding box (and hence also neighboring elements). Note that MathML doesn't define the precise relationship between
"ink", bounding boxes and positioning points, which are implementation specific. Thus, absolute values for mpadded
attributes may not be portable between implementations.

The height attribute specifies the vertical extent of the bounding box of the mpadded element above its baseline.
Increasing the height increases the space between the baseline of the mpadded element and the content above it, and
introduces padding above the rendering of the child content. Decreasing the height reduces the space between the baseline
of the mpadded element and the content above it, and removes space above the rendering of the child content. Decreasing
the height may cause content above the mpadded element to overlap the rendering of the child content, and should
generally be avoided.

The depth attribute specifies the vertical extent of the bounding box of the mpadded element below its baseline. Increasing
the depth increases the space between the baseline of the mpadded element and the content below it, and introduces
padding below the rendering of the child content. Decreasing the depth reduces the space between the baseline of the
mpadded element and the content below it, and removes space below the rendering of the child content. Decreasing the
depth may cause content below the mpadded element to overlap the rendering of the child content, and should generally be
avoided.

The width attribute specifies the horizontal distance between the positioning point of the mpadded element and the
positioning point of the following content. Increasing the width increases the space between the positioning point of the
mpadded element and the content that follows it, and introduces padding after the rendering of the child content. Decreasing
the width reduces the space between the positioning point of the mpadded element and the content that follows it, and
removes space after the rendering of the child content. Setting the width to zero causes following content to be positioned
at the positioning point of the mpadded element. Decreasing the width should generally be avoided, as it may cause
overprinting of the following content.

The lspace attribute ("leading" space; see 3.1.5.1 Overall Directionality of Mathematics Formulas) specifies the horizontal
location of the positioning point of the child content with respect to the positioning point of the mpadded element. By
default they coincide, and therefore absolute values for lspace have the same effect as relative values. Positive values for the
lspace attribute increase the space between the preceding content and the child content, and introduce padding before the
rendering of the child content. Negative values for the lspace attributes reduce the space between the preceding content
and the child content, and may cause overprinting of the preceding content, and should generally be avoided. Note that the
lspace attribute does not affect the width of the mpadded element, and so the lspace attribute will also affect the space
between the child content and following content, and may cause overprinting of the following content, unless the width is

3.3.6.3 Meanings of size and position attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

86 of 434 26/08/2025, 11:30

adjusted accordingly.

The voffset attribute specifies the vertical location of the positioning point of the child content with respect to the
positioning point of the mpadded element. Positive values for the voffset attribute raise the rendering of the child content
above the baseline. Negative values for the voffset attribute lower the rendering of the child content below the baseline. In
either case, the voffset attribute may cause overprinting of neighboring content, which should generally be avoided. Note
that the voffset attribute does not affect the height or depth of the mpadded element, and so the voffset attribute will
also affect the space between the child content and neighboring content, and may cause overprinting of the neighboring
content, unless the height or depth is adjusted accordingly.

MathML renderers should ensure that, except for the effects of the attributes, the relative spacing between the contents of
the mpadded element and surrounding MathML elements would not be modified by replacing an mpadded element with an
mrow element with the same content, even if linebreaking occurs within the mpadded element. MathML does not define
how non-default attribute values of an mpadded element interact with the linebreaking algorithm.

▸ Show Section

The effects of the size and position attributes are illustrated below. The following diagram illustrates the use of lspace and
voffset to shift the position of child content without modifying the mpadded bounding box.

The corresponding MathML is:

3.3.6.4 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

87 of 434 26/08/2025, 11:30

<mrow>
<mi>x</mi>
<mpadded lspace="0.2em" voffset="0.3ex">
<mi>y</mi>

</mpadded>
<mi>z</mi>

</mrow>

𝑥 𝑦𝑧

The next diagram illustrates the use of width, height and depth to modifying the mpadded bounding box without
changing the relative position of the child content.

The corresponding MathML is:

<mrow>
<mi>x</mi>
<mpadded width="190%" height="calc(100% +0.3ex)" depth="calc(100% +0.3ex)">
<mi>y</mi>

</mpadded>
<mi>z</mi>

</mrow>

The final diagram illustrates the generic use of mpadded to modify both the bounding box and relative position of child
content.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

88 of 434 26/08/2025, 11:30

The corresponding MathML is:

<mrow>
<mi>x</mi>
<mpadded lspace="0.3em" width="calc(100% +0.6em)">
<mi>y</mi>

</mpadded>
<mi>z</mi>

</mrow>

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position, that its
contents would have if they were rendered normally. mphantom can be used to align parts of an expression by invisibly
duplicating sub-expressions.

The mphantom element accepts a single argument possibly being an inferred mrow of multiple children; see 3.1.3 Required
Arguments.

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML expression, as in
<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it
invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom element and the

3.3.7 Making Sub-Expressions Invisible <mphantom>core

3.3.7.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

89 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mphantom
https://w3c.github.io/mathml-core/spec.html#dfn-mphantom
https://w3c.github.io/mathml-core/spec.html#dfn-mphantom
https://w3c.github.io/mathml-core/spec.html#dfn-mphantom
https://w3c.github.io/mathml-core/spec.html#dfn-mphantom

surrounding MathML elements is the same as it would be if the mphantom element were replaced by an mrow element with
the same content. This holds even if linebreaking occurs within the mphantom element.

For the above reason, mphantom is not considered space-like (3.2.7 Space <mspace/>) unless its content is space-like,
since the suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the
warning about the legal grouping of space-like elements may apply to uses of mphantom.

mphantom elements accept the attributes listed in 3.1.9 Mathematics attributes common to presentation elements (the
mathcolor has no effect).

▸ Show Section

There is one situation where the preceding rules for rendering an mphantom may not give the desired effect. When an
mphantom is wrapped around a subsequence of the arguments of an mrow, the default determination of the form attribute
for an mo element within the subsequence can change. (See the default value of the form attribute described in 3.2.5
Operator, Fence, Separator or Accent <mo>.) It may be necessary to add an explicit form attribute to such an mo in these
cases. This is illustrated in the following example.

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a
fraction:

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

3.3.7.2 Attributes

3.3.7.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

90 of 434 26/08/2025, 11:30

𝑥 + 𝑦 + 𝑧
𝑥 + 𝑧

This would render as something like

rather than as

The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form attribute to what it
would have been in the absence of the surrounding mphantom. This is necessary since otherwise, the + sign would be
interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments
<mo>+</mo> and <mi>y</mi> in its own mphantom element, i.e.

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo> + </mo>

</mphantom>
<mphantom>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

𝑥 + 𝑦 + 𝑧
𝑥 + 𝑧

3.3.8 Expression Inside Pair of Fences <mfenced>not-core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

91 of 434 26/08/2025, 11:30

The mfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces,
brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as “(x)” and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

(𝑥)

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as “(x, y)” and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

(𝑥, 𝑦)

Individual fences or separators are represented using mo elements, as described in 3.2.5 Operator, Fence, Separator or
Accent <mo>. Thus, any mfenced element is completely equivalent to an expanded form described below. While mfenced
might be more convenient for authors or authoring software, only the expanded form is supported in [MathML-Core]. A
renderer that supports this recommendation is required to render either of these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between fences in an mrow; if
there is more than one argument, it will insert separators between adjacent arguments, using an additional nested mrow
around the arguments and separators for proper grouping (3.3.1 Horizontally Group Sub-Expressions <mrow>). The general
expanded form is shown below. The fences and separators will be parentheses and comma by default, but can be changed
using attributes, as shown in the following table.

mfenced elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common
to presentation elements. The delimiters and separators should be drawn using the color specified by mathcolor.

3.3.8.1 Description

3.3.8.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

92 of 434 26/08/2025, 11:30

Name values default

opennot-core string (

Specifies the opening delimiter. Since it is used as the content of an mo element, any whitespace
will be trimmed and collapsed as described in 2.1.7 Collapsing Whitespace in Input.

closenot-core string)

Specifies the closing delimiter. Since it is used as the content of an mo element, any whitespace will
be trimmed and collapsed as described in 2.1.7 Collapsing Whitespace in Input.

separatorsnot-core string ,

Specifies a sequence of zero or more separator characters, optionally separated by whitespace. Each
pair of arguments is displayed separated by the corresponding separator (none appears after the last
argument). If there are too many separators, the excess are ignored; if there are too few, the last
separator is repeated. Any whitespace within separators is ignored.

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >

 arg#1
 ...
 arg#n
</mfenced>

In an RTL directionality context, since the initial text direction is RTL, characters in the open and close attributes that
have a mirroring counterpart will be rendered in that mirrored form. In particular, the default values will render correctly as
a parenthesized sequence in both LTR and RTL contexts.

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>

 arg#1
<mo separator="true"> sep#1 </mo>

 ...
<mo separator="true"> sep#(n-1) </mo>

 arg#n
</mrow>
<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping, as described in 3.3.1

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

93 of 434 26/08/2025, 11:30

Horizontally Group Sub-Expressions <mrow>.

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is equivalent to arg#1
(as described in 3.3.1 Horizontally Group Sub-Expressions <mrow>), this case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>

 arg#1
<mo fence="true"> closing-fence </mo>

</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are too few,
the last one is repeated as necessary. Thus, the default value of separators="," is equivalent to separators=",,",
separators=",,,", etc. If there are no separator characters provided but some are needed, for example if separators=" "
or "" and there is more than one argument, then no separator elements are inserted at all — that is, the elements <mo
separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators consisting of
mo elements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
 close="closing-fence"
 separators="anything" >
</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all “fenced expressions” can be encoded by an mfenced element. Such exceptional expressions include those
with an “embellished” separator or fence or one enclosed in an mstyle element, a missing or extra separator or fence, or a
separator with multiple content characters. In these cases, it is necessary to encode the expression using an appropriately
modified version of an expanded form. As discussed above, it is always permissible to use the expanded form directly, even
when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocessors won't replace occurrences
of mfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements that identify them as fences or
separators. Since the most common choices of fences and separators already occur in the operator dictionary with those
attributes, authors would not normally need to specify those attributes explicitly when using the expanded form directly.
Also, the rules for the default form attribute (3.2.5 Operator, Fence, Separator or Accent <mo>) cause the opening and
closing fences to be effectively given the values form="prefix" and form="postfix" respectively, and the separators to
be given the value form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, “+”, as an abbreviation for an expression
using “+” as an ordinary operator, e.g.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

94 of 434 26/08/2025, 11:30

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

𝑥 + 𝑦 + 𝑧

This is because the + signs would be treated as separators, not infix operators. That is, it would render as if they were
marked up as <mo separator="true">+</mo>, which might therefore render inappropriately.

▸ Show Section

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
</mfenced>

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would render incorrectly
as “(a, +, b)”.

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

<mrow>
<mi> f </mi>
<mo> ⁡<!--ApplyFunction--> </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>

3.3.8.3 Examples

3.3.9 Enclose Expression Inside Notation <menclose>not-core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

95 of 434 26/08/2025, 11:30

The menclose element renders its content inside the enclosing notation specified by its notation attribute. menclose
accepts a single argument possibly being an inferred mrow of multiple children; see 3.1.3 Required Arguments.

menclose elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common
to presentation elements. The notations should be drawn using the color specified by mathcolor.

The values allowed for notation are open-ended. Conforming renderers may ignore any value they do not handle,
although renderers are encouraged to render as many of the values listed below as possible.

Name values default

notationnot-core (actuarial | phasorangle | box | roundedbox | circle | left | right | top |
bottom | updiagonalstrike | downdiagonalstrike | verticalstrike |
horizontalstrike | northeastarrow | madruwb | text) +

do
nothing

Specifies a space separated list of notations to be used to enclose the children. See below for a
description of each type of notation. MathML 4 deprecates the use of longdiv and radical. These
notations duplicate functionality provided by mlongdiv and msqrt respectively; those elements
should be used instead. The default has been changed so that if no notation is given, or if it is an
empty string, then menclose should not draw.

Any number of values can be given for notation separated by whitespace; all of those given and understood by a MathML
renderer should be rendered. Each should be rendered as if the others were not present; they should not nest one inside of the
other. For example, notation="circle box" should result in circle and a box around the contents of menclose; the
circle and box may overlap. This is shown in the first example below. Of the predefined notations, only phasorangle is
affected by the directionality (see 3.1.5.1 Overall Directionality of Mathematics Formulas):

When notation is specified as actuarial, the contents are drawn enclosed by an actuarial symbol. A similar result can
be achieved with the value top right.

The values box, roundedbox, and circle should enclose the contents as indicated by the values. The amount of distance
between the box, roundedbox, or circle, and the contents are not specified by MathML, and left to the renderer. In practice,
paddings on each side of 0.4em in the horizontal direction and .5ex in the vertical direction seem to work well.

The values left, right, top and bottom should result in lines drawn on those sides of the contents. The values
northeastarrow, updiagonalstrike, downdiagonalstrike, verticalstrike and horizontalstrike should
result in the indicated strikeout lines being superimposed over the content of the menclose, e.g. a strikeout that extends
from the lower left corner to the upper right corner of the menclose element for updiagonalstrike, etc.

The value northeastarrow is a recommended value to implement because it can be used to implement TeX's \cancelto
command. If a renderer implements other arrows for menclose, it is recommended that the arrow names are chosen from

3.3.9.1 Description

3.3.9.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

96 of 434 26/08/2025, 11:30

the following full set of names for consistency and standardization among renderers:

• uparrow

• rightarrow

• downarrow

• leftarrow

• northwestarrow

• southwestarrow

• southeastarrow

• northeastarrow

• updownarrow

• leftrightarrow

• northwestsoutheastarrow

• northeastsouthwestarrow

The value madruwb should generate an enclosure representing an Arabic factorial (‘madruwb’ is the transliteration of the
Arabic بورضم for factorial). This is shown in the third example below.

The baseline of an menclose element is the baseline of its child (which might be an implied mrow).

▸ Show Section

An example of using multiple attributes is

<menclose notation='circle box'>
<mi> x </mi><mo> + </mo><mi> y </mi>

</menclose>

An example of using menclose for actuarial notation is

3.3.9.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

97 of 434 26/08/2025, 11:30

<msub>
<mi>a</mi>
<mrow>
<menclose notation='actuarial'>
<mi>n</mi>

</menclose>
<mo>⁣<!--InvisibleComma--></mo>
<mi>i</mi>

</mrow>
</msub>

An example of phasorangle, which is used in circuit analysis, is:

<mi>C</mi>
<mrow>
<menclose notation='phasorangle'>
<mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>

</mfrac>
</mrow>

</menclose>
</mrow>

An example of madruwb is:

<menclose notation="madruwb">
<mn>12</mn>

</menclose>

The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts and

3.4 Script and Limit Schemata

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

98 of 434 26/08/2025, 11:30

embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a single general-
purpose element could suffice for positioning scripts and embellishments in any of the traditional script locations around a
given base. However, in order to capture the abstract structure of common notation better, MathML provides several more
specialized scripting elements.

In addition to sub-/superscript elements, MathML has overscript and underscript elements that place scripts above and
below the base. These elements can be used to place limits on large operators, or for placing accents and lines above or
below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this difference can be
controlled with the accent and accentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of the environment
inherited by the rendering process of every MathML expression, and are described in 3.1.6 Displaystyle and Scriptlevel.
These attributes cannot be given explicitly on a scripting element, but can be specified on the start tag of a surrounding
mstyle element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscripts and
superscripts in that they must align in vertical columns. Also, all the upper scripts should be baseline-aligned and all the
lower scripts should be baseline-aligned. Tensor indices can also occur in prescript positions. Note that ordinary scripts
follow the base (on the right in LTR context, but on the left in RTL context); prescripts precede the base (on the left (right)
in LTR (RTL) context).

Because presentation elements should be used to describe the abstract notational structure of expressions, it is important that
the base expression in all “scripting” elements (i.e. the first argument expression) should be the entire expression that is
being scripted, not just the trailing character. For example, (𝑥 + 𝑦)2 should be written as:

<msup>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
<mn> 2 </mn>

</msup>

(𝑥 + 𝑦)2

The msub element attaches a subscript to a base using the syntax

3.4.1 Subscript <msub>core

3.4.1.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

99 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-msub
https://w3c.github.io/mathml-core/spec.html#dfn-msub
https://w3c.github.io/mathml-core/spec.html#dfn-msub
https://w3c.github.io/mathml-core/spec.html#dfn-msub
https://w3c.github.io/mathml-core/spec.html#dfn-msub

<msub> base subscript </msub>

It increments scriptlevel by 1, and sets displaystyle to false, within subscript, but leaves both attributes unchanged
within base. (See 3.1.6 Displaystyle and Scriptlevel.)

msub elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

Name values default

subscriptshiftnot-core length automatic

Specifies the minimum amount to shift the baseline of subscript down; the default is for the
rendering agent to use its own positioning rules.

The msup element attaches a superscript to a base using the syntax

<msup> base superscript </msup>

It increments scriptlevel by 1, and sets displaystyle to false, within superscript, but leaves both attributes
unchanged within base. (See 3.1.6 Displaystyle and Scriptlevel.)

msup elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

3.4.1.2 Attributes

3.4.2 Superscript <msup>core

3.4.2.1 Description

3.4.2.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

100 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-msup
https://w3c.github.io/mathml-core/spec.html#dfn-msup
https://w3c.github.io/mathml-core/spec.html#dfn-msup
https://w3c.github.io/mathml-core/spec.html#dfn-msup
https://w3c.github.io/mathml-core/spec.html#dfn-msup

Name values default

superscriptshiftnot-core length automatic

Specifies the minimum amount to shift the baseline of superscript up; the default is for the
rendering agent to use its own positioning rules.

The msubsup element is used to attach both a subscript and superscript to a base expression.

<msubsup> base subscript superscript </msubsup>

It increments scriptlevel by 1, and sets displaystyle to false, within subscript and superscript, but leaves both
attributes unchanged within base. (See 3.1.6 Displaystyle and Scriptlevel.)

Note that both scripts are positioned tight against the base as shown here 𝑥1
2 versus the staggered positioning of nested

scripts as shown here 𝑥1
2; the latter can be achieved by nesting an msub inside an msup.

msubsup elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common
to presentation elements.

Name values default

subscriptshiftnot-core length automatic

Specifies the minimum amount to shift the baseline of subscript down; the default is for the
rendering agent to use its own positioning rules.

superscriptshiftnot-core length automatic

Specifies the minimum amount to shift the baseline of superscript up; the default is for the
rendering agent to use its own positioning rules.

3.4.3 Subscript-superscript Pair <msubsup>core

3.4.3.1 Description

3.4.3.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

101 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-msubsup
https://w3c.github.io/mathml-core/spec.html#dfn-msubsup
https://w3c.github.io/mathml-core/spec.html#dfn-msubsup
https://w3c.github.io/mathml-core/spec.html#dfn-msubsup
https://w3c.github.io/mathml-core/spec.html#dfn-msubsup

▸ Show Section

The msubsup is most commonly used for adding sub-/superscript pairs to identifiers as illustrated above. However, another
important use is placing limits on certain large operators whose limits are traditionally displayed in the script positions even
when rendered in display style. The most common of these is the integral. For example,

would be represented as

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>

</msubsup>
<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>

</msup>
<mo> ⁢<!--InvisibleTimes--> </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mrow>

</mrow>

∫
0

1

ⅇ𝑥 ⅆ𝑥

The munder element attaches an accent or limit placed under a base using the syntax

3.4.3.3 Examples

3.4.4 Underscript <munder>core

3.4.4.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

102 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-munder
https://w3c.github.io/mathml-core/spec.html#dfn-munder
https://w3c.github.io/mathml-core/spec.html#dfn-munder
https://w3c.github.io/mathml-core/spec.html#dfn-munder
https://w3c.github.io/mathml-core/spec.html#dfn-munder

<munder> base underscript </munder>

It always sets displaystyle to false within the underscript, but increments scriptlevel by 1 only when
accentunder is false. Within base, it always leaves both attributes unchanged. (See 3.1.6 Displaystyle and Scriptlevel.)

If base is an operator with movablelimits=true (or an embellished operator whose mo element core has
movablelimits=true), and displaystyle=false, then underscript is drawn in a subscript position. In this case, the
accentunder attribute is ignored. This is often used for limits on symbols such as U+2211 (entity sum).

munder elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

Name values default

accentundercore "true" | "false" automatic

Specifies whether underscript is drawn as an “accent” or as a limit. An accent is drawn the same size
as the base (without incrementing scriptlevel) and is drawn closer to the base.

alignnot-core "left" | "right" | "center" center

Specifies whether the script is aligned left, center, or right under/over the base. As specified in
3.2.5.7.3 Horizontal Stretching Rules, the core of underscripts that are embellished operators should
stretch to cover the base, but the alignment is based on the entire underscript.

The default value of accentunder is false, unless underscript is an mo element or an embellished operator (see 3.2.5
Operator, Fence, Separator or Accent <mo>). If underscript is an mo element, the value of its accent attribute is used as the
default value of accentunder. If underscript is an embellished operator, the accent attribute of the mo element at its core
is used as the default value. As with all attributes, an explicitly given value overrides the default.

[MathML-Core] does not support the accent attribute on 3.2.5 Operator, Fence, Separator or Accent <mo>. For
compatibility with MathML Core, the accentunder should be set on munder.

▸ Show Section

An example demonstrating how accentunder affects rendering:

3.4.4.2 Attributes

3.4.4.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

103 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-accentunder
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder

<mrow>
<munder accentunder="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
<mtext> <!--nbsp-->versus <!--nbsp--></mtext>
<munder accentunder="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
</mrow>

𝑥 + 𝑦 + 𝑧⏟ ⏟ ⏟⎵ ⎵ versus 𝑥 + 𝑦 + 𝑧
⏟ ⏟ ⏟⎵⎵⎵ ⎵⎵⎵

The mover element attaches an accent or limit placed over a base using the syntax

<mover> base overscript </mover>

It always sets displaystyle to false within overscript, but increments scriptlevel by 1 only when accent is false.
Within base, it always leaves both attributes unchanged. (See 3.1.6 Displaystyle and Scriptlevel.)

If base is an operator with movablelimits=true (or an embellished operator whose mo element core has
movablelimits=true), and displaystyle=false, then overscript is drawn in a superscript position. In this case, the
accent attribute is ignored. This is often used for limits on symbols such as U+2211 (entity sum).

3.4.5 Overscript <mover>core

3.4.5.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

104 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mover
https://w3c.github.io/mathml-core/spec.html#dfn-mover
https://w3c.github.io/mathml-core/spec.html#dfn-mover
https://w3c.github.io/mathml-core/spec.html#dfn-mover
https://w3c.github.io/mathml-core/spec.html#dfn-mover

mover elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

Name values default

accentcore "true" | "false" automatic

Specifies whether overscript is drawn as an “accent” or as a limit. An accent is drawn the same size as the
base (without incrementing scriptlevel) and is drawn closer to the base.

alignnot-core "left" | "right" | "center" center

Specifies whether the script is aligned left, center, or right under/over the base. As specified in 3.2.5.7.3
Horizontal Stretching Rules, the core of overscripts that are embellished operators should stretch to cover
the base, but the alignment is based on the entire overscript.

The difference between an accent versus limit is shown in the examples.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see 3.2.5 Operator,
Fence, Separator or Accent <mo>). If overscript is an mo element, the value of its accent attribute is used as the default
value of accent for mover. If overscript is an embellished operator, the accent attribute of the mo element at its core is
used as the default value.

[MathML-Core] does not support the accent attribute on 3.2.5 Operator, Fence, Separator or Accent <mo>. For
compatibility with MathML Core, the accentunder should be set on munder.

▸ Show Section

Two examples demonstrating how accent affects rendering:

3.4.5.2 Attributes

3.4.5.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

105 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accent

<mrow>
<mover accent="true">
<mi> x </mi>
<mo> ^ </mo>

</mover>
<mtext> <!--nbsp-->versus <!--nbsp--></mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>

</mover>
</mrow>

𝑥̂ versus 𝑥̂

<mrow>
<mover accent="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏞ </mo>

</mover>
<mtext> <!--nbsp-->versus <!--nbsp--></mtext>
<mover accent="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏞ </mo>

</mover>
</mrow>

𝑥 + 𝑦 + 𝑧⏞ ⏞ ⏞⎴ ⎴ versus 𝑥 + 𝑦 + 𝑧⏞ ⏞ ⏞⎴⎴⎴ ⎴⎴⎴

3.4.6 Underscript-overscript Pair <munderover>core

3.4.6.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

106 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-munderover
https://w3c.github.io/mathml-core/spec.html#dfn-munderover
https://w3c.github.io/mathml-core/spec.html#dfn-munderover
https://w3c.github.io/mathml-core/spec.html#dfn-munderover
https://w3c.github.io/mathml-core/spec.html#dfn-munderover

The munderover element attaches accents or limits placed both over and under a base using the syntax

<munderover> base underscript overscript </munderover>

It always sets displaystyle to false within underscript and overscript, but increments scriptlevel by 1 only when
accentunder or accent, respectively, are false. Within base, it always leaves both attributes unchanged. (see 3.1.6
Displaystyle and Scriptlevel).

If base is an operator with movablelimits=true (or an embellished operator whose mo element core has
movablelimits=true), and displaystyle=false, then underscript and overscript are drawn in a subscript and
superscript position, respectively. In this case, the accentunder and accent attributes are ignored. This is often used for
limits on symbols such as U+2211 (entity sum).

munderover elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes
common to presentation elements.

Name values default

accentcore "true" | "false" automatic

Specifies whether overscript is drawn as an “accent” or as a limit. An accent is drawn the same size
as the base (without incrementing scriptlevel) and is drawn closer to the base.

accentundercore "true" | "false" automatic

Specifies whether underscript is drawn as an “accent” or as a limit. An accent is drawn the same size
as the base (without incrementing scriptlevel) and is drawn closer to the base.

alignnot-core "left" | "right" | "center" center

Specifies whether the scripts are aligned left, center, or right under/over the base. As specified in
3.2.5.7.3 Horizontal Stretching Rules, the core of underscripts and overscripts that are embellished
operators should stretch to cover the base, but the alignment is based on the entire underscript or
overscript.

The munderover element is used instead of separate munder and mover elements so that the underscript and overscript are
vertically spaced equally in relation to the base and so that they follow the slant of the base as shown in the example.

The defaults for accent and accentunder are computed in the same way as for munder and mover, respectively.

3.4.6.2 Attributes

3.4.6.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

107 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accent
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder
https://w3c.github.io/mathml-core/spec.html#dfn-accentunder

▸ Show Section

This example shows the difference between nesting munder inside mover and using munderover when
movablelimits=true and in displaystyle (which renders the same as msubsup).

<mstyle displaystyle="false">
<mover>
<munder>
<mo>∑</mo>
<mi>i</mi>

</munder>
<mi>n</mi>

</mover>
<mo>+</mo>
<munderover>
<mo>∑</mo>
<mi>i</mi>
<mi>n</mi>

</munderover>
</mstyle>

∑𝑖
𝑛 + ∑𝑖

𝑛

Presubscripts and tensor notations are represented by a single element, mmultiscripts, using the syntax:

<mmultiscripts>
 base
 (subscript superscript)*
 [<mprescripts/> (presubscript presuperscript)*]
</mmultiscripts>

This element allows the representation of any number of vertically-aligned pairs of subscripts and superscripts, attached to
one base expression. It supports both postscripts and prescripts. Missing scripts must be represented by a valid empty
element denoting the empty subterm, such as <mrow/>. (The element <none/> was used in earlier MathML releases, but
was equivalent to an empty <mrow/>). All of the upper scripts should be baseline-aligned and all the lower scripts should be
baseline-aligned.

The prescripts are optional, and when present are given after the postscripts. This order was chosen because prescripts are
relatively rare compared to tensor notation.

3.4.7 Prescripts and Tensor Indices <mmultiscripts>core, <mprescripts/>core

3.4.7.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

108 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts
https://w3c.github.io/mathml-core/spec.html#prescripts-and-tensor-indices-mmultiscripts

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and superscripts
(in that order) that represent all of the postscripts. This list is optionally followed by an empty element mprescripts and a
list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent all of the prescripts. The pair
lists for postscripts and prescripts are displayed in the same order as the directional context (i.e. left-to-right order in LTR
context). If no subscript or superscript should be rendered in a given position, then an empty element <mrow/> should be
used in that position. For each sub- and superscript pair, horizontal-alignment of the elements in the pair should be towards
the base of the mmultiscripts. That is, pre-scripts should be right aligned, and post-scripts should be left aligned.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and the presuperscripts
are all direct sub-expressions of the mmultiscripts element, i.e. they are all at the same level of the expression tree.
Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a presuperscript is determined by
whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the empty element
mprescripts itself when determining the position. The first argument, the base, is considered to be in position 1. The total
number of arguments must be odd, if mprescripts is not given, or even, if it is.

The empty element mprescripts is only allowed as direct sub-expression of mmultiscripts.

Same as the attributes of msubsup. See 3.4.3.2 Attributes.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to false, within each of its
arguments except base, but leaves both attributes unchanged within base. (See 3.1.6 Displaystyle and Scriptlevel.)

▸ Show Section

This example of a hypergeometric function demonstrates the use of pre and post subscripts:

3.4.7.2 Attributes

3.4.7.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

109 of 434 26/08/2025, 11:30

<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<mrow/>
<mprescripts/>
<mn> 0 </mn>
<mrow/>

</mmultiscripts>
<mo> ⁡<!--ApplyFunction--> </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

𝐹10 (; 𝑎; 𝑧)

This example shows a tensor. In the example, k and l are different indices

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<mrow/>
<mrow/>
<mi> j </mi>
<mi> k </mi>
<mrow/>
<mi> l </mi>
<mrow/>

</mmultiscripts>

𝑅𝑖
𝑗
𝑘𝑙

This example demonstrates alignment towards the base of the scripts:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

110 of 434 26/08/2025, 11:30

<mmultiscripts>
<mi> X </mi>
<mn> 123 </mn>
<mn> 1 </mn>
<mprescripts/>
<mn> 123 </mn>
<mn> 1 </mn>

</mmultiscripts>

𝑋123
1

123
1

This final example of mmultiscripts shows how the binomial coefficient can be displayed in Arabic style

<mstyle dir="rtl">
<mmultiscripts><mo>ل</mo>
<mn>12</mn><mrow/>
<mprescripts/>
<mrow/><mn>5</mn>

</mmultiscripts>
</mstyle>

12ل
5

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr and mtd elements. These
elements are similar to the table, tr and td elements of HTML, except that they provide specialized attributes for the fine
layout control necessary for commutative diagrams, block matrices and so on.

While the two-dimensional layouts used for elementary math such as addition and multiplication are somewhat similar to
tables, they differ in important ways. For layout and for accessibility reasons, the mstack and mlongdiv elements
discussed in 3.6 Elementary Math should be used for elementary math notations.

A matrix or table is specified using the mtable element. Inside of the mtable element, only mtr elements may appear.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow them) are

3.5 Tabular Math

3.5.1 Table or Matrix <mtable>core

3.5.1.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

111 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mtable
https://w3c.github.io/mathml-core/spec.html#dfn-mtable
https://w3c.github.io/mathml-core/spec.html#dfn-mtable
https://w3c.github.io/mathml-core/spec.html#dfn-mtable
https://w3c.github.io/mathml-core/spec.html#dfn-mtable

effectively padded on the right (or left in RTL context) with empty mtd elements so that the number of columns in each row
equals the maximum number of columns in any row of the table. Note that the use of mtd elements with non-default values
of the rowspan or columnspan attributes may affect the number of mtd elements that should be given in subsequent mtr
elements to cover a given number of columns.

MathML does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to resolve
conflicts between the width attribute and other constraints on the width of a table, such as explicit values for columnwidth
attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms, see Cascading Style
Sheets, level 2.

mtable elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements. Any rules drawn as part of the mtable should be drawn using the color specified by mathcolor.

3.5.1.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

112 of 434 26/08/2025, 11:30

https://www.w3.org/TR/CSS2/tables.html#width-layout
https://www.w3.org/TR/CSS2/tables.html#width-layout
https://www.w3.org/TR/CSS2/tables.html#width-layout
https://www.w3.org/TR/CSS2/tables.html#width-layout

Name values default

alignnot-core ("top" | "bottom" | "center" | "baseline" | "axis"), rownumber? axis

specifies the vertical alignment of the table with respect to its environment. axis means to
align the vertical center of the table on the environment's axis. (The axis of an equation is an
alignment line used by typesetters. It is the line on which a minus sign typically lies.) center
and baseline both mean to align the center of the table on the environment's baseline. top
or bottom aligns the top or bottom of the table on the environment's baseline. If the align
attribute value ends with a rownumber, the specified row (counting from 1 for the top row),
rather than the table as a whole, is aligned in the way described above with the exceptions
noted below. If rownumber is negative, it counts rows from the bottom. When the value of
rownumber is out of range or not an integer, it is ignored. If a row number is specified and the
alignment value is baseline or axis, the row's baseline or axis is used for alignment. Note
this is only well defined when the rowalign value is baseline or axis; MathML does not
specify how baseline or axis alignment should occur for other values of rowalign.

rowalignnot-core ("top" | "bottom" | "center" | "baseline" | "axis") + baseline

specifies the vertical alignment of the cells with respect to other cells within the same row:
top aligns the tops of each entry across the row; bottom aligns the bottoms of the cells,
center centers the cells; baseline aligns the baselines of the cells; axis aligns the axis of
each cells. (See the note below about multiple values.)

columnalignnot-core ("left" | "center" | "right") + center

specifies the horizontal alignment of the cells with respect to other cells within the same
column: left aligns the left side of the cells; center centers each cells; right aligns the
right side of the cells. (See the note below about multiple values.)

alignmentscopenot-core ("true" | "false") + true

[this attribute is described with the alignment elements, maligngroup and malignmark, in
3.5.4 Alignment Markers <maligngroup/>, <malignmark/>not-core.]

columnwidthnot-core ("auto" | length | "fit") + auto

specifies how wide a column should be: auto means that the column should be as wide as
needed; an explicit length means that the column is exactly that wide and the contents of that
column are made to fit by linewrapping or clipping at the discretion of the renderer; fit
means that the page width remaining after subtracting the auto or fixed width columns is
divided equally among the fit columns. If insufficient room remains to hold the contents of
the fit columns, renderers may linewrap or clip the contents of the fit columns. Note that
when the columnwidth is specified as a percentage, the value is relative to the width of the
table, not as a percentage of the default (which is auto). That is, a renderer should try to
adjust the width of the column so that it covers the specified percentage of the entire table
width. (See the note below about multiple values.)

widthnot-core "auto" | length auto

specifies the desired width of the entire table and is intended for visual user agents. When the

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

113 of 434 26/08/2025, 11:30

specifies the desired width of the entire table and is intended for visual user agents. When the
value is a percentage value, the value is relative to the horizontal space that a MathML
renderer has available, this is the current target width as used for linebreaking as specified in
3.1.7 Linebreaking of Expressions; this allows the author to specify, for example, a table
being full width of the display. When the value is auto, the MathML renderer should
calculate the table width from its contents using whatever layout algorithm it chooses. Note:
numbers without units were allowed in MathML 3 and treated similarly to percentage values,
but unitless numbers are deprecated in MathML 4.

rowspacingnot-core (length) + 1.0ex

specifies how much space to add between rows. (See the note below about multiple values.)

columnspacingnot-core (length) + 0.8em

specifies how much space to add between columns. (See the note below about multiple
values.)

rowlinesnot-core ("none" | "solid" | "dashed") + none

specifies whether and what kind of lines should be added between each row: none means no
lines; solid means solid lines; dashed means dashed lines (how the dashes are spaced is
implementation dependent). (See the note below about multiple values.)

columnlinesnot-core ("none" | "solid" | "dashed") + none

specifies whether and what kind of lines should be added between each column: none means
no lines; solid means solid lines; dashed means dashed lines (how the dashes are spaced is
implementation dependent). (See the note below about multiple values.)

framenot-core "none" | "solid" | "dashed" none

specifies whether and what kind of lines should be drawn around the table. none means no
lines; solid means solid lines; dashed means dashed lines (how the dashes are spaced is
implementation dependent).

framespacingnot-core length, length 0.4em 0.5ex

specifies the additional spacing added between the table and frame, if frame is not none. The
first value specifies the spacing on the right and left; the second value specifies the spacing
above and below.

equalrowsnot-core "true" | "false" false

specifies whether to force all rows to have the same total height.

equalcolumnsnot-core "true" | "false" false

specifies whether to force all columns to have the same total width.

displaystylenot-core "true" | "false" false

specifies the value of displaystyle within each cell (scriptlevel is not changed); see
3.1.6 Displaystyle and Scriptlevel.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

114 of 434 26/08/2025, 11:30

In the above specifications for attributes affecting rows (respectively, columns, or the gaps between rows or columns), the
notation (...)+ means that multiple values can be given for the attribute as a space separated list (see 2.1.5 MathML
Attribute Values). In this context, a single value specifies the value to be used for all rows (resp., columns or gaps). A list of
values are taken to apply to corresponding rows (resp., columns or gaps) in order, that is starting from the top row for rows
or first column (left or right, depending on directionality) for columns. If there are more rows (resp., columns or gaps) than
supplied values, the last value is repeated as needed. If there are too many values supplied, the excess are ignored.

Note that none of the areas occupied by lines frame, rowlines and columnlines, nor the spacing framespacing,
rowspacing or columnspacing are counted as rows or columns.

The displaystyle attribute is allowed on the mtable element to set the inherited value of the attribute. If the attribute is
not present, the mtable element sets displaystyle to false within the table elements. (See 3.1.6 Displaystyle and
Scriptlevel.)

▸ Show Section

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>
<mtr>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>

</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>

</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>

</mtr>
</mtable>
<mo>) </mo>

</mrow>

⎛

⎝

⎜
⎜
⎜

1 0 0

0 1 0

0 0 1

⎞

⎠

⎟
⎟
⎟

3.5.1.3 Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

115 of 434 26/08/2025, 11:30

Note that the parentheses must be represented explicitly; they are not part of the mtable element's rendering. This allows
use of other surrounding fences, such as brackets, or none at all.

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct sub-expression of an
mtable element, and specifies that its contents should form one row of the table. Each argument of mtr is placed in a
different column of the table, starting at the leftmost column in a LTR context or rightmost column in a RTL context.

As described in 3.5.1 Table or Matrix <mtable>, mtr elements are effectively padded with mtd elements when they are
shorter than other rows in a table.

mtr elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

Name values default

rowalignnot-core "top" | "bottom" | "center" | "baseline" | "axis" inherited

overrides, for this row, the vertical alignment of cells specified by the rowalign attribute on the
mtable.

columnalignnot-core ("left" | "center" | "right") + inherited

overrides, for this row, the horizontal alignment of cells specified by the columnalign attribute
on the mtable.

Earlier versions of MathML specified an mlabeledtr element for numbered equations. In an mlabeledtr, the first mtd
represents the equation number and the remaining elements in the row the equation being numbered. The side and
minlabelspacing attributes of mtable determines the placement of the equation number. This element was not widely
implemented and is not specified in the current version, it is still valid in the Legacy Schema.

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equation
numbering and automatically resolving references to equation numbers is outside the scope of MathML, these problems can

3.5.2 Row in Table or Matrix <mtr>core

3.5.2.1 Description

3.5.2.2 Attributes

3.5.2.3 Equation Numbering

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

116 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mtr
https://w3c.github.io/mathml-core/spec.html#dfn-mtr
https://w3c.github.io/mathml-core/spec.html#dfn-mtr
https://w3c.github.io/mathml-core/spec.html#dfn-mtr
https://w3c.github.io/mathml-core/spec.html#dfn-mtr

be addressed by the use of style sheets or other means. In a CSS context, one could use an empty mtd as the first child of a
mtr and use CSS counters and generated content to fill in the equation number using a CSS style such as

body {counter-reset: eqnum;}
mtd.eqnum {counter-increment: eqnum;}
mtd.eqnum:before {content: "(" counter(eqnum) ")"}

An mtd element represents one entry, or cell, in a table or matrix. An mtd element is only allowed as a direct sub-expression
of an mtr element.

The mtd element accepts a single argument possibly being an inferred mrow of multiple children; see 3.1.3 Required
Arguments.

mtd elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

3.5.3 Entry in Table or Matrix <mtd>core

3.5.3.1 Description

3.5.3.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

117 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-mtd
https://w3c.github.io/mathml-core/spec.html#dfn-mtd
https://w3c.github.io/mathml-core/spec.html#dfn-mtd
https://w3c.github.io/mathml-core/spec.html#dfn-mtd
https://w3c.github.io/mathml-core/spec.html#dfn-mtd

Name values default

rowspancore positive-integer 1

causes the cell to be treated as if it occupied the number of rows specified. The corresponding
mtd in the following rowspan-1 rows must be omitted. The interpretation corresponds with the
similar attributes for HTML tables.

columnspancore positive-integer 1

causes the cell to be treated as if it occupied the number of columns specified. The following
rowspan-1 mtds must be omitted. The interpretation corresponds with the similar attributes for
HTML tables.

rowalignnot-core "top" | "bottom" | "center" | "baseline" | "axis" inherited

specifies the vertical alignment of this cell, overriding any value specified on the containing mrow
and mtable. See the rowalign attribute of mtable.

columnalignnot-core "left" | "center" | "right" inherited

specifies the horizontal alignment of this cell, overriding any value specified on the containing
mrow and mtable. See the columnalign attribute of mtable.

NOTE: malignmark and maligngroup are not in MathML-Core

malignmark and maligngroup are not supported in [MathML-Core]. For most purposes it is recommended that
alignment is implemented directly using mtable columns. As noted in the following section these elements may be
futher simplified or removed in a future version of MathML.

For existing MathML using malignmark a Javascript polyfill is provided.

With one significant exception, <maligngroup/> and <malignmark/> have had minimal adoption and implementation.
The one exception only uses the basics of alignment. Because of this, alignment in MathML is significantly simplified to
align with the current usage and make future implementation simplier. In particular, the following simplifications are made:

• the attributes for <maligngroup/> and <malignmark/> have been removed.

• The groupalign attribute previously allowed on mtable, mtr, and mlabeledtr is removed

• <malignmark/> used to be allowed anywhere, including inside of token elements; it is now allowed in only the

3.5.4 Alignment Markers <maligngroup/>, <malignmark/>not-core

3.5.4.1 Removal Notice

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

118 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-core/spec.html#dfn-rowspan
https://w3c.github.io/mathml-core/spec.html#dfn-rowspan
https://w3c.github.io/mathml-core/spec.html#dfn-rowspan
https://w3c.github.io/mathml-core/spec.html#dfn-rowspan
https://w3c.github.io/mathml-core/spec.html#dfn-columnspan
https://w3c.github.io/mathml-core/spec.html#dfn-columnspan
https://w3c.github.io/mathml-core/spec.html#dfn-columnspan
https://w3c.github.io/mathml-core/spec.html#dfn-columnspan
https://w3c.github.io/mathml-polyfills/
https://w3c.github.io/mathml-polyfills/

locations that <maligngroup/> is allowed (see below)

Alignment markers are space-like elements (see 3.2.7 Space <mspace/>) that can be used to vertically align specified
points within a column of MathML expressions by the automatic insertion of the necessary amount of horizontal space
between specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertical
alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0

3.1 x − 0.7y = −1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55.7y = 0

3.1x − 50.7y = −1.1

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elements
(i.e. as the mtd elements) of one column of an mtable. To avoid confusion, the term “table cell” rather than “table element”
will be used in the remainder of this section.

All interactions between alignment elements are limited to the mtable column they arise in. That is, every column of a table
specified by an mtable element acts as an “alignment scope” that contains within it all alignment effects arising from its
contents. It also excludes any interaction between its own alignment elements and the alignment elements inside any nested
alignment scopes it might contain.

If there is only one alignment point, an alternative is to use linebreaking and indentation attributes on mo elements as
described in 3.1.7 Linebreaking of Expressions.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment
scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section assumes that this
attribute has its default value of true.

Each part of expression to be aligned should be in an maligngroup. The point of alignment is the left edge (right edge if
for RTL) of the element that follows an maligngroup element unless an malignmark element is between maligngroup
elements. In that case, the left edge (right edge if for RTL) of the element that follows the malignmark is the point of
alignment for that group.

If maligngroup or maligngroup occurs outside of an mtable, they are rendered with zero width.

3.5.4.2 Description

3.5.4.3 Specifying alignment groups

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

119 of 434 26/08/2025, 11:30

In the example above, each equation would have one maligngroup element before each coefficient, variable, and operator
on the left-hand side, one before the = sign, and one before the constant on the right-hand side because these are the parts
that should be aligned.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith group consisting of
the elements entirely after the ith maligngroup element and before the (i+1)-th; no element within the table cell's content
should occur entirely before its first maligngroup element.

Note that the division into alignment groups does not necessarily fit the nested expression structure of the MathML
expression containing the groups — that is, it is permissible for one alignment group to consist of the end of one mrow, all of
another one, and the beginning of a third one, for example. This can be seen in the MathML markup for the example given
at the end of this section.

Although alignment groups need not coincide with the nested expression structure of layout schemata, there are nonetheless
restrictions on where maligngroup and malignmark elements are allowed within a table cell. These elements may only be
contained within elements (directly or indirectly) of the following types (which are themselves contained in the table cell):

• an mrow element, including an inferred mrow such as the one formed by a multi-child mtd element, but excluding mrow
which contains a change of direction using the dir attribute;

• an mstyle element , but excluding those which change direction using the dir attribute;

• an mphantom element;

• an mfenced element;

• an maction element, though only its selected sub-expression is checked;

• a semantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexities
involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm suffices to
accomplish the desired alignment.

For the table cells that are divided into alignment groups, every element in their content must be part of exactly one
alignment group, except for the elements from the above list that contain maligngroup elements inside them and the
maligngroup elements themselves. This means that, within any table cell containing alignment groups, the first complete
element must be an maligngroup element, though this may be preceded by the start tags of other elements. This
requirement removes a potential confusion about how to align elements before the first maligngroup element, and makes it
easy to identify table cells that are left out of their column's alignment process entirely.

It is not required that the table cells in a column that are divided into alignment groups each contain the same number of
groups. If they don't, zero-width alignment groups are effectively added on the right side (or left side, in a RTL context) of
each table cell that has fewer groups than other table cells in the same column.

NOTE

Do we want to tighten this so that all rows have the same number of maligngroup elements?

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

120 of 434 26/08/2025, 11:30

NOTE

Do we still want to allow rows without maligngroup as described in this section?

Expressions in a column that are to have no alignment groups should contain no maligngroup elements. Expressions with
no alignment groups are aligned using only the columnalign attribute that applies to the table column as a whole. If such
an expression is wider than the column width needed for the table cells containing alignment groups, all the table cells
containing alignment groups will be shifted as a unit within the column as described by the columnalign attribute for that
column. For example, a column heading with no internal alignment could be added to the column of two equations given
above by preceding them with another table row containing an mtext element for the heading, and using the default
columnalign="center" for the table, to produce:

equations with aligned variables

 8.44x + 55 y = 0

3.1 x − 0.7y = −1.1

or, with a shorter heading,

some equations

8.44x + 55 y = 0

3.1 x − 0.7y = −1.1

An malignmark element anywhere within the alignment group (except within another alignment scope wholly contained
inside it) overrides alignment at the start of an maligngroup element.

The malignmark element indicates that the alignment point should occur on the left edge (right edge in a RTL context) of
the following element.

NOTE

Can malignmark elements occur inside of tokens?

When an malignmark element is provided within an alignment group, it should only occur within the elements allowed for
maligngroup (see 3.5.4.3 Specifying alignment groups). If there is more than one malignmark element in an alignment
group, all but the first one will be ignored. MathML applications may wish to provide a mode in which they will warn about
this situation, but it is not an error, and should trigger no warnings by default. The rationale for this is that it would be
inconvenient to have to remove all unnecessary malignmark elements from automatically generated data.

3.5.4.4 Table cells that are not divided into alignment groups

3.5.4.5 Specifying alignment points using <malignmark/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

121 of 434 26/08/2025, 11:30

▸ Show Section

The above rules are sufficient to explain the MathML representation of the example given near the start of this section.

ISSUE 180: "decimalpoint" value definition

issue 180

One way to represent that in MathML is:

3.5.4.6 MathML representation of an alignment example

MathML 4 compatibility need specification update

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

122 of 434 26/08/2025, 11:30

https://github.com/w3c/mathml/issues/180
https://github.com/w3c/mathml/issues/180
https://github.com/w3c/mathml/issues/180
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22compatibility%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22compatibility%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22

<mtable groupalign="{decimalpoint left left decimalpoint left left decimalpoint}">
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢<!--InvisibleTimes--> </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>
<maligngroup/>
<mn> 55 </mn>
<mo> ⁢<!--InvisibleTimes--> </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>

</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢<!--InvisibleTimes--> </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢<!--InvisibleTimes--> </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

123 of 434 26/08/2025, 11:30

<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>

</mrow>
</mrow>

</mtd>
</mtr>

</mtable>

A simple algorithm by which a MathML renderer can perform the alignment specified in this section is given here. Since the
alignment specification is deterministic (except for the definition of the left and right edges of a character), any correct
MathML alignment algorithm will have the same behavior as this one. Each mtable column (alignment scope) can be
treated independently; the algorithm given here applies to one mtable column, and takes into account the alignment
elements and the columnalign attribute described under mtable (3.5.1 Table or Matrix <mtable>). In an RTL context,
switch left and right edges in the algorithm.

NOTE

This algorithm should be verified by an implementation.

1. A rendering is computed for the contents of each table cell in the column, using zero width for all maligngroup and
malignmark elements. The final rendering will be identical except for horizontal shifts applied to each alignment
group and/or table cell.

2. For each alignment group, the horizontal positions of the left edge, alignment point (if specified by malignmark,
otherwise the left edge), and right edge are noted, allowing the width of the group on each side of the alignment point
(left and right) to be determined. The sum of these two “side-widths”, i.e. the sum of the widths to the left and right of
the alignment point, will equal the width of the alignment group.

3. Each column of alignment groups is scanned. The ith scan covers the ith alignment group in each table cell containing
any alignment groups. Table cells with no alignment groups, or with fewer than i alignment groups, are ignored. Each
scan computes two maximums over the alignment groups scanned: the maximum width to the left of the alignment
point, and the maximum width to the right of the alignment point, of any alignment group scanned.

4. The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which
will be the width of each table cell containing alignment groups. Call the maximum number of alignment groups in one
cell n; each such cell is divided into 2n horizontally adjacent sections, called L(i) and R(i) for i from 1 to n, using the 2n
maximum side-widths computed above; for each i, the width of all sections called L(i) is the maximum width of any
cell's ith alignment group to the left of its alignment point, and the width of all sections called R(i) is the maximum
width of any cell's ith alignment group to the right of its alignment point.

3.5.4.7 A simple alignment algorithm

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

124 of 434 26/08/2025, 11:30

5. Each alignment group is then shifted horizontally as a block to a unique position that places: in the section called L(i)
that part of the ith group to the left of its alignment point; in the section called R(i) that part of the ith group to the right
of its alignment point. This results in the alignment point of each ith group being on the boundary between adjacent
sections L(i) and R(i), so that all alignment points of ith groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and may be
different for each cell, and different from the single width used for cells containing alignment groups. The maximum of all
the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the columnalign attribute of
the innermost surrounding mtable, mtr, or mtd element that has an explicit value for it, as described in the sections on
those elements. This may mean that the cells containing alignment groups will be shifted within their column, in addition to
their alignment groups having been shifted within the cells as described above, but since each such cell has the same width,
it will be shifted the same amount within the column, thus maintaining the vertical alignment of the alignment points of the
corresponding alignment groups in each cell.

Mathematics used in the lower grades such as two-dimensional addition, multiplication, and long division tends to be tabular
in nature. However, the specific notations used varies among countries much more than for higher level math. Furthermore,
elementary math often presents examples in some intermediate state and MathML must be able to capture these intermediate
or intentionally missing partial forms. Indeed, these constructs represent memory aids or procedural guides, as much as they
represent ‘mathematics’.

The elements used for basic alignments in elementary math are:

mstack
align rows of digits and operators

msgroup
groups rows with similar alignment

msrow
groups digits and operators into a row

msline
draws lines between rows of the stack

mscarries
annotates the following row with optional borrows/carries and/or crossouts

mscarry
a borrow/carry and/or crossout for a single digit

mlongdiv
specifies a divisor and a quotient for long division, along with a stack of the intermediate computations

mstack and mlongdiv are the parent elements for all elementary math layout. Any children of mstack, mlongdiv, and
msgroup, besides msrow, msgroup, mscarries and msline, are treated as if implicitly surrounded by an msrow (see
3.6.4 Rows in Elementary Math <msrow>not-core for more details about rows).

3.6 Elementary Math

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

125 of 434 26/08/2025, 11:30

Since the primary use of these stacking constructs is to stack rows of numbers aligned on their digits, and since numbers are
always formatted left-to-right, the columns of an mstack are always processed left-to-right; the overall directionality in
effect (i.e. the dir attribute) does not affect to the ordering of display of columns or carries in rows and, in particular, does
not affect the ordering of any operators within a row (see 3.1.5 Directionality).

These elements are described in this section followed by examples of their use. In addition to two-dimensional addition,
subtraction, multiplication, and long division, these elements can be used to represent several notations used for repeating
decimals.

A very simple example of two-dimensional addition is shown below:

<mstack>
<mn>424</mn>
<msrow> <mo>+</mo> <mn>33</mn> </msrow>
<msline/>

</mstack>

Many more examples are given in 3.6.8 Elementary Math Examples.

mstack is used to lay out rows of numbers that are aligned on each digit. This is common in many elementary math
notations such as 2D addition, subtraction, and multiplication.

The children of an mstack represent rows, or groups of them, to be stacked each below the previous row; there can be any
number of rows. An msrow represents a row; an msgroup groups a set of rows together so that their horizontal alignment
can be adjusted together; an mscarries represents a set of carries to be applied to the following row; an msline represents
a line separating rows. Any other element is treated as if implicitly surrounded by msrow.

Each row contains ‘digits’ that are placed into columns. (see 3.6.4 Rows in Elementary Math <msrow>not-core for further
details). The stackalign attribute together with the position and shift attributes of msgroup, mscarries, and msrow
determine to which column a character belongs.

The width of a column is the maximum of the widths of each ‘digit’ in that column — carries do not participate in the width
calculation; they are treated as having zero width. If an element is too wide to fit into a column, it overflows into the
adjacent column(s) as determined by the charalign attribute. If there is no character in a column, its width is taken to be
the width of a 0 in the current language (in many fonts, all digits have the same width).

The method for laying out an mstack is:

3.6.1 Stacks of Characters <mstack>not-core

3.6.1.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

126 of 434 26/08/2025, 11:30

1. The ‘digits’ in a row are determined.

2. All of the digits in a row are initially aligned according to the stackalign value.

3. Each row is positioned relative to that alignment based on the position attribute (if any) that controls that row.

4. The maximum width of the digits in a column are determined and shorter and wider entries in that column are aligned
according to the charalign attribute.

5. The width and height of the mstack element are computed based on the rows and columns. Any overflow from a
column is not used as part of that computation.

6. The baseline of the mstack element is determined by the align attribute.

mstack elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

3.6.1.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

127 of 434 26/08/2025, 11:30

Name values default

alignnot-core ("top" | "bottom" | "center" | "baseline" | "axis"), rownumber? baseline

specifies the vertical alignment of the mstack with respect to its environment. The legal values
and their meanings are the same as that for mtable's align attribute.

stackalignnot-core "left" | "center" | "right" | "decimalpoint" decimalpoint

specifies which column is used to horizontally align the rows. For left, rows are aligned flush on
the left; similarly for right, rows are flush on the right; for center, the middle column (or to
the right of the middle, for an even number of columns) is used for alignment. Rows with non-
zero position, or affected by a shift, are treated as if the requisite number of empty columns
were added on the appropriate side; see 3.6.3 Group Rows with Similar Positions <msgroup>not-

core and 3.6.4 Rows in Elementary Math <msrow>not-core. For decimalpoint, the column used is
the left-most column in each row that contains the decimalpoint character specified using the
decimalpoint attribute of mstyle (default "."). If there is no decimalpoint character in the row,
an implied decimal is assumed on the right of the first number in the row; see decimalpoint for
a discussion of decimalpoint.

charalignnot-core "left" | "center" | "right" right

specifies the horizontal alignment of digits within a column. If the content is larger than the
column width, then it overflows the opposite side from the alignment. For example, for right,
the content will overflow on the left side; for center, it overflows on both sides. This excess does
not participate in the column width calculation, nor does it participate in the overall width of the
mstack. In these cases, authors should take care to avoid collisions between column overflows.

charspacingnot-core length | "loose" | "medium" | "tight" medium

specifies the amount of space to put between each column. Larger spacing might be useful if
carries are not placed above or are particularly wide. The keywords loose, medium, and tight
automatically adjust spacing to when carries or other entries in a column are wide. The three
values allow authors to some flexibility in choosing what the layout looks like without having to
figure out what values work well. In all cases, the spacing between columns is a fixed amount and
does not vary between different columns.

Long division notation varies quite a bit around the world, although the heart of the notation is often similar. mlongdiv is
similar to mstack and used to layout long division. The first two children of mlongdiv are the divisor and the result of the
division, in that order. The remaining children are treated as if they were children of mstack. The placement of these and
the lines and separators used to display long division are controlled by the longdivstyle attribute.

3.6.2 Long Division <mlongdiv>not-core

3.6.2.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

128 of 434 26/08/2025, 11:30

The result or divisor may be an elementary math element or may be an empty <mrow/> (the specific empty element <none/
> used in MathML 3 is not used in this specification). In particular, if msgroup is used, the elements in that group may or
may not form their own mstack or be part of the dividend's mstack, depending upon the value of the longdivstyle
attribute. For example, in the US style for division, the result is treated as part of the dividend's mstack, but divisor is not.
MathML does not specify when the result and divisor form their own mstack, nor does it specify what should happen if
msline or other elementary math elements are used for the result or divisor and they do not participate in the dividend's
mstack layout.

In the remainder of this section on elementary math, anything that is said about mstack applies to mlongdiv unless stated
otherwise.

mlongdiv elements accept all of the attributes that mstack elements accept (including those specified in 3.1.9 Mathematics
attributes common to presentation elements), along with the attribute listed below.

The values allowed for longdivstyle are open-ended. Conforming renderers may ignore any value they do not handle,
although renderers are encouraged to render as many of the values listed below as possible. Any rules drawn as part of
division layout should be drawn using the color specified by mathcolor.

Name values default

longdivstylenot-core "lefttop" | "stackedrightright" | "mediumstackedrightright" |
"shortstackedrightright" | "righttop" | "left/\right" | "left)(right" | ":right=right" |
"stackedleftleft" | "stackedleftlinetop"

lefttop

Controls the style of the long division layout. The names are meant as a rough mnemonic that
describes the position of the divisor and result in relation to the dividend.

See 3.6.8.3 Long Division for examples of how these notations are drawn. The values listed above are used for long division
notations in different countries around the world:

lefttop
a notation that is commonly used in the United States, Great Britain, and elsewhere

stackedrightright
a notation that is commonly used in France and elsewhere

mediumrightright
a notation that is commonly used in Russia and elsewhere

shortstackedrightright
a notation that is commonly used in Brazil and elsewhere

righttop
a notation that is commonly used in China, Sweden, and elsewhere

left/\right

3.6.2.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

129 of 434 26/08/2025, 11:30

a notation that is commonly used in Netherlands

left)(right
a notation that is commonly used in India

:right=right
a notation that is commonly used in Germany

stackedleftleft
a notation that is commonly used in Arabic countries

stackedleftlinetop
a notation that is commonly used in Arabic countries

msgroup is used to group rows inside of the mstack and mlongdiv elements that have a similar position relative to the
alignment of stack. If not explicitly given, the children representing the stack in mstack and mlongdiv are treated as if they
are implicitly surrounded by an msgroup element.

msgroup elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common
to presentation elements.

3.6.3 Group Rows with Similar Positions <msgroup>not-core

3.6.3.1 Description

3.6.3.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

130 of 434 26/08/2025, 11:30

Name values default

positionnot-core integer 0

specifies the horizontal position of the rows within this group relative to the position determined by
the containing msgroup (according to its position and shift attributes). The resulting position
value is relative to the column specified by stackalign of the containing mstack or mlongdiv.
Positive values move each row towards the tens digit, like multiplying by a power of 10, effectively
padding with empty columns on the right; negative values move towards the ones digit, effectively
padding on the left. The decimal point is counted as a column and should be taken into account for
negative values.

shiftnot-core integer 0

specifies an incremental shift of position for successive children (rows or groups) within this group.
The value is interpreted as with position, but specifies the position of each child (except the first) with
respect to the previous child in the group.

An msrow represents a row in an mstack. In most cases it is implied by the context, but is useful explicitly for putting
multiple elements in a single row, such as when placing an operator "+" or "-" alongside a number within an addition or
subtraction.

If an mn element is a child of msrow (whether implicit or not), then the number is split into its digits and the digits are placed
into successive columns. Any other element, with the exception of mstyle is treated effectively as a single digit occupying
the next column. An mstyle is treated as if its children were directly the children of the msrow, but with their style affected
by the attributes of the mstyle. The empty element <mrow/> may be used to create an empty column.

Note that a row is considered primarily as if it were a number, which is always displayed left-to-right, and so the
directionality used to display the columns is always left-to-right; textual bidirectionality within token elements (other than
mn) still applies, as does the overall directionality within any children of the msrow (which end up treated as single digits);
see 3.1.5 Directionality.

msrow elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements.

3.6.4 Rows in Elementary Math <msrow>not-core

3.6.4.1 Description

3.6.4.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

131 of 434 26/08/2025, 11:30

Name values default

positionnot-core integer 0

specifies the horizontal position of the rows within this group relative to the position determined by
the containing msgroup (according to its position and shift attributes). The resulting position
value is relative to the column specified by stackalign of the containing mstack or mlongdiv.
Positive values move each row towards the tens digit, like multiplying by a power of 10, effectively
padding with empty columns on the right; negative values move towards the ones digit, effectively
padding on the left. The decimal point is counted as a column and should be taken into account for
negative values.

The mscarries element is used for various annotations such as carries, borrows, and crossouts that occur in elementary
math. The children are associated with elements in the following row of the mstack. It is an error for mscarries to be the
last element of an mstack or mlongdiv element. Each child of the mscarries applies to the same column in the following
row. As these annotations are used to adorn what are treated as numbers, the attachment of carries to columns proceeds from
left to right; the overall directionality does not apply to the ordering of the carries, although it may apply to the contents of
each carry; see 3.1.5 Directionality.

Each child of mscarries other than mscarry or <mrow/> is treated as if implicitly surrounded by mscarry; the element
<mrow/> is used when no carry for a particular column is needed. The element <none/> was used in earlier MathML
releases, but was equivalent to an empty <mrow/>. The mscarries element sets displaystyle to false, and increments
scriptlevel by 1, so the children are typically displayed in a smaller font. (See 3.1.6 Displaystyle and Scriptlevel.) It also
changes the default value of scriptsizemultiplier. The effect is that the inherited value of scriptsizemultiplier
should still override the default value, but the default value, inside mscarries, should be 0.6. scriptsizemultiplier
can be set on the mscarries element, and the value should override the inherited value as usual.

If two rows of carries are adjacent to each other, the first row of carries annotates the second (following) row as if the second
row had location=n. This means that the second row, even if it does not draw, visually uses some (undefined by this
specification) amount of space when displayed.

mscarries elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes
common to presentation elements.

3.6.5 Carries, Borrows, and Crossouts <mscarries>not-core

3.6.5.1 Description

3.6.5.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

132 of 434 26/08/2025, 11:30

Name values default

positionnot-core integer 0

specifies the horizontal position of the rows within this group relative to the position
determined by the containing msgroup (according to its position and shift
attributes). The resulting position value is relative to the column specified by
stackalign of the containing mstack or mlongdiv. The interpretation of the value is
the same as position for msgroup or msrow, but it alters the association of each carry
with the column below. For example, position=1 would cause the rightmost carry to be
associated with the second digit column from the right.

locationnot-core "w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" n

specifies the location of the carry or borrow relative to the character below it in the
associated column. Compass directions are used for the values; the default is to place the
carry above the character.

crossoutnot-core ("none" | "updiagonalstrike" | "downdiagonalstrike" |
"verticalstrike" | "horizontalstrike")*

none

specifies how the column content below each carry is "crossed out"; one or more values
may be given and all values are drawn. If none is given with other values, it is ignored.
See 3.6.8 Elementary Math Examples for examples of the different values. The crossout is
only applied for columns which have a corresponding mscarry. The crossouts should be
drawn using the color specified by mathcolor.

scriptsizemultipliernot-core number inherited (0.6)

specifies the factor to change the font size by. See 3.1.6 Displaystyle and Scriptlevel for a
description of how this works with the scriptsize attribute.

mscarry is used inside of mscarries to represent the carry for an individual column. A carry is treated as if its width were
zero; it does not participate in the calculation of the width of its corresponding column; as such, it may extend beyond the
column boundaries. Although it is usually implied, the element may be used explicitly to override the location and/or
crossout attributes of the containing mscarries. It may also be useful with <mrow/> as its content in order to display no
actual carry, but still enable a crossout due to the enclosing mscarries to be drawn for the given column.

3.6.6 A Single Carry <mscarry>not-core

3.6.6.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

133 of 434 26/08/2025, 11:30

The mscarry element accepts the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes
common to presentation elements.

Name values default

locationnot-core "w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw" inherited

specifies the location of the carry or borrow relative to the character in the corresponding column in
the row below it. Compass directions are used for the values.

crossoutnot-core ("none" | "updiagonalstrike" | "downdiagonalstrike" | "verticalstrike" |
"horizontalstrike")*

inherited

specifies how the column content associated with the carry is "crossed out"; one or more values may
be given and all values are drawn. If none is given with other values, it is essentially ignored. The
crossout should be drawn using the color specified by mathcolor.

msline draws a horizontal line inside of an mstack element. The position, length, and thickness of the line are specified as
attributes. If the length is specified, the line is positioned and drawn as if it were a number with the given number of digits.

msline elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common to
presentation elements. The line should be drawn using the color specified by mathcolor.

3.6.6.2 Attributes

3.6.7 Horizontal Line <msline/>not-core

3.6.7.1 Description

3.6.7.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

134 of 434 26/08/2025, 11:30

Name values default

positionnot-core integer 0

specifies the horizontal position of the rows within this group relative to the position
determined by the containing msgroup (according to its position and shift attributes).
The resulting position value is relative to the column specified by stackalign of the
containing mstack or mlongdiv. Positive values move towards the tens digit (like
multiplying by a power of 10); negative values move towards the ones digit. The decimal
point is counted as a column and should be taken into account for negative values. Note that
since the default line length spans the entire mstack, the position has no effect unless the
length is specified as non-zero.

lengthnot-core unsigned-integer 0

Specifies the number of columns that should be spanned by the line. A value of '0' (the
default) means that all columns in the row are spanned (in which case position and
stackalign have no effect).

leftoverhangnot-core length 0

Specifies an extra amount that the line should overhang on the left of the leftmost column
spanned by the line.

rightoverhangnot-core length 0

Specifies an extra amount that the line should overhang on the right of the rightmost column
spanned by the line.

mslinethicknessnot-core length | "thin" | "medium" | "thick" medium

Specifies how thick the line should be drawn. The line should have height=0, and
depth=mslinethickness so that the top of the msline is on the baseline of the surrounding
context (if any). (See 3.3.2 Fractions <mfrac> for discussion of the thickness keywords
medium, thin and thick.)

▸ Show Section

Two-dimensional addition, subtraction, and multiplication typically involve numbers, carries/borrows, lines, and the sign of
the operation.

Below is the example shown at the start of the section: the digits inside the mn elements each occupy a column as does the

3.6.8 Elementary Math Examples

3.6.8.1 Addition and Subtraction

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

135 of 434 26/08/2025, 11:30

"+". <mrow/> is used to fill in the column under the "4" and make the "+" appear to the left of all of the operands. Notice
that no attributes are given on msline causing it to span all of the columns.

<mstack>
<mn>424</mn>
<msrow> <mo>+</mo> <mrow/> <mn>33</mn> </msrow>
<msline/>

</mstack>

The next example illustrates how to put an operator on the right. Placing the operator on the right is standard in the
Netherlands and some other countries. Notice that although there are a total of four columns in the example, because the
default alignment is on the implied decimal point to the right of the numbers, it is not necessary to pad or shift any row.

<mstack>
<mn>123</mn>
<msrow> <mn>456</mn> <mo>+</mo> </msrow>
<msline/>
<mn>579</mn>

</mstack>

The following two examples illustrate the use of mscarries, mscarry and using <mrow/> to fill in a column. The
examples also illustrate two different ways of displaying a borrow.

<mstack>
<mscarries crossout='updiagonalstrike'>
<mn>2</mn> <mn>12</mn> <mscarry crossout='none'> <mrow/> </mscarry>

</mscarries>
<mn>2,327</mn>
<msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>
<msline/>
<mn>1,171</mn>

</mstack>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

136 of 434 26/08/2025, 11:30

<mstack>
<mscarries location='nw'>
<mrow/>
<mscarry crossout='updiagonalstrike' location='n'> <mn>2</mn> </mscarry>
<mn>1</mn>
<mrow/>

</mscarries>
<mn>2,327</mn>
<msrow> <mo>-</mo> <mn> 1,156</mn> </msrow>
<msline/>
<mn>1,171</mn>

</mstack>

The MathML for the second example uses mscarry because a crossout should only happen on a single column:

The next example of subtraction shows a borrowed amount that is underlined (the example is from a Swedish source). There
are two things to notice: an menclose is used in the carry, and <mrow/> is used for the empty element so that mscarry can
be used to create a crossout.

<mstack>
<mscarries>
<mscarry crossout='updiagonalstrike'><mrow/></mscarry>
<menclose notation='bottom'> <mn>10</mn> </menclose>

</mscarries>
<mn>52</mn>
<msrow> <mo>-</mo> <mn> 7</mn> </msrow>
<msline/>
<mn>45</mn>

</mstack>

▸ Show Section

Below is a simple multiplication example that illustrates the use of msgroup and the shift attribute. The first msgroup is
implied and doesn't change the layout. The second msgroup could also be removed, but msrow would be needed for last

3.6.8.2 Multiplication

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

137 of 434 26/08/2025, 11:30

http://www.fritext.se/matte/grunder/posi2.html
http://www.fritext.se/matte/grunder/posi2.html

two children. They msrow would need to set the position or shift attributes, or would add <mrow/> elements to pad the
digits on the right.

<mstack>
<msgroup>
<mn>123</mn>
<msrow><mo>×</mo><mn>321</mn></msrow>

</msgroup>
<msline/>
<msgroup shift="1">
<mn>123</mn>
<mn>246</mn>
<mn>369</mn>

</msgroup>
<msline/>

</mstack>

The following is a more complicated example of multiplication that has multiple rows of carries. It also (somewhat
artificially) includes commas (",") as digit separators. The encoding includes these separators in the spacing attribute value,
along non-ASCII values.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

138 of 434 26/08/2025, 11:30

<mstack>
<mscarries><mn>1</mn><mn>1</mn><mrow/></mscarries>
<mscarries><mn>1</mn><mn>1</mn><mrow/></mscarries>
<mn>1,234</mn>
<msrow><mo>×</mo><mn>4,321</mn></msrow>
<msline/>

<mscarries position='2'>
<mn>1</mn>
<mrow/>
<mn>1</mn>
<mn>1</mn>
<mn>1</mn>
<mrow/>
<mn>1</mn>

</mscarries>
<msgroup shift="1">
<mn>1,234</mn>
<mn>24,68</mn>
<mn>370,2</mn>
<msrow position="1"> <mn>4,936</mn> </msrow>

</msgroup>
<msline/>

<mn>5,332,114</mn>
</mstack>

▸ Show Section

The notation used for long division varies considerably among countries. Most notations share the common characteristics
of aligning intermediate results and drawing lines for the operands to be subtracted. Minus signs are sometimes shown for
the intermediate calculations, and sometimes they are not. The line that is drawn varies in length depending upon the
notation. The most apparent difference among the notations is that the position of the divisor varies, as does the location of
the quotient, remainder, and intermediate terms.

3.6.8.3 Long Division

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

139 of 434 26/08/2025, 11:30

The layout used is controlled by the longdivstyle attribute. Below are examples for the values listed in 3.6.2.2 Attributes.

lefttop stackedrightright mediumstackedrightright shortstackedrightright righttop

left/\right left)(right :right=right stackedleftleft stackedleftlinetop

The MathML for the first example is shown below. It illustrates the use of nested msgroups and how the position is
calculated in those usages.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

140 of 434 26/08/2025, 11:30

<mlongdiv longdivstyle="lefttop">
<mn> 3 </mn>
<mn> 435.3</mn>

<mn> 1306</mn>

<msgroup position="2" shift="-1">
<msgroup>
<mn> 12</mn>
<msline length="2"/>

</msgroup>
<msgroup>
<mn> 10</mn>
<mn> 9</mn>
<msline length="2"/>

</msgroup>
<msgroup>
<mn> 16</mn>
<mn> 15</mn>
<msline length="2"/>
<mn> 1.0</mn> <!-- aligns on '.', not the right edge ('0') -->

</msgroup>
<msgroup position='-1'> <!-- extra shift to move to the right of the "." -->
<mn> 9</mn>
<msline length="3"/>
<mn> 1</mn>

</msgroup>
</msgroup>

</mlongdiv>

With the exception of the last example, the encodings for the other examples are the same except that the values for
longdivstyle differ and that a "," is used instead of a "." for the decimal point. For the last example, the only difference
from the other examples besides a different value for longdivstyle is that Arabic numerals have been used in place of
Latin numerals, as shown below.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

141 of 434 26/08/2025, 11:30

<mstyle decimalpoint="٫">
<mlongdiv longdivstyle="stackedleftlinetop">
<mn> ٣ </mn>
<mn> ٤٣٥٫٣</mn>

<mn> ١٣٠٦</mn>
<msgroup position="2" shift="-1">
<msgroup>
<mn> ١٢</mn>
<msline length="2"/>

</msgroup>
<msgroup>
<mn> ١٠</mn>
<mn> ٩</mn>
<msline length="2"/>

</msgroup>
<msgroup>
<mn> ١٦</mn>
<mn> ١٥</mn>
<msline length="2"/>
<mn> ١٫٠</mn>

</msgroup>
<msgroup position='-1'>
<mn> ٩</mn>
<msline length="3"/>
<mn> ١</mn>

</msgroup>
</msgroup>

</mlongdiv>
</mstyle>

▸ Show Section

Decimal numbers that have digits that repeat infinitely such as 1/3 (.3333...) are represented using several notations. One
common notation is to put a horizontal line over the digits that repeat (in Portugal an underline is used). Another notation

3.6.8.4 Repeating decimal

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

142 of 434 26/08/2025, 11:30

involves putting dots over the digits that repeat. The MathML for these involves using mstack, msrow, and msline in a
straightforward manner. These notations are shown below:

<mstack stackalign="right">
<msline length="1"/>
<mn> 0.3333 </mn>

</mstack>

<mstack stackalign="right">
<msline length="6"/>
<mn> 0.142857 </mn>

</mstack>

<mstack stackalign="right">
<mn> 0.142857 </mn>
<msline length="6"/>

</mstack>

<mstack stackalign="right">
<msrow> <mo>.</mo> <mrow/><mrow/><mrow/><mrow/> <mo>.</mo> </msrow>
<mn> 0.142857 </mn>

</mstack>

The maction element provides a mechanism for binding actions to expressions. This element accepts any number of sub-
expressions as arguments and the type of action that should happen is controlled by the actiontype attribute. MathML 3
predefined the four actions: toggle, statusline, statusline, and input. However, because the ability to implement
any action depends very strongly on the platform, MathML 4 no longer predefines what these actions do. Furthermore, in the

3.7 Enlivening Expressions

3.7.1 Bind Action to Sub-Expression

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

143 of 434 26/08/2025, 11:30

web environment events connected to javascript to perform actions are a more powerful solution, although maction
provides a convenient wrapper element on which to attach such an event.

Linking to other elements, either locally within the math element or to some URL, is not handled by maction. Instead, it is
handled by adding a link directly on a MathML element as specified in 7.4.4 Linking.

maction elements accept the attributes listed below in addition to those specified in 3.1.9 Mathematics attributes common
to presentation elements.

By default, MathML applications that do not recognize the specified actiontype , or if the actiontype attribute is not
present, should render the selected sub-expression as defined below. If no selected sub-expression exists, it is a MathML
error; the appropriate rendering in that case is as described in D.2 Handling of Errors.

Name values default

actiontypenot-core string

Specifies what should happen for this element. The values allowed are open-ended. Conforming
renderers may ignore any value they do not handle.

selectionnot-core positive-integer 1

Specifies which child should be used for viewing. Its value should be between 1 and the number of
children of the element. The specified child is referred to as the “selected sub-expression” of the
maction element. If the value specified is out of range, it is an error. When the selection
attribute is not specified (including for action types for which it makes no sense), its default value is
1, so the selected sub-expression will be the first sub-expression.

If a MathML application responds to a user command to copy a MathML sub-expression to the environment's “clipboard”
(see 7.3 Transferring MathML), any maction elements present in what is copied should be given selection values that
correspond to their selection state in the MathML rendering at the time of the copy command.

When a MathML application receives a mouse event that may be processed by two or more nested maction elements, the
innermost maction element of each action type should respond to the event.

The actiontype values are open-ended. If another value is given and it requires additional attributes, which should begin
with "data-" or in XML they may be in a different namespace.

<maction actiontype="highlight" data-color="red" data-background="yellow"> expression </maction>
In the example, non-standard data attributes are being used to pass additional information to renderers that support
them. The data-color attributes might change the color of the characters in the presentation, while the data-
background attribute might change the color of the background behind the characters.

3.7.1.1 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

144 of 434 26/08/2025, 11:30

MathML uses the semantics element to allow specifying semantic annotations to presentation MathML elements; these
can be content MathML or other notations. As such, semantics should be considered part of both presentation MathML
and content MathML. All MathML processors should process the semantics element, even if they only process one of
those subsets.

In semantic annotations a presentation MathML expression is typically the first child of the semantics element. However,
it can also be given inside of an annotation-xml element inside the semantics element. If it is part of an annotation-
xml element, then encoding=application/mathml-presentation+xml or encoding=MathML-Presentation may
be used and presentation MathML processors should use this value for the presentation.

See 6. Annotating MathML: semantics for more details about the semantics and annotation-xml elements.

ISSUE 284: Make the sample presentation of Strict Content use intent

There are currently "sample" renderings. Let's make this use intent.

The purpose of Content Markup is to provide an explicit encoding of the underlying mathematical meaning of an
expression, rather than any particular notation for the expression. Mathematical notation is at times ambiguous, context-
dependent, and varies from community to community. In many cases, it is preferable to work directly with the underlying,
formal, mathematical objects. Content Markup provides a rigorous, extensible semantic framework and a markup language
for this purpose.

By encoding the underlying mathematical structure explicitly, without regard to how it is presented, it is possible to
interchange information more precisely between systems that semantically process mathematical objects. Important
application areas include computer algebra systems, automatic reasoning systems, industrial and scientific applications,
multi-lingual translation systems, mathematical search, automated scoring of online assessments, and interactive textbooks.

This chapter presents an overview of basic concepts used to define Content Markup, describes a core collection of elements
that comprise Strict Content Markup, and defines a full collection of elements to support common mathematical idioms.
Strict Content Markup encodes general expression trees in a semantically rigorous way, while the full set of Content
MathML elements provides backward-compatibility with previous versions of Content Markup. The correspondence
between full Content Markup and Strict Content Markup is defined in F. The Strict Content MathML Transformation, which
details an algorithm to translate arbitrary Content Markup into Strict Content Markup.

3.8 Semantics and Presentation

4. Content Markup

MathML 4 need specification update

4.1 Introduction

4.1.1 The Purpose of Content Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

145 of 434 26/08/2025, 11:30

https://github.com/w3c/mathml/issues/284
https://github.com/w3c/mathml/issues/284
https://github.com/w3c/mathml/issues/284
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22

Content MathML represents mathematical objects as expression trees. In general, an expression tree is constructed by
applying an operator to a sequence of sub-expressions. For example, the sum “x+y” can be constructed as the application of
the addition operator to two arguments x and y, and the expression “cos(π)” as the application of the cosine function to the
number π.

The terminal nodes in an expression tree represent basic mathematical objects such as numbers, variables, arithmetic
operations, and so on. The internal nodes in the tree represent function application or other mathematical constructions that
build up compound objects.

MathML defines a relatively small number of commonplace mathematical constructs, chosen to be sufficient in a wide range
of applications. In addition, it provides a mechanism to refer to concepts outside of the collection it defines, allowing them
to be represented as well.

The defined set of content elements is designed to be adequate for simple coding of formulas typically used from
kindergarten through the first two years of college in the United States, that is, up to A-Level or Baccalaureate level in
Europe.

The primary role of the MathML content element set is to encode the mathematical structure of an expression independent
of the notation used to present it. However, rendering issues cannot be ignored. There are many different approaches to
render Content MathML formulae, ranging from native implementations of the MathML elements, to declarative notation
definitions, to XSLT style sheets. Because rendering requirements for Content MathML vary widely, MathML does not
provide a normative rendering specification. Instead, typical renderings are suggested by way of examples given using
presentation markup.

The basic building blocks of Content MathML expressions are numbers, identifiers, and symbols. These building blocks are
combined using function application and binding operators.

In the expression “𝑥 + 2”, the numeral “2” represents a number with a fixed value. Content MathML uses the cn element to
represent numerical quantities. The identifier “𝑥” is a mathematical variable, that is, an identifier that represents a quantity
with no predetermined value. Content MathML uses the ci element to represent variable identifiers.

The plus sign is an identifier that represents a fixed, externally defined object, namely, the addition function. Such an
identifier is called a symbol, to distinguish it from a variable. Common elementary functions and operators are all symbols in
this sense. Content MathML uses the csymbol element to represent symbols.

The fundamental way to combine numbers, variables, and symbols is function application. Content MathML distinguishes
between the function itself (which may be a symbol such as the sine function, a variable such as f, or some other expression)
and the result of applying the function to its arguments. The apply element groups the function with its arguments
syntactically, and represents the expression that results from applying the function to its arguments.

4.1.2 Content Expressions

4.1.3 Expression Concepts

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

146 of 434 26/08/2025, 11:30

In an expression, variables may be described as bound or free variables. Bound variables have a special role within the scope
of a binding expression, and may be renamed consistently within that scope without changing the meaning of the expression.
Free variables are those that are not bound within an expression. Content MathML differentiates between the application of
a function to a free variable (e.g. f(x)) and an operation that binds a variable within a binding scope. The bind element is
used to delineate the binding scope of a bound variable and to group the binding operator with its bound variables, which are
supplied using the bvar element.

In Strict Content markup, the only way to perform variable binding is to use the bind element. In non-Strict Content
markup, other markup elements are provided that more closely resemble well-known idiomatic notations, such as “limit”-
style notations for sums and integrals. These constructs may implicitly bind variables, such as the variable of integration, or
the index variable in a sum. MathML uses the term qualifier element to refer to those elements used to represent the
auxiliary data required by these constructs.

Expressions involving qualifiers follow one of a small number of idiomatic patterns, each of which applies to a class of
similar binding operators. For example, sums and products are in the same class because they use index variables following
the same pattern. The Content MathML operator classes are described in detail in 4.3.4 Operator Classes.

Beginning in MathML 3, Strict Content MathML is defined as a minimal subset of Content MathML that is sufficient to
represent the meaning of mathematical expressions using a uniform structure. The full Content MathML element set retains
backward compatibility with MathML 2, and strikes a pragmatic balance between verbosity and formality.

Content MathML provides a considerable number of predefined functions encoded as empty elements (e.g. sin, log, etc.)
and a variety of constructs for forming compound objects (e.g. set, interval, etc.). In contrast, Strict Content MathML
represents all known functions using a single element (csymbol) with an attribute that points to its definition in an
extensible content dictionary, and uses only apply and bind elements to build up compound expressions. Token elements
such as cn and ci are considered part of Strict Content MathML, but with a more restricted set of attributes and with
content restricted to text.

The formal semantics of Content MathML expressions are given by specifying equivalent Strict Content MathML
expressions, which all have formal semantics defined in terms of content dictionaries. The exact correspondence between
each non-Strict Content MathML structure and its Strict Content MathML equivalent is described in terms of rewrite rules
that are used as part of the transformation algorithm given in F. The Strict Content MathML Transformation.

The algorithm described in F. The Strict Content MathML Transformation is complete in the sense that it gives every
Content MathML expression a specific meaning in terms of a Strict Content MathML expression. In some cases, it gives a
specific strict interpretation to an expression whose meaning was not sufficiently specified in MathML 2. The goal of this
algorithm is to be faithful to natural mathematical intuitions, however, some edge cases may remain where the specific
interpretation given by the algorithm may be inconsistent with earlier expectations.

A conformant MathML processor need not implement this algorithm. The existence of these transformation rules does not
imply that a system must treat equivalent expressions identically. In particular, systems may give different presentation

4.1.4 Variable Binding

4.1.5 Strict Content MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

147 of 434 26/08/2025, 11:30

renderings for expressions that the transformation rules imply are mathematically equivalent. In general, Content MathML
does not define any expectations for the computational behavior of the expressions it encodes, including, but not limited to,
the equivalence of any specific expressions.

Strict Content MathML is designed to be compatible with OpenMath, a standard for representing formal mathematical
objects and semantics. Strict Content MathML is an XML encoding of OpenMath Objects in the sense of [OpenMath]. The
following table gives the correspondence between Strict Content MathML elements and their OpenMath equivalents.

Strict Content MathML OpenMath

cn OMI, OMF

csymbol OMS

ci OMV

cs OMSTR

apply OMA

bind OMBIND

bvar OMBVAR

share OMR

semantics OMATTR

annotation, annotation-xml OMATP, OMFOREIGN

cerror OME

cbytes OMB

Any method to formalize the meaning of mathematical expressions must be extensible, that is, it must provide the ability to
define new functions and symbols to expand the domain of discourse. Content MathML uses the csymbol element to
represent new symbols, and uses Content Dictionaries to describe their mathematical semantics. The association between a
symbol and its semantic description is accomplished using the attributes of the csymbol element to point to the definition of
the symbol in a Content Dictionary.

The correspondence between operator elements in Content MathML and symbol definitions in Content Dictionaries is given
in E.3 The Content MathML Operators. These definitions for predefined MathML operator symbols refer to Content
Dictionaries developed by the OpenMath Society [OpenMath] in conjunction with the W3C Math Working Group. It is
important to note that this information is informative, not normative. In general, the precise mathematical semantics of
predefined symbols are not fully specified by the MathML Recommendation, and the only normative statements about
symbol semantics are those present in the text of this chapter. The semantic definitions provided by the OpenMath Content
Dictionaries are intended to be sufficient for most applications, and are generally compatible with the semantics specified for
analogous constructs in this Recommendation. However, in contexts where highly precise semantics are required (e.g.
communication between computer algebra systems, within formal systems such as theorem provers, etc.) it is the
responsibility of the relevant community of practice to verify, extend or replace definitions provided by OpenMath Content
Dictionaries as appropriate.

4.1.6 Content Dictionaries

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

148 of 434 26/08/2025, 11:30

In this section we will present the elements for encoding the structure of content MathML expressions. These elements are
the only ones used for the Strict Content MathML encoding. Concretely, we have

• basic expressions, i.e. Numbers, string literals, encoded bytes, Symbols, and Identifiers.

• derived expressions, i.e. function applications and binding expressions, and

• semantic annotations

• error markup

Full Content MathML allows further elements presented in 4.3 Content MathML for Specific Structures and 4.3 Content
MathML for Specific Structures, and allows a richer content model presented in this section. Differences in Strict and non-
Strict usage of are highlighted in the sections discussing each of the Strict element below.

Schema Fragment (Strict) Schema Fragment (Full)

Class Cn Cn

Attributes CommonAtt, type CommonAtt, DefEncAtt, type?, base?

type
Attribute
Values

integer | real |
double |
hexdouble

integer | real | double | hexdouble | e-
notation | rational | complex-cartesian |
complex-polar | constant | text

default
is real

base
Attribute
Values

integer
default
is 10

Content text (text | mglyph | sep | PresentationExpression)*

The cn element is the Content MathML element used to represent numbers. Strict Content MathML supports integers, real
numbers, and double precision floating point numbers. In these types of numbers, the content of cn is text. Additionally, cn
supports rational numbers and complex numbers in which the different parts are separated by use of the sep element.
Constructs using sep may be rewritten in Strict Content MathML as constructs using apply as described below.

The type attribute specifies which kind of number is represented in the cn element. The default value is real. Each type
implies that the content be of a certain form, as detailed below.

The default rendering of the text content of cn is the same as that of the Presentation element mn, with suggested variants in

4.2 Content MathML Elements Encoding Expression Structure

4.2.1 Numbers <cn>

4.2.1.1 Rendering <cn>,<sep/>-Represented Numbers

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

149 of 434 26/08/2025, 11:30

the case of attributes or sep being used, as listed below.

In Strict Content MathML, the type attribute is mandatory, and may only take the values integer, real, hexdouble or
double:

integer
An integer is represented by an optional sign followed by a string of one or more decimal “digits”.

real
A real number is presented in radix notation. Radix notation consists of an optional sign (“+” or “-”) followed by a
string of digits possibly separated into an integer and a fractional part by a decimal point. Some examples are 0.3, 1,
and -31.56.

double
This type is used to mark up those double-precision floating point numbers that can be represented in the IEEE 754
standard format [IEEE754]. This includes a subset of the (mathematical) real numbers, negative zero, positive and
negative real infinity and a set of “not a number” values. The lexical rules for interpreting the text content of a cn as an
IEEE double are specified by Section 3.1.2.5 of XML Schema Part 2: Datatypes Second Edition
[XMLSchemaDatatypes]. For example, -1E4, 1267.43233E12, 12.78e-2, 12, -0, 0 and INF are all valid doubles in this
format.

hexdouble
This type is used to directly represent the 64 bits of an IEEE 754 double-precision floating point number as a 16 digit
hexadecimal number. Thus the number represents mantissa, exponent, and sign from lowest to highest bits using a least
significant byte ordering. This consists of a string of 16 digits 0-9, A-F. The following example represents a NaN value.
Note that certain IEEE doubles, such as the NaN in the example, cannot be represented in the lexical format for the
double type.

<cn type="hexdouble">7F800000</cn>

Sample Presentation

<mn>0x7F800000</mn>

0x7F800000

The base attribute is used to specify how the content is to be parsed. The attribute value is a base 10 positive integer giving
the value of base in which the text content of the cn is to be interpreted. The base attribute should only be used on elements

4.2.1.2 Strict uses of <cn>

4.2.1.3 Non-Strict uses of <cn>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

150 of 434 26/08/2025, 11:30

https://www.w3.org/TR/xmlschema-2/#double
https://www.w3.org/TR/xmlschema-2/#double

with type integer or real. Its use on cn elements of other type is deprecated. The default value for base is 10.

Additional values for the type attribute element for supporting e-notations for real numbers, rational numbers, complex
numbers and selected important constants. As with the integer, real, double and hexdouble types, each of these types
implies that the content be of a certain form. If the type attribute is omitted, it defaults to real.

integer
Integers can be represented with respect to a base different from 10: If base is present, it specifies (in base 10) the base
for the digit encoding. Thus base='16' specifies a hexadecimal encoding. When base > 10, Latin letters (A-Z, a-z) are
used in alphabetical order as digits. The case of letters used as digits is not significant. The following example encodes
the base 10 number 32736.

<cn base="16">7FE0</cn>

Sample Presentation

<msub><mn>7FE0</mn><mn>16</mn></msub>

7FE016

When base > 36, some integers cannot be represented using numbers and letters alone. For example, while

<cn base="1000">10F</cn>

arguably represents the number written in base 10 as 1,000,015, the number written in base 10 as 1,000,037 cannot be
represented using letters and numbers alone when base is 1000. Consequently, support for additional characters (if
any) that may be used for digits when base > 36 is application specific.

real
Real numbers can be represented with respect to a base different than 10. If a base attribute is present, then the digits
are interpreted as being digits computed relative to that base (in the same way as described for type integer).

e-notation
A real number may be presented in scientific notation using this type. Such numbers have two parts (a significand and
an exponent) separated by a <sep/> element. The first part is a real number, while the second part is an integer
exponent indicating a power of the base.

For example, <cn type="e-notation">12.3<sep/>5</cn> represents 12.3 × 105. The default presentation of this
example is 12.3e5. Note that this type is primarily useful for backwards compatibility with MathML 2, and in most
cases, it is preferable to use the double type, if the number to be represented is in the range of IEEE doubles:

rational
A rational number is given as two integers to be used as the numerator and denominator of a quotient. The numerator
and denominator are separated by <sep/>.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

151 of 434 26/08/2025, 11:30

<cn type="rational">22<sep/>7</cn>

Sample Presentation

<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

22 / 7

complex-cartesian
A complex cartesian number is given as two numbers specifying the real and imaginary parts. The real and imaginary
parts are separated by the <sep/> element, and each part has the format of a real number as described above.

<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

Sample Presentation

<mrow>
<mn>12.3</mn><mo>+</mo><mn>5</mn><mo>⁢<!--InvisibleTimes--></mo><mi>i</mi>

</mrow>

12.3 + 5𝑖

complex-polar
A complex polar number is given as two numbers specifying the magnitude and angle. The magnitude and angle are
separated by the <sep/> element, and each part has the format of a real number as described above.

<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>

Sample Presentation

<mrow>
<mn>2</mn>
<mo>⁢<!--InvisibleTimes--></mo>
<msup>
<mi>e</mi>
<mrow><mi>i</mi><mo>⁢<!--InvisibleTimes--></mo><mn>3.1415</mn></mrow>

</msup>
</mrow>

2𝑒𝑖3.1415

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

152 of 434 26/08/2025, 11:30

<mrow>
<mi>Polar</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3.1415</mn><mo>)</mo></mrow>

</mrow>

Polar (2, 3.1415)

constant
If the value type is constant, then the content should be a Unicode representation of a well-known constant. Some
important constants and their common Unicode representations are listed below.

This cn type is primarily for backward compatibility with MathML 1.0. MathML 2.0 introduced many empty elements,
such as <pi/> to represent constants, and using these representations or a Strict csymbol representation is preferred.

In addition to the additional values of the type attribute, the content of cn element can contain (in addition to the sep
element allowed in Strict Content MathML) mglyph elements to refer to characters not currently available in Unicode, or a
general presentation construct (see 3.1.8 Summary of Presentation Elements), which is used for rendering (see 4.1.2 Content
Expressions).

If a base attribute is present, it specifies the base used for the digit encoding of both integers. The use of base with
rational numbers is deprecated.

Schema Fragment (Strict) Schema Fragment (Full)

Class Ci Ci

Attributes CommonAtt, type? CommonAtt, DefEncAtt, type?

type
Attribute
Values

integer| rational| real| complex| complex-
polar| complex-cartesian| constant| function|
vector| list| set| matrix

string

Qualifiers
BvarQ, DomainQ, degree,
momentabout, logbase

Content text
text | mglyph |
PresentationExpression

Content MathML uses the ci element (mnemonic for “content identifier”) to construct a variable. Content identifiers
represent “mathematical variables” which have properties, but no fixed value. For example, x and y are variables in the
expression “x+y”, and the variable x would be represented as

<ci>x</ci>

In MathML, variables are distinguished from symbols, which have fixed, external definitions, and are represented by the

4.2.2 Content Identifiers <ci>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

153 of 434 26/08/2025, 11:30

csymbol element.

After white space normalization the content of a ci element is interpreted as a name that identifies it. Two variables are
considered equal, if and only if their names are identical and in the same scope (see 4.2.6 Bindings and Bound Variables
<bind> and <bvar> for a discussion).

The ci element uses the type attribute to specify the basic type of object that it represents. In Strict Content MathML, the
set of permissible values is integer, rational, real, complex, complex-polar, complex-cartesian, constant,
function, vector, list, set, and matrix. These values correspond to the symbols integer_type, rational_type,
real_type, complex_polar_type, complex_cartesian_type, constant_type, fn_type, vector_type, list_type, set_type, and
matrix_type in the mathmltypes Content Dictionary: In this sense the following two expressions are considered equivalent:

<ci type="integer">n</ci>

<semantics>
<ci>n</ci>
<annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
<csymbol cd="mathmltypes">integer_type</csymbol>

</annotation-xml>
</semantics>

Note that complex should be considered an alias for complex-cartesian and rewritten to the same
complex_cartesian_type symbol. It is perhaps a more natural type name for use with ci as the distinction between
cartesian and polar form really only affects the interpretation of literals encoded with cn.

The ci element allows any string value for the type attribute, in particular any of the names of the MathML container
elements or their type values.

For a more advanced treatment of types, the type attribute is inappropriate. Advanced types require significant structure of
their own (for example, vector(complex)) and are probably best constructed as mathematical objects and then associated
with a MathML expression through use of the semantics element. See [MathML-Types] for more examples.

If the content of a ci element consists of Presentation MathML, that presentation is used. If no such tagging is supplied then

4.2.2.1 Strict uses of <ci>

4.2.2.2 Non-Strict uses of <ci>

4.2.2.3 Rendering Content Identifiers

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

154 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmltypes#integer_type
https://openmath.org/cd/mathmltypes#integer_type
https://openmath.org/cd/mathmltypes#rational_type
https://openmath.org/cd/mathmltypes#rational_type
https://openmath.org/cd/mathmltypes#real_type
https://openmath.org/cd/mathmltypes#real_type
https://openmath.org/cd/mathmltypes#complex_polar_type
https://openmath.org/cd/mathmltypes#complex_polar_type
https://openmath.org/cd/mathmltypes#complex_cartesian_type
https://openmath.org/cd/mathmltypes#complex_cartesian_type
https://openmath.org/cd/mathmltypes#constant_type
https://openmath.org/cd/mathmltypes#constant_type
https://openmath.org/cd/mathmltypes#fn_type
https://openmath.org/cd/mathmltypes#fn_type
https://openmath.org/cd/mathmltypes#vector_type
https://openmath.org/cd/mathmltypes#vector_type
https://openmath.org/cd/mathmltypes#list_type
https://openmath.org/cd/mathmltypes#list_type
https://openmath.org/cd/mathmltypes#set_type
https://openmath.org/cd/mathmltypes#set_type
https://openmath.org/cd/mathmltypes#matrix_type
https://openmath.org/cd/mathmltypes#matrix_type
https://openmath.org/cd/mathmltypes
https://openmath.org/cd/mathmltypes
https://openmath.org/cd/mathmltypes#complex_cartesian_type
https://openmath.org/cd/mathmltypes#complex_cartesian_type

the text content is rendered as if it were the content of an mi element. If an application supports bidirectional text rendering,
then the rendering follows the Unicode bidirectional rendering.

The type attribute can be interpreted to provide rendering information. For example in

<ci type="vector">V</ci>

a renderer could display a bold V for the vector.

Schema Fragment (Strict) Schema Fragment (Full)

Class Csymbol Csymbol

Attributes CommonAtt, cd CommonAtt, DefEncAtt, type?, cd?

Content SymbolName text | mglyph | PresentationExpression

Qualifiers BvarQ, DomainQ, degree, momentabout, logbase

A csymbol is used to refer to a specific, mathematically-defined concept with an external definition. In the expression
“x+y”, the plus sign is a symbol since it has a specific, external definition, namely the addition function. MathML 3 calls
such an identifier a symbol. Elementary functions and common mathematical operators are all examples of symbols. Note
that the term “symbol” is used here in an abstract sense and has no connection with any particular presentation of the
construct on screen or paper.

The csymbol identifies the specific mathematical concept it represents by referencing its definition via attributes.
Conceptually, a reference to an external definition is merely a URI, i.e. a label uniquely identifying the definition. However,
to be useful for communication between user agents, external definitions must be shared.

For this reason, several longstanding efforts have been organized to develop systematic, public repositories of mathematical
definitions. Most notable of these, the OpenMath Society repository of Content Dictionaries (CDs) is extensive, open and
active. In MathML 3, OpenMath CDs are the preferred source of external definitions. In particular, the definitions of pre-
defined MathML 3 operators and functions are given in terms of OpenMath CDs.

MathML 3 provides two mechanisms for referencing external definitions or content dictionaries. The first, using the cd
attribute, follows conventions established by OpenMath specifically for referencing CDs. This is the form required in Strict
Content MathML. The second, using the definitionURL attribute, is backward compatible with MathML 2, and can be
used to reference CDs or any other source of definitions that can be identified by a URI. It is described in the following
section.

When referencing OpenMath CDs, the preferred method is to use the cd attribute as follows. Abstractly, OpenMath symbol
definitions are identified by a triple of values: a symbol name, a CD name, and a CD base, which is a URI that disambiguates

4.2.3 Content Symbols <csymbol>

4.2.3.1 Strict uses of <csymbol>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

155 of 434 26/08/2025, 11:30

CDs of the same name. To associate such a triple with a csymbol, the content of the csymbol specifies the symbol name,
and the name of the Content Dictionary is given using the cd attribute. The CD base is determined either from the document
embedding the math element which contains the csymbol by a mechanism given by the embedding document format, or by
system defaults, or by the cdgroup attribute, which is optionally specified on the enclosing math element; see 2.2.1
Attributes. In the absence of specific information http://www.openmath.org/cd is assumed as the CD base for all
csymbol elements annotation, and annotation-xml. This is the CD base for the collection of standard CDs maintained
by the OpenMath Society.

The cdgroup specifies a URL to an OpenMath CD Group file. For a detailed description of the format of a CD Group file,
see Section 4.4.2 (CDGroups) in [OpenMath]. Conceptually, a CD group file is a list of pairs consisting of a CD name, and a
corresponding CD base. When a csymbol references a CD name using the cd attribute, the name is looked up in the CD
Group file, and the associated CD base value is used for that csymbol. When a CD Group file is specified, but a referenced
CD name does not appear in the group file, or there is an error in retrieving the group file, the referencing csymbol is not
defined. However, the handling of the resulting error is not defined, and is the responsibility of the user agent.

While references to external definitions are URIs, it is strongly recommended that CD files be retrievable at the location
obtained by interpreting the URI as a URL. In particular, other properties of the symbol being defined may be available by
inspecting the Content Dictionary specified. These include not only the symbol definition, but also examples and other
formal properties. Note, however, that there are multiple encodings for OpenMath Content Dictionaries, and it is up to the
user agent to correctly determine the encoding when retrieving a CD.

In addition to the forms described above, the csymbol and element can contain mglyph elements to refer to characters not
currently available in Unicode, or a general presentation construct (see 3.1.8 Summary of Presentation Elements), which is
used for rendering (see 4.1.2 Content Expressions). In this case, when writing to Strict Content MathML, the csymbol
should be treated as a ci element, and rewritten using Rewrite: ci presentation mathml.

External definitions (in OpenMath CDs or elsewhere) may also be specified directly for a csymbol using the
definitionURL attribute. When used to reference OpenMath symbol definitions, the abstract triple of (symbol name, CD
name, CD base) is mapped to a fully-qualified URI as follows:

URI = cdbase + '/' + cd-name + '#' + symbol-name

For example,

(plus, arith1, http://www.openmath.org/cd)

is mapped to

http://www.openmath.org/cd/arith1#plus

The resulting URI is specified as the value of the definitionURL attribute.

This form of reference is useful for backwards compatibility with MathML2 and to facilitate the use of Content MathML

4.2.3.2 Non-Strict uses of <csymbol>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

156 of 434 26/08/2025, 11:30

within URI-based frameworks (such as RDF [RDF] in the Semantic Web or OMDoc [OMDoc1.2]). Another benefit is that
the symbol name in the CD does not need to correspond to the content of the csymbol element. However, in general, this
method results in much longer MathML instances. Also, in situations where CDs are under development, the use of a CD
Group file allows the locations of CDs to change without a change to the markup. A third drawback to definitionURL is
that unlike the cd attribute, it is not limited to referencing symbol definitions in OpenMath content dictionaries. Hence, it is
not in general possible for a user agent to automatically determine the proper interpretation for definitionURL values
without further information about the context and community of practice in which the MathML instance occurs.

Both the cd and definitionURL mechanisms of external reference may be used within a single MathML instance.
However, when both a cd and a definitionURL attribute are specified on a single csymbol, the cd attribute takes
precedence.

If the content of a csymbol element is tagged using presentation tags, that presentation is used. If no such tagging is
supplied then the text content is rendered as if it were the content of an mi element. In particular if an application supports
bidirectional text rendering, then the rendering follows the Unicode bidirectional rendering.

Schema Fragment (Strict) Schema Fragment (Full)

Class Cs Cs

Attributes CommonAtt CommonAtt, DefEncAtt

Content text text

The cs element encodes “string literals” which may be used in Content MathML expressions.

The content of cs is text; no Presentation MathML constructs are allowed even when used in non-strict markup. Specifically,
cs may not contain mglyph elements, and the content does not undergo white space normalization.

Content MathML

<set>
<cs>A</cs><cs>B</cs><cs> </cs>

</set>

Sample Presentation

4.2.3.3 Rendering Symbols

4.2.4 String Literals <cs>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

157 of 434 26/08/2025, 11:30

<mrow>
<mo>{</mo>
<ms>A</ms>
<mo>,</mo>
<ms>B</ms>
<mo>,</mo>
<ms> </ms>
<mo>}</mo>

</mrow>

{"A", "B", " "}

Schema Fragment (Strict) Schema Fragment (Full)

Class Apply Apply

Attributes CommonAtt CommonAtt, DefEncAtt

Content ContExp+ ContExp+ | (ContExp, BvarQ, Qualifier?, ContExp*)

The most fundamental way of building a compound object in mathematics is by applying a function or an operator to some
arguments.

In MathML, the apply element is used to build an expression tree that represents the application of a function or operator to
its arguments. The resulting tree corresponds to a complete mathematical expression. Roughly speaking, this means a piece
of mathematics that could be surrounded by parentheses or “logical brackets” without changing its meaning.

For example, (x + y) might be encoded as

<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>

The opening and closing tags of apply specify exactly the scope of any operator or function. The most typical way of using
apply is simple and recursive. Symbolically, the content model can be described as:

<apply> op [a b ...] </apply>

where the operands a, b, ... are MathML expression trees themselves, and op is a MathML expression tree that represents an
operator or function. Note that apply constructs can be nested to arbitrary depth.

4.2.5 Function Application <apply>

4.2.5.1 Strict Content MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

158 of 434 26/08/2025, 11:30

An apply may in principle have any number of operands. For example, (x + y + z) can be encoded as

<apply><csymbol cd="arith1">plus</csymbol>
<ci>x</ci>
<ci>y</ci>
<ci>z</ci>

</apply>

Note that MathML also allows applications without operands, e.g. to represent functions like random(), or current-
date().

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For example, a x + b
would be encoded as

<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>a</ci>
<ci>x</ci>

</apply>
<ci>b</ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse expressions correctly. The
apply tags provide the proper grouping for the re-use of the expressions within other constructs. Any expression enclosed
by an apply element is well-defined, coherent object whose interpretation does not depend on the surrounding context. This
is in sharp contrast to presentation markup, where the same expression may have very different meanings in different
contexts. For example, an expression with a visual rendering such as (F+G)(x) might be a product, as in

<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>F</ci>
<ci>G</ci>

</apply>
<ci>x</ci>

</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by constructing the sum

<apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>

and applying it to the argument x as in

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

159 of 434 26/08/2025, 11:30

<apply>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>F</ci>
<ci>G</ci>

</apply>
<ci>x</ci>

</apply>

In both cases, the interpretation of the outer apply is explicit and unambiguous, and does not change regardless of where
the expression is used.

The preceding example also illustrates that in an apply construct, both the function and the arguments may be simple
identifiers or more complicated expressions.

The apply element is conceptually necessary in order to distinguish between a function or operator, and an instance of its
use. The expression constructed by applying a function to 0 or more arguments is always an element from the codomain of
the function. Proper usage depends on the operator that is being applied. For example, the plus operator may have zero or
more arguments, while the minus operator requires one or two arguments in order to be properly formed.

Strict Content MathML applications are rendered as mathematical function applications. If <mi>F</mi> denotes the
rendering of <ci>f</ci> and <mi>Ai</mi> the rendering of <ci>ai</ci>, the sample rendering of a simple application
is as follows:

Content MathML

<apply><ci>f</ci>
<ci>a1</ci>
<ci>a2</ci>
<ci>...</ci>
<ci>an</ci>

</apply>

Sample Presentation

4.2.5.2 Rendering Applications

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

160 of 434 26/08/2025, 11:30

<mrow>
<mi>F</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo fence="true">(</mo>
<mi>A1</mi>
<mo separator="true">,</mo>
<mi>...</mi>
<mo separator="true">,</mo>
<mi>A2</mi>
<mo separator="true">,</mo>
<mi>An</mi>
<mo fence="true">)</mo>

</mrow>
</mrow>

𝐹(A1, ..., A2, An)

Non-Strict MathML applications may also be used with qualifiers. In the absence of any more specific rendering rules for
well-known operators, rendering should follow the sample presentation below, motivated by the typical presentation for
sum. Let <mi>Op</mi> denote the rendering of <ci>op</ci>, <mi>X</mi> the rendering of <ci>x</ci>, and so on.
Then:

Content MathML

<apply><ci>op</ci>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>d</ci></domainofapplication>
<ci>expression-in-x</ci>

</apply>

Sample Presentation

<mrow>
<munder>
<mi>Op</mi>
<mrow><mi>X</mi><mo>∈</mo><mi>D</mi></mrow>

</munder>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo fence="true">(</mo>
<mi>Expression-in-X</mi>
<mo fence="true">)</mo>

</mrow>
</mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

161 of 434 26/08/2025, 11:30

Op
𝑋∈𝐷

(Expression-in-X)

Many complex mathematical expressions are constructed with the use of bound variables, and bound variables are an
important concept of logic and formal languages. Variables become bound in the scope of an expression through the use of a
quantifier. Informally, they can be thought of as the “dummy variables” in expressions such as integrals, sums, products, and
the logical quantifiers “for all” and “there exists”. A bound variable is characterized by the property that systematically
renaming the variable (to a name not already appearing in the expression) does not change the meaning of the expression.

Schema Fragment (Strict) Schema Fragment (Full)

Class Bind Bind

Attributes CommonAtt CommonAtt, DefEncAtt

Content ContExp, BvarQ*, ContExp ContExp, BvarQ*, Qualifier*, ContExp+

Binding expressions are represented as MathML expression trees using the bind element. Its first child is a MathML
expression that represents a binding operator, for example integral operator. This is followed by a non-empty list of bvar
elements denoting the bound variables, and then the final child which is a general Content MathML expression, known as
the body of the binding.

Schema Fragment (Strict) Schema Fragment (Full)

Class BVar BVar

Attributes CommonAtt CommonAtt, DefEncAtt

Content ci | semantics-ci (ci | semantics-ci), degree? | degree?, (ci | semantics-ci)

The bvar element is used to denote the bound variable of a binding expression, e.g. in sums, products, and quantifiers or
user defined functions.

The content of a bvar element is an annotated variable, i.e. either a content identifier represented by a ci element or a
semantics element whose first child is an annotated variable. The name of an annotated variable of the second kind is the
name of its first child. The name of a bound variable is that of the annotated variable in the bvar element.

Bound variables are identified by comparing their names. Such identification can be made explicit by placing an id on the

4.2.6 Bindings and Bound Variables <bind> and <bvar>

4.2.6.1 Bindings

4.2.6.2 Bound Variables

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

162 of 434 26/08/2025, 11:30

ci element in the bvar element and referring to it using the xref attribute on all other instances. An example of this
approach is

<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci id="var-x">x</ci></bvar>
<apply><csymbol cd="relation1">lt</csymbol>
<ci xref="var-x">x</ci>
<cn>1</cn>

</apply>
</bind>

This id based approach is especially helpful when constructions involving bound variables are nested.

It is sometimes necessary to associate additional information with a bound variable. The information might be something
like a detailed mathematical type, an alternative presentation or encoding or a domain of application. Such associations are
accomplished in the standard way by replacing a ci element (even inside the bvar element) by a semantics element
containing both the ci and the additional information. Recognition of an instance of the bound variable is still based on the
actual ci elements and not the semantics elements or anything else they may contain. The id-based approach outlined
above may still be used.

The following example encodes ∀𝑥 . 𝑥 + 𝑦 = 𝑦 + 𝑥.

<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
<apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>

</apply>
</bind>

In non-Strict Content markup, the bvar element is used in a number of idiomatic constructs. These are described in 4.3.3
Qualifiers and 4.3 Content MathML for Specific Structures.

It is a defining property of bound variables that they can be renamed consistently in the scope of their parent bind element.
This operation, sometimes known as α-conversion, preserves the semantics of the expression.

A bound variable 𝑥 may be renamed to say 𝑦 so long as 𝑦 does not occur free in the body of the binding, or in any
annotations of the bound variable, 𝑥 to be renamed, or later bound variables.

If a bound variable 𝑥 is renamed, all free occurrences of 𝑥 in annotations in its bvar element, any following bvar children
of the bind and in the expression in the body of the bind should be renamed.

In the example in the previous section, note how renaming 𝑥 to 𝑧 produces the equivalent expression ∀𝑧 . 𝑧 + 𝑦 = 𝑦 + 𝑧,
whereas 𝑥 may not be renamed to 𝑦, as 𝑦 is free in the body of the binding and would be captured, producing the expression
∀𝑦 . 𝑦 + 𝑦 = 𝑦 + 𝑦 which is not equivalent to the original expression.

4.2.6.3 Renaming Bound Variables

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

163 of 434 26/08/2025, 11:30

If <ci>b</ci> and <ci>s</ci> are Content MathML expressions that render as the Presentation MathML expressions
<mi>B</mi> and <mi>S</mi> then the sample rendering of a binding element is as follows:

Content MathML

<bind><ci>b</ci>
<bvar><ci>x1</ci></bvar>
<bvar><ci>...</ci></bvar>
<bvar><ci>xn</ci></bvar>
<ci>s</ci>

</bind>

Sample Presentation

<mrow>
<mi>B</mi>
<mrow>
<mi>x1</mi>
<mo separator="true">,</mo>
<mi>...</mi>
<mo separator="true">,</mo>
<mi>xn</mi>

</mrow>
<mo separator="true">.</mo>
<mi>S</mi>

</mrow>

𝐵x1, ..., xn . 𝑆

To conserve space in the XML encoding, MathML expression trees can make use of structure sharing.

4.2.6.4 Rendering Binding Constructions

4.2.7 Structure Sharing <share>

4.2.7.1 The share element

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

164 of 434 26/08/2025, 11:30

Schema Fragment

Class Share

Attributes CommonAtt, src

src Attribute Values URI

Content Empty

The share element has an src attribute used to reference a MathML expression tree. The value of the src attribute is a
URI specifying the id attribute of the root node of the expression tree. When building a MathML expression tree, the share
element is equivalent to a copy of the MathML expression tree referenced by the src attribute. Note that this copy is
structurally equal, but not identical to the element referenced. The values of the share will often be relative URI
references, in which case they are resolved using the base URI of the document containing the share element.

For instance, the mathematical object f(f(f(a,a),f(a,a)),f(f(a,a),f(a,a))) can be encoded as either one of the following
representations (and some intermediate versions as well).

<apply><ci>f</ci>
<apply><ci>f</ci>
<apply><ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
<apply><ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
</apply>
<apply><ci>f</ci>
<apply><ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
<apply><ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
</apply>

</apply>

<apply><ci>f</ci>
<apply id="t1"><ci>f</ci>
<apply id="t11"><ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
<share src="#t11"/>

</apply>
<share src="#t1"/>

</apply>

Say that an element dominates all its children and all elements they dominate. Say also that a share element dominates its
target, i.e. the element that carries the id attribute pointed to by the src attribute. For instance in the representation on the
right above, the apply element with id="t1" and also the second share (with src="t11") both dominate the apply

4.2.7.2 An Acyclicity Constraint

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

165 of 434 26/08/2025, 11:30

element with id="t11".

The occurrences of the share element must obey the following global acyclicity constraint: An element may not dominate
itself. For example, the following representation violates this constraint:

<apply id="badid1"><csymbol cd="arith1">divide</csymbol>
<cn>1</cn>
<apply><csymbol cd="arith1">plus</csymbol>
<cn>1</cn>
<share src="#badid1"/>

</apply>
</apply>

Here, the apply element with id="badid1" dominates its third child, which dominates the share element, which
dominates its target: the element with id="badid1". So by transitivity, this element dominates itself. By the acyclicity
constraint, the example is not a valid MathML expression tree. It might be argued that such an expression could be given the
interpretation of the continued fraction 1 / (1 + 1 / (1 + ⋯ . However, the procedure of building an expression tree by
replacing share element does not terminate for such an expression, and hence such expressions are not allowed by Content
MathML.

Note that the acyclicity constraint is not restricted to such simple cases, as the following example shows:

<apply id="bar"> <apply id="baz">
<csymbol cd="arith1">plus</csymbol> <csymbol cd="arith1">plus</csymbol>
<cn>1</cn> <cn>1</cn>
<share src="#baz"/> <share src="#bar"/>

</apply> </apply>

Here, the apply with id="bar" dominates its third child, the share with src="#baz". That element dominates its target
apply (with id="baz"), which in turn dominates its third child, the share with src="#bar". Finally, the share with
src="#bar" dominates its target, the original apply element with id="bar". So this pair of representations ultimately
violates the acyclicity constraint.

Note that the share element is a syntactic referencing mechanism: a share element stands for the exact element it points
to. In particular, referencing does not interact with binding in a semantically intuitive way, since it allows a phenomenon
called variable capture to occur. Consider an example:

4.2.7.3 Structure Sharing and Binding

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

166 of 434 26/08/2025, 11:30

<bind id="outer"><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><ci>f</ci>
<bind id="inner"><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<share id="copy" src="#orig"/>

</bind>
<apply id="orig"><ci>g</ci><ci>x</ci></apply>

</apply>
</bind>

This represents a term 𝜆𝑥 . 𝑓(𝜆𝑥 . 𝑔(𝑥), 𝑔(𝑥)) which has two sub-terms of the form 𝑔(𝑥), one with id="orig" (the one
explicitly represented) and one with id="copy", represented by the share element. In the original, explicitly-represented
term, the variable 𝑥 is bound by the outer bind element. However, in the copy, the variable 𝑥 is bound by the inner bind
element. One says that the inner bind has captured the variable 𝑥.

Using references that capture variables in this way can easily lead to representation errors, and is not recommended. For
instance, using α-conversion to rename the inner occurrence of 𝑥 into, say, 𝑦 leads to the semantically equivalent expression
𝜆𝑥 . 𝑓(𝜆𝑦 . 𝑔(𝑦), 𝑔(𝑥)). However, in this form, it is no longer possible to share the expression 𝑔(𝑥). Replacing 𝑥 with 𝑦 in the
inner bvar without replacing the share element results in a change in semantics.

There are several acceptable renderings for the share element. These include rendering the element as a hypertext link to
the referenced element and using the rendering of the element referenced by the src attribute.

Content elements can be annotated with additional information via the semantics element. MathML uses the semantics
element to wrap the annotated element and the annotation-xml and annotation elements used for representing the
annotations themselves. The use of the semantics, annotation and annotation-xml is described in detail in 6.
Annotating MathML: semantics.

The semantics element is considered part of both presentation MathML and Content MathML. MathML considers a
semantics element (strict) Content MathML, if and only if its first child is (strict) Content MathML.

4.2.7.4 Rendering Expressions with Structure Sharing

4.2.8 Attribution via semantics

4.2.9 Error Markup <cerror>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

167 of 434 26/08/2025, 11:30

Schema Fragment (Strict) Schema Fragment (Full)

Class Error Error

Attributes CommonAtt CommonAtt, DefEncAtt

Content csymbol, ContExp* csymbol, ContExp*

A content error expression is made up of a csymbol followed by a sequence of zero or more MathML expressions. The
initial expression must be a csymbol indicating the kind of error. Subsequent children, if present, indicate the context in
which the error occurred.

The cerror element has no direct mathematical meaning. Errors occur as the result of some action performed on an
expression tree and are thus of real interest only when some sort of communication is taking place. Errors may occur inside
other objects and also inside other errors.

As an example, to encode a division by zero error, one might employ a hypothetical aritherror Content Dictionary
containing a DivisionByZero symbol, as in the following expression:

<cerror>
<csymbol cd="aritherror">DivisionByZero</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>

Note that error markup generally should enclose only the smallest erroneous sub-expression. Thus a cerror will often be a
sub-expression of a bigger one, e.g.

<apply><csymbol cd="relation1">eq</csymbol>
<cerror>
<csymbol cd="aritherror">DivisionByZero</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>
<cn>0</cn>

</apply>

The default presentation of a cerror element is an merror expression whose first child is a presentation of the error
symbol, and whose subsequent children are the default presentations of the remaining children of the cerror. In particular,
if one of the remaining children of the cerror is a presentation MathML expression, it is used literally in the corresponding
merror.

<cerror>
<csymbol cd="aritherror">DivisionByZero</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>

Sample Presentation

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

168 of 434 26/08/2025, 11:30

<merror>
<mtext>DivisionByZero: </mtext>
<mfrac><mi>x</mi><mn>0</mn></mfrac>

</merror>

DivisionByZero: 𝑥0

Note that when the context where an error occurs is so nonsensical that its default presentation would not be useful, an
application may provide an alternative representation of the error context. For example:

<cerror>
<csymbol cd="error">Illegal bound variable</csymbol>
<cs> <bvar><plus/></bvar> </cs>

</cerror>

Schema Fragment (Strict) Schema Fragment (Full)

Class Cbytes Cbytes

Attributes CommonAtt CommonAtt, DefEncAtt

Content base64 base64

The content of cbytes represents a stream of bytes as a sequence of characters in Base64 encoding, that is it matches the
base64Binary data type defined in [XMLSchemaDatatypes]. All white space is ignored.

The cbytes element is mainly used for OpenMath compatibility, but may be used, as in OpenMath, to encapsulate output
from a system that may be hard to encode in MathML, such as binary data relating to the internal state of a system, or image
data.

The rendering of cbytes is not expected to represent the content and the proposed rendering is that of an empty mrow.
Typically cbytes is used in an annotation-xml or is itself annotated with Presentation MathML, so this default rendering
should rarely be used.

The elements of Strict Content MathML described in the previous section are sufficient to encode logical assertions and
expression structure, and they do so in a way that closely models the standard constructions of mathematical logic that
underlie the foundations of mathematics. As a consequence, Strict markup can be used to represent all of mathematics, and
is ideal for providing consistent mathematical semantics for all Content MathML expressions.

4.2.10 Encoded Bytes <cbytes>

4.3 Content MathML for Specific Structures

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

169 of 434 26/08/2025, 11:30

At the same time, many notational idioms of mathematics are not straightforward to represent directly with Strict Content
markup. For example, standard notations for sums, integrals, sets, piecewise functions and many other common
constructions require non-obvious technical devices, such as the introduction of lambda functions, to rigorously encode
them using Strict markup. Consequently, in order to make Content MathML easier to use, a range of additional elements
have been provided for encoding such idiomatic constructs more directly. This section discusses the general approach for
encoding such idiomatic constructs, and their Strict Content equivalents. Specific constructions are discussed in detail in 4.3
Content MathML for Specific Structures.

Most idiomatic constructions which Content markup addresses fall into about a dozen classes. Some of these classes, such
as container elements, have their own syntax. Similarly, a small number of non-Strict constructions involve a single element
with an exceptional syntax, for example partialdiff. These exceptional elements are discussed on a case-by-case basis in
4.3 Content MathML for Specific Structures. However, the majority of constructs consist of classes of operator elements
which all share a particular usage of qualifiers. These classes of operators are described in 4.3.4 Operator Classes.

In all cases, non-Strict expressions may be rewritten using only Strict markup. In most cases, the transformation is
completely algorithmic, and may be automated. Rewrite rules for classes of non-Strict constructions are introduced and
discussed later in this section, and rewrite rules for exceptional constructs involving a single operator are given in 4.3
Content MathML for Specific Structures. The complete algorithm for rewriting arbitrary Content MathML as Strict Content
markup is summarized at the end of the Chapter in F. The Strict Content MathML Transformation.

Many mathematical structures are constructed from subparts or parameters. For example, a set is a mathematical object that
contains a collection of elements, so it is natural for the markup for a set to contain the markup for its constituent elements.
The markup for a set may define the set of elements explicitly by enumerating them, or implicitly by rule that uses qualifier
elements. In either case, the markup for the elements is contained in the markup for the set, and this style of representation is
called container markup in MathML. By contrast, Strict markup represents an instance of a set as the result of applying a
function or constructor symbol to arguments. In this style of markup, the markup for the set construction is a sibling of the
markup for the set elements in an enclosing apply element.

MathML provides container markup for the following mathematical constructs: sets, lists, intervals, vectors, matrices (two
elements), piecewise functions (three elements) and lambda functions. There are corresponding constructor symbols in Strict
markup for each of these, with the exception of lambda functions, which correspond to binding symbols in Strict markup.

The rewrite rules for obtaining equivalent Strict Content markup from container markup depend on the operator class of the
particular operator involved. For details about a specific container element, obtain its operator class (and any applicable
special case information) by consulting the syntax table and discussion for that element in E. The Content MathML
Operators. Then apply the rewrite rules for that specific operator class as described in F. The Strict Content MathML
Transformation.

The arguments to container elements that correspond to constructors may be explicitly given as a sequence of child
elements, or implicitly given by a rule using qualifiers. The exceptions are the interval, piecewise, piece, and
otherwise elements. The arguments of these elements must be specified explicitly.

4.3.1 Container Markup

4.3.1.1 Container Markup for Constructor Symbols

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

170 of 434 26/08/2025, 11:30

Here is an example of container markup with explicitly specified arguments:

<set><ci>a</ci><ci>b</ci><ci>c</ci></set>

This is equivalent to the following Strict Content MathML expression:

<apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>

Another example of container markup, where the list of arguments is given indirectly as an expression with a bound
variable. The container markup for the set of even integers is:

<set>
<bvar><ci>x</ci></bvar>
<domainofapplication><integers/></domainofapplication>
<apply><times/><cn>2</cn><ci>x</ci></apply>

</set>

This may be written as follows in Strict Content MathML:

<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<cn>2</cn>
<ci>x</ci>

</apply>
</bind>
<csymbol cd="setname1">Z</csymbol>

</apply>

The lambda element is a container element corresponding to the lambda symbol in the fns1 Content Dictionary. However,
unlike the container elements of the preceding section, which purely construct mathematical objects from arguments, the
lambda element performs variable binding as well. Therefore, the child elements of lambda have distinguished roles. In
particular, a lambda element must have at least one bvar child, optionally followed by qualifier elements, followed by a
Content MathML element. This basic difference between the lambda container and the other constructor container elements
is also reflected in the OpenMath symbols to which they correspond. The constructor symbols have an OpenMath role of
“application”, while the lambda symbol has a role of “bind”.

This example shows the use of lambda container element and the equivalent use of bind in Strict Content MathML

4.3.1.2 Container Markup for Binding Constructors

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

171 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns1#lambda
https://openmath.org/cd/fns1#lambda
https://openmath.org/cd/fns1
https://openmath.org/cd/fns1

<lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>

<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar><ci>x</ci>

</bind>

MathML allows the use of the apply element to perform variable binding in non-Strict constructions instead of the bind
element. This usage conserves backwards compatibility with MathML 2. It also simplifies the encoding of several constructs
involving bound variables with qualifiers as described below.

Use of the apply element to bind variables is allowed in two situations. First, when the operator to be applied is itself a
binding operator, the apply element merely substitutes for the bind element. The logical quantifiers <forall/>,
<exists/> and the container element lambda are the primary examples of this type.

The second situation arises when the operator being applied allows the use of bound variables with qualifiers. The most
common examples are sums and integrals. In most of these cases, the variable binding is to some extent implicit in the
notation, and the equivalent Strict representation requires the introduction of auxiliary constructs such as lambda expressions
for formal correctness.

Because expressions using bound variables with qualifiers are idiomatic in nature, and do not always involve true variable
binding, one cannot expect systematic renaming (alpha-conversion) of variables “bound” with apply to preserve meaning
in all cases. An example for this is the diff element where the bvar term is technically not bound at all.

The following example illustrates the use of apply with a binding operator. In these cases, the corresponding Strict
equivalent merely replaces the apply element with a bind element:

<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><geq/><ci>x</ci><ci>x</ci></apply>

</apply>

The equivalent Strict expression is:

<bind><csymbol cd="logic1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>

</bind>

In this example, the sum operator is not itself a binding operator, but bound variables with qualifiers are implicit in the
standard notation, which is reflected in the non-Strict markup. In the equivalent Strict representation, it is necessary to

4.3.2 Bindings with <apply>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

172 of 434 26/08/2025, 11:30

convert the summand into a lambda expression, and recast the qualifiers as an argument expression:

<apply><sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

The equivalent Strict expression is:

<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn>0</cn>
<cn>100</cn>

</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol>
<ci>x</ci>
<ci>i</ci>

</apply>
</bind>

</apply>

Many common mathematical constructs involve an operator together with some additional data. The additional data is either
implicit in conventional notation, such as a bound variable, or thought of as part of the operator, as is the case with the limits
of a definite integral. MathML 3 uses qualifier elements to represent the additional data in such cases.

Qualifier elements are always used in conjunction with operator or container elements. Their meaning is idiomatic, and
depends on the context in which they are used. When used with an operator, qualifiers always follow the operator and
precede any arguments that are present. In all cases, if more than one qualifier is present, they appear in the order bvar,
lowlimit, uplimit, interval, condition, domainofapplication, degree, momentabout, logbase.

The precise function of qualifier elements depends on the operator or container that they modify. The majority of use cases
fall into one of several categories, discussed below, and usage notes for specific operators and qualifiers are given in 4.3
Content MathML for Specific Structures.

4.3.3 Qualifiers

4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

173 of 434 26/08/2025, 11:30

Class qualifier

Attributes CommonAtt

Content ContExp

(For the syntax of interval see 4.3.10.3 Interval <interval>.)

The primary use of domainofapplication, interval, uplimit, lowlimit and condition is to restrict the values of a
bound variable. The most general qualifier is domainofapplication. It is used to specify a set (perhaps with additional
structure, such as an ordering or metric) over which an operation is to take place. The interval qualifier, and the pair
lowlimit and uplimit also restrict a bound variable to a set in the special case where the set is an interval. Note that
interval is only interpreted as a qualifier if it immediately follows bvar. The condition qualifier, like
domainofapplication, is general, and can be used to restrict bound variables to arbitrary sets. However, unlike the other
qualifiers, it restricts the bound variable by specifying a Boolean-valued function of the bound variable. Thus, condition
qualifiers always contain instances of the bound variable, and thus require a preceding bvar, while the other qualifiers do
not. The other qualifiers may even be used when no variables are being bound, e.g. to indicate the restriction of a function to
a subdomain.

In most cases, any of the qualifiers capable of representing the domain of interest can be used interchangeably. The most
general qualifier is domainofapplication, and therefore has a privileged role. It is the preferred form, unless there are
particular idiomatic reasons to use one of the other qualifiers, e.g. limits for an integral. In MathML 3, the other forms are
treated as shorthand notations for domainofapplication because they may all be rewritten as equivalent
domainofapplication constructions. The rewrite rules to do this are given below. The other qualifier elements are
provided because they correspond to common notations and map more easily to familiar presentations. Therefore, in the
situations where they naturally arise, they may be more convenient and direct than domainofapplication.

To illustrate these ideas, consider the following examples showing alternative representations of a definite integral. Let 𝐶
denote the interval from 0 to 1, and 𝑓(𝑥) = 𝑥2. Then domainofapplication could be used to express the integral of a
function 𝑓 over 𝐶 in this way:

<apply><int/>
<domainofapplication>
<ci type="set">C</ci>

</domainofapplication>
<ci type="function">f</ci>

</apply>

Note that no explicit bound variable is identified in this encoding, and the integrand is a function. Alternatively, the
interval qualifier could be used with an explicit bound variable:

<apply><int/>
<bvar><ci>x</ci></bvar>
<interval><cn>0</cn><cn>1</cn></interval>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

The pair lowlimit and uplimit can also be used. This is perhaps the most “standard” representation of this integral:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

174 of 434 26/08/2025, 11:30

<apply><int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Finally, here is the same integral, represented using a condition on the bound variable:

<apply><int/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><and/>
<apply><leq/><cn>0</cn><ci>x</ci></apply>
<apply><leq/><ci>x</ci><cn>1</cn></apply>

</apply>
</condition>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Note the use of the explicit bound variable within the condition term. Note also that when a bound variable is used, the
integrand is an expression in the bound variable, not a function.

The general technique of using a condition element together with domainofapplication is quite powerful. For
example, to extend the previous example to a multivariate domain, one may use an extra bound variable and a domain of
application corresponding to a cartesian product:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

175 of 434 26/08/2025, 11:30

<apply><int/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<domainofapplication>
<set>
<bvar><ci>t</ci></bvar>
<bvar><ci>u</ci></bvar>
<condition>
<apply><and/>
<apply><leq/><cn>0</cn><ci>t</ci></apply>
<apply><leq/><ci>t</ci><cn>1</cn></apply>
<apply><leq/><cn>0</cn><ci>u</ci></apply>
<apply><leq/><ci>u</ci><cn>1</cn></apply>

</apply>
</condition>
<list><ci>t</ci><ci>u</ci></list>

</set>
</domainofapplication>
<apply><times/>
<apply><power/><ci>x</ci><cn>2</cn></apply>
<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>
</apply>

Note that the order of the inner and outer bound variables is significant.

Class qualifier

Attributes CommonAtt

Content ContExp

The degree element is a qualifier used to specify the “degree” or “order” of an operation. MathML uses the degree
element in this way in three contexts: to specify the degree of a root, a moment, and in various derivatives. Rather than
introduce special elements for each of these families, MathML provides a single general construct, the degree element in
all three cases.

Note that the degree qualifier is not used to restrict a bound variable in the same sense of the qualifiers discussed above.
Indeed, with roots and moments, no bound variable is involved at all, either explicitly or implicitly. In the case of
differentiation, the degree element is used in conjunction with a bvar, but even in these cases, the variable may not be
genuinely bound.

For the usage of degree with the root and moment operators, see the discussion of those operators below. The usage of
degree in differentiation is more complex. In general, the degree element indicates the order of the derivative with respect
to that variable. The degree element is allowed as the second child of a bvar element identifying a variable with respect to
which the derivative is being taken. Here is an example of a second derivative using the degree qualifier:

4.3.3.2 Uses of <degree>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

176 of 434 26/08/2025, 11:30

<apply><diff/>
<bvar>
<ci>x</ci>
<degree><cn>2</cn></degree>

</bvar>
<apply><power/><ci>x</ci><cn>4</cn></apply>

</apply>

For details see 4.3.8.2 Differentiation <diff/> and 4.3.8.3 Partial Differentiation <partialdiff/>.

The qualifiers momentabout and logbase are specialized elements specifically for use with the moment and log operators
respectively. See the descriptions of those operators below for their usage.

The Content MathML elements described in detail in the following sections may be broadly separated into classes. The class
of each element is listed in the operator syntax table given in E.3 The Content MathML Operators. The class gives an
indication of the general intended mathematical usage of the element, and also determines its usage as determined by the
schema. Links to the operator syntax and schema class for each element are provided in the sections that introduce the
elements.

The operator class also determines the applicable rewrite rules for mapping to Strict Content MathML. These rewrite rules
are presented in detail in F. The Strict Content MathML Transformation. They include use cases applicable to specific
operator classes, special-case rewrite rules for individual elements, and a generic rewrite rule F.8 Rewrite operators used by
operators from almost all operator classes.

The following sections present elements representing a core set of mathematical operators, functions and constants. Most are
empty elements, covering the subject matter of standard mathematics curricula up to the level of calculus. The remaining
elements are container elements for sets, intervals, vectors and so on. For brevity, all elements defined in this section are
sometimes called operator elements.

Many MathML operators may be used with an arbitrary number of arguments. The corresponding OpenMath symbols for
elements in these classes also take an arbitrary number of arguments. In all such cases, either the arguments may be given
explicitly as children of the apply or bind element, or the list may be specified implicitly via the use of qualifier elements.

4.3.3.3 Uses of <momentabout> and <logbase>

4.3.4 Operator Classes

4.3.5 N-ary Operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

177 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The plus and times elements represent the addition and multiplication operators. The arguments are normally specified
explicitly in the enclosing apply element. As an n-ary commutative operator, they can be used with qualifiers to specify
arguments, however, this is discouraged, and the sum or product operators should be used to represent such expressions
instead.

▸ Show Section

Content MathML

<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>

Sample Presentation

<mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow>

𝑥 + 𝑦 + 𝑧

The gcd and lcm elements represent the n-ary operators which return the greatest common divisor, or least common
multiple of their arguments. The arguments may be explicitly specified in the enclosing apply element, or specified by
quantifiers.

This default renderings are English-language locale specific: other locales may have different default renderings.

▸ Show Section

Content MathML

<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>

Sample Presentation

4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/>

4.3.5.1.1 EXAMPLE

4.3.5.1.2 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

178 of 434 26/08/2025, 11:30

<mrow>
<mi>gcd</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow>

</mrow>

gcd (𝑎, 𝑏, 𝑐)

Operator Syntax, Schema Class

The sum element represents the n-ary addition operator. The terms of the sum are normally specified by rule through the use
of qualifiers. While it can be used with an explicit list of arguments, this is strongly discouraged, and the plus operator
should be used instead in such situations.

The sum operator may be used either with or without explicit bound variables. When a bound variable is used, the sum
element is followed by one or more bvar elements giving the index variables, followed by qualifiers giving the domain for
the index variables. The final child in the enclosing apply is then an expression in the bound variables, and the terms of the
sum are obtained by evaluating this expression at each point of the domain of the index variables. Depending on the
structure of the domain, the domain of summation is often given by using uplimit and lowlimit to specify upper and
lower limits for the sum.

When no bound variables are explicitly given, the final child of the enclosing apply element must be a function, and the
terms of the sum are obtained by evaluating the function at each point of the domain specified by qualifiers.

▸ Show Section

Content MathML

<apply><sum/>
<bvar><ci>x</ci></bvar>
<lowlimit><ci>a</ci></lowlimit>
<uplimit><ci>b</ci></uplimit>
<apply><ci>f</ci><ci>x</ci></apply>

</apply>

4.3.5.2 N-ary Sum <sum/>

4.3.5.2.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

179 of 434 26/08/2025, 11:30

<apply><sum/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>

</condition>
<apply><ci type="function">f</ci><ci>x</ci></apply>

</apply>

<apply><sum/>
<domainofapplication>
<ci type="set">B</ci>

</domainofapplication>
<ci type="function">f</ci>

</apply>

Sample Presentation

<mrow>
<munderover>
<mo>∑</mo>
<mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow>
<mi>b</mi>

</munderover>
<mrow><mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo

</mrow>

∑
𝑥=𝑎

𝑏

𝑓(𝑥)

<mrow>
<munder>
<mo>∑</mo>
<mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow>

</munder>
<mrow><mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo

</mrow>

∑
𝑥∈𝐵

𝑓(𝑥)

<mrow><munder><mo>∑</mo><mi>B</mi></munder><mi>f</mi></mrow>

∑
𝐵

𝑓

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

180 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The product element represents the n-ary multiplication operator. The terms of the product are normally specified by rule
through the use of qualifiers. While it can be used with an explicit list of arguments, this is strongly discouraged, and the
times operator should be used instead in such situations.

The product operator may be used either with or without explicit bound variables. When a bound variable is used, the
product element is followed by one or more bvar elements giving the index variables, followed by qualifiers giving the
domain for the index variables. The final child in the enclosing apply is then an expression in the bound variables, and the
terms of the product are obtained by evaluating this expression at each point of the domain. Depending on the structure of
the domain, it is commonly given using uplimit and lowlimit qualifiers.

When no bound variables are explicitly given, the final child of the enclosing apply element must be a function, and the
terms of the product are obtained by evaluating the function at each point of the domain specified by qualifiers.

▸ Show Section

Content MathML

<apply><product/>
<bvar><ci>x</ci></bvar>
<lowlimit><ci>a</ci></lowlimit>
<uplimit><ci>b</ci></uplimit>
<apply><ci type="function">f</ci>
<ci>x</ci>

</apply>
</apply>

<apply><product/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/>
<ci>x</ci>
<ci type="set">B</ci>

</apply>
</condition>
<apply><ci>f</ci><ci>x</ci></apply>

</apply>

Sample Presentation

4.3.5.3 N-ary Product <product/>

4.3.5.3.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

181 of 434 26/08/2025, 11:30

<mrow>
<munderover>
<mo>∏</mo>
<mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow>
<mi>b</mi>

</munderover>
<mrow><mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo

</mrow>

∏
𝑥=𝑎

𝑏

𝑓(𝑥)

<mrow>
<munder>
<mo>∏</mo>
<mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow>

</munder>
<mrow><mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>)</mo

</mrow>

∏
𝑥∈𝐵

𝑓(𝑥)

Operator Syntax, Schema Class

The compose element represents the function composition operator. Note that MathML makes no assumption about the
domain and codomain of the constituent functions in a composition; the domain of the resulting composition may be empty.

The compose element is a commutative n-ary operator. Consequently, it may be lifted to the induced operator defined on a
collection of arguments indexed by a (possibly infinite) set by using qualifier elements as described in 4.3.5.4 N-ary
Functional Operators: <compose/>.

▸ Show Section

Content MathML

<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>

4.3.5.4 N-ary Functional Operators: <compose/>

4.3.5.4.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

182 of 434 26/08/2025, 11:30

<apply><eq/>
<apply>
<apply><compose/><ci>f</ci><ci>g</ci></apply>
<ci>x</ci>

</apply>
<apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>

</apply>

Sample Presentation

<mrow>
<mi>f</mi><mo>∘</mo><mi>g</mi><mo>∘</mo><mi>h</mi>

</mrow>

𝑓 ∘ 𝑔 ∘ ℎ

<mrow>
<mrow>
<mrow><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo></mrow>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>

</mrow>
<mo>=</mo>
<mrow>
<mi>f</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>g</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

</mrow>

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥))

Operator Syntax, Schema Class

4.3.5.5 N-ary Logical Operators: <and/>, <or/>, <xor/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

183 of 434 26/08/2025, 11:30

These elements represent n-ary functions taking Boolean arguments and returning a Boolean value. The arguments may be
explicitly specified in the enclosing apply element, or specified via qualifier elements.

and is true if all arguments are true, and false otherwise.
or is true if any of the arguments are true, and false otherwise.
xor is the logical “exclusive or” function. It is true if there are an odd number of true arguments or false otherwise.

▸ Show Section

Content MathML

<apply><and/><ci>a</ci><ci>b</ci></apply>

<apply><and/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>n</ci></uplimit>
<apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn></apply>

</apply>

Strict Content MathML

<apply><csymbol cd="logic1">and</csymbol><ci>a</ci><ci>b</ci></apply>

<apply><csymbol cd="fns2">apply_to_list</csymbol>
<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="list1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="relation1">gt</csymbol>
<apply><csymbol cd="linalg1">vector_selector</csymbol>
<ci>i</ci>
<ci>a</ci>

</apply>
<cn>0</cn>

</apply>
</bind>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn type="integer">0</cn>
<ci>n</ci>

</apply>
</apply>

</apply>

4.3.5.5.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

184 of 434 26/08/2025, 11:30

Sample Presentation

<mrow><mi>a</mi><mo>∧</mo><mi>b</mi></mrow>

𝑎 ∧ 𝑏

<mrow>
<munderover>
<mo>⋀</mo>
<mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow>
<mi>n</mi>

</munderover>
<mrow>
<mo>(</mo>
<msub><mi>a</mi><mi>i</mi></msub>
<mo>></mo>
<mn>0</mn>
<mo>)</mo>

</mrow>
</mrow>

⋀
𝑖=0

𝑛

(𝑎𝑖 > 0)

Operator Syntax, Schema Class

The selector element is the operator for indexing into vectors, matrices and lists. It accepts one or more arguments. The
first argument identifies the vector, matrix or list from which the selection is taking place, and the second and subsequent
arguments, if any, indicate the kind of selection taking place.

When selector is used with a single argument, it should be interpreted as giving the sequence of all elements in the list,
vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first by column, then by
row; so the resulting list is of matrix rows given entry by entry. That is, for a matrix (𝑎𝑖,𝑗), where the indices denote row and
column, respectively, the ordering would be 𝑎1,1, 𝑎1,2, …, 𝑎2,1, 𝑎2,2, … etc.

When two arguments are given, and the first is a vector or list, the second argument specifies the index of an entry in the list
or vector. If the first argument is a matrix then the second argument specifies the index of a matrix row.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second and third
arguments specify the row and column indices of the selected element.

4.3.5.6 N-ary Linear Algebra Operators: <selector/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

185 of 434 26/08/2025, 11:30

▸ Show Section

Content MathML

<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>

<apply><eq/>
<apply><selector/>
<matrix>
<matrixrow><cn>1</cn><cn>2</cn></matrixrow>
<matrixrow><cn>3</cn><cn>4</cn></matrixrow>

</matrix>
<cn>1</cn>

</apply>
<matrix>
<matrixrow><cn>1</cn><cn>2</cn></matrixrow>

</matrix>
</apply>

Sample Presentation

<msub><mi>V</mi><mn>1</mn></msub>

𝑉1

<mrow>
<msub>
<mrow>
<mo>(</mo>
<mtable>
<mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr>
<mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr>

</mtable>
<mo>)</mo>

</mrow>
<mn>1</mn>

</msub>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr></mtable>
<mo>)</mo>

</mrow>
</mrow>

4.3.5.6.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

186 of 434 26/08/2025, 11:30

(
1 2

3 4
)

1

= (1 2)

Operator Syntax, Schema Class

The union element is used to denote the n-ary union of sets. It takes sets as arguments, and denotes the set that contains all
the elements that occur in any of them.

The intersect element is used to denote the n-ary union of sets. It takes sets as arguments, and denotes the set that
contains all the elements that occur in all of them.

The cartesianproduct element is used to represent the Cartesian product operator.

Arguments may be explicitly specified in the enclosing apply element, or specified using qualifier elements as described in
4.3.5 N-ary Operators.

▸ Show Section

Content MathML

<apply><union/><ci>A</ci><ci>B</ci></apply>

<apply><intersect/><ci>A</ci><ci>B</ci><ci>C</ci></apply>

<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>

Sample Presentation

<mrow><mi>A</mi><mo>∪</mo><mi>B</mi></mrow>

𝐴 ∪ 𝐵

<mrow><mi>A</mi><mo>∩</mo><mi>B</mi><mo>∩</mo><mi>C</mi></mrow>

4.3.5.7 N-ary Set Operators: <union/>, <intersect/>, <cartesianproduct/>

4.3.5.7.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

187 of 434 26/08/2025, 11:30

𝐴 ∩ 𝐵 ∩ 𝐶

<mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow>

𝐴×𝐵

▸ Show Section

Content MathML

<apply><union/>
<bvar><ci type="set">S</ci></bvar>
<domainofapplication>
<ci type="list">L</ci>

</domainofapplication>
<ci type="set"> S</ci>

</apply>

<apply><intersect/>
<bvar><ci type="set">S</ci></bvar>
<domainofapplication>
<ci type="list">L</ci>

</domainofapplication>
<ci type="set"> S</ci>

</apply>

Sample Presentation

<mrow><munder><mo>⋃</mo><mi>L</mi></munder><mi>S</mi></mrow>

⋃
𝐿

𝑆

<mrow><munder><mo>⋂</mo><mi>L</mi></munder><mi>S</mi></mrow>

⋂
𝐿

𝑆

4.3.5.7.2 EXAMPLES (QUALIFIERS)

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

188 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix consisting
of a single column, and the transpose of a vector as a matrix consisting of a single row.

The components of a vector may be given explicitly as child elements, or specified by rule as described in 4.3.1.1
Container Markup for Constructor Symbols.

▸ Show Section

Content MathML

<vector>
<apply><plus/><ci>x</ci><ci>y</ci></apply>
<cn>3</cn>
<cn>7</cn>

</vector>

Sample Presentation

<mrow>
<mo>(</mo>
<mtable>
<mtr><mtd><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mtd></mtr>
<mtr><mtd><mn>3</mn></mtd></mtr>
<mtr><mtd><mn>7</mn></mtd></mtr>

</mtable>
<mo>)</mo>

</mrow>

⎛

⎝

⎜
⎜
⎜

𝑥 + 𝑦

3

7

⎞

⎠

⎟
⎟
⎟

4.3.5.8 N-ary Matrix Constructors: <vector/>, <matrix/>, <matrixrow/>

4.3.5.8.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

189 of 434 26/08/2025, 11:30

<mrow>
<mo>(</mo>
<mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>
<mo>,</mo>
<mn>3</mn>
<mo>,</mo>
<mn>7</mn>
<mo>)</mo>

</mrow>

(𝑥 + 𝑦, 3, 7)

A matrix is regarded as made up of matrix rows, each of which can be thought of as a special type of vector.

Note that the behavior of the matrix and matrixrow elements is substantially different from the mtable and mtr
presentation elements.

The matrix element is a constructor element, so the entries may be given explicitly as child elements, or specified by rule
as described in 4.3.1.1 Container Markup for Constructor Symbols. In the latter case, the entries are specified by providing a
function and a 2-dimensional domain of application. The entries of the matrix correspond to the values obtained by
evaluating the function at the points of the domain.

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

▸ Show Section

Content MathML

4.3.5.8.2 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

190 of 434 26/08/2025, 11:30

<matrix>
<bvar><ci type="integer">i</ci></bvar>
<bvar><ci type="integer">j</ci></bvar>
<condition>
<apply><and/>
<apply><in/>
<ci>i</ci>
<interval><ci>1</ci><ci>5</ci></interval>

</apply>
<apply><in/>
<ci>j</ci>
<interval><ci>5</ci><ci>9</ci></interval>

</apply>
</apply>

</condition>
<apply><power/><ci>i</ci><ci>j</ci></apply>

</matrix>

Sample Presentation

<mrow>
<mo>[</mo>
<msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub>
<mo>|</mo>
<mrow>
<msub><mi>m</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub>
<mo>=</mo>
<msup><mi>i</mi><mi>j</mi></msup>

</mrow>
<mo>;</mo>
<mrow>
<mrow>
<mi>i</mi>
<mo>∈</mo>
<mrow><mo>[</mo><mi>1</mi><mo>,</mo><mi>5</mi><mo>]</mo></mrow>

</mrow>
<mo>∧</mo>
<mrow>
<mi>j</mi>
<mo>∈</mo>
<mrow><mo>[</mo><mi>5</mi><mo>,</mo><mi>9</mi><mo>]</mo></mrow>

</mrow>
</mrow>
<mo>]</mo>

</mrow>

[𝑚𝑖,𝑗 | 𝑚𝑖,𝑗 = 𝑖𝑗; 𝑖 ∈ [1, 5] ∧ 𝑗 ∈ [5, 9]]

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

191 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The set element represents the n-ary function which constructs a mathematical set from its arguments. The set element
takes the attribute type which may have the values set and multiset. The members of the set to be constructed may be
given explicitly as child elements of the constructor, or specified by rule as described in 4.3.1.1 Container Markup for
Constructor Symbols. There is no implied ordering to the elements of a set.

The list element represents the n-ary function which constructs a list from its arguments. Lists differ from sets in that there
is an explicit order to the elements. The list element takes the attribute order which may have the values numeric and
lexicographic. The list entries and order may be given explicitly or specified by rule as described in 4.3.1.1 Container
Markup for Constructor Symbols.

▸ Show Section

Content MathML

<set>
<ci>a</ci><ci>b</ci><ci>c</ci>

</set>

<list>
<ci>a</ci><ci>b</ci><ci>c</ci>

</list>

Sample Presentation

<mrow>
<mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>}</mo>

</mrow>

{𝑎, 𝑏, 𝑐}

<mrow>
<mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo>

</mrow>

(𝑎, 𝑏, 𝑐)

4.3.5.9 N-ary Set Theoretic Constructors: <set>, <list>

4.3.5.9.1 EXAMPLES (EXPLICIT ELEMENTS)

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

192 of 434 26/08/2025, 11:30

In general sets and lists can be constructed by providing a function and a domain of application. The elements correspond to
the values obtained by evaluating the function at the points of the domain. When this method is used for lists, the ordering of
the list elements may not be clear, so the kind of ordering may be specified by the order attribute. Two orders are
supported: lexicographic and numeric.

▸ Show Section

Content MathML

<set>
<bvar><ci>x</ci></bvar>
<condition>
<apply><lt/><ci>x</ci><cn>5</cn></apply>

</condition>
<ci>x</ci>

</set>

<list order="numeric">
<bvar><ci>x</ci></bvar>
<condition>
<apply><lt/><ci>x</ci><cn>5</cn></apply>

</condition>
</list>

<set>
<bvar><ci type="set">S</ci></bvar>
<condition>
<apply><in/><ci>S</ci><ci type="list">T</ci></apply>

</condition>
<ci>S</ci>

</set>

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><and/>
<apply><lt/><ci>x</ci><cn>5</cn></apply>
<apply><in/><ci>x</ci><naturalnumbers/></apply>

</apply>
</condition>
<ci>x</ci>

</set>

4.3.5.9.2 EXAMPLES (ELEMENTS SPECIFIED BY CONDITION)

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

193 of 434 26/08/2025, 11:30

Sample Presentation

<mrow>
<mo>{</mo>
<mi>x</mi>
<mo>|</mo>
<mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>
<mo>}</mo>

</mrow>

{𝑥 | 𝑥 < 5}

<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>|</mo>
<mrow><mi>x</mi><mo><</mo><mn>5</mn></mrow>
<mo>)</mo>

</mrow>

(𝑥 | 𝑥 < 5)

<mrow>
<mo>{</mo>
<mi>S</mi>
<mo>|</mo>
<mrow><mi>S</mi><mo>∈</mo><mi>T</mi></mrow>
<mo>}</mo>

</mrow>

{𝑆 | 𝑆 ∈ 𝑇}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

194 of 434 26/08/2025, 11:30

<mrow>
<mo>{</mo>
<mi>x</mi>
<mo>|</mo>
<mrow>
<mrow><mo>(</mo><mi>x</mi><mo><</mo><mn>5</mn><mo>)</mo></mrow>
<mo>∧</mo>
<mrow>
<mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi>

</mrow>
</mrow>
<mo>}</mo>

</mrow>

{𝑥 | (𝑥 < 5) ∧ 𝑥 ∈ ℕ}

Operator Syntax, Schema Class

MathML allows transitive relations to be used with multiple arguments, to give a natural expression to “chains” of relations
such as a < b < c < d. However unlike the case of the arithmetic operators, the underlying symbols used in the Strict Content
MathML are classed as binary, so it is not possible to use apply_to_list as in the previous section, but instead a similar
function predicate_on_list is used, the semantics of which is essentially to take the conjunction of applying the predicate to
elements of the domain two at a time.

The elements eq, gt, lt, geq, leq represent respectively the “equality”, “greater than”, “less than”, “greater than or equal
to” and “less than or equal to” relations that return true or false depending on the relationship of the first argument to the
second.

▸ Show Section

Content MathML

<apply><eq/>
<ci>x</ci>
<cn type="rational">2<sep/>4</cn>
<cn type="rational">1<sep/>2</cn>

</apply>

4.3.5.10 N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

4.3.5.10.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

195 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#predicate_on_list
https://openmath.org/cd/fns2#predicate_on_list

<apply><gt/><ci>x</ci><ci>y</ci></apply>

<apply><lt/><ci>y</ci><ci>x</ci></apply>

<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>

<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>

Sample Presentation

<mrow>
<mi>x</mi>
<mo>=</mo>
<mrow><mn>2</mn><mo>/</mo><mn>4</mn></mrow>
<mo>=</mo>
<mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow>

</mrow>

𝑥 = 2 / 4 = 1 / 2

<mrow><mi>x</mi><mo>></mo><mi>y</mi></mrow>

𝑥 > 𝑦

<mrow><mi>y</mi><mo><</mo><mi>x</mi></mrow>

𝑦 < 𝑥

<mrow><mn>4</mn><mo>≥</mo><mn>3</mn><mo>≥</mo><mn>3</mn></mrow>

4 ≥ 3 ≥ 3

<mrow><mn>3</mn><mo>≤</mo><mn>3</mn><mo>≤</mo><mn>4</mn></mrow>

3 ≤ 3 ≤ 4

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

196 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

MathML allows transitive relations to be used with multiple arguments, to give a natural expression to “chains” of relations
such as a < b < c < d. However unlike the case of the arithmetic operators, the underlying symbols used in the Strict Content
MathML are classed as binary, so it is not possible to use apply_to_list as in the previous section, but instead a similar
function predicate_on_list is used, the semantics of which is essentially to take the conjunction of applying the predicate to
elements of the domain two at a time.

The subset and prsubset elements represent respectively the subset and proper subset relations. They are used to denote
that the first argument is a subset or proper subset of the second. As described above they may also be used as an n-ary
operator to express that each argument is a subset or proper subset of its predecessor.

▸ Show Section

Content MathML

<apply><subset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

<apply><prsubset/>
<ci type="set">A</ci>
<ci type="set">B</ci>
<ci type="set">C</ci>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow>

𝐴 ⊆ 𝐵

<mrow><mi>A</mi><mo>⊂</mo><mi>B</mi><mo>⊂</mo><mi>C</mi></mrow>

𝐴 ⊂ 𝐵 ⊂ 𝐶

4.3.5.11 N-ary Set Theoretic Relations: <subset/>, <prsubset/>

4.3.5.11.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

197 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#predicate_on_list
https://openmath.org/cd/fns2#predicate_on_list

Operator Syntax, Schema Class

The MathML elements max, min and some statistical elements such as mean may be used as an n-ary function as in the
above classes, however a special interpretation is given in the case that a single argument is supplied. If a single argument is
supplied the function is applied to the elements represented by the argument.

The underlying symbol used in Strict Content MathML for these elements is Unary and so if the MathML is used with 0 or
more than 1 argument, the function is applied to the set constructed from the explicitly supplied arguments according to the
following rule.

The min element denotes the minimum function, which returns the smallest of the arguments to which it is applied. Its
arguments may be explicitly specified in the enclosing apply element, or specified using qualifier elements as described in
4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/>. Note that when applied to infinite sets of arguments, no
minimal argument may exist.

The max element denotes the maximum function, which returns the largest of the arguments to which it is applied. Its
arguments may be explicitly specified in the enclosing apply element, or specified using qualifier elements as described in
4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/>. Note that when applied to infinite sets of arguments, no
maximal argument may exist.

▸ Show Section

Content MathML

<apply><min/><ci>a</ci><ci>b</ci></apply>

<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>

<apply><min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci>x</ci><ci type="set">B</ci></apply>

</condition>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/>

4.3.5.12.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

198 of 434 26/08/2025, 11:30

<apply><max/>
<bvar><ci>y</ci></bvar>
<condition>
<apply><in/>
<ci>y</ci>
<interval><cn>0</cn><cn>1</cn></interval>

</apply>
</condition>
<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>

Sample Presentation

<mrow>
<mi>min</mi>
<mrow><mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>}</mo></mrow>

</mrow>

min{𝑎, 𝑏}

<mrow>
<mi>max</mi>
<mrow>
<mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>}</mo>

</mrow>
</mrow>

max{2, 3, 5}

<mrow>
<mi>min</mi>
<mrow><mo>{</mo><msup><mi>x</mi><mn>2</mn></msup><mo>|</mo>
<mrow><mi>x</mi><mo>∉</mo><mi>B</mi></mrow>
<mo>}</mo>

</mrow>
</mrow>

min{𝑥2 | 𝑥 ∉ 𝐵}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

199 of 434 26/08/2025, 11:30

<mrow>
<mi>max</mi>
<mrow>
<mo>{</mo><mi>y</mi><mo>|</mo>
<mrow>
<msup><mi>y</mi><mn>3</mn></msup>
<mo>∈</mo>
<mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow>

</mrow>
<mo>}</mo>

</mrow>
</mrow>

max{𝑦 | 𝑦3 ∈ [0, 1]}

Operator Syntax, Schema Class

Some statistical MathML elements, elements such as mean may be used as an n-ary function as in the above classes,
however a special interpretation is given in the case that a single argument is supplied. If a single argument is supplied the
function is applied to the elements represented by the argument.

The underlying symbol used in Strict Content MathML for these elements is Unary and so if the MathML is used with 0 or
more than 1 argument, the function is applied to the set constructed from the explicitly supplied arguments according to the
following rule.

The mean element represents the function returning arithmetic mean or average of a data set or random variable.

The median element represents an operator returning the median of its arguments. The median is a number separating the
lower half of the sample values from the upper half.

The mode element is used to denote the mode of its arguments. The mode is the value which occurs with the greatest
frequency.

The sdev element is used to denote the standard deviation function for a data set or random variable. Standard deviation is a
statistical measure of dispersion given by the square root of the variance.

The variance element represents the variance of a data set or random variable. Variance is a statistical measure of
dispersion, averaging the squares of the deviations of possible values from their mean.

▸ Show Section

4.3.5.13 N-ary/Unary Statistical Operators: <mean/>, <median/>, <mode/>, <sdev/>, <variance/>

4.3.5.13.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

200 of 434 26/08/2025, 11:30

Content MathML

<apply><mean/>
<cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn>

</apply>

<apply><mean/><ci>X</ci></apply>

<apply><sdev/>
<cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

<apply><sdev/>
<ci type="discrete_random_variable">X</ci>

</apply>

<apply><variance/>
<cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

<apply><variance/>
<ci type="discrete_random_variable">X</ci>

</apply>

Sample Presentation

<mrow>
<mo>⟨</mo>
<mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>3</mn>
<mo>,</mo><mn>7</mn><mo>,</mo><mn>4</mn>
<mo>⟩</mo>

</mrow>

⟨3, 4, 3, 7, 4⟩

<mrow>
<mo>⟨</mo><mi>X</mi><mo>⟩</mo>

</mrow>
<mtext> or </mtext>
<mover><mi>X</mi><mo>¯</mo></mover>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

201 of 434 26/08/2025, 11:30

⟨𝑋⟩ or 𝑋̅ ̅ ̅

<mrow>
<mo>σ</mo>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn>
<mo>)</mo>

</mrow>
</mrow>

σ (3, 4, 2, 2)

<mrow>
<mo>σ</mo>
<mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow>

</mrow>

σ (𝑋)

<mrow>
<msup>
<mo>σ</mo>
<mn>2</mn>

</msup>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn>
<mo>)</mo>

</mrow>
</mrow>

σ2 (3, 4, 2, 2)

<mrow>
<msup><mo>σ</mo><mn>2</mn></msup>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow>

</mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

202 of 434 26/08/2025, 11:30

σ2 (𝑋)

Binary operators take two arguments and simply map to OpenMath symbols via Rewrite: element without the need of any
special rewrite rules. The binary constructor interval is similar but uses constructor syntax in which the arguments are
children of the element, and the symbol used depends on the type element as described in 4.3.10.3 Interval <interval>.

Operator Syntax, Schema Class

The quotient element represents the integer division operator. When the operator is applied to integer arguments a and b,
the result is the “quotient of a divided by b”. That is, the quotient of integers a and b is the integer q such that a = b * q + r,
with |r| less than |b| and a * r positive. In common usage, q is called the quotient and r is the remainder.

The divide element represents the division operator in a number field.

The minus element can be used as a unary arithmetic operator (e.g. to represent −x), or as a binary arithmetic operator (e.g.
to represent x − y). Some further examples are given in 4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>,
<conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>, <ceiling/>, <exp/>, <minus/>, <root/>.

The power element represents the exponentiation operator. The first argument is raised to the power of the second argument.

The rem element represents the modulus operator, which returns the remainder that results from dividing the first argument
by the second. That is, when applied to integer arguments a and b, it returns the unique integer r such that a = b * q + r, with
|r| less than |b| and a * r positive.

The root element is used to extract roots. The kind of root to be taken is specified by a “degree” element, which should be
given as the second child of the apply element enclosing the root element. Thus, square roots correspond to the case
where degree contains the value 2, cube roots correspond to 3, and so on. If no degree is present, a default value of 2 is
used.

▸ Show Section

Content MathML

<apply><quotient/><ci>a</ci><ci>b</ci></apply>

4.3.6 Binary Operators

4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>, <root/>

4.3.6.1.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

203 of 434 26/08/2025, 11:30

<apply><divide/>
<ci>a</ci>
<ci>b</ci>

</apply>

<apply><minus/><ci>x</ci><ci>y</ci></apply>

<apply><power/><ci>x</ci><cn>3</cn></apply>

<apply><rem/><ci> a </ci><ci> b </ci></apply>

<apply><root/>
<degree><ci type="integer">n</ci></degree>
<ci>a</ci>

</apply>

Sample Presentation

<mrow><mo>⌊</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>⌋</mo></mrow>

⌊𝑎 / 𝑏⌋

<mrow><mi>a</mi><mo>/</mo><mi>b</mi></mrow>

𝑎 / 𝑏

<mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow>

𝑥 − 𝑦

<msup><mi>x</mi><mn>3</mn></msup>

𝑥3

<mrow><mi>a</mi><mo>mod</mo><mi>b</mi></mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

204 of 434 26/08/2025, 11:30

𝑎 mod 𝑏

<mroot><mi>a</mi><mi>n</mi></mroot>

𝑎𝑛√

Operator Syntax, Schema Class

The implies element represents the logical implication function which takes two Boolean expressions as arguments. It
evaluates to false if the first argument is true and the second argument is false, otherwise it evaluates to true.

The equivalent element represents the relation that asserts two Boolean expressions are logically equivalent, that is have
the same Boolean value for any inputs.

▸ Show Section

Content MathML

<apply><implies/><ci>A</ci><ci>B</ci></apply>

<apply><equivalent/>
<ci>a</ci>
<apply><not/><apply><not/><ci>a</ci></apply></apply>

</apply>

Sample Presentation

<mrow><mi>A</mi><mo>⇒</mo><mi>B</mi></mrow>

𝐴 ⇒ 𝐵

4.3.6.2 Binary Logical Operators: <implies/>, <equivalent/>

4.3.6.2.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

205 of 434 26/08/2025, 11:30

<mrow>
<mi>a</mi>
<mo>≡</mo>
<mrow><mo>¬</mo><mrow><mo>¬</mo><mi>a</mi></mrow></mrow>

</mrow>

𝑎 ≡ ¬¬𝑎

Operator Syntax, Schema Class

The neq element represents the binary inequality relation, i.e. the relation “not equal to” which returns true unless the two
arguments are equal.

The approx element represents the relation that asserts the approximate equality of its arguments.

The factorof element is used to indicate the mathematical relationship that the first argument “is a factor of” the second.
This relationship is true if and only if b mod a = 0.

▸ Show Section

Content MathML

<apply><neq/><cn>3</cn><cn>4</cn></apply>

<apply><approx/>
<pi/>
<cn type="rational">22<sep/>7</cn>

</apply>

<apply><factorof/><ci>a</ci><ci>b</ci></apply>

Sample Presentation

<mrow><mn>3</mn><mo>≠</mo><mn>4</mn></mrow>

4.3.6.3 Binary Relations: <neq/>, <approx/>, <factorof/>, <tendsto/>

4.3.6.3.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

206 of 434 26/08/2025, 11:30

3 ≠ 4

<mrow>
<mi>π</mi>
<mo>≃</mo>
<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

</mrow>

𝜋 ≃ 22 / 7

<mrow><mi>a</mi><mo>|</mo><mi>b</mi></mrow>

𝑎 | 𝑏

The tendsto element is used to express the relation that a quantity is tending to a specified value. While this is used
primarily as part of the statement of a mathematical limit, it exists as a construct on its own to allow one to capture
mathematical statements such as “As x tends to y,” and to provide a building block to construct more general kinds of limits.

The tendsto element takes the attribute type to set the direction from which the limiting value is approached. It may have
any value, but common values include above and below.

▸ Show Section

Content MathML

<apply><tendsto type="above"/>
<apply><power/><ci>x</ci><cn>2</cn></apply>
<apply><power/><ci>a</ci><cn>2</cn></apply>

</apply>

<apply><tendsto/>
<vector><ci>x</ci><ci>y</ci></vector>
<vector>
<apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
<apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>

</vector>
</apply>

Sample Presentation

4.3.6.3.2 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

207 of 434 26/08/2025, 11:30

<mrow>
<msup><mi>x</mi><mn>2</mn></msup>
<mo>→</mo>
<msup><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo></msup>

</mrow>

𝑥2 → 𝑎2+

<mrow><mo>(</mo><mtable>
<mtr><mtd><mi>x</mi></mtd></mtr>
<mtr><mtd><mi>y</mi></mtd></mtr>

</mtable><mo>)</mo></mrow>
<mo>→</mo>
<mrow><mo>(</mo><mtable>
<mtr><mtd>
<mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi

</mtd></mtr>
<mtr><mtd>
<mi>g</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi

</mtd></mtr>
</mtable><mo>)</mo></mrow>

(
𝑥

𝑦
) → (

𝑓(𝑥, 𝑦)

𝑔(𝑥, 𝑦)
)

Operator Syntax, Schema Class

The vectorproduct element represents the vector product. It takes two three-dimensional vector arguments and represents
as value a three-dimensional vector.

The scalarproduct element represents the scalar product function. It takes two vector arguments and returns a scalar
value.

The outerproduct element represents the outer product function. It takes two vector arguments and returns as value a
matrix.

▸ Show Section

4.3.6.4 Binary Linear Algebra Operators: <vectorproduct/>, <scalarproduct/>, <outerproduct/>

4.3.6.4.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

208 of 434 26/08/2025, 11:30

Content MathML

<apply><eq/>
<apply><vectorproduct/>
<ci type="vector"> A </ci>
<ci type="vector"> B </ci>

</apply>
<apply><times/>
<ci>a</ci>
<ci>b</ci>
<apply><sin/><ci>θ</ci></apply>
<ci type="vector"> N </ci>

</apply>
</apply>

<apply><eq/>
<apply><scalarproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>

</apply>
<apply><times/>
<ci>a</ci>
<ci>b</ci>
<apply><cos/><ci>θ</ci></apply>

</apply>
</apply>

<apply><outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>

</apply>

Sample Presentation

<mrow>
<mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow>
<mo>=</mo>
<mrow>
<mi>a</mi>
<mo>⁢<!--InvisibleTimes--></mo>
<mi>b</mi>
<mo>⁢<!--InvisibleTimes--></mo>
<mrow><mi>sin</mi><mo>⁡<!--ApplyFunction--></mo><mi>θ</mi></mrow>
<mo>⁢<!--InvisibleTimes--></mo>
<mi>N</mi>

</mrow>
</mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

209 of 434 26/08/2025, 11:30

𝐴×𝐵 = 𝑎𝑏sin 𝜃𝑁

<mrow>
<mrow><mi>A</mi><mo>.</mo><mi>B</mi></mrow>
<mo>=</mo>
<mrow>
<mi>a</mi>
<mo>⁢<!--InvisibleTimes--></mo>
<mi>b</mi>
<mo>⁢<!--InvisibleTimes--></mo>
<mrow><mi>cos</mi><mo>⁡<!--ApplyFunction--></mo><mi>θ</mi></mrow>

</mrow>
</mrow>

𝐴 . 𝐵 = 𝑎𝑏cos 𝜃

<mrow><mi>A</mi><mo>⊗</mo><mi>B</mi></mrow>

𝐴⊗𝐵

Operator Syntax, Schema Class

The in element represents the set inclusion relation. It has two arguments, an element and a set. It is used to denote that the
element is in the given set.

The notin represents the negated set inclusion relation. It has two arguments, an element and a set. It is used to denote that
the element is not in the given set.

The notsubset element represents the negated subset relation. It is used to denote that the first argument is not a subset of
the second.

The notprsubset element represents the negated proper subset relation. It is used to denote that the first argument is not a
proper subset of the second.

The setdiff element represents the set difference operator. It takes two sets as arguments, and denotes the set that contains
all the elements that occur in the first set, but not in the second.

4.3.6.5 Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

4.3.6.5.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

210 of 434 26/08/2025, 11:30

▸ Show Section

Content MathML

<apply><in/><ci>a</ci><ci type="set">A</ci></apply>

<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>

<apply><notsubset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

<apply><notprsubset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

<apply><setdiff/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

Sample Presentation

<mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow>

𝑎 ∈ 𝐴

<mrow><mi>a</mi><mo>∉</mo><mi>A</mi></mrow>

𝑎 ∉ 𝐴

<mrow><mi>A</mi><mo>⊈</mo><mi>B</mi></mrow>

𝐴 ⊈ 𝐵

<mrow><mi>A</mi><mo>⊄</mo><mi>B</mi></mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

211 of 434 26/08/2025, 11:30

𝐴 ⊄ 𝐵

<mrow><mi>A</mi><mo>∖</mo><mi>B</mi></mrow>

𝐴 ∖ 𝐵

Unary operators take a single argument and map to OpenMath symbols via Rewrite: element without the need of any special
rewrite rules.

Operator Syntax, Schema Class

The not element represents the logical not function which takes one Boolean argument, and returns the opposite Boolean
value.

▸ Show Section

Content MathML

<apply><not/><ci>a</ci></apply>

Sample Presentation

<mrow><mo>¬</mo><mi>a</mi></mrow>

¬𝑎

4.3.7 Unary Operators

4.3.7.1 Unary Logical Operators: <not/>

4.3.7.1.1 EXAMPLE

4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>,
<floor/>, <ceiling/>, <exp/>, <minus/>, <root/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

212 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The factorial element represents the unary factorial operator on non-negative integers. The factorial of an integer n is
given by n! = n×(n-1)×⋯×1.

The abs element represents the absolute value function. The argument should be numerically valued. When the argument is
a complex number, the absolute value is often referred to as the modulus.

The conjugate element represents the function defined over the complex numbers which returns the complex conjugate of
its argument.

The arg element represents the unary function which returns the angular argument of a complex number, namely the angle
which a straight line drawn from the number to zero makes with the real line (measured anti-clockwise).

The real element represents the unary operator used to construct an expression representing the “real” part of a complex
number, that is, the x component in x + iy.

The imaginary element represents the unary operator used to construct an expression representing the “imaginary” part of
a complex number, that is, the y component in x + iy.

The floor element represents the operation that rounds down (towards negative infinity) to the nearest integer. This
function takes one real number as an argument and returns an integer.

The ceiling element represents the operation that rounds up (towards positive infinity) to the nearest integer. This function
takes one real number as an argument and returns an integer.

The exp element represents the exponentiation function associated with the inverse of the ln function. It takes one argument.

The minus element can be used as a unary arithmetic operator (e.g. to represent −x), or as a binary arithmetic operator (e.g.
to represent x − y). Some further examples are given in 4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>,
<minus/>, <power/>, <rem/>, <root/>.

The root element in MathML is treated as a unary element taking an optional degree qualifier, however it represents the
binary operation of taking an nth root, and is described in 4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>,
<minus/>, <power/>, <rem/>, <root/>.

▸ Show Section

Content MathML

<apply><factorial/><ci>n</ci></apply>

<apply><abs/><ci>x</ci></apply>

4.3.7.2.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

213 of 434 26/08/2025, 11:30

<apply><conjugate/>
<apply><plus/>
<ci>x</ci>
<apply><times/><cn>ⅈ</cn><ci>y</ci></apply>

</apply>
</apply>

<apply><arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>

<apply><real/>
<apply><plus/>
<ci>x</ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>

<apply><imaginary/>
<apply><plus/>
<ci>x</ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>

<apply><floor/><ci>a</ci></apply>

<apply><ceiling/><ci>a</ci></apply>

<apply><exp/><ci>x</ci></apply>

<apply><minus/><cn>3</cn></apply>

Sample Presentation

<mrow><mi>n</mi><mo>!</mo></mrow>

𝑛!

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

214 of 434 26/08/2025, 11:30

<mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow>

|𝑥|

<mover>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mrow><mn>ⅈ</mn><mo>⁢<!--InvisibleTimes--></mo><mi>y</mi></mrow>

</mrow>
<mo>¯</mo>

</mover>

𝑥 + ⅈ𝑦̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

<mrow>
<mi>arg</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mrow><mi>i</mi><mo>⁢<!--InvisibleTimes--></mo><mi>y</mi></mrow>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

arg (𝑥 + 𝑖𝑦)

<mrow>
<mo>ℛ</mo>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mrow><mi>i</mi><mo>⁢<!--InvisibleTimes--></mo><mi>y</mi></mrow>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

215 of 434 26/08/2025, 11:30

ℛ (𝑥 + 𝑖𝑦)

<mrow>
<mo>ℑ</mo>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mrow><mi>i</mi><mo>⁢<!--InvisibleTimes--></mo><mi>y</mi></mrow>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

ℑ (𝑥 + 𝑖𝑦)

<mrow><mo>⌊</mo><mi>a</mi><mo>⌋</mo></mrow>

⌊𝑎⌋

<mrow><mo>⌈</mo><mi>a</mi><mo>⌉</mo></mrow>

⌈𝑎⌉

<msup><mi>e</mi><mi>x</mi></msup>

𝑒𝑥

<mrow><mo>−</mo><mn>3</mn></mrow>

−3

4.3.7.3 Unary Linear Algebra Operators: <determinant/>, <transpose/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

216 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The determinant element is used for the unary function which returns the determinant of its argument, which should be a
square matrix.

The transpose element represents a unary function that signifies the transpose of the given matrix or vector.

▸ Show Section

Content MathML

<apply><determinant/>
<ci type="matrix">A</ci>

</apply>

<apply><transpose/>
<ci type="matrix">A</ci>

</apply>

Sample Presentation

<mrow><mi>det</mi><mo>⁡<!--ApplyFunction--></mo><mi>A</mi></mrow>

det 𝐴

<msup><mi>A</mi><mi>T</mi></msup>

𝐴𝑇

Operator Syntax, Schema Class

The inverse element is applied to a function in order to construct a generic expression for the functional inverse of that
function.

The ident element represents the identity function. Note that MathML makes no assumption about the domain and
codomain of the represented identity function, which depends on the context in which it is used.

4.3.7.3.1 EXAMPLES

4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

217 of 434 26/08/2025, 11:30

The domain element represents the domain of the function to which it is applied. The domain is the set of values over which
the function is defined.

The codomain represents the codomain, or range, of the function to which it is applied. Note that the codomain is not
necessarily equal to the image of the function, it is merely required to contain the image.

The image element represents the image of the function to which it is applied. The image of a function is the set of values
taken by the function. Every point in the image is generated by the function applied to some point of the domain.

The ln element represents the natural logarithm function.

The elements may either be applied to arguments, or may appear alone, in which case they represent an abstract operator
acting on other functions.

▸ Show Section

Content MathML

<apply><inverse/><ci>f</ci></apply>

<apply>
<apply><inverse/><ci type="matrix">A</ci></apply>
<ci>a</ci>

</apply>

<apply><eq/>
<apply><compose/>
<ci type="function">f</ci>
<apply><inverse/>
<ci type="function">f</ci>

</apply>
</apply>
<ident/>

</apply>

<apply><eq/>
<apply><domain/><ci>f</ci></apply>
<reals/>

</apply>

4.3.7.4.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

218 of 434 26/08/2025, 11:30

<apply><eq/>
<apply><codomain/><ci>f</ci></apply>
<rationals/>

</apply>

<apply><eq/>
<apply><image/><sin/></apply>
<interval><cn>-1</cn><cn> 1</cn></interval>

</apply>

<apply><ln/><ci>a</ci></apply>

Sample Presentation

<msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>

𝑓(-1)

<mrow>
<msup><mi>A</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow>

</mrow>

𝐴(-1)(𝑎)

<mrow>
<mrow>
<mi>f</mi>
<mo>∘</mo>
<msup><mi>f</mi><mrow><mo>(</mo><mn>-1</mn><mo>)</mo></mrow></msup>

</mrow>
<mo>=</mo>
<mi>id</mi>

</mrow>

𝑓 ∘ 𝑓(-1) = id

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

219 of 434 26/08/2025, 11:30

<mrow>
<mrow><mi>domain</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>f</mi><mo
<mo>=</mo>
<mi mathvariant="double-struck">R</mi>

</mrow>

domain (𝑓) = ℝ

<mrow>
<mrow><mi>codomain</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>f</mi><
<mo>=</mo>
<mi mathvariant="double-struck">Q</mi>

</mrow>

codomain (𝑓) = ℚ

<mrow>
<mrow><mi>image</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>sin</mi><mo
<mo>=</mo>
<mrow><mo>[</mo><mn>-1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow>

</mrow>

image (sin) = [-1, 1]

<mrow><mi>ln</mi><mo>⁡<!--ApplyFunction--></mo><mi>a</mi></mrow>

ln 𝑎

Operator Syntax, Schema Class

The card element represents the cardinality function, which takes a set argument and returns its cardinality, i.e. the number
of elements in the set. The cardinality of a set is a non-negative integer, or an infinite cardinal number.

4.3.7.5 Unary Set Operators: <card/>

4.3.7.5.1 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

220 of 434 26/08/2025, 11:30

▸ Show Section

Content MathML

<apply><eq/>
<apply><card/><ci>A</ci></apply>
<cn>5</cn>

</apply>

Sample Presentation

<mrow>
<mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow>
<mo>=</mo>
<mn>5</mn>

</mrow>

|𝐴| = 5

Operator Syntax, Schema Class

These operator elements denote the standard trigonometric and hyperbolic functions and their inverses. Since their standard
interpretations are widely known, they are discussed as a group.

Differing definitions are in use for the inverse functions, so for maximum interoperability applications evaluating such
expressions should follow the definitions in [DLMF], Chapter 4: Elementary Functions.

▸ Show Section

Content MathML

<apply><sin/><ci>x</ci></apply>

4.3.7.6 Unary Elementary Operators: <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>, <sinh/>, <cosh/>,
<tanh/>, <sech/>, <csch/>, <coth/>, <arcsin/>, <arccos/>, <arctan/>, <arccosh/>, <arccot/>, <arccoth/
>, <arccsc/>, <arccsch/>, <arcsec/>, <arcsech/>, <arcsinh/>, <arctanh/>

4.3.7.6.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

221 of 434 26/08/2025, 11:30

https://dlmf.nist.gov/4
https://dlmf.nist.gov/4

<apply><sin/>
<apply><plus/>
<apply><cos/><ci>x</ci></apply>
<apply><power/><ci>x</ci><cn>3</cn></apply>

</apply>
</apply>

<apply><arcsin/><ci>x</ci></apply>

<apply><sinh/><ci>x</ci></apply>

<apply><arcsinh/><ci>x</ci></apply>

Sample Presentation

<mrow><mi>sin</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

sin 𝑥

<mrow>
<mi>sin</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow><mi>cos</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>
<mo>+</mo>
<msup><mi>x</mi><mn>3</mn></msup>
<mo>)</mo>

</mrow>
</mrow>

sin (cos 𝑥 + 𝑥3)

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

222 of 434 26/08/2025, 11:30

<mrow>
<mi>arcsin</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mi>x</mi>

</mrow>
<mtext> or </mtext>
<mrow>
<msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
<mo>⁡<!--ApplyFunction--></mo>
<mi>x</mi>

</mrow>

arcsin 𝑥 or sin−1 𝑥

<mrow><mi>sinh</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

sinh 𝑥

<mrow>
<mi>arcsinh</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mi>x</mi>

</mrow>
<mtext> or </mtext>
<mrow>
<msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
<mo>⁡<!--ApplyFunction--></mo>
<mi>x</mi>

</mrow>

arcsinh 𝑥 or sinh−1 𝑥

Operator Syntax, Schema Class

The divergence element is the vector calculus divergence operator, often called div. It represents the divergence function
which takes one argument which should be a vector of scalar-valued functions, intended to represent a vector-valued
function, and returns the scalar-valued function giving the divergence of the argument.

The grad element is the vector calculus gradient operator, often called grad. It is used to represent the grad function, which
takes one argument which should be a scalar-valued function and returns a vector of functions.

4.3.7.7 Unary Vector Calculus Operators: <divergence/>, <grad/>, <curl/>, <laplacian/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

223 of 434 26/08/2025, 11:30

The curl element is used to represent the curl function of vector calculus. It takes one argument which should be a vector
of scalar-valued functions, intended to represent a vector-valued function, and returns a vector of functions.

The laplacian element represents the Laplacian operator of vector calculus. The Laplacian takes a single argument which
is a vector of scalar-valued functions representing a vector-valued function, and returns a vector of functions.

▸ Show Section

Content MathML

<apply><divergence/><ci>a</ci></apply>

<apply><divergence/>
<ci type="vector">E</ci>

</apply>

<apply><grad/><ci type="function">f</ci></apply>

<apply><curl/><ci>a</ci></apply>

<apply><laplacian/><ci type="vector">E</ci></apply>

Sample Presentation

<mrow><mi>div</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>a</mi><mo>)</mo

div (𝑎)

<mrow><mi>div</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>E</mi><mo>)</mo
<mtext> or </mtext>
<mrow><mo>∇</mo><mo>⋅</mo><mi>E</mi></mrow>

div (𝐸) or ∇ ⋅ 𝐸

4.3.7.7.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

224 of 434 26/08/2025, 11:30

<mrow>
<mi>grad</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>f</mi><mo>)</mo></

</mrow>
<mtext> or </mtext>
<mrow>
<mo>∇</mo><mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow>

</mrow>

grad (𝑓) or ∇(𝑓)

<mrow><mi>curl</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>a</mi><mo>)</
<mtext> or </mtext>
<mrow><mo>∇</mo><mo>×</mo><mi>a</mi></mrow>

curl (𝑎) or ∇×𝑎

<mrow>
<msup><mo>∇</mo><mn>2</mn></msup>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow>

</mrow>

∇2(𝐸)

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate names, in
which case the coordinate names must be provided as bound variables.

▸ Show Section

Content MathML

4.3.7.7.2 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

225 of 434 26/08/2025, 11:30

<apply><divergence/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>z</ci></bvar>
<vector>
<apply><plus/><ci>x</ci><ci>y</ci></apply>
<apply><plus/><ci>x</ci><ci>z</ci></apply>
<apply><plus/><ci>z</ci><ci>y</ci></apply>

</vector>
</apply>

<apply><grad/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>z</ci></bvar>
<apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply>

</apply>

<apply><laplacian/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>z</ci></bvar>
<apply><ci>f</ci><ci>x</ci><ci>y</ci></apply>

</apply>

Sample Presentation

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

226 of 434 26/08/2025, 11:30

<mrow>
<mi>div</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mo>(</mo>
<mtable>
<mtr><mtd>
<mi>x</mi>
<mo>↦</mo>
<mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow>

</mtd></mtr>
<mtr><mtd>
<mi>y</mi>
<mo>↦</mo>
<mrow><mi>x</mi><mo>+</mo><mi>z</mi></mrow>

</mtd></mtr>
<mtr><mtd>
<mi>z</mi>
<mo>↦</mo>
<mrow><mi>z</mi><mo>+</mo><mi>y</mi></mrow>

</mtd></mtr>
</mtable>
<mo>)</mo>

</mrow>

div
⎛

⎝

⎜
⎜
⎜

𝑥 ↦ 𝑥 + 𝑦

𝑦 ↦ 𝑥 + 𝑧

𝑧 ↦ 𝑧 + 𝑦

⎞

⎠

⎟
⎟
⎟

<mrow>
<mi>grad</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow>
<mo>↦</mo>
<mrow>
<mi>x</mi><mo>⁢<!--InvisibleTimes--></mo><mi>y</mi><mo>⁢<!--InvisibleTimes-->

</mrow>
<mo>)</mo>

</mrow>
</mrow>

grad ((𝑥, 𝑦, 𝑧) ↦ 𝑥𝑦𝑧)

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

227 of 434 26/08/2025, 11:30

<mrow>
<msup><mo>∇</mo><mn>2</mn></msup>
<mo>⁡<!--ApplyFunction--></mo>
<mrow>
<mo>(</mo>
<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow>
<mo>↦</mo>
<mrow>
<mi>f</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

∇2((𝑥, 𝑦, 𝑧) ↦ 𝑓(𝑥, 𝑦))

Operator Syntax, Schema Class

The moment element is used to denote the ith moment of a set of data set or random variable. The moment function accepts
the degree and momentabout qualifiers. If present, the degree schema denotes the order of the moment. Otherwise, the
moment is assumed to be the first order moment. When used with moment, the degree schema is expected to contain a
single child. If present, the momentabout schema denotes the point about which the moment is taken. Otherwise, the
moment is assumed to be the moment about zero.

▸ Show Section

Content MathML

<apply><moment/>
<degree><cn>3</cn></degree>
<momentabout><mean/></momentabout>
<cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>

</apply>

4.3.7.8 Moment <moment/>, <momentabout>

4.3.7.8.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

228 of 434 26/08/2025, 11:30

<apply><moment/>
<degree><cn>3</cn></degree>
<momentabout><ci>p</ci></momentabout>
<ci>X</ci>

</apply>

Sample Presentation

<msub>
<mrow>
<mo>⟨</mo>
<msup>
<mrow>
<mo>(</mo>
<mn>6</mn><mo>,</mo>
<mn>4</mn><mo>,</mo>
<mn>2</mn><mo>,</mo>
<mn>2</mn><mo>,</mo>
<mn>5</mn>
<mo>)</mo>

</mrow>
<mn>3</mn>

</msup>
<mo>⟩</mo>

</mrow>
<mi>mean</mi>

</msub>

⟨(6, 4, 2, 2, 5)3⟩
mean

<msub>
<mrow>
<mo>⟨</mo>
<msup><mi>X</mi><mn>3</mn></msup>
<mo>⟩</mo>

</mrow>
<mi>p</mi>

</msub>

⟨𝑋 3⟩
𝑝

4.3.7.9 Logarithm <log/> , <logbase>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

229 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The log element represents the logarithm function relative to a given base. When present, the logbase qualifier specifies
the base. Otherwise, the base is assumed to be 10.

▸ Show Section

Content MathML

<apply><log/>
<logbase><cn>3</cn></logbase>
<ci>x</ci>

</apply>

<apply><log/><ci>x</ci></apply>

Sample Presentation

<mrow><msub><mi>log</mi><mn>3</mn></msub><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></

log3 𝑥

<mrow><mi>log</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

log 𝑥

Operator Syntax, Schema Class

The int element is the operator element for a definite or indefinite integral over a function or a definite integral over an
expression with a bound variable.

4.3.7.9.1 EXAMPLES

4.3.8 Unary Qualified Calculus Operators

4.3.8.1 Integral <int/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

230 of 434 26/08/2025, 11:30

▸ Show Section

Content MathML

<apply><eq/>
<apply><int/><sin/></apply>
<cos/>

</apply>

<apply><int/>
<interval><ci>a</ci><ci>b</ci></interval>
<cos/>

</apply>

Sample Presentation

<mrow><mrow><mi>∫</mi><mi>sin</mi></mrow><mo>=</mo><mi>cos</mi></mrow>

∫ sin = cos

<mrow>
<msubsup><mi>∫</mi><mi>a</mi><mi>b</mi></msubsup><mi>cos</mi>

</mrow>

∫𝑎
𝑏 cos

The int element can also be used with bound variables serving as the integration variables.

Definite integrals are indicated by providing qualifier elements specifying a domain of integration. A lowlimit/uplimit
pair is perhaps the most “standard” representation of a definite integral.

▸ Show Section

Content MathML

4.3.8.1.1 EXAMPLES

4.3.8.1.2 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

231 of 434 26/08/2025, 11:30

<apply><int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

Sample Presentation

<mrow>
<msubsup><mi>∫</mi><mn>0</mn><mn>1</mn></msubsup>
<msup><mi>x</mi><mn>2</mn></msup>
<mi>d</mi>
<mi>x</mi>

</mrow>

∫0
1𝑥2𝑑𝑥

Operator Syntax, Schema Class

The diff element is the differentiation operator element for functions or expressions of a single variable. It may be applied
directly to an actual function thereby denoting a function which is the derivative of the original function, or it can be applied
to an expression involving a single variable.

▸ Show Section

Content MathML

<apply><diff/><ci>f</ci></apply>

<apply><eq/>
<apply><diff/>
<bvar><ci>x</ci></bvar>
<apply><sin/><ci>x</ci></apply>

</apply>
<apply><cos/><ci>x</ci></apply>

</apply>

4.3.8.2 Differentiation <diff/>

4.3.8.2.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

232 of 434 26/08/2025, 11:30

Sample Presentation

<msup><mi>f</mi><mo>′</mo></msup>

𝑓′

<mrow>
<mfrac>
<mrow><mi>d</mi><mrow><mi>sin</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow
<mrow><mi>d</mi><mi>x</mi></mrow>

</mfrac>
<mo>=</mo>
<mrow><mi>cos</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

</mrow>

𝑑sin 𝑥
𝑑𝑥 = cos 𝑥

The bvar element may also contain a degree element, which specifies the order of the derivative to be taken.

▸ Show Section

Content MathML

<apply><diff/>
<bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
<apply><power/><ci>x</ci><cn>4</cn></apply>

</apply>

Sample Presentation

<mfrac>
<mrow>
<msup><mi>d</mi><mn>2</mn></msup>
<msup><mi>x</mi><mn>4</mn></msup>

</mrow>
<mrow><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow>

</mfrac>

4.3.8.2.2 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

233 of 434 26/08/2025, 11:30

𝑑2𝑥4

𝑑𝑥2

Operator Syntax, Schema Class

The partialdiff element is the partial differentiation operator element for functions or expressions in several variables.

For the case of partial differentiation of a function, the containing partialdiff takes two arguments: firstly a list of
indices indicating by position which function arguments are involved in constructing the partial derivatives, and secondly
the actual function to be partially differentiated. The indices may be repeated.

▸ Show Section

Content MathML

<apply><partialdiff/>
<list><cn>1</cn><cn>1</cn><cn>3</cn></list>
<ci type="function">f</ci>

</apply>

<apply><partialdiff/>
<list><cn>1</cn><cn>1</cn><cn>3</cn></list>
<lambda>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>z</ci></bvar>
<apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply>

</lambda>
</apply>

Sample Presentation

4.3.8.3 Partial Differentiation <partialdiff/>

4.3.8.3.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

234 of 434 26/08/2025, 11:30

<mrow>
<msub>
<mi>D</mi>
<mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn></mrow>

</msub>
<mi>f</mi>

</mrow>

𝐷1,1,3𝑓

<mfrac>
<mrow>
<msup><mo>∂</mo><mn>3</mn></msup>
<mrow>
<mi>f</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow>

</mrow>
</mrow>
<mrow>
<mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow>
<mrow><mo>∂</mo><mi>z</mi></mrow>

</mrow>
</mfrac>

∂3𝑓(𝑥, 𝑦, 𝑧)
∂𝑥2 ∂𝑧

In the case of algebraic expressions, the bound variables are given by bvar elements, which are children of the containing
apply element. The bvar elements may also contain degree elements, which specify the order of the partial derivative to
be taken in that variable.

Where a total degree of differentiation must be specified, this is indicated by use of a degree element at the top level, i.e.
without any associated bvar, as a child of the containing apply element.

▸ Show Section

Content MathML

4.3.8.3.2 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

235 of 434 26/08/2025, 11:30

<apply><partialdiff/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>

</apply>

<apply><partialdiff/>
<bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
<bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
<degree><ci>k</ci></degree>
<apply><ci type="function">f</ci>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

Sample Presentation

<mfrac>
<mrow>
<msup><mo>∂</mo><mn>2</mn></msup>
<mrow>
<mi>f</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow>

</mrow>
</mrow>
<mrow>
<mrow><mo>∂</mo><mi>x</mi></mrow>
<mrow><mo>∂</mo><mi>y</mi></mrow>

</mrow>
</mfrac>

∂2𝑓(𝑥, 𝑦)
∂𝑥 ∂𝑦

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

236 of 434 26/08/2025, 11:30

<mfrac>
<mrow>
<msup><mo>∂</mo><mi>k</mi></msup>
<mrow>
<mi>f</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow>

</mrow>
</mrow>
<mrow>
<mrow><mo>∂</mo><msup><mi>x</mi><mi>m</mi></msup>
</mrow>
<mrow><mo>∂</mo><msup><mi>y</mi><mi>n</mi></msup></mrow>

</mrow>
</mfrac>

∂𝑘𝑓(𝑥, 𝑦)
∂𝑥𝑚 ∂𝑦𝑛

Constant symbols relate to mathematical constants such as e and true and also to names of sets such as the Real Numbers,
and Integers. In Strict Content MathML, they rewrite simply to the corresponding symbol listed in the syntax tables for
Arithmetic Constants and Set Theory Constants.

Operator Syntax, Schema Class

The elements <exponentiale/>, <imaginaryi/>, <notanumber/>, <true/>, <false/>, <pi/>, <eulergamma/>,
<infinity/> represent respectively:
the base of the natural logarithm, approximately 2.718;
the square root of -1, commonly written i;
not-a-number, i.e. the result of an ill-posed floating point computation (see [IEEE754]);
the Boolean value true;
the Boolean value false;
pi (π), approximately 3.142, which is the ratio of the circumference of a circle to its diameter;
the gamma constant (γ), approximately 0.5772;
infinity (∞).

4.3.9 Constants

4.3.9.1 Arithmetic Constants: <exponentiale/>, <imaginaryi/>, <notanumber/>, <true/>, <false/>, <pi/>,
<eulergamma/>, <infinity/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

237 of 434 26/08/2025, 11:30

▸ Show Section

Content MathML

<apply><eq/><apply><ln/><exponentiale/></apply><cn>1</cn></apply>

<apply><eq/><apply><power/><imaginaryi/><cn>2</cn></apply><cn>-1</cn></apply>

<apply><eq/><apply><divide/><cn>0</cn><cn>0</cn></apply><notanumber/></apply>

<apply><eq/><apply><or/><true/><ci type="boolean">P</ci></apply><true/></apply>

<apply><eq/><apply><and/><false/><ci type="boolean">P</ci></apply><false/></apply>

<apply><approx/><pi/><cn type="rational">22<sep/>7</cn></apply>

<apply><approx/><eulergamma/><cn>0.5772156649</cn></apply>

<infinity/>

Sample Presentation

<mrow>
<mrow><mi>ln</mi><mo>⁡<!--ApplyFunction--></mo><mi>e</mi></mrow>
<mo>=</mo>
<mn>1</mn>

</mrow>

ln 𝑒 = 1

<mrow><msup><mi>i</mi><mn>2</mn></msup><mo>=</mo><mn>-1</mn></mrow>

𝑖2 = -1

4.3.9.1.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

238 of 434 26/08/2025, 11:30

<mrow>
<mrow><mn>0</mn><mo>/</mo><mn>0</mn></mrow>
<mo>=</mo>
<mi>NaN</mi>

</mrow>

0 / 0 = NaN

<mrow>
<mrow><mi>true</mi><mo>∨</mo><mi>P</mi></mrow>
<mo>=</mo>
<mi>true</mi>

</mrow>

true ∨ 𝑃 = true

<mrow>
<mrow><mi>false</mi><mo>∧</mo><mi>P</mi></mrow>
<mo>=</mo>
<mi>false</mi>

</mrow>

false ∧ 𝑃 = false

<mrow>
<mi>π</mi>
<mo>≃</mo>
<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>

</mrow>

𝜋 ≃ 22 / 7

<mrow>
<mi>γ</mi><mo>≃</mo><mn>0.5772156649</mn>

</mrow>

𝛾 ≃ 0.5772156649

<mi>∞</mi>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

239 of 434 26/08/2025, 11:30

∞

Operator Syntax, Schema Class

These elements represent the standard number sets, Integers, Reals, Rationals, Natural Numbers (including zero), Complex
Numbers, Prime Numbers, and the Empty Set.

▸ Show Section

Content MathML

<apply><in/><cn type="integer">42</cn><integers/></apply>

<apply><in/><cn type="real">44.997</cn><reals/></apply>

<apply><in/><cn type="rational">22<sep/>7</cn><rationals/></apply>

<apply><in/><cn type="integer">1729</cn><naturalnumbers/></apply>

<apply><in/><cn type="complex-cartesian">17<sep/>29</cn><complexes/></apply>

<apply><in/><cn type="integer">17</cn><primes/></apply>

<apply><neq/><integers/><emptyset/></apply>

Sample Presentation

<mrow><mn>42</mn><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow>

42 ∈ ℤ

4.3.9.2 Set Theory Constants: <integers/>, <reals/>, <rationals/>, <naturalnumbers/>, <complexes/>,
<primes/>, <emptyset/>

4.3.9.2.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

240 of 434 26/08/2025, 11:30

<mrow>
<mn>44.997</mn><mo>∈</mo><mi mathvariant="double-struck">R</mi>

</mrow>

44.997 ∈ ℝ

<mrow>
<mrow><mn>22</mn><mo>/</mo><mn>7</mn></mrow>
<mo>∈</mo>
<mi mathvariant="double-struck">Q</mi>

</mrow>

22 / 7 ∈ ℚ

<mrow>
<mn>1729</mn><mo>∈</mo><mi mathvariant="double-struck">N</mi>

</mrow>

1729 ∈ ℕ

<mrow>
<mrow><mn>17</mn><mo>+</mo><mn>29</mn><mo>⁢<!--InvisibleTimes--></mo><mi>i</mi></
<mo>∈</mo>
<mi mathvariant="double-struck">C</mi>

</mrow>

17 + 29𝑖 ∈ ℂ

<mrow><mn>17</mn><mo>∈</mo><mi mathvariant="double-struck">P</mi></mrow>

17 ∈ ℙ

<mrow>
<mi mathvariant="double-struck">Z</mi><mo>≠</mo><mi>∅</mi>

</mrow>

ℤ ≠ ∅

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

241 of 434 26/08/2025, 11:30

Operator Syntax, Schema Class

The forall and <exists/> elements represent the universal (“for all”) and existential (“there exists”) quantifiers which
take one or more bound variables, and an argument which specifies the assertion being quantified. In addition, condition
or other qualifiers may be used to limit the domain of the bound variables.

▸ Show Section

Content MathML

<bind><forall/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><minus/><ci>x</ci><ci>x</ci></apply>
<cn>0</cn>

</apply>
</bind>

Sample Presentation

<mrow>
<mo>∀</mo>
<mi>x</mi>
<mo>.</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow><mi>x</mi><mo>−</mo><mi>x</mi></mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

∀𝑥 . (𝑥 − 𝑥 = 0)

4.3.10 Special Element forms

4.3.10.1 Quantifiers: <forall/>, <exists/>

4.3.10.1.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

242 of 434 26/08/2025, 11:30

Content MathML

<bind><exists/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><ci>f</ci><ci>x</ci></apply>
<cn>0</cn>

</apply>
</bind>

Sample Presentation

<mrow>
<mo>∃</mo>
<mi>x</mi>
<mo>.</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow><mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>
<mo>=</mo>
<mn>0</mn>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

∃𝑥 . (𝑓(𝑥) = 0)

Content MathML

<apply><exists/>
<bvar><ci>x</ci></bvar>
<domainofapplication>
<integers/>

</domainofapplication>
<apply><eq/>
<apply><ci>f</ci><ci>x</ci></apply>
<cn>0</cn>

</apply>
</apply>

Strict MathML equivalent:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

243 of 434 26/08/2025, 11:30

<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>x</ci>
<csymbol cd="setname1">Z</csymbol>

</apply>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><ci>f</ci><ci>x</ci></apply>
<cn>0</cn>

</apply>
</apply>

</bind>

Sample Presentation

<mrow>
<mo>∃</mo>
<mi>x</mi>
<mo>.</mo>
<mrow>
<mo>(</mo>
<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="double-struck">Z</mi></mrow>
<mo>∧</mo>
<mrow>
<mrow><mi>f</mi><mo>⁡<!--ApplyFunction--></mo><mrow><mo>(</mo><mi>x</mi><mo>
<mo>=</mo>
<mn>0</mn>

</mrow>
<mo>)</mo>

</mrow>
</mrow>

∃𝑥 . (𝑥 ∈ ℤ ∧ 𝑓(𝑥) = 0)

Operator Syntax, Schema Class

The lambda element is used to construct a user-defined function from an expression, bound variables, and qualifiers. In a
lambda construct with n (possibly 0) bound variables, the first n children are bvar elements that identify the variables that
are used as placeholders in the last child for actual parameter values. The bound variables can be restricted by an optional
domainofapplication qualifier or one of its shorthand notations. The meaning of the lambda construct is an n-ary
function that returns the expression in the last child where the bound variables are replaced with the respective arguments.

The domainofapplication child restricts the possible values of the arguments of the constructed function. For instance,

4.3.10.2 Lambda <lambda>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

244 of 434 26/08/2025, 11:30

the following lambda construct represents a function on the integers.

<lambda>
<bvar><ci> x </ci></bvar>
<domainofapplication><integers/></domainofapplication>
<apply><sin/><ci> x </ci></apply>

</lambda>

If a lambda construct does not contain bound variables, then the lambda construct is superfluous and may be removed,
unless it also contains a domainofapplication construct. In that case, if the last child of the lambda construct is itself a
function, then the domainofapplication restricts its existing functional arguments, as in this example, which is a variant
representation for the function above.

<lambda>
<domainofapplication><integers/></domainofapplication>
<sin/>

</lambda>

Otherwise, if the last child of the lambda construct is not a function, say a number, then the lambda construct will not be a
function, but the same number, and any domainofapplication is ignored.

▸ Show Section

Content MathML

<lambda>
<bvar><ci>x</ci></bvar>
<apply><sin/>
<apply><plus/><ci>x</ci><cn>1</cn></apply>

</apply>
</lambda>

Sample Presentation

4.3.10.2.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

245 of 434 26/08/2025, 11:30

<mrow>
<mi>λ</mi>
<mi>x</mi>
<mo>.</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>sin</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow>

</mrow>
<mo>)</mo>

</mrow>
</mrow>
<mtext> or </mtext>
<mrow>
<mi>x</mi>
<mo>↦</mo>
<mrow>
<mi>sin</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow>

</mrow>
</mrow>

𝜆𝑥 . (sin (𝑥 + 1)) or 𝑥 ↦ sin (𝑥 + 1)

Operator Syntax, Schema Class

The interval element is a container element used to represent simple mathematical intervals of the real number line. It
takes an optional attribute closure, which can take any of the values open, closed, open-closed, or closed-open,
with a default value of closed.

As described in 4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>,
interval is interpreted as a qualifier if it immediately follows bvar.

▸ Show Section

Content MathML

4.3.10.3 Interval <interval>

4.3.10.3.1 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

246 of 434 26/08/2025, 11:30

<interval closure="open"><ci>x</ci><cn>1</cn></interval>

<interval closure="closed"><cn>0</cn><cn>1</cn></interval>

<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>

<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>

Sample Presentation

<mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow>

(𝑥, 1)

<mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow>

[0, 1]

<mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow>

(0, 1]

<mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow>

[0, 1)

Operator Syntax, Schema Class

The limit element represents the operation of taking a limit of a sequence. The limit point is expressed by specifying a
lowlimit and a bvar, or by specifying a condition on one or more bound variables.

The direction from which a limiting value is approached is given as an argument limit in Strict Content MathML, which
supplies the direction specifier symbols both_sides, above, and below for this purpose. The first correspond to the values

4.3.10.4 Limits <limit/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

247 of 434 26/08/2025, 11:30

https://openmath.org/cd/limit1#limit
https://openmath.org/cd/limit1#limit
https://openmath.org/cd/limit1#both_sides
https://openmath.org/cd/limit1#both_sides
https://openmath.org/cd/limit1#above
https://openmath.org/cd/limit1#above
https://openmath.org/cd/limit1#below
https://openmath.org/cd/limit1#below

all, above, and below of the type attribute of the tendsto element. The null symbol corresponds to the case where no
type attribute is present.

▸ Show Section

Content MathML

<apply><limit/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<apply><sin/><ci>x</ci></apply>

</apply>

<apply><limit/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><tendsto/><ci>x</ci><cn>0</cn></apply>

</condition>
<apply><sin/><ci>x</ci></apply>

</apply>

<apply><limit/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>

</condition>
<apply><sin/><ci>x</ci></apply>

</apply>

Sample Presentation

<mrow>
<munder>
<mi>lim</mi>
<mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow>

</munder>
<mrow><mi>sin</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

</mrow>

lim
𝑥→0

sin 𝑥

4.3.10.4.1 EXAMPLES

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

248 of 434 26/08/2025, 11:30

https://openmath.org/cd/limit1#null
https://openmath.org/cd/limit1#null

<mrow>
<munder>
<mi>lim</mi>
<mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow>

</munder>
<mrow><mi>sin</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

</mrow>

lim
𝑥→0

sin 𝑥

<mrow>
<munder>
<mi>lim</mi>
<mrow><mi>x</mi><mo>→</mo><msup><mi>a</mi><mo>+</mo></msup></mrow>

</munder>
<mrow><mi>sin</mi><mo>⁡<!--ApplyFunction--></mo><mi>x</mi></mrow>

</mrow>

lim
𝑥→𝑎+

sin 𝑥

Operator Syntax, Schema Class

The piecewise, piece, and otherwise elements are used to represent “piecewise” function definitions of the form “H(x)
= 0 if x less than 0, H(x) = 1 otherwise”.

The declaration is constructed using the piecewise element. This contains zero or more piece elements, and optionally
one otherwise element. Each piece element contains exactly two children. The first child defines the value taken by the
piecewise expression when the condition specified in the associated second child of the piece is true. The degenerate
case of no piece elements and no otherwise element is treated as undefined for all values of the domain.

The otherwise element allows the specification of a value to be taken by the piecewise function when none of the
conditions (second child elements of the piece elements) is true, i.e. a default value.

It should be noted that no “order of execution” is implied by the ordering of the piece child elements within piecewise. It
is the responsibility of the author to ensure that the subsets of the function domain defined by the second children of the
piece elements are disjoint, or that, where they overlap, the values of the corresponding first children of the piece
elements coincide. If this is not the case, the meaning of the expression is undefined.

4.3.10.5 Piecewise declaration <piecewise>, <piece>, <otherwise>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

249 of 434 26/08/2025, 11:30

▸ Show Section

Content MathML

<piecewise>
<piece>
<apply><minus/><ci>x</ci></apply>
<apply><lt/><ci>x</ci><cn>0</cn></apply>

</piece>
<piece>
<cn>0</cn>
<apply><eq/><ci>x</ci><cn>0</cn></apply>

</piece>
<piece>
<ci>x</ci>
<apply><gt/><ci>x</ci><cn>0</cn></apply>

</piece>
</piecewise>

Sample Presentation

<mrow>
<mo>{</mo>
<mtable>
<mtr>
<mtd><mrow><mo>−</mo><mi>x</mi></mrow></mtd>
<mtd columnalign="left"><mtext> if </mtext></mtd>
<mtd><mrow><mi>x</mi><mo><</mo><mn>0</mn></mrow></mtd>

</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd columnalign="left"><mtext> if </mtext></mtd>
<mtd><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow></mtd>

</mtr>
<mtr>
<mtd><mi>x</mi></mtd>
<mtd columnalign="left"><mtext> if </mtext></mtd>
<mtd><mrow><mi>x</mi><mo>></mo><mn>0</mn></mrow></mtd>

</mtr>
</mtable>

</mrow>

4.3.10.5.1 EXAMPLE

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

250 of 434 26/08/2025, 11:30

⎧

⎨
⎩

⎪

⎪

−𝑥 if 𝑥 < 0

0 if 𝑥 = 0

𝑥 if 𝑥 > 0

MathML has been widely adopted by assistive technologies (AT). However, math notations can be ambiguous which can
result in AT guessing at what should be spoken in some cases. MathML 4 adds a lightweight method for authors to express
their intent: the intent attribute. This attribute is similar to the aria-label attribute with some important distinctions. In
terms of accessibility, the major difference is that intent does not affect braille generation. Most languages have a separate
braille code for math so that the words used for speech should not be affected by braille generation. Some languages, such as
English, have more than one braille math code and it is impossible for the author to know which is desired by the reader.
Hence, even if the author knew the (math) braille for the element, they could not override aria-label by using the
proposed aria-braillelabel because they wouldn't know which code to use.

As described in 2.1.6 Attributes Shared by all MathML Elements, MathML elements allow attributes intent and arg that
allow the “intent” of the term to be specified. This annotation is not meant to provide a full mathematical definition of the
term. It is primarily meant to help AT generate audio and/or braille renderings, see C. MathML Accessibility. Nevertheless,
it may also be useful to guide translations to Content MathML, or computational systems.

The intent attribute encodes a simple functional syntax representing the intended speech. A formal grammar is given
below, but a typical example would be intent="power($base,$exponent)" used in a context such as:

<msup intent="power($base,$exp)">
<mi arg="base">x</mi>
<mi arg="exp">n</mi>

</msup>

𝑥𝑛

The intent value of power($base,$exp) makes it clear that the author intends that this expression denotes
exponentiation as opposed to one of many other meanings of superscripts. Since power will be a concept supported by the
AT, it may choose different ways of speaking depending on context, arguments or other details. For example, the above
expression might be spoken as "x to the power n", but if "2" were given instead of "n", it may say "x squared".

The value of the intent attribute, should match the following grammar.

intent := self-property-list | expression
self-property-list := property+ S
expression := S (term property* | application) S

5. Annotating MathML: intent

5.1 The Grammar for intent

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

251 of 434 26/08/2025, 11:30

https://www.w3.org/TR/wai-aria-1.1/#aria-label
https://www.w3.org/TR/wai-aria-1.1/#aria-label
https://www.w3.org/TR/wai-aria-1.1/#aria-label
https://w3c.github.io/aria/#aria-braillelabel
https://w3c.github.io/aria/#aria-braillelabel

term := concept-or-literal | number | reference
concept-or-literal := NCName
number := '-'? \d+ ('.' \d+)?
reference := '$' NCName
application := expression '(' arguments? S ')'
arguments := expression (',' expression)*
property := S ':' NCName
S := [\t\n\r]*

Here NCName is as defined in in [xml-names], and digit is a character in the range 0–9.

The parts consist of:

concept-or-literal
Names should match the NCName production as used for no-namespace element name. A concept-or-literal are
interpreted either as a concept or literal.

• A concept corresponds to some mathematical or application specific function or concept. For many concepts, the
words used to speak a concept are very similar to the name used when referencing a concept.

• A literal is a name starting with “_” (U+00F5). These will never be included in an Intent Concept Dictionary. The
reading of a literal is generated by replacing any -, _, . in the name by spaces and then reading the resulting
phrase.

number
An explicit number such as 2.5 denotes itself.

reference
An argument reference such as $name refers to a descendant element that has an attribute arg="name". Unlike id
attributes, arg do not have to be unique within a document. When searching for a matching element the search should
only consider descendants, while stopping early at any elements that have a set intent or arg attribute, without
descending into them. Proper use of reference, instead of inserting equivalent literals, allows intent to be used while
navigating the mathematical structure.

application
An application denotes a function applied to arguments using a standard prefix notation. Optionally, between the head
of the function and the list of arguments there may be a property list as described below to influence the style of text
reading generated, or to provide other information to any consumer of the intent.

property
A property annotates the intent with an additional property which may be used by the system to adjust the generated
speech or Braille in system specifc ways. The property may be directly related to the speech form, such as :infix or
indirectly affect the style of speech with properties such as :unit or :chemistry

The list of properties supported by any system is open but should include the core properties as described below.

self-property-list
At the top level, an intent may consist of just a non-empty list of properties. These apply to the current element as
described in 5.4 Using Intent Concepts and Properties.

expression
A simple functional syntax using the terms described above.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

252 of 434 26/08/2025, 11:30

https://www.w3.org/TR/REC-xml-names/#NT-NCName
https://www.w3.org/TR/REC-xml-names/#NT-NCName
https://www.w3.org/TR/REC-xml-names/#NT-NCName

Every AT system that supports intent contains, at least implicitly, a list of the concepts that it recognizes. The details of
matching and using concept names is given in 5.4 Using Intent Concepts and Properties. Such an AT SHOULD recognize
the concepts in the Core list discussed below; It MAY also include concepts in the Open list discussed below, as well as any
of its own.

An Intent Concept Dictionary is an abstract mapping of concept names to speech, text or braille for that concept; it is
somewhat analogous to the B. Operator Dictionary used by MathML renderers in that it provides a set of defaults renderers
should be aware of. The property also has some analogies to the operator dictionary's use of form because a match makes
use of fixity properties (prefix, infix, etc.).

Intent Concept names are maintained in two lists, each maintained in the w3c/mathml-docs GitHub repository. Note that
while these concept dictionaries are published as HTML tables (based on yaml data), there is no requirement on how a
system implements the mapping from concepts to speech hints. Rather than a fixed list or hash table, it might use XPath
matching, regular expressions, appropriately trained generative AI or any other suitable mechansim. The only requirement is
that it should accept the cases listed in the Core concept dictionary and produce acceptable speech hints for those cases.

• Core: This is a list of core concept names, initially drawn from concepts used in K14 STEM education. The entries
include common concepts such as “divide”, “power”, and “greater-than”. The list is curated by the Math Working
Group based on experience with different AT implementations and following the guidelines set out in [Concept-Lists].

• Open: This is an open list of concepts to which contributions are invited. AT reading MathML attributed with a name in
this list MAY use the speech hints provided by the intent definition but a system may also fall back on reading the
identifier name as given. Although authors are encouraged to use a name in this list that matches their intent if one
exists, any string that is an NCName is allowed.

Future versions of the “core” concept list may incorporate names from the “open” list if usage indicates that is appropriate.

Intent properties act as modifiers of the speech or Braille that otherwise would have been generated by the intent attribute.
Most of these properties only have a defined effect in specific contexts, such as on the head of an application or applying to
an <mtable>. The use of these properties in other contexts is not an error, but as with any properties, is by default ignored
but may have a system-specific effect.

As with Concepts, The Working group maintains two lists of property values.

• Core properties: This is a list core of properties maintained by the Math Working Group

• Open properties: This is an open list of properties with contributions welcome from the community. Implementors of
MathML systems that implement additional properties are encouraged to make a pull request to add them to the list of
Open Properties.

The definitive list of Core Properties is maintained at Github. Here, we describe the major classes of property affecting
speech generation below.

:prefix, :infix, :postfix, :function, :silent
These properties in a function application request that the reading of the name may be suppressed, or the word ordering

5.2 Intent Concept Dictionaries

5.3 Intent Properties

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

253 of 434 26/08/2025, 11:30

https://github.com/w3c/mathml-docs
https://github.com/w3c/mathml-docs
https://w3c.github.io/mathml-docs/intent-core-concepts/
https://w3c.github.io/mathml-docs/intent-core-concepts/
https://w3c.github.io/mathml-docs/intent-open-concepts
https://w3c.github.io/mathml-docs/intent-open-concepts
https://w3c.github.io/mathml-docs/intent-core-properties
https://w3c.github.io/mathml-docs/intent-core-properties
https://w3c.github.io/mathml-docs/intent-open-properties
https://w3c.github.io/mathml-docs/intent-open-properties

may be affected. Note that the properties :prefix, :infix and :postfix refer to the spoken word order of the name
and arguments, and not (necessarily) the order used in the displayed mathematical notation.

• In the case of a supported concept name, the property MAY be used in choosing the alternatives supported by the
AT. For example union is in the Core list with speech patterns "$1 union $2" and "union of $1 and $2". An intent
union :prefix ($a,$b) would indicate that the latter style is preferred.

• For literal or unsupported concept names, the text generated from the function head SHOULD be read as specified
in the property.

◦ f :prefix ($x) : “f x”

◦ f :infix ($x,y) : “x f y”

◦ f :postix ($x) : “x f”

◦ f :function ($x, $y): “f of x and y”

◦ f :silent ($x,$y) : “x y”

The specific words used above are only examples; AT is free to choose other appropriate audio renderings. For
example, f:function($x, $y) could also be spoken as “f of x comma y”. If none of these properties is used,
the function property should be assumed unless the literal is silent (for example _) in which case the :silent
property should be assumed. See the examples in 5.6 A Warning about literal and property.

:literal
This property requests that the AT should not infer any semantics and just speak the elements with a literal
interpretation, including leaf content (eg “|” might be spoken as “vertical bar”).

:matrix, :system-of-equations, :lines, :continued-equation
These properties may be used on an mtable or on a reference to an mtable. They affect the way the parts of an
alignment are announced.

The exact wordings used are system specfic

• :matrix should be read in style suitable for matricies, with typically column numbers being announced.

• :system-of-equations should be read in style suitable for displayed equations (and inequalities), with
typically column numbers not being announced. Each table row would normally be announced as an "equation"
but a continued-equation property on an mtr indicates that the row continues an equation wrapped from the
row above.

When the intent attribute corresponding to a specific node contains a concept component, the AT's Intent Concept
Dictionary should be consulted. The concept name should be normalized (“_” (U+00F5) and “.” (U+002E) to “-”
(U+002D)), and compared using ASCII case-insensitive match. If arguments were given explicitly in the intent then their
number gives the arity, and the fixity is determined from an explicit property or may default from the concept dictionary.
Otherwise, arity is assumed to be 0.

A concept is considered a supported concept (by the AT) when the normalized name, the fixity property, and the arity all
match an entry in the AT's concept dictionary. This does not exclude implementations which support additional concepts, as
well as concepts with many arities, fixities or aliases, as long as they are mapped appropriately. The speech hint in the

5.4 Using Intent Concepts and Properties

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

254 of 434 26/08/2025, 11:30

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

matching entry can be used as a guide for the generation of specific audio, replacement text or braille renderings, as
appropriate. It can also help clarify argument order. However, because common notations have many specialized ways of
being spoken, the AT is NOT constrained to use the hint as given. For example, AT may vocalize a fraction marked up with
<mfrac> as “three quarters” or “three over x” or may vocalize an inline fraction marked up as <mo>/</mo> as “three
divided by x”. The choice may depend on the contents and carrier element associated with an intent="divide($num,
$denom)". Note that properties other than those specifying fixity may also indicate different rendering choices.

Otherwise, if the concept name, fixity and arity do not match that is considered to be an unsupported concept (by the AT)
and will be treated the same as a literal; that is, the name is spoken as-is after normalizing each of -, _ and . to an inter-
word space. Even for an unsupported concept, if a fixity property and arguments were given, the speech for the arguments
should be composed in a manner consistent with the given fixity property, if possible.

Note that future updates of an AT may add or remove concepts in its Intent Concept Dictionary. Hence which concepts are
supported may change with each update.

In cases where the intent contains neither an explicit nor inferrable concept the AT should generally read out the MathML in
a literal or structural fashion, as with the :literal property. However, any given properties should be respected if possible,
and may be useful to indicate the kind of mathematical object, rather than giving an explicit concept name to be spoken.
This can be a useful technique, especially for large constructs such as tables as it allows the children to be inferred without
needing to be explicitly referenced in the intent as would be the case with an applicaton. For example, <mtable
intent=":array">... might read the table as an array of values, whereas <mtable intent=":system-of-
equations">... might read the table in a style more appropriate for a list of equations. In both cases the navigation of the
underlying table structure can be supplied by the AT system, as it would for an unannotated table.

In general, depending upon the reader, AT may add words or sounds to make the speech clearer to the listener. For example,
for someone who can not see the a fraction, AT might say “fraction x over three end fraction” so the listener knows exactly
what is part of the fraction. For someone who can see the content, these extra words might be a distraction. AT should
always produce speech that is appropriate to the community they serve.

An intent processor may report errors in intent expressions in any appropriate way, including returning a message as the
generated text, or throwing an exception (error) in whatever form the implementation supports. However in web platform
contexts it is often not appropriate to report errors to the reader who has no access to correct the source, so intent procesors
should offer a mode which recovers from errors as described below.

1. If an intent attribute does not match the grammar 5.1 The Grammar for intent, then the processor should act as if
the attribute were not present. Typically this will result in a suitable fallback text being generated from the MathML
element and its descendants. Note that just the erroneous attribute is ignored, other intent attributes in the MathML
expression should be used.

2. If a reference such as $x does not correspond to an arg attribute with value x on a descendant element, the
processor should act as if the reference were replaced by the literal _dollar_x.

5.5 Intent Error Handling

5.5.1 Intent Error Recovery

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

255 of 434 26/08/2025, 11:30

The literal and property features extend the coverage of mathematical concepts beyond the predefined dictionaries and allow
expression of speech preferences. For example, when $x and $y reference <mi arg="x">x</mi> and <mi arg="y">y</
mi> respectively, then

• list :silent ($x,$y) would be read as “x y”

• semi-factorial :postfix($x) would be read as “x semi factorial”

These features also allow taking almost complete control of the generated speech. For example, compare:

• free-algebra ($r, $x)
would be read as “free algebra of r and x”

• free-algebra-construct:silent (_free, $r, _algebra, _on, $x)
would be read as “free r algebra on x”

• _(free, _($r,algebra), on, $x)
would be read as “free r algebra; on x”

However, since the literals are not in dictionaries, the meaning behind the expressions become more opaque, and thus
excessive use of these features will tend to limit the AT's ability to adapt to the needs of the user, as well as limit translation
and locale-specific speech. Thus, the last two examples would be discouraged.

Conversely, when specific speech not corresponding to a meaningful concept is nevertheless required, it will be better to use
a literal name (prefixed with “_”) rather than an unsupported concept. This avoids unexpected collisions with future updates
to the concept dictionaries. Thus, the last example is particularly discouraged.

A primary use for intent is to disambiguate cases where the same syntax is used for different meanings, and typically has
different readings.

Superscript, msup, may represent a power, a transpose, a derivative or an embellished symbol. These cases would be
distinguished as follows, showing possible readings with and without intent

<msup intent="power($base,$exp)">
<mi arg="base">x</mi>
<mi arg="exp">n</mi>

</msup>

x to the n-th power
x superscript n end superscript

5.6 A Warning about literal and property

5.7 Intent Examples

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

256 of 434 26/08/2025, 11:30

𝑥𝑛

An alternative default rendering without intent would be to assume that msup is always a power, so the second rendering
above might also be “x to the n-th power”. In that case the second renderings below will (incorrectly) speak the examples
using “raised to the ... power”.

<msup intent="$op($a)">
<mi arg="a">A</mi>
<mi arg="op" intent="transpose">T</mi>

</msup>

transpose of A
A superscript T end superscript

𝐴𝑇

However, with a property, this example might be read differently.

<msup intent="$op :postfix ($a)">
<mi arg="a">A</mi>
<mi arg="op" intent="transpose">T</mi>

</msup>

A transpose

𝐴𝑇

<msup intent="derivative($a)">
<mi arg="a">f</mi>
<mi>′</mi>

</msup>

derivative of f
f superscript prime end superscript

𝑓′

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

257 of 434 26/08/2025, 11:30

<msup intent="x-prime">
<mi>x</mi>
<mo>′</mo>

</msup>

x prime
x superscript prime end superscript

𝑥′

Custom accessible descriptions, such as author-preferred variable or operator names, can also be annotated compositionally,
via the underscore function.

The above notation could instead intend the custom name "x-new", which we can mark with a single literal intent="_x-
new", or as a compound narration of two arguments:

<msup intent="_($base,$script)">
<mi arg="base">x</mi>
<mo arg="script" intent="_new">′</mo>

</msup>

x new
x superscript prime end superscript

𝑥′

Using the underscore function may also add clarity when the fragments of a compound name are explicitly localized. A
cyrillic (Bulgarian) example:

<msup intent="_($base,$script)">
<mi arg="base" intent="_хикс">x</mi>
<mo arg="script" intent="_прим">′</mo>

</msup>

хикс прим
x superscript prime end superscript

𝑥′

Alternatively, the narration of individual fragments could be fully delegated to AT, while still specifying their grouping:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

258 of 434 26/08/2025, 11:30

<msup intent="_($base,$script)">
<mi arg="base">x</mi>
<mo arg="script">′</mo>

</msup>

x prime
x superscript prime end superscript

𝑥′

An overbar may represent complex conjugation, or mean (average), again with possible readings with and without intent:

<mover intent="conjugate($v)">
<mi arg="v">z</mi>
<mo>¯</mo>

</mover>
<mtext> <!--nbsp-->is not <!--nbsp--></mtext>
<mover intent="mean($var)">
<mi arg="var">X</mi>
<mo>¯</mo>

</mover>

conjugate of z is not mean of X
z with bar above is not X with bar above

𝑧̅ ̅is not 𝑋̅ ̅ ̅

The intent mechanism is extensible through the use of unsupported concept names. For example, assuming that the Bell
Number is not present in any of the dictionaries, the following example

<msub intent="bell-number($index)">
<mi>B</mi>
<mn arg="index">2</mn>

</msub>

will still produce the expected reading:

bell number of 2

𝐵2

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

259 of 434 26/08/2025, 11:30

CSS customization of MathML is generally not made available to AT and is ignored in accessible readouts. In cases where
authors have meaningful stylistic emphases, or stylized constructs with custom names, using an intent attribute is
appropriate. For example, color-coding of subexpressions is often helpful in teaching materials:

<mn>1</mn><mo>+</mo>
<mrow style="padding:0.1em;background-color:lightyellow;"

intent="highlighted-step($step)">
<mfrac arg="step"><mn>6</mn><mn>2</mn></mfrac>

</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn><mo>+</mo>
<mn style="padding:0.1em;background-color:lightgreen;"

intent="highlighted-result(3)">3</mn>
<mi>x</mi>

one plus highlighted step of six over two end highlighted step x equals one plus highlighted result of three end
highlighted result x

1 + 6
2 𝑥 = 1 + 3𝑥

The <mtable> element is used in many ways, for denoting matrices, systems of equations, steps in a proof derivation, etc.
In addition to these uses it may be used to implement forced line breaking and alignment, especially for systems that do not
implement 3.1.7 Linebreaking of Expressions, or for conversions from (La)TeX where alignment constructs are used in
similar ways.

Whenever a kind of tabular construct has an associated property, it is usually better to use only the property and allow AT to
infer how to speak navigate the expression. By use of properties in this way the author can give hints to the speech
generation and generate speech suitable for a list of aligned equations rather than say a matrix.

When core properties are insufficient to represent a tabular layout, the use of intent concept names and, if appropriate, also
properties from the open list of properties should be used to convey the desired speech and navigation of the tabular layout.
Because of the likely complexity of these layouts, testing with AT should be done to verify that users hear the expression as
the author intended.

Matrices

5.7.1 CSS and Style

5.7.2 Tables

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

260 of 434 26/08/2025, 11:30

<mrow intent='$m'>
<mo>(</mo>
<mtable arg='m' intent=':matrix'>
<mtr>
<mtd><mn>1</mn></mtd>
<mtd><mn>0</mn></mtd>

</mtr>
<mtr>
<mtd><mn>0</mn></mtd>
<mtd><mn>1</mn></mtd>

</mtr>
</mtable>
<mo>)</mo>

</mrow>

The 2 by 2 matrix;
column 1; 1;
column 2; 0;
column 1; 0;
column 2; 1;
end matrix

(
1 0

0 1
)

Aligned equations

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

261 of 434 26/08/2025, 11:30

<mtable intent=':equations'>
<mtr>
<mtd columnalign="right">
<mn>2</mn>
<mo>⁢<!--InvisibleTimes--></mo>
<mi>x</mi>

</mtd>
<mtd columnalign="center">
<mo>=</mo>

</mtd>
<mtd columnalign="left">
<mn>1</mn>

</mtd>
</mtr>
<mtr>
<mtd columnalign="right">
<mi>y</mi>

</mtd>
<mtd columnalign="center">
<mo>></mo>

</mtd>
<mtd columnalign="left">
<mi>x</mi>
<mo>-</mo>
<mn>3</mn>

</mtd>
</mtr>

</mtable>

2 equations,
equation 1; 2 x, is equal to, 1;
equation 2; y, is greater than, x minus 3;

2𝑥 = 1

𝑦 > 𝑥 − 3

Aligned Equations with wrapped expressions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

262 of 434 26/08/2025, 11:30

<mtable intent=':equations'>
<mtr>
<mtd columnalign="right">
<mi>a</mi>

</mtd>
<mtd columnalign="center">
<mo>=</mo>

</mtd>
<mtd columnalign="left">
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>-</mo>
<mi>d</mi>

</mtd>
</mtr>
<mtr intent=':continued-equation'>
<mtd columnalign="right"></mtd>
<mtd columnalign="center"></mtd>
<mtd columnalign="left">
<mo form="infix">+</mo>
<mi>e</mi>
<mo>-</mo>
<mi>f</mi>

</mtd>
</mtr>

</mtable>

1 equation; a, is equal to, b plus c minus d; plus e minus f;

𝑎 = 𝑏 + 𝑐 − 𝑑

+ 𝑒 − 𝑓

In addition to the intent attribute described above, MathML provides a more general framework for annotation. A
MathML expression may be decorated with a sequence of pairs made up of a symbol that indicates the kind of annotation,
known as the annotation key, and associated data, known as the annotation value.

The semantics, annotation, and annotation-xml elements are used together to represent annotations in MathML.
The semantics element provides the container for an expression and its annotations. The annotation element is the
container for text annotations, and the annotation-xml element is used for structured annotations. The semantics
element contains the expression being annotated as its first child, followed by a sequence of zero or more annotation and/
or annotation-xml elements.

The semantics element is considered to be both a presentation element and a content element, and may be used in either

6. Annotating MathML: semantics

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

263 of 434 26/08/2025, 11:30

context. All MathML processors should process the semantics element, even if they only process one of these two subsets
of MathML, or [MathML-Core].

An annotation key specifies the relationship between an expression and an annotation. Many kinds of relationships are
possible. Examples include alternate representations, specification or clarification of semantics, type information, rendering
hints, and private data intended for specific processors. The annotation key is the primary means by which a processor
determines whether or not to process an annotation.

The logical relationship between an expression and an annotation can have a significant impact on the proper processing of
the expression. For example, a particular annotation form, called semantic attributions, cannot be ignored without altering
the meaning of the annotated expression, at least in some processing contexts. On the other hand, alternate representations
do not alter the meaning of an expression, but may alter the presentation of the expression as they are frequently used to
provide rendering hints. Still other annotations carry private data or metadata that are useful in a specific context, but do not
alter either the semantics or the presentation of the expression.

Annotation keys may be defined as a symbol in a Content Dictionary, and are specified using the cd and name attributes on
the annotation and annotation-xml elements. Alternatively, an annotation key may also be referenced using the
definitionURL attribute as an alternative to the cd and name attributes.

MathML provides two predefined annotation keys for the most common kinds of annotations: alternate-representation and
contentequiv defined in the mathmlkeys content dictionary. The alternate-representation annotation key specifies that the
annotation value provides an alternate representation for an expression in some other markup language, and the contentequiv
annotation key specifies that the annotation value provides a semantically equivalent alternative for the annotated
expression.

The default annotation key is alternate-representation when no annotation key is explicitly specified on an annotation or
annotation-xml element.

Typically, annotation keys specify only the logical nature of the relationship between an expression and an annotation. The
data format for an annotation is indicated with the encoding attribute. In MathML 2, the encoding attribute was the
primary information that a processor could use to determine whether or not it could understand an annotation. For backward
compatibility, processors are encouraged to examine both the annotation key and encoding attribute. In particular,
MathML 2 specified the predefined encoding values MathML, MathML-Content, and MathML-Presentation. The
MathML encoding value is used to indicate an annotation-xml element contains a MathML expression. The use of the
other values is more specific, as discussed in following sections.

Alternate representation annotations are most often used to provide renderings for an expression, or to provide an equivalent
representation in another markup language. In general, alternate representation annotations do not alter the meaning of the
annotated expression, but may alter its presentation.

A particularly important case is the use of a presentation MathML expression to indicate a preferred rendering for a content

6.1 Annotation keys

6.2 Alternate representations

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

264 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys
https://openmath.org/cd/mathmlkeys
https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation

MathML expression. This case may be represented by labeling the annotation with the application/mathml-
presentation+xml value for the encoding attribute. For backward compatibility with MathML 2.0, this case can also be
represented with the equivalent MathML-Presentation value for the encoding attribute. Note that when a presentation
MathML annotation is present in a semantics element, it may be used as the default rendering of the semantics element,
instead of the default rendering of the first child.

In the example below, the semantics element binds together various alternate representations for a content MathML
expression. The presentation MathML annotation may be used as the default rendering, while the other annotations give
representations in other markup languages. Since no attribution keys are explicitly specified, the default annotation key
alternate-representation applies to each of the annotations.

<semantics>
<apply>
<plus/>
<apply><sin/><ci>x</ci></apply>
<cn>5</cn>

</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mrow>
<mi>sin</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>

</mrow>
<mo>+</mo>
<mn>5</mn>

</mrow>
</annotation-xml>
<annotation encoding="application/x-maple">sin(x) + 5</annotation>
<annotation encoding="application/vnd.wolfram.mathematica">Sin[x] + 5</annotation>
<annotation encoding="application/x-tex">\sin x + 5</annotation>
<annotation-xml encoding="application/openmath+xml">
<OMA xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
<OMI>5</OMI>

</OMA>
</OMA>

</annotation-xml>
</semantics>

Note that this example makes use of the namespace extensibility that is only available in the XML syntax of MathML. If this
example is included in an HTML document then it would be considered invalid and the OpenMath elements would be
parsed as elements in the MathML namespace. See 6.7.3 Using annotation-xml in HTML documents for details.

6.3 Content equivalents

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

265 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation

Content equivalent annotations provide additional computational information about an expression. Annotations with the
contentequiv key cannot be ignored without potentially changing the behavior of an expression.

An important case arises when a content MathML annotation is used to disambiguate the meaning of a presentation
MathML expression. This case may be represented by labeling the annotation with the application/mathml-
content+xml value for the encoding attribute. In MathML 2, this type of annotation was represented with the equivalent
MathML-Content value for the encoding attribute, so processors are urged to support this usage for backward
compatibility. The contentequiv annotation key should be used to make an explicit assertion that the annotation provides a
definitive content markup equivalent for an expression.

In the example below, an ambiguous presentation MathML expression is annotated with a MathML-Content annotation
clarifying its precise meaning.

<semantics>
<mrow>
<mrow>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow>
<mo>)</mo>

</mrow>
</mrow>

</mrow>
<annotation-xml cd="mathmlkeys" name="contentequiv" encoding="MathML-Content">
<apply>
<ci>a</ci>
<apply><plus/><ci>x</ci><cn>5</cn></apply>

</apply>
</annotation-xml>

</semantics>

In the usual case, each annotation element includes either character data content (in the case of annotation) or XML
markup data (in the case of annotation-xml) that represents the annotation value. There is no restriction on the type of
annotation that may appear within a semantics element. For example, an annotation could provide a TeX encoding, a
linear input form for a computer algebra system, a rendered image, or detailed mathematical type information.

In some cases the alternative children of a semantics element are not an essential part of the behavior of the annotated
expression, but may be useful to specialized processors. To enable the availability of several annotation formats in a more
efficient manner, a semantics element may contain empty annotation and annotation-xml elements that provide
encoding and src attributes to specify an external location for the annotation value associated with the annotation. This
type of annotation is known as an annotation reference.

6.4 Annotation references

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

266 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys#contentequiv
https://openmath.org/cd/mathmlkeys#contentequiv

<semantics>
<mfrac><mi>a</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac>
<annotation encoding="image/png" src="333/formula56.png"/>
<annotation encoding="application/x-maple" src="333/formula56.ms"/>

</semantics>

Processing agents that anticipate that consumers of exported markup may not be able to retrieve the external entity
referenced by such annotations should request the content of the external entity at the indicated location and replace the
annotation with its expanded form.

An annotation reference follows the same rules as for other annotations to determine the annotation key that specifies the
relationship between the annotated object and the annotation value.

The semantics element is the container element that associates annotations with a MathML expression. The semantics
element has as its first child the expression to be annotated. Any MathML expression may appear as the first child of the
semantics element. Subsequent annotation and annotation-xml children enclose the annotations. An annotation
represented in XML is enclosed in an annotation-xml element. An annotation represented in character data is enclosed in
an annotation element.

As noted above, the semantics element is considered to be both a presentation element and a content element, since it can
act as either, depending on its content. Consequently, all MathML processors should process the semantics element, even
if they process only presentation markup or only content markup.

The default rendering of a semantics element is the default rendering of its first child. A renderer may use the information
contained in the annotations to customize its rendering of the annotated element.

6.5 The <semantics> element

6.5.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

267 of 434 26/08/2025, 11:30

<semantics>
<mrow>
<mrow>
<mi>sin</mi>
<mo>⁡<!--ApplyFunction--></mo>
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>

</mrow>
<mo>+</mo>
<mn>5</mn>

</mrow>
<annotation-xml cd="mathmlkeys" name="contentequiv" encoding="MathML-Content">
<apply>
<plus/>
<apply><sin/><ci>x</ci></apply>
<cn>5</cn>

</apply>
</annotation-xml>
<annotation encoding="application/x-tex">\sin x + 5</annotation>

</semantics>

sin (𝑥) + 5

The annotation element is the container element for a semantic annotation whose representation is parsed character data
in a non-XML format. The annotation element should contain the character data for the annotation, and should not
contain XML markup elements. If the annotation contains one of the XML reserved characters &, < then these characters
must be encoded using an entity reference or (in the XML syntax) an XML CDATA section.

6.6 The <annotation> element

6.6.1 Description

6.6.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

268 of 434 26/08/2025, 11:30

Name values default

definitionURL URI none

The location of the annotation key symbol

encoding string none

The encoding of the semantic information in the annotation

cd string mathmlkeys

The content dictionary that contains the annotation key symbol

name string alternate-representation

The name of the annotation key symbol

src URI none

The location of an external source for semantic information

Taken together, the cd and name attributes specify the annotation key symbol, which identifies the relationship between the
annotated element and the annotation, as described in 6.5 The <semantics> element. The definitionURL attribute
provides an alternate way to reference the annotation key symbol as a single attribute. If none of these attributes are present,
the annotation key symbol is the symbol alternate-representation from the mathmlkeys content dictionary.

The encoding attribute describes the content type of the annotation. The value of the encoding attribute may contain a
media type that identifies the data format for the encoding data. For data formats that do not have an associated media type,
implementors may choose a self-describing character string to identify their content type.

The src attribute provides a mechanism to attach external entities as annotations on MathML expressions.

<annotation encoding="image/png" src="333/formula56.png"/>

The annotation element is a semantic mapping element that may only be used as a child of the semantics element.
While there is no default rendering for the annotation element, a renderer may use the information contained in an
annotation to customize its rendering of the annotated element.

The annotation-xml element is the container element for a semantic annotation whose representation is structured
markup. The annotation-xml element should contain the markup elements, attributes, and character data for the

6.7 The <annotation-xml> element

6.7.1 Description

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

269 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys
https://openmath.org/cd/mathmlkeys

annotation.

Name values default

definitionURL URI none

The location of the annotation key symbol

encoding string none

The encoding of the semantic information in the annotation

cd string mathmlkeys

The content dictionary that contains the annotation key symbol

name string alternate-representation

The name of the annotation key symbol

src URI none

The location of an external source for semantic information

Taken together, the cd and name attributes specify the annotation key symbol, which identifies the relationship between the
annotated element and the annotation, as described in 6.5 The <semantics> element. The definitionURL attribute
provides an alternate way to reference the annotation key symbol as a single attribute. If none of these attributes are present,
the annotation key symbol is the symbol alternate-representation from the mathmlkeys content dictionary.

The encoding attribute describes the content type of the annotation. The value of the encoding attribute may contain a
media type that identifies the data format for the encoding data. For data formats that do not have an associated media type,
implementors may choose a self-describing character string to identify their content type. In particular, as described above
and in 7.2.4 Names of MathML Encodings, MathML specifies MathML, MathML-Presentation, and MathML-Content
as predefined values for the encoding attribute. Finally, the src attribute provides a mechanism to attach external XML
entities as annotations on MathML expressions.

6.7.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

270 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys
https://openmath.org/cd/mathmlkeys

<annotation-xml cd="mathmlkeys" name="contentequiv" encoding="MathML-Content">
<apply>
<plus/>
<apply><sin/><ci>x</ci></apply>
<cn>5</cn>

</apply>
</annotation-xml>

<annotation-xml encoding="application/openmath+xml">
<OMA xmlns="http://www.openmath.org/OpenMath">
<OMS cd="arith1" name="plus"/>
<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

When the MathML is being parsed as XML and the annotation value is represented in an XML dialect other than MathML,
the namespace for the XML markup for the annotation should be identified by means of namespace attributes and/or
namespace prefixes on the annotation value. For instance:

<annotation-xml encoding="application/xhtml+xml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>E</title></head>
<body>
<p>The base of the natural logarithms, approximately 2.71828.</p>

</body>
</html>

</annotation-xml>

The annotation-xml element is a semantic mapping element that may only be used as a child of the semantics element.
While there is no default rendering for the annotation-xml element, a renderer may use the information contained in an
annotation to customize its rendering of the annotated element.

Note that the Namespace extensibility used in the above examples may not be available if the MathML is not being treated
as an XML document. In particular HTML parsers treat xmlns attributes as ordinary attributes, so the OpenMath example
would be classified as invalid by an HTML validator. The OpenMath elements would still be parsed as children of the
annotation-xml element, however they would be placed in the MathML namespace. The above examples are not
rendered in the HTML version of this specification, to ensure that that document is a valid HTML5 document.

The details of the HTML parser handling of annotation-xml is specified in [HTML] and summarized in 7.4.3 Mixing
MathML and HTML, however the main differences from the behavior of an XML parser that affect MathML annotations
are that the HTML parser does not treat xmlns attributes, nor : in element names as special and has built-in rules
determining whether the three “known” namespaces, HTML, SVG or MathML are used.

• If the annotation-xml has an encoding attribute that is (ignoring case differences) text/html or annotation/

6.7.3 Using annotation-xml in HTML documents

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

271 of 434 26/08/2025, 11:30

xhtml+xml then the content is parsed as HTML and placed (initially) in the HTML namespace.

• Otherwise it is parsed as foreign content and parsed in a more XML-like manner (like MathML itself in HTML) in
which /> signifies an empty element. Content will be placed in the MathML namespace.

If any recognised HTML element appears in this foreign content annotation the HTML parser will effectively terminate
the math expression, closing all open elements until the math element is closed, and then process the nested HTML as
if it were not inside the math context. Any following MathML elements will then not render correctly as they are not in
a math context, or in the MathML namespace.

These issues mean that the following example is valid whether parsed by an XML or HTML parser:

<math>
<semantics>
<mi>a</mi>
<annotation-xml encoding="text/html">
xxx

</annotation-xml>
</semantics>
<mo>+</mo>
<mi>b</mi>

</math>

However if the encoding attribute is omitted then the expression is only valid if parsed as XML:

<math>
<semantics>
<mi>a</mi>
<annotation-xml>
xxx

</annotation-xml>
</semantics>
<mo>+</mo>
<mi>b</mi>

</math>

If the above is parsed by an HTML parser it produces a result equivalent to the following invalid input, where the span
element has caused all MathML elements to be prematurely closed. The remaining MathML elements following the span
are no longer contained within <math> so will be parsed as unknown HTML elements and render incorrectly.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

272 of 434 26/08/2025, 11:30

<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mi>a</mi>
<annotation-xml>
</annotation-xml>

</semantics>
</math>
xxx
<mo xmlns="http://www.w3.org/1999/xhtml">+</mo>
<mi xmlns="http://www.w3.org/1999/xhtml">b</mi>

Note here that the HTML span element has caused all open MathML elements to be prematurely closed, resulting in the
following MathML elements being treated as unknown HTML elements as they are no longer descendants of math. See
7.4.3 Mixing MathML and HTML for more details of the parsing of MathML in HTML.

Any use of elements in other vocabularies (such as the OpenMath examples above) is considered invalid in HTML. If
validity is not a strict requirement it is possible to use such elements but they will be parsed as elements on the MathML
namespace. Documents SHOULD NOT use namespace prefixes and element names containing colon (:) as the element
nodes produced by the HTML parser have local names containing a colon, which can not be constructed by a namespace
aware XML parser. Rather than use such foreign annotations, when using an HTML parser it is better to encode the
annotation using the existing vocabulary. For example as shown in 4. Content Markup OpenMath may be encoded faithfully
as Strict Content MathML. Similarly RDF annotations could be encoded using RDFa in text/html annotation or (say) N3
notation in annotation rather than using RDF/XML encoding in an annotation-xml element.

Presentation markup encodes the notational structure of an expression. Content markup encodes the functional structure of
an expression. In certain cases, a particular application of MathML may require a combination of both presentation and
content markup. This section describes specific constraints that govern the use of presentation markup within content
markup, and vice versa.

Presentation markup may be embedded within content markup so long as the resulting expression retains an unambiguous
function application structure. Specifically, presentation markup may only appear in content markup in three ways:

1. within ci and cn token elements

2. within the csymbol element

3. within the semantics element

Any other presentation markup occurring within content markup is a MathML error. More detailed discussion of these three
cases follows:

Presentation markup within token elements.

6.8 Combining Presentation and Content Markup

6.8.1 Presentation Markup in Content Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

273 of 434 26/08/2025, 11:30

The token elements ci and cn are permitted to contain any sequence of MathML characters (defined in 8. Characters,
Entities and Fonts) and/or presentation elements. Contiguous blocks of MathML characters in ci or cn elements are
treated as if wrapped in mi or mn elements, as appropriate, and the resulting collection of presentation elements is
rendered as if wrapped in an implicit mrow element.

Presentation markup within the csymbol element.
The same rendering rules that apply to the token elements ci and cn should be used for the csymbol element.

Presentation markup within the semantics element.
One of the main purposes of the semantics element is to provide a mechanism for incorporating arbitrary MathML
expressions into content markup in a semantically meaningful way. In particular, any valid presentation expression can
be embedded in a content expression by placing it as the first child of a semantics element. The meaning of this
wrapped expression should be indicated by one or more annotation elements also contained in the semantics element.

Content markup may be embedded within presentation markup so long as the resulting expression has an unambiguous
rendering. That is, it must be possible, in principle, to produce a presentation markup fragment for each content markup
fragment that appears in the combined expression. The replacement of each content markup fragment by its corresponding
presentation markup should produce a well-formed presentation markup expression. A presentation engine should then be
able to process this presentation expression without reference to the content markup bits included in the original expression.

In general, this constraint means that each embedded content expression must be well-formed, as a content expression, and
must be able to stand alone outside the context of any containing content markup element. As a result, the following content
elements may not appear as an immediate child of a presentation element: annotation, annotation-xml, bvar,
condition, degree, logbase, lowlimit, uplimit.

In addition, within presentation markup, content markup may not appear within presentation token elements.

Some applications are able to use both presentation and content information. Parallel markup is a way to combine two or
more markup trees for the same mathematical expression. Parallel markup is achieved with the semantics element.
Parallel markup for an expression may appear on its own, or as part of a larger content or presentation tree.

In many cases, the goal is to provide presentation markup and content markup for a mathematical expression as a whole. A
single semantics element may be used to pair two markup trees, where one child element provides the presentation
markup, and the other child element provides the content markup.

The following example encodes the Boolean arithmetic expression (𝑎 + 𝑏)(𝑐 + 𝑑) in this way.

6.8.2 Content Markup in Presentation Markup

6.9 Parallel Markup

6.9.1 Top-level Parallel Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

274 of 434 26/08/2025, 11:30

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢<!--InvisibleTimes--></mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

(𝑎 + 𝑏)(𝑐 + 𝑑)

Note that the above markup annotates the presentation markup as the first child element, with the content markup as part of
the annotation-xml element. An equivalent form could be given that annotates the content markup as the first child
element, with the presentation markup as part of the annotation-xml element.

To accommodate applications that must process sub-expressions of large objects, MathML supports cross-references
between the branches of a semantics element to identify corresponding sub-structures. These cross-references are
established by the use of the id and xref attributes within a semantics element. This application of the id and xref
attributes within a semantics element should be viewed as best practice to enable a recipient to select arbitrary sub-
expressions in each alternative branch of a semantics element. The id and xref attributes may be placed on MathML
elements of any type.

The following example demonstrates cross-references for the Boolean arithmetic expression (𝑎 + 𝑏)(𝑐 + 𝑑).

6.9.2 Parallel Markup via Cross-References

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

275 of 434 26/08/2025, 11:30

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢<!--InvisibleTimes--></mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>
</semantics>

(𝑎 + 𝑏)(𝑐 + 𝑑)

An id attribute and associated xref attributes that appear within the same semantics element establish the cross-
references between corresponding sub-expressions.

For parallel markup, all of the id attributes referenced by any xref attribute should be in the same branch of an enclosing
semantics element. This constraint guarantees that the cross-references do not create unintentional cycles. This restriction
does not exclude the use of id attributes within other branches of the enclosing semantics element. It does, however,
exclude references to these other id attributes originating from the same semantics element.

There is no restriction on which branch of the semantics element may contain the destination id attributes. It is up to the
application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a presentation
tree may contain elements, such as parentheses, that have no correspondents in the content tree. It is therefore often useful to
put the id attributes on the branch with the finest-grained node structure. Then all of the other branches will have xref
attributes to some subset of the id attributes.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

276 of 434 26/08/2025, 11:30

In absence of other criteria, the first branch of the semantics element is a sensible choice to contain the id attributes.
Applications that add or remove annotations will then not have to re-assign these attributes as the annotations change.

In general, the use of id and xref attributes allows a full correspondence between sub-expressions to be given in text that is
at most a constant factor larger than the original. The direction of the references should not be taken to imply that sub-
expression selection is intended to be permitted only on one child of the semantics element. It is equally feasible to select
a subtree in any branch and to recover the corresponding subtrees of the other branches.

Parallel markup with cross-references may be used in any of the semantic annotations within annotation-xml, for
example cross referencing between a presentation MathML rendering and an OpenMath annotation.

As noted above, the use of namespaces other than MathML, SVG or HTML within annotation-xml is not considered
valid in the HTML syntax. Use of colons and namespace-prefixed element names should be avoided as the HTML parser
will generate nodes with local name om:OMA (for example), and such nodes can not be constructed by a namespace-aware
XML parser.

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This chapter
raises some of the interface issues involved in generating and rendering MathML. Since MathML exists primarily to encode
mathematics in Web documents, perhaps the most important interface issues relate to embedding MathML in [HTML], and
[XHTML], and in any newer HTML when it appears.

There are two kinds of interface issues that arise in embedding MathML in other XML documents. First, MathML markup
must be recognized as valid embedded XML content, and not as an error. This issue could be seen primarily as a question of
managing namespaces in XML [Namespaces].

Second, tools for generating and processing MathML must be able to reliably communicate. MathML tools include editors,
translators, computer algebra systems, and other scientific software. However, since MathML expressions tend to be lengthy,
and prone to error when entered by hand, special emphasis must be made to ensure that MathML can easily be generated by
user-friendly conversion and authoring tools, and that these tools work together in a dependable, platform-independent, and
vendor-independent way.

This chapter applies to both content and presentation markup, and describes a particular processing model for the
semantics, annotation and annotation-xml elements described in 6. Annotating MathML: semantics.

7. Interactions with the Host Environment

7.1 Introduction

7.2 Invoking MathML Processors

7.2.1 Recognizing MathML in XML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

277 of 434 26/08/2025, 11:30

Within an XML document supporting namespaces [XML], [Namespaces], the preferred method to recognize MathML
markup is by the identification of the math element in the MathML namespace by the use of the MathML namespace URI
http://www.w3.org/1998/Math/MathML.

The MathML namespace URI is the recommended method to embed MathML within [XHTML] documents. However, some
user-agents may require supplementary information to be available to allow them to invoke specific extensions to process
the MathML markup.

Markup-language specifications that wish to embed MathML may require special conditions to recognize MathML markup
that are independent of this recommendation. The conditions should be similar to those expressed in this recommendation,
and the local names of the MathML elements should remain the same as those defined in this recommendation.

HTML does not allow arbitrary namespaces, but has built in knowledge of the MathML namespace. The math element and
its descendants will be placed in the http://www.w3.org/1998/Math/MathML namespace by the HTML parser, and will
appear to applications as if the input had been XHTML with the namespace declared as in the previous section. See 7.4.3
Mixing MathML and HTML for detailed rules of the HTML parser's handling of MathML.

Although rendering MathML expressions often takes place in a Web browser, other MathML processing functions take
place more naturally in other applications. Particularly common tasks include opening a MathML expression in an equation
editor or computer algebra system. It is important therefore to specify the encoding names by which MathML fragments
should be identified.

Outside of those environments where XML namespaces are recognized, media types [RFC2045], [RFC2046] should be used
if possible to ensure the invocation of a MathML processor. For those environments where media types are not appropriate,
such as clipboard formats on some platforms, the encoding names described in the next section should be used.

MathML contains two distinct vocabularies: one for encoding visual presentation, defined in 3. Presentation Markup, and
one for encoding computational structure, defined in 4. Content Markup. Some MathML applications may import and export
only one of these two vocabularies, while others may produce and consume each in a different way, and still others may
process both without any distinction between the two. The following encoding names may be used to distinguish between
content and presentation MathML markup when needed.

• MathML-Presentation: The instance contains presentation MathML markup only.

◦ Media Type: application/mathml-presentation+xml

◦ Windows Clipboard Flavor: MathML Presentation

7.2.2 Recognizing MathML in HTML

7.2.3 Resource Types for MathML Documents

7.2.4 Names of MathML Encodings

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

278 of 434 26/08/2025, 11:30

◦ Universal Type Identifier: public.mathml.presentation

• MathML-Content: The instance contains content MathML markup only.

◦ Media Type: application/mathml-content+xml

◦ Windows Clipboard Flavor: MathML Content

◦ Universal Type Identifier: public.mathml.content

• MathML (generic): The instance may contain presentation MathML markup, content MathML markup, or a mixture of
the two.

◦ File name extension: .mml

◦ Media Type: application/mathml+xml

◦ Windows Clipboard Flavor: MathML

◦ Universal Type Identifier: public.mathml

See [MathML-Media-Types] for more details about each of these encoding names.

MathML 2 specified the predefined encoding values MathML, MathML-Content, and MathML-Presentation for the
encoding attribute on the annotation-xml element. These values may be used as an alternative to the media type for
backward compatibility. See 6.2 Alternate representations and 6.3 Content equivalents for details. Moreover, MathML 1.0
suggested the media-type text/mathml, which has been superseded by [RFC7303].

MathML expressions are often exchanged between applications using the familiar copy-and-paste or drag-and-drop
paradigms and are often stored in files or exchanged over the HTTP protocol. This section provides recommended ways to
process MathML during these transfers.

The transfers of MathML fragments described in this section occur between the contexts of two applications by making the
MathML data available in several flavors, often called media types, clipboard formats, or data flavors. These flavors are
typically ordered by preference by the producing application, and are typically examined in preference order by the
consuming application. The copy-and-paste paradigm allows an application to place content in a central clipboard, with one
data stream per clipboard format; a consuming application negotiates by choosing to read the data of the format it prefers.
The drag-and-drop paradigm allows an application to offer content by declaring the available formats; a potential recipient
accepts or rejects a drop based on the list of available formats, and the drop action allows the receiving application to request
the delivery of the data in one of the indicated formats. An HTTP GET transfer, as in [rfc9110], allows a client to submit a
list of acceptable media types; the server then delivers the data using one of the indicated media types. An HTTP POST
transfer, as in [rfc9110], allows a client to submit data labelled with a media type that is acceptable to the server application.

Current desktop platforms offer copy-and-paste and drag-and-drop transfers using similar architectures, but with varying
naming schemes depending on the platform. HTTP transfers are all based on media types. This section specifies what
transfer types applications should provide, how they should be named, and how they should handle the special semantics,
annotation, and annotation-xml elements.

7.3 Transferring MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

279 of 434 26/08/2025, 11:30

To summarize the three negotiation mechanisms, the following paragraphs will describe transfer flavors, each with a name
(a character string) and content (a stream of binary data), which are offered, accepted, and/or exported.

The names listed in 7.2.4 Names of MathML Encodings are the exact strings that should be used to identify the transfer
flavors that correspond to the MathML encodings. On operating systems that allow such, an application should register their
support for these flavor names (e.g. on Windows, a call to RegisterClipboardFormat, or, on the Macintosh platform,
declaration of support for the universal type identifier in the application descriptor).

When transferring MathML, an application MUST ensure the content of the data transfer is a well-formed XML instance of
a MathML document type. Specifically:

1. The instance MAY begin with an XML declaration, e.g. <?xml version="1.0">

2. The instance MUST contain exactly one root math element.

3. The instance MUST declare the MathML namespace on the root math element.

4. The instance MAY use a schemaLocation attribute on the math element to indicate the location of the MathML
schema that describes the MathML document type to which the instance conforms. The presence of the
schemaLocation attribute does not require a consumer of the MathML instance to obtain or use the referenced
schema.

5. The instance SHOULD use numeric character references (e.g. α) rather than character entity names (e.g.
α) for greater interoperability.

6. The instance MUST specify the character encoding, if it uses an encoding other than UTF-8, either in the XML
declaration, or by the use of a byte-order mark (BOM) for UTF-16-encoded data.

An application that transfers MathML markup SHOULD adhere to the following conventions:

1. An application that supports pure presentation markup and/or pure content markup SHOULD offer as many of these
flavors as it has available.

2. An application that only exports one MathML flavor SHOULD name it MathML if it is unable to determine a more
specific flavor.

3. If an application is able to determine a more specific flavor, it SHOULD offer both the generic and specific transfer
flavors, but it SHOULD only deliver the specific flavor if it knows that the recipient supports it. For an HTTP GET
transfer, for example, the specific transfer types for content and presentation markup should only be returned if they are
included in the HTTP Accept header sent by the client.

4. An application that exports the two specific transfer flavors SHOULD export both the content and presentation transfer
flavors, as well as the generic flavor, which SHOULD combine the other two flavors using a top-level MathML

7.3.1 Basic Transfer Flavor Names and Contents

7.3.2 Recommended Behaviors when Transferring

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

280 of 434 26/08/2025, 11:30

https://www.w3.org/TR/2004/REC-xml-20040204/#dt-wellformed
https://www.w3.org/TR/2004/REC-xml-20040204/#dt-wellformed

semantics element (see 6.9.1 Top-level Parallel Markup).

5. When an application exports a MathML fragment whose only child of the root element is a semantics element, it
SHOULD offer, after the above flavors, a transfer flavor for each annotation or annotation-xml element, provided
the transfer flavor can be recognized and named based on the encoding attribute value, and provided the annotation
key is (the default) alternate-representation. The transfer content for each annotation should contain the character data
in the specified encoding (for an annotation element), or a well-formed XML fragment (for an annotation-xml
element), or the data that results by requesting the URL given by the src attribute (for an annotation reference).

6. As a final fallback, an application MAY export a version of the data in a plain-text flavor (such as text/plain,
CF_UNICODETEXT, UnicodeText, or NSStringPboardType). When an application has multiple versions of an
expression available, it may choose the version to export as text at its discretion. Since some older MathML processors
expect MathML instances transferred as plain text to begin with a math element, the text version SHOULD generally
omit the XML declaration, DOCTYPE declaration, and other XML prolog material that would appear before the math
element. The Unicode text version of the data SHOULD always be the last flavor exported, following the principle that
exported flavors should be ordered with the most specific flavor first and the least specific flavor last.

To determine whether a MathML instance is pure content markup or pure presentation markup, the math, semantics,
annotation and annotation-xml elements should be regarded as belonging to both the presentation and content markup
vocabularies. The math element is treated in this way because it is required as the root element in any MathML transfer. The
semantics element and its child annotation elements comprise an arbitrary annotation mechanism within MathML, and are
not tied to either presentation or content markup. Consequently, an application that consumes MathML should always
process these four elements, even if it only implements one of the two vocabularies.

It is worth noting that the above recommendations allow agents that produce MathML to provide binary data for the
clipboard, for example in an image or other application-specific format. The sole method to do so is to reference the binary
data using the src attribute of an annotation, since XML character data does not allow for the transfer of arbitrary byte-
stream data.

While the above recommendations are intended to improve interoperability between MathML-aware applications that use
these transfer paradigms, it should be noted that they do not guarantee interoperability. For example, references to external
resources (e.g. stylesheets, etc.) in MathML data can cause interoperability problems if the consumer of the data is unable to
locate them, as can happen when cutting and pasting HTML or other data types. An application that makes use of references
to external resources is encouraged to make users aware of potential problems and provide alternate ways to obtain the
referenced resources. In general, consumers of MathML data that contains references they cannot resolve or do not
understand should ignore the external references.

7.3.3 Discussion

7.3.4 Examples

Example 1

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

281 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlkeys#alternate-representation
https://openmath.org/cd/mathmlkeys#alternate-representation

An e-learning application has a database of quiz questions, some of which contain MathML. The MathML comes from
multiple sources, and the e-learning application merely passes the data on for display, but does not have sophisticated
MathML analysis capabilities. Consequently, the application is not aware whether a given MathML instance is pure
presentation or pure content markup, nor does it know whether the instance is valid with respect to a particular version of the
MathML schema. It therefore places the following data formats on the clipboard:

Flavor Name Flavor Content

MathML $...$

Unicode Text $...$

An equation editor on the Windows platform is able to generate pure presentation markup, valid with respect to MathML 3.
Consequently, it exports the following flavors:

Flavor Name Flavor Content

MathML Presentation $...$

Tiff (a rendering sample)

Unicode Text $...$

A schema-based content management system on the Mac OS X platform contains multiple MathML representations of a
collection of mathematical expressions, including mixed markup from authors, pure content markup for interfacing to
symbolic computation engines, and pure presentation markup for print publication. Due to the system's use of schemata,
markup is stored with a namespace prefix. The system therefore can transfer the following data:

Example 2

Example 3

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

282 of 434 26/08/2025, 11:30

Flavor Name Flavor Content

public.mathml.presentation

<math
xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd">

<mrow>
 ...
</mrow>

</math>

public.mathml.content

<math
xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd">

<apply>
 ...
</apply>

</math>

public.mathml

<math
xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd">

<mrow>
<apply>

 ... content markup within presentation markup ...
</apply>

 ...
</mrow>

</math>

public.plain-text.tex {x \over x-1}

<math xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

283 of 434 26/08/2025, 11:30

A similar content management system is web-based and delivers MathML representations of mathematical expressions. The
system is able to produce MathML-Presentation, MathML-Content, TeX and pictures in TIFF format. In web-pages being
browsed, it could produce a MathML fragment such as the following:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>...</mrow>
<annotation-xml encoding="MathML-Content">...</annotation-xml>
<annotation encoding="TeX">{1 \over x}</annotation>
<annotation encoding="image/tiff" src="formula3848.tiff"/>

</semantics>
</math>

A web browser on the Windows platform that receives such a fragment and tries to export it as part of a drag-and-drop
action can offer the following flavors:

Example 4

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

284 of 434 26/08/2025, 11:30

Flavor Name Flavor Content

MathML Presentation

<math xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd">

<mrow>
 ...
</mrow>

</math>

MathML Content

<math
xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd">

<apply>
 ...
</apply>

</math>

MathML

<math
xmlns="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd">

<mrow>
<apply>

 ... content markup within presentation markup ...
</apply>

 ...
</mrow>

</math>

TeX {x \over x-1}

CF_TIFF (the content of the picture file, requested from formula3848.tiff)

<math
xmlns="http://www.w3.org/1998/Math/MathML"

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

285 of 434 26/08/2025, 11:30

MathML is usually used in combination with other markup languages. The most typical case is perhaps the use of MathML
within a document-level markup language, such as HTML or DocBook. It is also common that other object-level markup
languages are also included in a compound document format, such as MathML and SVG in HTML5. Other common use
cases include mixing other markup within MathML. For example, an authoring tool might insert an element representing a
cursor position or other state information within MathML markup, so that an author can pick up editing where it was broken
off.

Most document markup languages have some concept of an inline equation (or graphic, object, etc.), so there is typically a
natural way to incorporate MathML instances into the content model. However, in the other direction, embedding of markup
within MathML is not so clear cut, since in many MathML elements, the role of child elements is defined by position. For
example, the first child of an apply must be an operator, and the second child of an mfrac is the denominator. The proper
behavior when foreign markup appears in such contexts is problematic. Even when such behavior can be defined in a
particular context, it presents an implementation challenge for generic MathML processors.

For this reason, the default MathML schema does not allow foreign markup elements to be included within MathML
instances.

In the standard schema, elements from other namespaces are not allowed, but attributes from other namespaces are
permitted. MathML processors that encounter unknown XML markup should behave as follows:

1. An attribute from a non-MathML namespace should be silently ignored.

2. An element from a non-MathML namespace should be treated as an error, except in an annotation-xml element. If
the element is a child of a presentation element, it should be handled as described in 3.3.5 Error Message <merror>. If
the element is a child of a content element, it should be handled as described in 4.2.9 Error Markup <cerror>.

For example, if the second child of an mfrac element is an unknown element, the fraction should be rendered with a
denominator that indicates the error.

When designing a compound document format in which MathML is included in a larger document type, the designer may
extend the content model of MathML to allow additional elements. For example, a common extension is to extend the
MathML schema such that elements from non-MathML namespaces are allowed in token elements, but not in other
elements. MathML processors that encounter unknown markup should behave as follows:

1. An unrecognized XML attribute should be silently ignored.

2. An unrecognized element in a MathML token element should be silently ignored.

7.4 Combining MathML and Other Formats

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

286 of 434 26/08/2025, 11:30

3. An element from a non-MathML namespace should be treated as an error, except in an annotation-xml element. If
the element is a child of a presentation element, it should be handled as described in 3.3.5 Error Message <merror>. If
the element is a child of a content element, it should be handled as described in 4.2.9 Error Markup <cerror>.

Extending the schema in this way is easily achieved using the Relax NG schema described in A. Parsing MathML, it may be
as simple as including the MathML schema whilst overriding the content model of mtext:

default namespace m = "http://www.w3.org/1998/Math/MathML"

include "mathml4.rnc" {
mtext = element mtext {mtext.attributes, (token.content|anyElement)*}
}

The definition given here would allow any well formed XML that is not in the MathML namespace as a child of mtext. In
practice this may be too lax. For example, an XHTML+MathML Schema may just want to allow inline XHTML elements as
additional children of mtext. This may be achieved by replacing anyElement by a suitable production from the schema for
the host document type, see 7.4.1 Mixing MathML and XHTML.

Considerations about mixing markup vocabularies in compound documents arise when a compound document type is first
designed. But once the document type is fixed, it is not generally practical for specific software tools to further modify the
content model to suit their needs. However, it is still frequently the case that such tools may need to store additional
information within a MathML instance. Since MathML is most often generated by authoring tools, a particularly common
and important case is where an authoring tool needs to store information about its internal state along with a MathML
expression, so an author can resume editing from a previous state. For example, placeholders may be used to indicate
incomplete parts of an expression, or an insertion point within an expression may need to be stored.

An application that needs to persist private data within a MathML expression should generally attempt to do so without
altering the underlying content model, even in situations where it is feasible to do so. To support this requirement, regardless
of what may be allowed by the content model of a particular compound document format, MathML permits the storage of
private data via the following strategies:

1. In a format that permits the use of XML Namespaces, for small amounts of data, attributes from other namespaces are
allowed on all MathML elements.

2. For larger amounts of data, applications may use the semantics element, as described in 6. Annotating MathML:
semantics.

3. For authoring tools and other applications that need to associate particular actions with presentation MathML subtrees,
e.g. to mark an incomplete expression to be filled in by an author, the maction element may be used, as described in
3.7.1 Bind Action to Sub-Expression.

To fully integrate MathML into XHTML, it should be possible not only to embed MathML in XHTML, but also to embed
XHTML in MathML. The schema used for the W3C HTML5 validator extends mtext to allow all inline (phrasing) HTML
elements (including svg) to be used within the content of mtext. See the example in 3.2.2.1 Embedding HTML in
MathML. As noted above, MathML fragments using XHTML elements within mtext will not be valid MathML if extracted

7.4.1 Mixing MathML and XHTML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

287 of 434 26/08/2025, 11:30

from the document and used in isolation. Editing tools may offer support for removing any HTML markup from within
mtext and replacing it by a text alternative.

In most cases, XHTML elements (headings, paragraphs, lists, etc.) either do not apply in mathematical contexts, or MathML
already provides equivalent or improved functionality specifically tailored to mathematical content (tables, mathematics
style changes, etc.).

Consult the W3C Math Working Group home page for compatibility and implementation suggestions for current browsers
and other MathML-aware tools.

There may be non-XML vocabularies which require markup for mathematical expressions, where it makes sense to
reference this specification. HTML is an important example discussed in the next section, however other examples exist. It
is possible to use a TeX-like syntax such as \frac{a}{b} rather than explicitly using <mfrac> and <mi>. If a system
parses a specified syntax and produces a tree that may be validated against the MathML schema then it may be viewed as a
MathML application. Note however that documents using such a system are not valid MathML. Implementations of such a
syntax should, if possible, offer a facility to output any mathematical expressions as MathML in the XML syntax defined
here. Such an application would then be a MathML-output-conformant processor as described in D.1 MathML
Conformance.

An important example of a non-XML based system is defined in [HTML]. When considering MathML in HTML there are
two separate issues to consider. Firstly the schema is extended to allow HTML in mtext as described above in the context
of XHTML. Secondly an HTML parser is used rather than an XML parser. The parsing of MathML by an HTML parser is
normatively defined in [HTML]. The description there is aimed at parser implementers and written in terms of the state
transitions of the parser as it parses each character of the input. The non-normative description below aims to give a higher
level description and examples.

XML parsing is completely regular, any XML document may be parsed without reference to the particular vocabulary being
used. HTML parsing differs in that it is a custom parser for the HTML vocabulary with specific rules for each element.
Similarly to XML though, the HTML parser distinguishes parsing from validation; some input, even if it renders correctly, is
classed as a parse error which may be reported by validators (but typically is not reported by rendering systems).

The main differences that affect MathML usage may be summarized as:

• Attribute values in most cases do not need to be quoted: <mfenced open=(close=)> would parse correctly.

• End tags may in many cases be omitted.

• HTML does not support namespaces other than the three built in ones for HTML, MathML and SVG, and does not
support namespace prefixes. Thus you can not use a prefix form like <mml:math xmlns:mml="http://
www.w3.org/1998/Math/MathML"> and while you may use <math xmlns="http://www.w3.org/1998/Math/
MathML">, the namespace declaration is essentially ignored and the input is treated as <math>. In either case the math
element and its descendants are placed in the MathML namespace. As noted in 6. Annotating MathML: semantics the

7.4.2 Mixing MathML and non-XML contexts

7.4.3 Mixing MathML and HTML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

288 of 434 26/08/2025, 11:30

https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/

lack of namespace support limits some of the possibilities for annotating MathML with markup from other
vocabularies when used in HTML.

• Unlike the XML parser, the HTML parser is defined to accept any input string and produce a defined result (which may
be classified as non-conforming). The extreme example <math></<><z =5> for example would be flagged as a parse
error by validators but would return a tree corresponding to a math element containing a comment < and an element z
with an attribute that could not be expressed in XML with name =5 and value "".

• Unless inside the token elements <mtext>, <mo>, <mn>, <mi>, <ms>, or inside an <annotation-xml> with
encoding attribute text/html or annotation/xhtml+xml, the presence of an HTML element will terminate the
math expression by closing all open MathML elements, so that the HTML element is interpreted as being in the outer
HTML context. Any following MathML elements are then not contained in <math> so will be parsed as invalid HTML
elements and not rendered as MathML. See for example the example given in 6.7.3 Using annotation-xml in HTML
documents.

In the interests of compatibility with existing MathML applications authors and editing systems should use MathML
fragments that are well formed XML, even when embedded in an HTML document. Also as noted above, although
applications accepting MathML in HTML documents must accept MathML making use of these HTML parser features, they
should offer a way to export MathML in a portable XML syntax.

In MathML 3, an element is designated as a link by the presence of the href attribute. MathML has no element that
corresponds to the HTML/XHTML anchor element a.

MathML allows the href attribute on all elements. However, most user agents have no way to implement nested links or
links on elements with no visible rendering; such links may have no effect.

The list of presentation markup elements that do not ordinarily have a visual rendering, and thus should not be used as
linking elements, is given in the table below.

MathML elements that should not be linking elements

mprescripts none

malignmark maligngroup

For compound document formats that support linking mechanisms, the id attribute should be used to specify the location
for a link into a MathML expression. The id attribute is allowed on all MathML elements, and its value must be unique
within a document, making it ideal for this purpose.

Note that MathML 2 has no direct support for linking; it refers to the W3C Recommendation "XML Linking Language"
[XLink] in defining links in compound document contexts by using an xlink:href attribute. As mentioned above,
MathML 3 adds an href attribute for linking so that xlink:href is no longer needed. However, xlink:href is still
allowed because MathML permits the use of attributes from non-MathML namespaces. It is recommended that new
compound document formats use the MathML 3 href attribute for linking. When user agents encounter MathML elements
with both href and xlink:href attributes, the href attribute should take precedence. To support backward compatibility,
user agents that implement XML Linking in compound documents containing MathML 2 should continue to support the use
of the xlink:href attribute in addition to supporting the href attribute.

7.4.4 Linking

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

289 of 434 26/08/2025, 11:30

Apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image amount to
displaying labeled diagrams. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman diagrams and
commutative diagrams all fall into this category. As such, their content would be better encoded via some combination of
structured graphics and MathML markup. However, at the time of this writing, it is beyond the scope of the W3C Math
Activity to define a markup language to encode such a general concept as “labeled diagrams.” (See http://www.w3.org/Math
for current W3C activity in mathematics and http://www.w3.org/Graphics for the W3C graphics activity.)

One mechanism for embedding additional graphical content is via the semantics element, as in the following example:

<semantics>
 <apply>
 <intersect/>
 <ci>A</ci>
 <ci>B</ci>
 </apply>
 <annotation-xml encoding="image/svg+xml">
 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 290 180">
 <clipPath id="a">
 <circle cy="90" cx="100" r="60"/>
 </clipPath>
 <circle fill="#AAAAAA" cy="90" cx="190" r="60" style="clip-path:url(#a)"/>
 <circle stroke="black" fill="none" cy="90" cx="100" r="60"/>
 <circle stroke="black" fill="none" cy="90" cx="190" r="60"/>
 </svg>
 </annotation-xml>
 <annotation-xml encoding="application/xhtml+xml">

 </annotation-xml>
</semantics>

Here, the annotation-xml elements are used to indicate alternative representations of the MathML-Content depiction of
the intersection of two sets. The first one is in the “Scalable Vector Graphics” format [SVG] (see [XHTML-MathML-SVG]
for the definition of an XHTML profile integrating MathML and SVG), the second one uses the XHTML img element
embedded as an XHTML fragment. In this situation, a MathML processor can use any of these representations for display,
perhaps producing a graphical format such as the image below.

Note that the semantics representation of this example is given in MathML-Content markup, as the first child of the
semantics element. In this regard, it is the representation most analogous to the alt attribute of the img element in
XHTML, and would likely be the best choice for non-visual rendering.

7.4.5 MathML and Graphical Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

290 of 434 26/08/2025, 11:30

https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Graphics/
https://www.w3.org/Graphics/

When MathML is rendered in an environment that supports CSS [CSS21], controlling mathematics style properties with a
CSS style sheet is desirable, but not as simple as it might first appear, because the formatting of MathML layout schemata is
quite different from the CSS visual formatting model and many of the style parameters that affect mathematics layout have
no direct textual analogs. Even in cases where there are analogous properties, the sensible values for these properties may
not correspond. Because of this difference, applications that support MathML natively may choose to restrict the CSS
properties applicable to MathML layout schemata to those properties that do not affect layout.

Generally speaking, the model for CSS interaction with the math style attributes runs as follows. A CSS style sheet might
provide a style rule such as:

math *.[mathsize="small"] {
font-size: 80%
}

This rule sets the CSS font-size property for all children of the math element that have the mathsize attribute set to small.
A MathML renderer would then query the style engine for the CSS environment, and use the values returned as input to its
own layout algorithms. MathML does not specify the mechanism by which style information is inherited from the
environment. However, some suggested rendering rules for the interaction between properties of the ambient style
environment and MathML-specific rendering rules are discussed in 3.2.2 Mathematics style attributes common to token
elements, and more generally throughout 3. Presentation Markup.

It should be stressed, however, that some caution is required in writing CSS stylesheets for MathML. Because changing
typographic properties of mathematics symbols can change the meaning of an equation, stylesheets should be written in a
way such that changes to document-wide typographic styles do not affect embedded MathML expressions.

Another pitfall to be avoided is using CSS to provide typographic style information necessary to the proper understanding of
an expression. Expressions dependent on CSS for meaning will not be portable to non-CSS environments such as computer
algebra systems. By using the logical values of the new MathML 3.0 mathematics style attributes as selectors for CSS rules,
it can be assured that style information necessary to the sense of an expression is encoded directly in the MathML.

MathML 3.0 does not specify how a user agent should process style information, because there are many non-CSS MathML
environments, and because different users agents and renderers have widely varying degrees of access to CSS information.

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements. Since rendering
properties can also be changed by attributes on an element, or be changed automatically by the renderer, it is necessary to
specify the order in which changes requested by various sources should occur. The order is defined by [CSS21] cascading
order taking into account precedence of non-CSS presentational hints.

7.5 Using CSS with MathML

7.5.1 Order of processing attributes versus style sheets

8. Characters, Entities and Fonts

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

291 of 434 26/08/2025, 11:30

ISSUE 247: Spec should specify what char to use for accents/lines

TeX has a number of commands that correspond to mover/munder accents in MathML. The spec does not say what
character to use for those accents. In some cases there are ASCII chars that could be used but also non-ASCII ones that
are similar. Many of these characters should be stretchy when used with mover/munder.

This chapter contains discussion of characters for use within MathML, recommendations for their use, and warnings
concerning the correct form of the corresponding code points given in the Universal Multiple-Octet Coded Character Set
(UCS) ISO-10646 as codified in Unicode [Unicode].

Additional Mathematical Alphanumeric Symbols were provided in Unicode 3.1. As discussed in 3.2.2 Mathematics style
attributes common to token elements, MathML offers an alternative mechanism to specify mathematical alphanumeric
characters. Namely, one uses the mathvariant attribute on a token element such as mi to indicate that the character data in
the token element selects a mathematical alphanumeric symbol.

An important use of the mathematical alphanumeric symbols in Plane 1 is for identifiers normally printed in special
mathematical fonts, such as Fraktur, Greek, Boldface, or Script. As another example, the Mathematical Fraktur alphabet
runs from U+1D504 ("A") to U+1D537 ("z"). Thus, an identifier for a variable that uses Fraktur characters could be marked
up as

<mi>𝔄<!--BLACK-LETTER CAPITAL A--></mi>

𝔄

An alternative, equivalent markup for this example is to use the common upper-case A, modified by using the
mathvariant attribute:

<mi mathvariant="fraktur">A</mi>

𝔄

A MathML processor must treat a mathematical alphanumeric character (when it appears) as identical to the corresponding
combination of the unstyled character and mathvariant attribute value.

It is intended that renderers distinguish at least those combinations that have equivalent Unicode code points, and renderers
are free to ignore those combinations that have no assigned Unicode code point or for which adequate font support is
unavailable.

need specification update

8.1 Introduction

8.2 Mathematical Alphanumeric Symbols

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

292 of 434 26/08/2025, 11:30

https://github.com/w3c/mathml/issues/247
https://github.com/w3c/mathml/issues/247
https://github.com/w3c/mathml/issues/247
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22

Some characters, although important for the quality of print or alternative rendering, do not have glyph marks that
correspond directly to them. They are called here non-marking characters. Their roles are discussed in 3. Presentation
Markup and 4. Content Markup.

In MathML, control of page composition, such as line-breaking, is effected by the use of the proper attributes on the mo and
mspace elements.

The characters below are not simple spacers. They are especially important new additions to the UCS because they provide
textual clues which can increase the quality of print rendering, permit correct audio rendering, and allow the unique recovery
of mathematical semantics from text which is visually ambiguous.

Unicode code
point

Unicode name Description

U+2061
FUNCTION
APPLICATION

character showing function application in presentation tagging (3.2.5 Operator,
Fence, Separator or Accent <mo>)

U+2062 INVISIBLE TIMES
marks multiplication when it is understood without a mark (3.2.5 Operator,
Fence, Separator or Accent <mo>)

U+2063
INVISIBLE
SEPARATOR

used as a separator, e.g., in indices (3.2.5 Operator, Fence, Separator or Accent
<mo>)

U+2064 INVISIBLE PLUS
marks addition, especially in constructs such as 1½ (3.2.5 Operator, Fence,
Separator or Accent <mo>)

Some characters which occur fairly often in mathematical texts, and have special significance there, are frequently confused
with other similar characters in the UCS. In some cases, common keyboard characters have become entrenched as
alternatives to the more appropriate mathematical characters. In others, characters have legitimate uses in both formulas and
text, but conflicting rendering and font conventions. All these characters are called here anomalous characters.

Typical Latin-1-based keyboards contain several characters that are visually similar to important mathematical characters.
Consequently, these characters are frequently substituted, intentionally or unintentionally, for their more correct
mathematical counterparts.

8.3 Non-Marking Characters

8.4 Anomalous Mathematical Characters

8.4.1 Keyboard Characters

Minus

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

293 of 434 26/08/2025, 11:30

The most common ordinary text character which enjoys a special mathematical use is U+002D [HYPHEN-MINUS]. As its
Unicode name suggests, it is used as a hyphen in prose contexts, and as a minus or negative sign in formulas. For text use,
there is a specific code point U+2010 [HYPHEN] which is intended for prose contexts, and which should render as a hyphen
or short dash. For mathematical use, there is another code point U+2212 [MINUS SIGN] which is intended for
mathematical formulas, and which should render as a longer minus or negative sign. MathML renderers should treat
U+002D [HYPHEN-MINUS] as equivalent to U+2212 [MINUS SIGN] in formula contexts such as mo, and as equivalent to
U+2010 [HYPHEN] in text contexts such as mtext.

On a typical European keyboard there is a key available which is viewed as an apostrophe or a single quotation mark (an
upright or right quotation mark). Thus one key is doing double duty for prose input to enter U+0027 [APOSTROPHE] and
U+2019 [RIGHT SINGLE QUOTATION MARK]. In mathematical contexts it is also commonly used for the prime, which
should be U+2032 [PRIME]. Unicode recognizes the overloading of this symbol and remarks that it can also signify the
units of minutes or feet. In the unstructured printed text of normal prose the characters are placed next to one another. The
U+0027 [APOSTROPHE] and U+2019 [RIGHT SINGLE QUOTATION MARK] are marked with glyphs that are small and
raised with respect to the center line of the text. The fonts used provide small raised glyphs in the appropriate places indexed
by the Unicode codes. The U+2032 [PRIME] of mathematics is similarly treated in fuller Unicode fonts.

MathML renderers are encouraged to treat U+0027 [APOSTROPHE] as U+2032 [PRIME] when appropriate in formula
contexts.

A final remark is that a ‘prime’ is often used in transliteration of the Cyrillic character U+044C [CYRILLIC SMALL
LETTER SOFT SIGN]. This different use of primes is not part of considerations for mathematical formulas.

While the minus and prime characters are the most common and important keyboard characters with more precise
mathematical counterparts, there are a number of other keyboard character substitutions that are sometimes used. For
example some may expect

<mo>''</mo>

''

to be treated as U+2033 [DOUBLE PRIME], and analogous substitutions could perhaps be made for U+2034 [TRIPLE
PRIME] and U+2057 [QUADRUPLE PRIME]. Similarly, sometimes U+007C [VERTICAL LINE] is used for U+2223
[DIVIDES]. MathML regards these as application-specific authoring conventions, and recommends that authoring tools
generate markup using the more precise mathematical characters for better interoperability.

Apostrophes, Quotes and Primes

Other Keyboard Substitutions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

294 of 434 26/08/2025, 11:30

There are a number of characters in the UCS that traditionally have been taken to have a natural ‘script’ aspect. The visual
presentation of these characters is similar to a script, that is, raised from the baseline, and smaller than the base font size.
The degree symbol and prime characters are examples. For use in text, such characters occur in sequence with the identifier
they follow, and are typically rendered using the same font. These characters are called pseudo-scripts here.

In almost all mathematical contexts, pseudo-script characters should be associated with a base expression using explicit
script markup in MathML. For example, the preferred encoding of “x prime” is

<msup><mi>x</mi><mo>′<!--PRIME--></mo></msup>

𝑥′

and not

<mi>x'</mi>

x'

or any other variants not using an explicit script construct. Note, however, that within text contexts such as mtext, pseudo-
scripts may be used in sequence with other character data.

There are two reasons why explicit markup is preferable in mathematical contexts. First, a problem arises with typesetting,
when pseudo-scripts are used with subscripted identifiers. Traditionally, subscripting of x' would be rendered stacked under
the prime. This is easily accomplished with script markup, for example:

<mrow><msubsup><mi>x</mi><mn>0</mn><mo>′<!--PRIME--></mo></msubsup></mrow>

𝑥0
′

By contrast,

<mrow><msub><mi>x'</mi><mn>0</mn></msub></mrow>

x'0

will render with staggered scripts.

Note this means that a renderer of MathML will have to treat pseudo-scripts differently from most other character codes it

8.4.2 Pseudo-scripts

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

295 of 434 26/08/2025, 11:30

finds in a superscript position; in most fonts, the glyphs for pseudo-scripts are already shrunk and raised from the baseline.

The second reason that explicit script markup is preferrable to juxtaposition of characters is that it generally better reflects
the intended mathematical structure. For example,

<msup>
<mrow><mo>(</mo><mrow><mi>f</mi><mo>+</mo><mi>g</mi></mrow><mo>)</mo></mrow>
<mo>′<!--PRIME--></mo>

</msup>

(𝑓 + 𝑔)′

accurately reflects that the prime here is operating on an entire expression, and does not suggest that the prime is acting on
the final right parenthesis.

However, the data model for all MathML token elements is Unicode text, so one cannot rule out the possibility of valid
MathML markup containing constructions such as

<mrow><mi>x'</mi></mrow>

x'

and

<mrow><mi>x</mi><mo>'</mo></mrow>

𝑥'

While the first form may, in some rare situations, legitimately be used to distinguish a multi-character identifer named x'
from the derivative of a function x, such forms should generally be avoided. Authoring and validation tools are encouraged
to generate the recommended script markup:

<mrow><msup><mi>x</mi><mo>′<!--PRIME--></mo></msup></mrow>

𝑥′

The U+2032 [PRIME] character is perhaps the most common pseudo-script, but there are many others, as listed below:

Pseudo-script Characters

U+0022 QUOTATION MARK

U+0027 APOSTROPHE

U+002A ASTERISK

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

296 of 434 26/08/2025, 11:30

Pseudo-script Characters

U+0060 GRAVE ACCENT

U+00AA FEMININE ORDINAL INDICATOR

U+00B0 DEGREE SIGN

U+00B2 SUPERSCRIPT TWO

U+00B3 SUPERSCRIPT THREE

U+00B4 ACUTE ACCENT

U+00B9 SUPERSCRIPT ONE

U+00BA MASCULINE ORDINAL INDICATOR

U+2018 LEFT SINGLE QUOTATION MARK

U+2019 RIGHT SINGLE QUOTATION MARK

U+201A SINGLE LOW-9 QUOTATION MARK

U+201B SINGLE HIGH-REVERSED-9 QUOTATION MARK

U+201C LEFT DOUBLE QUOTATION MARK

U+201D RIGHT DOUBLE QUOTATION MARK

U+201E DOUBLE LOW-9 QUOTATION MARK

U+201F DOUBLE HIGH-REVERSED-9 QUOTATION MARK

U+2032 PRIME

U+2033 DOUBLE PRIME

U+2034 TRIPLE PRIME

U+2035 REVERSED PRIME

U+2036 REVERSED DOUBLE PRIME

U+2037 REVERSED TRIPLE PRIME

U+2057 QUADRUPLE PRIME

In addition, the characters in the Unicode Superscript and Subscript block (beginning at U+2070) should be treated as
pseudo-scripts when they appear in mathematical formulas.

Note that several of these characters are common on keyboards, including U+002A [ASTERISK], U+00B0 [DEGREE
SIGN], U+2033 [DOUBLE PRIME], and U+2035 [REVERSED PRIME] also known as a back prime.

In the UCS there are many combining characters that are intended to be used for the many accents of numerous different
natural languages. Some of them may seem to provide markup needed for mathematical accents. They should not be used in
mathematical markup. Superscript, subscript, underscript, and overscript constructions as just discussed above should be
used for this purpose. Of course, combining characters may be used in multi-character identifiers as they are needed, or in
text contexts.

There is one more case where combining characters turn up naturally in mathematical markup. Some relations have
associated negations, such as U+226F [NOT GREATER-THAN] for the negation of U+003E [GREATER-THAN SIGN].
The glyph for U+226F [NOT GREATER-THAN] is usually just that for U+003E [GREATER-THAN SIGN] with a slash

8.4.3 Combining Characters

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

297 of 434 26/08/2025, 11:30

through it. Thus it could also be expressed by U+003E-0338 making use of the combining slash U+0338 [COMBINING
LONG SOLIDUS OVERLAY]. That is true of 25 other characters in common enough mathematical use to merit their own
Unicode code points. In the other direction there are 31 character entity names listed in [Entities] which are to be expressed
using U+0338 [COMBINING LONG SOLIDUS OVERLAY].

In a similar way there are mathematical characters which have negations given by a vertical bar overlay U+20D2
[COMBINING LONG VERTICAL LINE OVERLAY]. Some are available in pre-composed forms, and some named
character entities are given explicitly as combinations. In addition there are examples using U+0333 [COMBINING
DOUBLE LOW LINE] and U+20E5 [COMBINING REVERSE SOLIDUS OVERLAY], and variants specified by use of
the U+FE00 [VARIATION SELECTOR-1]. For fuller listing of these cases see the listings in [Entities].

The general rule is that a base character followed by a string of combining characters should be treated just as though it were
the pre-composed character that results from the combination, if such a character exists.

ISSUE 178: Make MathML attributes ASCII case-insensitive

Issue 178

ISSUE 361 (CLOSED): structuring common attributes

Issue 361

The Relax NG schema may be used to check the XML serialization of MathML and serves as a foundation for validating
other serializations of MathML, such as the HTML serialization.

Even when using the XML serialization, some normalization of the input may be required before applying this schema.
Notably, following HTML, [MathML-Core] allows attributes such as onclick to be specified in any case, eg
OnClick="...". It is not practically feasible to specify that attribute names are case insensitive here so only the lowercase
names are allowed. Similarly any attribute with name starting with the prefix data- should be considered valid. The schema
here only allows a fixed attribute, data-other, so input should be normalized to remove data attributes before validating,
or the schema should be extended to support the attributes used in a particular application.

MathML documents should be validated using the RelaxNG Schema for MathML, either in the XML encoding (http://
www.w3.org/Math/RelaxNG/mathml4/mathml4.rng) or in compact notation (https://www.w3.org/Math/RelaxNG/mathml4/
mathml4.rnc) which is also shown below.

A. Parsing MathML

MathML 4 css / html5

MathML 4 need specification update

A.1 Validating MathML

A.2 Using the RelaxNG Schema for MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

298 of 434 26/08/2025, 11:30

https://github.com/w3c/mathml/issues/178
https://github.com/w3c/mathml/issues/178
https://github.com/w3c/mathml/issues/178
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22css+%2F+html5%22
https://github.com/w3c/mathml/issues/361
https://github.com/w3c/mathml/issues/361
https://github.com/w3c/mathml/issues/361
https://github.com/w3c/mathml/issues/361
https://github.com/w3c/mathml/issues/361
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rng
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rng
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rng
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rng
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22css+%2F+html5%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22MathML+4%22
https://github.com/w3c/mathml/issues/?q=is%3Aissue+is%3Aopen+label%3A%22need+specification+update%22

In contrast to DTDs there is no in-document method to associate a RelaxNG schema with a document.

MathML Core is specified in MathML Core however the Schema is developed alongside the schema for MathML 4 and
presented here, it can also be found at https://www.w3.org/Math/RelaxNG/mathml4/mathml4-core.rnc.

MathML 4 (Core Level 1)
#######################

Copyright 1998-2024 W3C (MIT, ERCIM, Keio, Beihang)

Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"
namespace h = "http://www.w3.org/1999/xhtml"

start |= math

math = element math {math.attributes,ImpliedMrow}

MathMLoneventAttributes =
 attribute onabort {text}?,
 attribute onauxclick {text}?,
 attribute onblur {text}?,
 attribute oncancel {text}?,
 attribute oncanplay {text}?,
 attribute oncanplaythrough {text}?,
 attribute onchange {text}?,
 attribute onclick {text}?,
 attribute onclose {text}?,
 attribute oncontextlost {text}?,
 attribute oncontextmenu {text}?,
 attribute oncontextrestored {text}?,
 attribute oncuechange {text}?,
 attribute ondblclick {text}?,
 attribute ondrag {text}?,
 attribute ondragend {text}?,
 attribute ondragenter {text}?,
 attribute ondragleave {text}?,
 attribute ondragover {text}?,
 attribute ondragstart {text}?,
 attribute ondrop {text}?,
 attribute ondurationchange {text}?,
 attribute onemptied {text}?,
 attribute onended {text}?,
 attribute onerror {text}?,
 attribute onfocus {text}?,

A.2.1 MathML Core

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

299 of 434 26/08/2025, 11:30

https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-core.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-core.rnc

 attribute onformdata {text}?,
 attribute oninput {text}?,
 attribute oninvalid {text}?,
 attribute onkeydown {text}?,
 attribute onkeypress {text}?,
 attribute onkeyup {text}?,
 attribute onload {text}?,
 attribute onloadeddata {text}?,
 attribute onloadedmetadata {text}?,
 attribute onloadstart {text}?,
 attribute onmousedown {text}?,
 attribute onmouseenter {text}?,
 attribute onmouseleave {text}?,
 attribute onmousemove {text}?,
 attribute onmouseout {text}?,
 attribute onmouseover {text}?,
 attribute onmouseup {text}?,
 attribute onpause {text}?,
 attribute onplay {text}?,
 attribute onplaying {text}?,
 attribute onprogress {text}?,
 attribute onratechange {text}?,
 attribute onreset {text}?,
 attribute onresize {text}?,
 attribute onscroll {text}?,
 attribute onsecuritypolicyviolation {text}?,
 attribute onseeked {text}?,
 attribute onseeking {text}?,
 attribute onselect {text}?,
 attribute onslotchange {text}?,
 attribute onstalled {text}?,
 attribute onsubmit {text}?,
 attribute onsuspend {text}?,
 attribute ontimeupdate {text}?,
 attribute ontoggle {text}?,
 attribute onvolumechange {text}?,
 attribute onwaiting {text}?,
 attribute onwebkitanimationend {text}?,
 attribute onwebkitanimationiteration {text}?,
 attribute onwebkitanimationstart {text}?,
 attribute onwebkittransitionend {text}?,
 attribute onwheel {text}?,
 attribute onafterprint {text}?,
 attribute onbeforeprint {text}?,
 attribute onbeforeunload {text}?,
 attribute onhashchange {text}?,
 attribute onlanguagechange {text}?,
 attribute onmessage {text}?,
 attribute onmessageerror {text}?,
 attribute onoffline {text}?,
 attribute ononline {text}?,
 attribute onpagehide {text}?,
 attribute onpageshow {text}?,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

300 of 434 26/08/2025, 11:30

 attribute onpopstate {text}?,
 attribute onrejectionhandled {text}?,
 attribute onstorage {text}?,
 attribute onunhandledrejection {text}?,
 attribute onunload {text}?,
 attribute oncopy {text}?,
 attribute oncut {text}?,
 attribute onpaste {text}?

Sample set. May need preprocessing
or schema extension to allow more see MathML Core (and HTML) spec
MathMLDataAttributes =
 attribute data-other {text}?

sample set, like data- may need preprocessing to allow more
MathMLARIAattributes =
 attribute aria-label {text}?,
 attribute aria-describedby {text}?,
 attribute aria-details {text}?

MathMLintentAttributes =
 attribute intent {text}?,
 attribute arg {xsd:NCName}?

MathMLPGlobalAttributes = attribute id {xsd:ID}?,
 attribute class {xsd:NCName}?,
 attribute style {xsd:string}?,
 attribute dir {"ltr" | "rtl"}?,
 attribute mathbackground {color}?,
 attribute mathcolor {color}?,
 attribute mathsize {length-percentage}?,
 attribute mathvariant {xsd:string{pattern="\s*([Nn][Oo][Rr][Mm][Aa]
[Ll]|[Bb][Oo][Ll][Dd]|[Ii][Tt][Aa][Ll][Ii][Cc]|[Bb][Oo][Ll][Dd]-[Ii][Tt][Aa][Ll][Ii][Cc]|
[Dd][Oo][Uu][Bb][Ll][Ee]-[Ss][Tt][Rr][Uu][Cc][Kk]|[Bb][Oo][Ll][Dd]-[Ff][Rr][Aa][Kk][Tt]
[Uu][Rr]|[Ss][Cc][Rr][Ii][Pp][Tt]|[Bb][Oo][Ll][Dd]-[Ss][Cc][Rr][Ii][Pp][Tt]|[Ff][Rr][Aa]
[Kk][Tt][Uu][Rr]|[Ss][Aa][Nn][Ss]-[Ss][Ee][Rr][Ii][Ff]|[Bb][Oo][Ll][Dd]-[Ss][Aa][Nn][Ss]-
[Ss][Ee][Rr][Ii][Ff]|[Ss][Aa][Nn][Ss]-[Ss][Ee][Rr][Ii][Ff]-[Ii][Tt][Aa][Ll][Ii][Cc]|[Ss]
[Aa][Nn][Ss]-[Ss][Ee][Rr][Ii][Ff]-[Bb][Oo][Ll][Dd]-[Ii][Tt][Aa][Ll][Ii][Cc]|[Mm][Oo][Nn]
[Oo][Ss][Pp][Aa][Cc][Ee]|[Ii][Nn][Ii][Tt][Ii][Aa][Ll]|[Tt][Aa][Ii][Ll][Ee][Dd]|[Ll][Oo]
[Oo][Pp][Ee][Dd]|[Ss][Tt][Rr][Ee][Tt][Cc][Hh][Ee][Dd])\s*"}}?,
 attribute displaystyle {mathml-boolean}?,
 attribute scriptlevel {xsd:integer}?,
 attribute autofocus {mathml-boolean}?,
 attribute tabindex {xsd:integer}?,
 attribute nonce {text}?,

 MathMLoneventAttributes,
Extension attributes, no defined behavior

 MathMLDataAttributes,
No specified behavior in Core, see MathML4

 MathMLintentAttributes,
No specified behavior in Core, see WAI-ARIA

 MathMLARIAattributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

301 of 434 26/08/2025, 11:30

math.attributes = MathMLPGlobalAttributes,
 attribute display {"block" | "inline"}?,

No specified behavior in Core, see MathML4
 attribute alttext {text}?

annotation = element annotation {MathMLPGlobalAttributes,encoding?,text}

anyElement = element (*) {(attribute * {text}|text| anyElement)*}

annotation-xml = element annotation-xml {annotation-xml.attributes,
 (MathExpression*|anyElement*)}

annotation-xml.attributes = MathMLPGlobalAttributes, encoding?

encoding=attribute encoding {xsd:string}?

semantics = element semantics {semantics.attributes,
 MathExpression,
 (annotation|annotation-xml)*}

semantics.attributes = MathMLPGlobalAttributes

mathml-boolean = xsd:string {
pattern = '\s*([Tt][Rr][Uu][Ee]|[Ff][Aa][Ll][Ss][Ee])\s*'

}

length-percentage = xsd:string {
pattern = '\s*((-?[0-9]*([0-9]\.?|\.[0-9])[0-9]*(r?em|ex|in|cm|mm|p[xtc]|Q|v[hw]|vmin|

vmax|%))|0)\s*'
}

MathExpression = TokenExpression|
 mrow|mfrac|msqrt|mroot|mstyle|merror|mpadded|mphantom|
 msub|msup|msubsup|munder|mover|munderover|
 mmultiscripts|mtable|maction|

 semantics

MathMalignExpression = MathExpression

ImpliedMrow = MathMalignExpression*

TableRowExpression = mtr

MultiScriptExpression = (MathExpression|none),(MathExpression|none)

color = xsd:string {
pattern = '\s*((#[0-9a-fA-F]{3}([0-9a-fA-F]{3})?)|[a-zA-Z]+|[a-zA-Z]+\s*\([0-9, %.]+

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

302 of 434 26/08/2025, 11:30

\))\s*'}

TokenExpression = mi|mn|mo|mtext|mspace|ms

textorHTML = text | element (h:*) {attribute * {text}*,textorHTML*}

token.content = textorHTML

mi = element mi {mi.attributes, token.content}
mi.attributes =
 MathMLPGlobalAttributes

mn = element mn {mn.attributes, token.content}
mn.attributes =
 MathMLPGlobalAttributes

mo = element mo {mo.attributes, token.content}
mo.attributes =
 MathMLPGlobalAttributes,
 attribute form {"prefix" | "infix" | "postfix"}?,
 attribute lspace {length-percentage}?,
 attribute rspace {length-percentage}?,
 attribute stretchy {mathml-boolean}?,
 attribute symmetric {mathml-boolean}?,
 attribute maxsize {length-percentage}?,
 attribute minsize {length-percentage}?,
 attribute largeop {mathml-boolean}?,
 attribute movablelimits {mathml-boolean}?

mtext = element mtext {mtext.attributes, token.content}
mtext.attributes =
 MathMLPGlobalAttributes

mspace = element mspace {mspace.attributes, empty}
mspace.attributes =
 MathMLPGlobalAttributes,
 attribute width {length-percentage}?,
 attribute height {length-percentage}?,
 attribute depth {length-percentage}?

ms = element ms {ms.attributes, token.content}
ms.attributes =
 MathMLPGlobalAttributes

none = element none {none.attributes,empty}
none.attributes =
 MathMLPGlobalAttributes

mprescripts = element mprescripts {mprescripts.attributes,empty}
mprescripts.attributes =

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

303 of 434 26/08/2025, 11:30

 MathMLPGlobalAttributes

mrow = element mrow {mrow.attributes, ImpliedMrow}
mrow.attributes =
 MathMLPGlobalAttributes

mfrac = element mfrac {mfrac.attributes, MathExpression, MathExpression}
mfrac.attributes =
 MathMLPGlobalAttributes,
 attribute linethickness {length-percentage}?

msqrt = element msqrt {msqrt.attributes, ImpliedMrow}
msqrt.attributes =
 MathMLPGlobalAttributes

mroot = element mroot {mroot.attributes, MathExpression, MathExpression}
mroot.attributes =
 MathMLPGlobalAttributes

mstyle = element mstyle {mstyle.attributes, ImpliedMrow}
mstyle.attributes =
 MathMLPGlobalAttributes

merror = element merror {merror.attributes, ImpliedMrow}
merror.attributes =
 MathMLPGlobalAttributes

mpadded = element mpadded {mpadded.attributes, ImpliedMrow}
mpadded.attributes =
 MathMLPGlobalAttributes,
 attribute height {mpadded-length-percentage}?,
 attribute depth {mpadded-length-percentage}?,
 attribute width {mpadded-length-percentage}?,
 attribute lspace {mpadded-length-percentage}?,
 attribute rspace {mpadded-length-percentage}?,
 attribute voffset {mpadded-length-percentage}?

mpadded-length-percentage=length-percentage

mphantom = element mphantom {mphantom.attributes, ImpliedMrow}
mphantom.attributes =
 MathMLPGlobalAttributes

msub = element msub {msub.attributes, MathExpression, MathExpression}
msub.attributes =
 MathMLPGlobalAttributes

msup = element msup {msup.attributes, MathExpression, MathExpression}
msup.attributes =
 MathMLPGlobalAttributes

msubsup = element msubsup {msubsup.attributes, MathExpression, MathExpression,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

304 of 434 26/08/2025, 11:30

MathExpression}
msubsup.attributes =
 MathMLPGlobalAttributes

munder = element munder {munder.attributes, MathExpression, MathExpression}
munder.attributes =
 MathMLPGlobalAttributes,
 attribute accentunder {mathml-boolean}?

mover = element mover {mover.attributes, MathExpression, MathExpression}
mover.attributes =
 MathMLPGlobalAttributes,
 attribute accent {mathml-boolean}?

munderover = element munderover {munderover.attributes, MathExpression, MathExpression,
MathExpression}
munderover.attributes =
 MathMLPGlobalAttributes,
 attribute accent {mathml-boolean}?,
 attribute accentunder {mathml-boolean}?

mmultiscripts = element mmultiscripts {mmultiscripts.attributes,
 MathExpression,
 MultiScriptExpression*,
 (mprescripts,MultiScriptExpression*)?}
mmultiscripts.attributes =
 msubsup.attributes

mtable = element mtable {mtable.attributes, TableRowExpression*}
mtable.attributes =
 MathMLPGlobalAttributes

mtr = element mtr {mtr.attributes, mtd*}
mtr.attributes =
 MathMLPGlobalAttributes

mtd = element mtd {mtd.attributes, ImpliedMrow}
mtd.attributes =
 MathMLPGlobalAttributes,
 attribute rowspan {xsd:positiveInteger}?,
 attribute columnspan {xsd:positiveInteger}?

maction = element maction {maction.attributes, ImpliedMrow}
maction.attributes =
 MathMLPGlobalAttributes,
 attribute actiontype {text}?,
 attribute selection {xsd:positiveInteger}?

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

305 of 434 26/08/2025, 11:30

The grammar for Presentation MathML 4 builds on the grammar for the MathML Core, and can be found at https://
www.w3.org/Math/RelaxNG/mathml4/mathml4-presentation.rnc.

MathML 4 (Presentation)
#######################

Copyright 1998-2024 W3C (MIT, ERCIM, Keio, Beihang)

Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"
namespace local = ""

MathML Core
include "mathml4-core.rnc" {

named lengths
length-percentage = xsd:string {
pattern = '\s*((-?[0-9]*([0-9]\.?|\.[0-9])[0-9]*(r?em|ex|in|cm|mm|p[xtc]|Q|v[hw]|vmin|

vmax|%))|0|(negative)?((very){0,2}thi(n|ck)|medium)mathspace)\s*'
}

mpadded-length-percentage = xsd:string {
pattern = '\s*([\+\-]?[0-9]*([0-9]\.?|\.[0-9])[0-9]*\s*((%?\s*(height|depth|width)?)|r?

em|ex|in|cm|mm|p[xtc]|Q|v[hw]|vmin|vmax|%|((negative)?((very){0,2}thi(n|ck)|
medium)mathspace))?)\s*'
}

}

NonMathMLAtt = attribute (* - (local:* | m:*)) {xsd:string}

MathMLPGlobalAttributes &=
 NonMathMLAtt*,
 attribute xref {text}?,

 attribute href {xsd:anyURI}?

MathMalignExpression |= MalignExpression

MathExpression |= PresentationExpression

MstackExpression = MathMalignExpression|mscarries|msline|msrow|msgroup

MsrowExpression = MathMalignExpression|none

A.2.2 Presentation MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

306 of 434 26/08/2025, 11:30

https://www.w3.org/Math/RelaxNG/mathml4/mathml4-presentation.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-presentation.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-presentation.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-presentation.rnc

linestyle = "none" | "solid" | "dashed"

verticalalign =
 "top" |
 "bottom" |
 "center" |
 "baseline" |
 "axis"

columnalignstyle = "left" | "center" | "right"

notationstyle =
 "longdiv" |
 "actuarial" |
 "radical" |
 "box" |
 "roundedbox" |
 "circle" |
 "left" |
 "right" |
 "top" |
 "bottom" |
 "updiagonalstrike" |
 "downdiagonalstrike" |
 "verticalstrike" |
 "horizontalstrike" |
 "madruwb"

idref = text
unsigned-integer = xsd:unsignedLong
integer = xsd:integer
number = xsd:decimal

character = xsd:string {
pattern = '\s*\S\s*'}

positive-integer = xsd:positiveInteger

token.content |= mglyph|text

mo.attributes &=
 attribute linebreak {"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak"}?,
 attribute lineleading {length-percentage}?,
 attribute linebreakstyle {"before" | "after" | "duplicate" | "infixlinebreakstyle"}?,
 attribute linebreakmultchar {text}?,
 attribute indentalign {"left" | "center" | "right" | "auto" | "id"}?,
 attribute indentshift {length-percentage}?,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

307 of 434 26/08/2025, 11:30

 attribute indenttarget {idref}?,
 attribute indentalignfirst {"left" | "center" | "right" | "auto" | "id" |
"indentalign"}?,
 attribute indentshiftfirst {length-percentage | "indentshift"}?,
 attribute indentalignlast {"left" | "center" | "right" | "auto" | "id" |
"indentalign"}?,
 attribute indentshiftlast {length-percentage | "indentshift"}?,
 attribute accent {mathml-boolean}?,
 attribute maxsize {"infinity"}?

mspace.attributes &=
 attribute linebreak {"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak" |
"indentingnewline"}?,
 attribute indentalign {"left" | "center" | "right" | "auto" | "id"}?,
 attribute indentshift {length-percentage}?,
 attribute indenttarget {idref}?,
 attribute indentalignfirst {"left" | "center" | "right" | "auto" | "id" |
"indentalign"}?,
 attribute indentshiftfirst {length-percentage | "indentshift"}?,
 attribute indentalignlast {"left" | "center" | "right" | "auto" | "id" |
"indentalign"}?,
 attribute indentshiftlast {length-percentage | "indentshift"}?

ms.attributes &=
 attribute lquote {text}?,
 attribute rquote {text}?

mglyph = element mglyph {mglyph.attributes,empty}
mglyph.attributes =
 MathMLPGlobalAttributes,
 attribute src {xsd:anyURI}?,
 attribute width {length-percentage}?,
 attribute height {length-percentage}?,
 attribute valign {length-percentage}?,
 attribute alt {text}?

msline = element msline {msline.attributes,empty}
msline.attributes =
 MathMLPGlobalAttributes,
 attribute position {integer}?,
 attribute length {unsigned-integer}?,
 attribute leftoverhang {length-percentage}?,
 attribute rightoverhang {length-percentage}?,
 attribute mslinethickness {length-percentage | "thin" | "medium" | "thick"}?

MalignExpression = maligngroup|malignmark

malignmark = element malignmark {malignmark.attributes, empty}
malignmark.attributes = MathMLPGlobalAttributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

308 of 434 26/08/2025, 11:30

maligngroup = element maligngroup {maligngroup.attributes, empty}
maligngroup.attributes = MathMLPGlobalAttributes

PresentationExpression = TokenExpression|
 mrow|mfrac|msqrt|mroot|mstyle|merror|mpadded|mphantom|
 mfenced|menclose|msub|msup|msubsup|munder|mover|munderover|
 mmultiscripts|mtable|mstack|mlongdiv|maction

mfrac.attributes &=
 attribute numalign {"left" | "center" | "right"}?,
 attribute denomalign {"left" | "center" | "right"}?,
 attribute bevelled {mathml-boolean}?

mstyle.attributes &=
 mstyle.specificattributes,
 mstyle.generalattributes

mstyle.specificattributes =
 attribute scriptsizemultiplier {number}?,
 attribute scriptminsize {length-percentage}?,
 attribute infixlinebreakstyle {"before" | "after" | "duplicate"}?,
 attribute decimalpoint {character}?

mstyle.generalattributes =
 attribute accent {mathml-boolean}?,
 attribute accentunder {mathml-boolean}?,
 attribute align {"left" | "right" | "center"}?,
 attribute alignmentscope {list {("true" | "false") +}}?,
 attribute bevelled {mathml-boolean}?,
 attribute charalign {"left" | "center" | "right"}?,
 attribute charspacing {length-percentage | "loose" | "medium" | "tight"}?,
 attribute close {text}?,
 attribute columnalign {list {columnalignstyle+} }?,
 attribute columnlines {list {linestyle +}}?,
 attribute columnspacing {list {(length-percentage) +}}?,
 attribute columnspan {positive-integer}?,
 attribute columnwidth {list {("auto" | length-percentage | "fit") +}}?,
 attribute crossout {list {("none" | "updiagonalstrike" | "downdiagonalstrike" |
"verticalstrike" | "horizontalstrike")*}}?,
 attribute denomalign {"left" | "center" | "right"}?,
 attribute depth {length-percentage}?,
 attribute dir {"ltr" | "rtl"}?,
 attribute equalcolumns {mathml-boolean}?,
 attribute equalrows {mathml-boolean}?,
 attribute form {"prefix" | "infix" | "postfix"}?,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

309 of 434 26/08/2025, 11:30

 attribute frame {linestyle}?,
 attribute framespacing {list {length-percentage, length-percentage}}?,
 attribute height {length-percentage}?,
 attribute indentalign {"left" | "center" | "right" | "auto" | "id"}?,
 attribute indentalignfirst {"left" | "center" | "right" | "auto" | "id" |
"indentalign"}?,
 attribute indentalignlast {"left" | "center" | "right" | "auto" | "id" |
"indentalign"}?,
 attribute indentshift {length-percentage}?,
 attribute indentshiftfirst {length-percentage | "indentshift"}?,
 attribute indentshiftlast {length-percentage | "indentshift"}?,
 attribute indenttarget {idref}?,
 attribute largeop {mathml-boolean}?,
 attribute leftoverhang {length-percentage}?,
 attribute length {unsigned-integer}?,
 attribute linebreak {"auto" | "newline" | "nobreak" | "goodbreak" | "badbreak"}?,
 attribute linebreakmultchar {text}?,
 attribute linebreakstyle {"before" | "after" | "duplicate" | "infixlinebreakstyle"}?,
 attribute lineleading {length-percentage}?,
 attribute linethickness {length-percentage | "thin" | "medium" | "thick"}?,
 attribute location {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,
 attribute longdivstyle {"lefttop" | "stackedrightright" | "mediumstackedrightright" |
"shortstackedrightright" | "righttop" | "left/\right" | "left)(right" | ":right=right" |
"stackedleftleft" | "stackedleftlinetop"}?,
 attribute lquote {text}?,
 attribute lspace {length-percentage}?,
 attribute mathsize {"small" | "normal" | "big" | length-percentage}?,
 attribute mathvariant {"normal" | "bold" | "italic" | "bold-italic" | "double-struck" |
"bold-fraktur" | "script" | "bold-script" | "fraktur" | "sans-serif" | "bold-sans-serif"
| "sans-serif-italic" | "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |
"looped" | "stretched"}?,
 attribute minlabelspacing {length-percentage}?,
 attribute minsize {length-percentage}?,
 attribute movablelimits {mathml-boolean}?,
 attribute mslinethickness {length-percentage | "thin" | "medium" | "thick"}?,
 attribute notation {text}?,
 attribute numalign {"left" | "center" | "right"}?,
 attribute open {text}?,
 attribute position {integer}?,
 attribute rightoverhang {length-percentage}?,
 attribute rowalign {list {verticalalign+} }?,
 attribute rowlines {list {linestyle +}}?,
 attribute rowspacing {list {(length-percentage) +}}?,
 attribute rowspan {positive-integer}?,
 attribute rquote {text}?,
 attribute rspace {length-percentage}?,
 attribute selection {positive-integer}?,
 attribute separators {text}?,
 attribute shift {integer}?,
 attribute side {"left" | "right" | "leftoverlap" | "rightoverlap"}?,
 attribute stackalign {"left" | "center" | "right" | "decimalpoint"}?,
 attribute stretchy {mathml-boolean}?,
 attribute subscriptshift {length-percentage}?,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

310 of 434 26/08/2025, 11:30

 attribute superscriptshift {length-percentage}?,
 attribute symmetric {mathml-boolean}?,
 attribute valign {length-percentage}?,
 attribute width {length-percentage}?

math.attributes &= mstyle.specificattributes
math.attributes &= mstyle.generalattributes
math.attributes &= attribute overflow {"linebreak" | "scroll" | "elide" | "truncate" |
"scale"}?

mfenced = element mfenced {mfenced.attributes, ImpliedMrow}
mfenced.attributes =
 MathMLPGlobalAttributes,
 attribute open {text}?,
 attribute close {text}?,
 attribute separators {text}?

menclose = element menclose {menclose.attributes, ImpliedMrow}
menclose.attributes =
 MathMLPGlobalAttributes,
 attribute notation {text}?

munder.attributes &=
 attribute align {"left" | "right" | "center"}?

mover.attributes &=
 attribute align {"left" | "right" | "center"}?

munderover.attributes &=
 attribute align {"left" | "right" | "center"}?

msub.attributes &=
 attribute subscriptshift {length-percentage}?

msup.attributes &=
 attribute superscriptshift {length-percentage}?

msubsup.attributes &=
 attribute subscriptshift {length-percentage}?,
 attribute superscriptshift {length-percentage}?

mtable.attributes &=
 attribute align {xsd:string {

pattern ='\s*(top|bottom|center|baseline|axis)(\s+-?[0-9]+)?\s*'}}?,
 attribute rowalign {list {verticalalign+} }?,
 attribute columnalign {list {columnalignstyle+} }?,
 attribute columnwidth {list {("auto" | length-percentage | "fit") +}}?,
 attribute width {"auto" | length-percentage}?,
 attribute rowspacing {list {(length-percentage) +}}?,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

311 of 434 26/08/2025, 11:30

 attribute columnspacing {list {(length-percentage) +}}?,
 attribute rowlines {list {linestyle +}}?,
 attribute columnlines {list {linestyle +}}?,
 attribute frame {linestyle}?,
 attribute framespacing {list {length-percentage, length-percentage}}?,
 attribute equalrows {mathml-boolean}?,
 attribute equalcolumns {mathml-boolean}?,
 attribute displaystyle {mathml-boolean}?

mtr.attributes &=
 attribute rowalign {"top" | "bottom" | "center" | "baseline" | "axis"}?,
 attribute columnalign {list {columnalignstyle+} }?

mtd.attributes &=
 attribute rowalign {"top" | "bottom" | "center" | "baseline" | "axis"}?,
 attribute columnalign {columnalignstyle}?

mstack = element mstack {mstack.attributes, MstackExpression*}
mstack.attributes =
 MathMLPGlobalAttributes,
 attribute align {xsd:string {

pattern ='\s*(top|bottom|center|baseline|axis)(\s+-?[0-9]+)?\s*'}}?,
 attribute stackalign {"left" | "center" | "right" | "decimalpoint"}?,
 attribute charalign {"left" | "center" | "right"}?,
 attribute charspacing {length-percentage | "loose" | "medium" | "tight"}?

mlongdiv = element mlongdiv {mlongdiv.attributes,
MstackExpression,MstackExpression,MstackExpression+}
mlongdiv.attributes =
 msgroup.attributes,
 attribute longdivstyle {"lefttop" | "stackedrightright" | "mediumstackedrightright" |
"shortstackedrightright" | "righttop" | "left/\right" | "left)(right" | ":right=right" |
"stackedleftleft" | "stackedleftlinetop"}?

msgroup = element msgroup {msgroup.attributes, MstackExpression*}
msgroup.attributes =
 MathMLPGlobalAttributes,
 attribute position {integer}?,
 attribute shift {integer}?

msrow = element msrow {msrow.attributes, MsrowExpression*}
msrow.attributes =
 MathMLPGlobalAttributes,
 attribute position {integer}?

mscarries = element mscarries {mscarries.attributes, (MsrowExpression|mscarry)*}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

312 of 434 26/08/2025, 11:30

mscarries.attributes =
 MathMLPGlobalAttributes,
 attribute position {integer}?,
 attribute location {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,
 attribute crossout {list {("none" | "updiagonalstrike" | "downdiagonalstrike" |
"verticalstrike" | "horizontalstrike")*}}?,
 attribute scriptsizemultiplier {number}?

mscarry = element mscarry {mscarry.attributes, MsrowExpression*}
mscarry.attributes =
 MathMLPGlobalAttributes,
 attribute location {"w" | "nw" | "n" | "ne" | "e" | "se" | "s" | "sw"}?,
 attribute crossout {list {("none" | "updiagonalstrike" | "downdiagonalstrike" |
"verticalstrike" | "horizontalstrike")*}}?

The grammar for Strict Content MathML 4 can be found at https://www.w3.org/Math/RelaxNG/mathml4/mathml4-strict-
content.rnc.

MathML 4 (Strict Content)
#########################

Copyright 1998-2024 W3C (MIT, ERCIM, Keio, Beihang)

Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

start |= math.strict

CommonAtt =
 attribute id {xsd:ID}?,
 attribute xref {text}?

math.strict = element math {math.attributes,ContExp*}

math.attributes &= CommonAtt

ContExp = semantics-contexp | cn | ci | csymbol | apply | bind | share | cerror | cbytes
| cs

cn = element cn {cn.attributes,cn.content}
cn.content = text
cn.attributes = CommonAtt, attribute type {"integer" | "real" | "double" | "hexdouble"}

A.2.3 Strict Content MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

313 of 434 26/08/2025, 11:30

https://www.w3.org/Math/RelaxNG/mathml4/mathml4-strict-content.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-strict-content.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-strict-content.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-strict-content.rnc

semantics-ci = element semantics {CommonAtt,(ci|semantics-ci),
 (annotation|annotation-xml)*}

semantics-contexp = element semantics {CommonAtt,MathExpression,
 (annotation|annotation-xml)*}

annotation |= element annotation {CommonAtt,text}

anyElement |= element (* - m:*) {(attribute * {text}|text| anyElement)*}

annotation-xml |= element annotation-xml {annotation-xml.attributes,
 (MathExpression*|anyElement*)}

annotation-xml.attributes &= CommonAtt, cd?, encoding?

encoding &= attribute encoding {xsd:string}

ci = element ci {ci.attributes, ci.content}
ci.attributes = CommonAtt, ci.type?
ci.type = attribute type {"integer" | "rational" | "real" | "complex" | "complex-polar" |
"complex-cartesian" | "constant" | "function" | "vector" | "list" | "set" | "matrix"}
ci.content = text

csymbol = element csymbol {csymbol.attributes,csymbol.content}

SymbolName = xsd:NCName
csymbol.attributes = CommonAtt, cd
csymbol.content = SymbolName
cd = attribute cd {xsd:NCName}
name = attribute name {xsd:NCName}
src = attribute src {xsd:anyURI}?

BvarQ = bvar*
bvar = element bvar {CommonAtt, (ci | semantics-ci)}

apply = element apply {CommonAtt,apply.content}
apply.content = ContExp+

bind = element bind {CommonAtt,bind.content}
bind.content = ContExp,bvar*,ContExp

share = element share {CommonAtt, src, empty}

cerror = element cerror {cerror.attributes, csymbol, ContExp*}
cerror.attributes = CommonAtt

cbytes = element cbytes {cbytes.attributes, base64}
cbytes.attributes = CommonAtt

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

314 of 434 26/08/2025, 11:30

base64 = xsd:base64Binary

cs = element cs {cs.attributes, text}
cs.attributes = CommonAtt

MathExpression |= ContExp

The grammar for Content MathML 4 builds on the grammar for the Strict Content MathML subset, and can be found at
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-content.rnc.

MathML 4 (Content)
##################

Copyright 1998-2024 W3C (MIT, ERCIM, Keio, Beihang)

Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"
namespace local = ""

include "mathml4-strict-content.rnc"{
cn.content = (text | sep | PresentationExpression)*
cn.attributes = CommonAtt, DefEncAtt, attribute type {text}?, base?

ci.attributes = CommonAtt, DefEncAtt, ci.type?
ci.type = attribute type {text}
ci.content = (text | PresentationExpression)*

csymbol.attributes = CommonAtt, DefEncAtt, attribute type {text}?,cd?
csymbol.content = (text | PresentationExpression)*

 annotation-xml.attributes |= CommonAtt, cd?, name?, encoding?

bvar = element bvar {CommonAtt, ((ci | semantics-ci) & degree?)}

cbytes.attributes = CommonAtt, DefEncAtt

cs.attributes = CommonAtt, DefEncAtt

apply.content = ContExp+ | (ContExp, BvarQ, Qualifier*, ContExp*)

bind.content = apply.content
}

NonMathMLAtt |= attribute (* - (local:*|m:*)) {xsd:string}

A.2.4 Content MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

315 of 434 26/08/2025, 11:30

https://www.w3.org/Math/RelaxNG/mathml4/mathml4-content.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-content.rnc

math.attributes &=
 attribute alttext {text}?

MathMLDataAttributes &=
 attribute data-other {text}?

CommonAtt &=
 NonMathMLAtt*,

 MathMLDataAttributes,
 attribute class {xsd:NCName}?,
 attribute style {xsd:string}?,
 attribute href {xsd:anyURI}?,
 attribute intent {text}?,
 attribute arg {xsd:NCName}?

base = attribute base {text}

sep = element sep {empty}
PresentationExpression |= notAllowed
DefEncAtt = attribute encoding {xsd:string}?,
 attribute definitionURL {xsd:anyURI}?

DomainQ = (domainofapplication|condition|interval|(lowlimit,uplimit?))*
domainofapplication = element domainofapplication {ContExp}
condition = element condition {ContExp}
uplimit = element uplimit {ContExp}
lowlimit = element lowlimit {ContExp}

Qualifier = DomainQ|degree|momentabout|logbase
degree = element degree {ContExp}
momentabout = element momentabout {ContExp}
logbase = element logbase {ContExp}

type = attribute type {text}
order = attribute order {"numeric" | "lexicographic"}
closure = attribute closure {text}

ContExp |= piecewise

piecewise = element piecewise {CommonAtt, DefEncAtt,(piece* & otherwise?)}

piece = element piece {CommonAtt, DefEncAtt, ContExp, ContExp}

otherwise = element otherwise {CommonAtt, DefEncAtt, ContExp}

interval.class = interval
ContExp |= interval.class

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

316 of 434 26/08/2025, 11:30

interval = element interval { CommonAtt, DefEncAtt,closure?, ContExp,ContExp}

unary-functional.class = inverse | ident | domain | codomain | image | ln | log | moment
ContExp |= unary-functional.class

inverse = element inverse { CommonAtt, DefEncAtt, empty}
ident = element ident { CommonAtt, DefEncAtt, empty}
domain = element domain { CommonAtt, DefEncAtt, empty}
codomain = element codomain { CommonAtt, DefEncAtt, empty}
image = element image { CommonAtt, DefEncAtt, empty}
ln = element ln { CommonAtt, DefEncAtt, empty}
log = element log { CommonAtt, DefEncAtt, empty}
moment = element moment { CommonAtt, DefEncAtt, empty}

lambda.class = lambda
ContExp |= lambda.class

lambda = element lambda { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp}

nary-functional.class = compose
ContExp |= nary-functional.class

compose = element compose { CommonAtt, DefEncAtt, empty}

binary-arith.class = quotient | divide | minus | power | rem | root
ContExp |= binary-arith.class

quotient = element quotient { CommonAtt, DefEncAtt, empty}
divide = element divide { CommonAtt, DefEncAtt, empty}
minus = element minus { CommonAtt, DefEncAtt, empty}
power = element power { CommonAtt, DefEncAtt, empty}
rem = element rem { CommonAtt, DefEncAtt, empty}
root = element root { CommonAtt, DefEncAtt, empty}

unary-arith.class = factorial | minus | root | abs | conjugate | arg | real | imaginary |
floor | ceiling | exp
ContExp |= unary-arith.class

factorial = element factorial { CommonAtt, DefEncAtt, empty}
abs = element abs { CommonAtt, DefEncAtt, empty}
conjugate = element conjugate { CommonAtt, DefEncAtt, empty}
arg = element arg { CommonAtt, DefEncAtt, empty}
real = element real { CommonAtt, DefEncAtt, empty}
imaginary = element imaginary { CommonAtt, DefEncAtt, empty}
floor = element floor { CommonAtt, DefEncAtt, empty}
ceiling = element ceiling { CommonAtt, DefEncAtt, empty}
exp = element exp { CommonAtt, DefEncAtt, empty}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

317 of 434 26/08/2025, 11:30

nary-minmax.class = max | min
ContExp |= nary-minmax.class

max = element max { CommonAtt, DefEncAtt, empty}
min = element min { CommonAtt, DefEncAtt, empty}

nary-arith.class = plus | times | gcd | lcm
ContExp |= nary-arith.class

plus = element plus { CommonAtt, DefEncAtt, empty}
times = element times { CommonAtt, DefEncAtt, empty}
gcd = element gcd { CommonAtt, DefEncAtt, empty}
lcm = element lcm { CommonAtt, DefEncAtt, empty}

nary-logical.class = and | or | xor
ContExp |= nary-logical.class

and = element and { CommonAtt, DefEncAtt, empty}
or = element or { CommonAtt, DefEncAtt, empty}
xor = element xor { CommonAtt, DefEncAtt, empty}

unary-logical.class = not
ContExp |= unary-logical.class

not = element not { CommonAtt, DefEncAtt, empty}

binary-logical.class = implies | equivalent
ContExp |= binary-logical.class

implies = element implies { CommonAtt, DefEncAtt, empty}
equivalent = element equivalent { CommonAtt, DefEncAtt, empty}

quantifier.class = forall | exists
ContExp |= quantifier.class

forall = element forall { CommonAtt, DefEncAtt, empty}
exists = element exists { CommonAtt, DefEncAtt, empty}

nary-reln.class = eq | gt | lt | geq | leq
ContExp |= nary-reln.class

eq = element eq { CommonAtt, DefEncAtt, empty}
gt = element gt { CommonAtt, DefEncAtt, empty}
lt = element lt { CommonAtt, DefEncAtt, empty}
geq = element geq { CommonAtt, DefEncAtt, empty}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

318 of 434 26/08/2025, 11:30

leq = element leq { CommonAtt, DefEncAtt, empty}

binary-reln.class = neq | approx | factorof | tendsto
ContExp |= binary-reln.class

neq = element neq { CommonAtt, DefEncAtt, empty}
approx = element approx { CommonAtt, DefEncAtt, empty}
factorof = element factorof { CommonAtt, DefEncAtt, empty}
tendsto = element tendsto { CommonAtt, DefEncAtt, type?, empty}

int.class = int
ContExp |= int.class

int = element int { CommonAtt, DefEncAtt, empty}

Differential-Operator.class = diff
ContExp |= Differential-Operator.class

diff = element diff { CommonAtt, DefEncAtt, empty}

partialdiff.class = partialdiff
ContExp |= partialdiff.class

partialdiff = element partialdiff { CommonAtt, DefEncAtt, empty}

unary-veccalc.class = divergence | grad | curl | laplacian
ContExp |= unary-veccalc.class

divergence = element divergence { CommonAtt, DefEncAtt, empty}
grad = element grad { CommonAtt, DefEncAtt, empty}
curl = element curl { CommonAtt, DefEncAtt, empty}
laplacian = element laplacian { CommonAtt, DefEncAtt, empty}

nary-setlist-constructor.class = set | \list
ContExp |= nary-setlist-constructor.class

set = element set { CommonAtt, DefEncAtt, type?, BvarQ*, DomainQ*, ContExp*}
\list = element \list { CommonAtt, DefEncAtt, order?, BvarQ*, DomainQ*, ContExp*}

nary-set.class = union | intersect | cartesianproduct
ContExp |= nary-set.class

union = element union { CommonAtt, DefEncAtt, empty}
intersect = element intersect { CommonAtt, DefEncAtt, empty}
cartesianproduct = element cartesianproduct { CommonAtt, DefEncAtt, empty}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

319 of 434 26/08/2025, 11:30

binary-set.class = in | notin | notsubset | notprsubset | setdiff
ContExp |= binary-set.class

in = element in { CommonAtt, DefEncAtt, empty}
notin = element notin { CommonAtt, DefEncAtt, empty}
notsubset = element notsubset { CommonAtt, DefEncAtt, empty}
notprsubset = element notprsubset { CommonAtt, DefEncAtt, empty}
setdiff = element setdiff { CommonAtt, DefEncAtt, empty}

nary-set-reln.class = subset | prsubset
ContExp |= nary-set-reln.class

subset = element subset { CommonAtt, DefEncAtt, empty}
prsubset = element prsubset { CommonAtt, DefEncAtt, empty}

unary-set.class = card
ContExp |= unary-set.class

card = element card { CommonAtt, DefEncAtt, empty}

sum.class = sum
ContExp |= sum.class

sum = element sum { CommonAtt, DefEncAtt, empty}

product.class = product
ContExp |= product.class

product = element product { CommonAtt, DefEncAtt, empty}

limit.class = limit
ContExp |= limit.class

limit = element limit { CommonAtt, DefEncAtt, empty}

unary-elementary.class = sin | cos | tan | sec | csc | cot | sinh | cosh | tanh | sech |
csch | coth | arcsin | arccos | arctan | arccosh | arccot | arccoth | arccsc | arccsch |
arcsec | arcsech | arcsinh | arctanh
ContExp |= unary-elementary.class

sin = element sin { CommonAtt, DefEncAtt, empty}
cos = element cos { CommonAtt, DefEncAtt, empty}
tan = element tan { CommonAtt, DefEncAtt, empty}
sec = element sec { CommonAtt, DefEncAtt, empty}
csc = element csc { CommonAtt, DefEncAtt, empty}
cot = element cot { CommonAtt, DefEncAtt, empty}

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

320 of 434 26/08/2025, 11:30

sinh = element sinh { CommonAtt, DefEncAtt, empty}
cosh = element cosh { CommonAtt, DefEncAtt, empty}
tanh = element tanh { CommonAtt, DefEncAtt, empty}
sech = element sech { CommonAtt, DefEncAtt, empty}
csch = element csch { CommonAtt, DefEncAtt, empty}
coth = element coth { CommonAtt, DefEncAtt, empty}
arcsin = element arcsin { CommonAtt, DefEncAtt, empty}
arccos = element arccos { CommonAtt, DefEncAtt, empty}
arctan = element arctan { CommonAtt, DefEncAtt, empty}
arccosh = element arccosh { CommonAtt, DefEncAtt, empty}
arccot = element arccot { CommonAtt, DefEncAtt, empty}
arccoth = element arccoth { CommonAtt, DefEncAtt, empty}
arccsc = element arccsc { CommonAtt, DefEncAtt, empty}
arccsch = element arccsch { CommonAtt, DefEncAtt, empty}
arcsec = element arcsec { CommonAtt, DefEncAtt, empty}
arcsech = element arcsech { CommonAtt, DefEncAtt, empty}
arcsinh = element arcsinh { CommonAtt, DefEncAtt, empty}
arctanh = element arctanh { CommonAtt, DefEncAtt, empty}

nary-stats.class = mean | median | mode | sdev | variance
ContExp |= nary-stats.class

mean = element mean { CommonAtt, DefEncAtt, empty}
median = element median { CommonAtt, DefEncAtt, empty}
mode = element mode { CommonAtt, DefEncAtt, empty}
sdev = element sdev { CommonAtt, DefEncAtt, empty}
variance = element variance { CommonAtt, DefEncAtt, empty}

nary-constructor.class = vector | matrix | matrixrow
ContExp |= nary-constructor.class

vector = element vector { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*}
matrix = element matrix { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*}
matrixrow = element matrixrow { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*}

unary-linalg.class = determinant | transpose
ContExp |= unary-linalg.class

determinant = element determinant { CommonAtt, DefEncAtt, empty}
transpose = element transpose { CommonAtt, DefEncAtt, empty}

nary-linalg.class = selector
ContExp |= nary-linalg.class

selector = element selector { CommonAtt, DefEncAtt, empty}

binary-linalg.class = vectorproduct | scalarproduct | outerproduct
ContExp |= binary-linalg.class

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

321 of 434 26/08/2025, 11:30

vectorproduct = element vectorproduct { CommonAtt, DefEncAtt, empty}
scalarproduct = element scalarproduct { CommonAtt, DefEncAtt, empty}
outerproduct = element outerproduct { CommonAtt, DefEncAtt, empty}

constant-set.class = integers | reals | rationals | naturalnumbers | complexes | primes |
emptyset
ContExp |= constant-set.class

integers = element integers { CommonAtt, DefEncAtt, empty}
reals = element reals { CommonAtt, DefEncAtt, empty}
rationals = element rationals { CommonAtt, DefEncAtt, empty}
naturalnumbers = element naturalnumbers { CommonAtt, DefEncAtt, empty}
complexes = element complexes { CommonAtt, DefEncAtt, empty}
primes = element primes { CommonAtt, DefEncAtt, empty}
emptyset = element emptyset { CommonAtt, DefEncAtt, empty}

constant-arith.class = exponentiale | imaginaryi | notanumber | true | false | pi |
eulergamma | infinity
ContExp |= constant-arith.class

exponentiale = element exponentiale { CommonAtt, DefEncAtt, empty}
imaginaryi = element imaginaryi { CommonAtt, DefEncAtt, empty}
notanumber = element notanumber { CommonAtt, DefEncAtt, empty}
true = element true { CommonAtt, DefEncAtt, empty}
false = element false { CommonAtt, DefEncAtt, empty}
pi = element pi { CommonAtt, DefEncAtt, empty}
eulergamma = element eulergamma { CommonAtt, DefEncAtt, empty}
infinity = element infinity { CommonAtt, DefEncAtt, empty}

The grammar for full MathML 4 is simply a merger of the above grammars, and can be found at https://www.w3.org/Math/
RelaxNG/mathml4/mathml4.rnc.

MathML 4 (full)
##############

Copyright 1998-2024 W3C (MIT, ERCIM, Keio)

Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

Presentation MathML
include "mathml4-presentation.rnc" {

A.2.5 Full MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

322 of 434 26/08/2025, 11:30

https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4.rnc

anyElement = element (* - m:*) {(attribute * {text}|text| anyElement)*}
}

Content MathML
include "mathml4-content.rnc"

Some elements and attributes that were deprecated in MathML 3 are removed from MathML 4. This schema extends the full
MathML 4 schema, adding these constructs back, allowing validation of existing MathML documents. It can be found at
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-legacy.rnc.

MathML 4 (legacy)
################

Copyright 1998-2024 W3C (MIT, ERCIM, Keio)

Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

default namespace m = "http://www.w3.org/1998/Math/MathML"

MathML 4
include "mathml4.rnc" {

unitless lengths
length-percentage = xsd:string {
pattern = '\s*((-?[0-9]*([0-9]\.?|\.[0-9])[0-9]*(e[mx]|in|cm|mm|p[xtc]|%)?)|(negative)?

((very){0,2}thi(n|ck)|medium)mathspace)\s*'
}
}

Removed MathML 1/2/3 elements

ContExp |= reln | fn | declare

reln = element reln {ContExp*}
fn = element fn {ContExp}
declare = element declare {attribute type {xsd:string}?,
 attribute scope {xsd:string}?,
 attribute nargs {xsd:nonNegativeInteger}?,
 attribute occurrence {"prefix"|"infix"|"function-model"}?,
 DefEncAtt,
 ContExp+}

legacy attributes

A.2.6 Legacy MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

323 of 434 26/08/2025, 11:30

https://www.w3.org/Math/RelaxNG/mathml4/mathml4-legacy.rnc
https://www.w3.org/Math/RelaxNG/mathml4/mathml4-legacy.rnc

CommonAtt &= attribute other {text}?
MathMLPGlobalAttributes &= attribute other {text}?

mglyph.deprecatedattributes =
 attribute fontfamily {text}?,
 attribute index {integer}?,
 attribute mathvariant {"normal" | "bold" | "italic" | "bold-italic" | "double-struck" |
"bold-fraktur" | "script" | "bold-script" | "fraktur" | "sans-serif" | "bold-sans-serif"
| "sans-serif-italic" | "sans-serif-bold-italic" | "monospace" | "initial" | "tailed" |
"looped" | "stretched"}?,
 attribute mathsize {"small" | "normal" | "big" | length-percentage}?

mglyph.attributes &= mglyph.deprecatedattributes

mstyle.deprecatedattributes =
 attribute veryverythinmathspace {length-percentage}?,
 attribute verythinmathspace {length-percentage}?,
 attribute thinmathspace {length-percentage}?,
 attribute mediummathspace {length-percentage}?,
 attribute thickmathspace {length-percentage}?,
 attribute verythickmathspace {length-percentage}?,
 attribute veryverythickmathspace {length-percentage}?

mstyle.attributes &= mstyle.deprecatedattributes

math.deprecatedattributes = attribute mode {xsd:string}?,
 attribute macros {xsd:string}?

math.attributes &= math.deprecatedattributes

DeprecatedTokenAtt =
 attribute fontfamily {text}?,
 attribute fontweight {"normal" | "bold"}?,
 attribute fontstyle {"normal" | "italic"}?,
 attribute fontsize {length-percentage}?,
 attribute color {color}?,
 attribute background {color}?,
 attribute mathsize {"small" | "normal" | "big" }?

DeprecatedMoAtt =
 attribute fence {mathml-boolean}?,
 attribute separator {mathml-boolean}?

mstyle.attributes &= DeprecatedTokenAtt
mstyle.attributes &= DeprecatedMoAtt
mglyph.attributes &= DeprecatedTokenAtt
mn.attributes &= DeprecatedTokenAtt
mi.attributes &= DeprecatedTokenAtt
mo.attributes &= DeprecatedTokenAtt

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

324 of 434 26/08/2025, 11:30

mo.attributes &= DeprecatedMoAtt
mtext.attributes &= DeprecatedTokenAtt
mspace.attributes &= DeprecatedTokenAtt
ms.attributes &= DeprecatedTokenAtt

semantics.attributes &= DefEncAtt

malignmark in tokens
token.content |= malignmark
malignmark in mfrac etc
MathExpression |= MalignExpression

maligngroup.attributes &=
 attribute groupalign {"left" | "center" | "right" | "decimalpoint"}?

malignmark.attributes &=
 attribute edge {"left" | "right"}?

mstyle.generalattributes &=
 attribute edge {"left" | "right"}?

groupalign
group-alignment = "left" | "center" | "right" | "decimalpoint"
group-alignment-list = list {group-alignment+}
group-alignment-list-list = xsd:string {
pattern = '(\s*\{\s*(left|center|right|decimalpoint)(\s+(left|center|right|

decimalpoint))*\})*\s*' }

mstyle.generalattributes &=
 attribute groupalign {group-alignment-list-list}?

mtable.attributes &=
 attribute groupalign {group-alignment-list-list}?,
 attribute alignmentscope {list {("true" | "false") +}}?,
 attribute side {"left" | "right" | "leftoverlap" | "rightoverlap"}?,
 attribute minlabelspacing {length-percentage}?

mtr.attributes &=
 attribute groupalign {group-alignment-list-list}?

mtd.attributes &=
 attribute groupalign {group-alignment-list}?

mlabeledtr = element mlabeledtr {mlabeledtr.attributes, mtd+}
mlabeledtr.attributes =
 mtr.attributes

TableRowExpression |= mlabeledtr

A.3 Using the MathML DTD

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

325 of 434 26/08/2025, 11:30

The MathML DTD uses the strategy outlined in [Modularization] to allow the use of namespace prefixes on MathML
elements. However it is recommended that namespace prefixes are not used in XML serialization of MathML, for
compatibility with the HTML serialization.

Note that unlike the HTML serialization, when using the XML serialization, character entity references such as ∫ may
not be used unless a DTD is specified, either the full MathML DTD as described here or the set of HTML/MathML entity
declarations as specified by [Entities]. Characters may always be specified by using character data directly, or numeric
character references, so ∫ or ∫ rather than ∫.

MathML fragments can be validated using the XML Schema for MathML, located at http://www.w3.org/Math/
XMLSchema/mathml4/mathml4.xsd. The provided schema has been mechanically generated from the Relax NG schema, it
omits some constraints that can not be enforced using XSD syntax.

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and accents in
MathML, all of which are represented by mo elements. For brevity, all such elements will be called simply “operators” in
this Appendix. Note that implementations of [MathML-Core] will use these values as normative definitions of the default
operator spacing.

The dictionary is indexed not just by the element content, but by the element content and form attribute value, together.
Operators with more than one possible form have more than one entry. The MathML specification specifies which form to
use when no form attribute is given; see 3.2.5.6.2 Default value of the form attribute.

The data is all available in machine readable form in unicode.xml which is also the source of the HTML/MathML entity
definitions and distributed with [Entities]. It is however presented below in two more human readable formats. See also
[MathML-Core] for an alternative presentation of the data that is used in that specification.

In the first presentation, operators are ordered first by the form and spacing attributes, and then by priority. The
characters are then listed, with additional data on remaining operator dictionary entries for that character given via a title
attribute which will appear as a popup tooltip in suitable browsers.

In the second presentation of the data, the rows of the table may be reordered in suitable browsers by clicking on a heading
in the top row, to cause the table to be ordered by that column.

A.4 Using the MathML XML Schema

B. Operator Dictionary

B.1 Indexing of the operator dictionary

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

326 of 434 26/08/2025, 11:30

https://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd
https://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd
https://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd
https://www.w3.org/Math/XMLSchema/mathml4/mathml4.xsd

The values for lspace and rspace given here range from 0 to 7 denoting multiples of 1/18 em matching the values used
for namedspace.

For the invisible operators whose content is InvisibleTimes or ApplyFunction, it is suggested that MathML renderers
choose spacing in a context-sensitive way (which is an exception to the static values given in the following table). For
<mo>⁡</mo>, the total spacing (lspace+rspace) in expressions such as sin 𝑥 (where the right operand
doesn't start with a fence) should be greater than zero; for <mo>⁢</mo>, the total spacing should be
greater than zero when both operands (or the nearest tokens on either side, if on the baseline) are identifiers displayed in a
non-slanted font (i.e.. under the suggested rules, when both operands are multi-character identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. when scriptlevel is greater than
0; see 3.3.4 Style Change <mstyle>), as is the case in TeX.

▸ Show Section

form:infix lspace:0 rspace:0
Priority: 160

⟨invisible separator⟩

Priority: 620
⟨invisible times⟩

Priority: 660
\

Priority: 720
∆

Priority: 880
⟨function application⟩

Priority: 920
⟨invisible plus⟩

Priority: 940
_

form:infix lspace:0 rspace:3
Priority: 140

;

Priority: 160
,

Priority: 180
:

B.2 Notes on lspace and rspace attributes

B.3 Operator dictionary entries

B.3.1 Compressed view

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

327 of 434 26/08/2025, 11:30

form:infix lspace:3 rspace:3
Priority: 560

@

Priority: 620
*, ., ·, ×, •, ⁃, ∗, ∙, ≀, ⊗, ⊙, ⊛, ⊠, ⊡, ⊺, ⋅, ⋆, ⋇, ⋉, ⋊, ⋋, ⋌, ⌅, ⌆, ⧆, ⧈, ⧔, ⧕, ⧖, ⧗, ⧢, ⨝, ⨞, ⨯, ⨰, ⨱, ⨲, ⨳,
⨴, ⨵, ⨶, ⨷, ⨻, ⨼, ⨽, ⨿, ⩐

Priority: 640
%

Priority: 680
⟋, ⟍, ⫾

Priority: 700
⩤, ⩥

Priority: 740
⫝̸, ⫝

Priority: 760
**

Priority: 800
<>, ^

Priority: 840
?

Priority: 900
∘, ⊚, ⋄, ⧇

form:infix lspace:4 rspace:4
Priority: 360

∪, ⊌, ⊍, ⊎, ⊔, ⋓, ⩁, ⩂, ⩅, ⩊, ⩌, ⩏

Priority: 380
∩, ⊓, ⋒, ⨟, ⨠, ⨡, ⨾, ⩀, ⩃, ⩄, ⩆, ⩇, ⩈, ⩉, ⩋, ⩍, ⩎, ⫛

Priority: 400
+, -, ±, −, ∓, ∔, ∖, ∨, ∸, ⊕, ⊖, ⊝, ⊞, ⊟, ⊽, ⋎, ➕, ➖, ⦸, ⧅, ⧵, ⧷, ⧹, ⧺, ⧻, ⨢, ⨣, ⨤, ⨥, ⨦, ⨧, ⨨, ⨩, ⨪, ⨫, ⨬, ⨭,
⨮, ⨹, ⨺, ⩒, ⩔, ⩖, ⩗, ⩛, ⩝, ⩡, ⩢, ⩣

Priority: 420
⊻

Priority: 600
&&, ∧, ⊼, ⋏, ⩑, ⩓, ⩕, ⩘, ⩙, ⩚, ⩜, ⩞, ⩟, ⩠

Priority: 680
/, ÷, ⁄, ∕, ∶, ⊘, ➗, ⦼, ⧄, ⧶, ⧸, ⨸, ⫶, ⫻, ⫽

form:infix lspace:5 rspace:5
Priority: 140

⦁

Priority: 180
⦂

Priority: 220
->, ⊶, ⊷, ⊸, ⧴

Priority: 240
//

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

328 of 434 26/08/2025, 11:30

Priority: 260
⊢, ⊣, ⊧, ⊨, ⊩, ⊪, ⊫, ⊬, ⊭, ⊮, ⊯, ⫞, ⫟, ⫠, ⫡, ⫢, ⫣, ⫤, ⫥, ⫦, ⫧, ⫨, ⫩, ⫪, ⫫

Priority: 300
∈, ∉, ∊, ∋, ∌, ∍, ⊂, ⊃, ⊄, ⊅, ⊆, ⊇, ⊈, ⊉, ⊊, ⊋, ⊏, ⊐, ⊑, ⊒, ⊰, ⊱, ⊲, ⊳, ⋐, ⋑, ⋢, ⋣, ⋤, ⋥, ⋪, ⋫, ⋬, ⋭, ⋲, ⋳, ⋴, ⋵,
⋶, ⋷, ⋸, ⋹, ⋺, ⋻, ⋼, ⋽, ⋾, ⋿, ⥹, ⥺, ⥻, ⪽, ⪾, ⪿, ⫀, ⫁, ⫂, ⫃, ⫄, ⫅, ⫆, ⫇, ⫈, ⫉, ⫊, ⫋, ⫌, ⫍, ⫎, ⫏, ⫐, ⫑, ⫒, ⫓,
⫔, ⫕, ⫖, ⫗, ⫘, ⫙

Priority: 320
!=, *=, +=, -=, /=, :=, <, <=, =, ==, >, >=, |, ||, ∝, ∣, ∤, ∥, ∦, ∷, ∹, ∺, ∻, ∼, ∽, ∾, ≁, ≂, ≃, ≄, ≅, ≆, ≇, ≈, ≉,
≊, ≋, ≌, ≍, ≎, ≏, ≐, ≑, ≒, ≓, ≔, ≕, ≖, ≗, ≘, ≙, ≚, ≛, ≜, ≝, ≞, ≟, ≠, ≡, ≢, ≣, ≤, ≥, ≦, ≧, ≨, ≩, ≪, ≫, ≬, ≭, ≮,
≯, ≰, ≱, ≲, ≳, ≴, ≵, ≶, ≷, ≸, ≹, ≺, ≻, ≼, ≽, ≾, ≿, ⊀, ⊁, ⊜, ⊦, ⊴, ⊵, ⋈, ⋍, ⋔, ⋕, ⋖, ⋗, ⋘, ⋙, ⋚, ⋛, ⋜, ⋝, ⋞,
⋟, ⋠, ⋡, ⋦, ⋧, ⋨, ⋩, ⟂, ⥶, ⥷, ⥸, ⦶, ⦷, ⦹, ⧀, ⧁, ⧎, ⧏, ⧐, ⧑, ⧒, ⧓, ⧡, ⧣, ⧤, ⧥, ⧦, ⩦, ⩧, ⩨, ⩩, ⩪, ⩫, ⩬, ⩭, ⩮,
⩯, ⩰, ⩱, ⩲, ⩳, ⩴, ⩵, ⩶, ⩷, ⩸, ⩹, ⩺, ⩻, ⩼, ⩽, ⩾, ⩿, ⪀, ⪁, ⪂, ⪃, ⪄, ⪅, ⪆, ⪇, ⪈, ⪉, ⪊, ⪋, ⪌, ⪍, ⪎, ⪏, ⪐, ⪑, ⪒,
⪓, ⪔, ⪕, ⪖, ⪗, ⪘, ⪙, ⪚, ⪛, ⪜, ⪝, ⪞, ⪟, ⪠, ⪡, ⪢, ⪣, ⪤, ⪥, ⪦, ⪧, ⪨, ⪩, ⪪, ⪫, ⪬, ⪭, ⪮, ⪯, ⪰, ⪱, ⪲, ⪳, ⪴, ⪵, ⪶, ⪷,
⪸, ⪹, ⪺, ⪻, ⪼, ⫚, ⫮, ⫲, ⫳, ⫴, ⫵, ⫷, ⫸, ⫹, ⫺,

Priority: 340
←, ↑, →, ↓, ↔, ↕, ↖, ↗, ↘, ↙, ↚, ↛, ↜, ↝, ↞, ↟, ↠, ↡, ↢, ↣, ↤, ↥, ↦, ↧, ↨, ↩, ↪, ↫, ↬, ↭, ↮, ↯, ↰, ↱, ↲,
↳, ↴, ↵, ↶, ↷, ↸, ↹, ↺, ↻, ↼, ↽, ↾, ↿, ⇀, ⇁, ⇂, ⇃, ⇄, ⇅, ⇆, ⇇, ⇈, ⇉, ⇊, ⇋, ⇌, ⇍, ⇎, ⇏, ⇐, ⇑, ⇒, ⇓,
⇔, ⇕, ⇖, ⇗, ⇘, ⇙, ⇚, ⇛, ⇜, ⇝, ⇞, ⇟, ⇠, ⇡, ⇢, ⇣, ⇤, ⇥, ⇦, ⇧, ⇨, ⇩, ⇪, ⇫, ⇬, ⇭, ⇮, ⇯, ⇰, ⇱, ⇲, ⇳, ⇴, ⇵, ⇶,
⇷, ⇸, ⇹, ⇺, ⇻, ⇼, ⇽, ⇾, ⇿, ⌁, ⍼, ⎋, ➔, ➘, ➙, ➚, ➛, ➜, ➝, ➞, ➟, ➠, ➡, ➥, ➦, ➧, ➨, ➩, ➪, ➫, ➬, ➭, ➮,
➯, ➱, ➲, ➳, ➴, ➵, ➶, ➷, ➸, ➹, ➺, ➻, ➼, ➽, ➾, ⟰, ⟱, ⟲, ⟳, ⟴, ⟵, ⟶, ⟷, ⟸, ⟹, ⟺, ⟻, ⟼,
⟽, ⟾, ⟿, ⤀, ⤁, ⤂, ⤃, ⤄, ⤅, ⤆, ⤇, ⤈, ⤉, ⤊, ⤋, ⤌, ⤍, ⤎, ⤏, ⤐, ⤑, ⤒, ⤓, ⤔, ⤕, ⤖, ⤗, ⤘, ⤙, ⤚, ⤛,
⤜, ⤝, ⤞, ⤟, ⤠, ⤡, ⤢, ⤣, ⤤, ⤥, ⤦, ⤧, ⤨, ⤩, ⤪, ⤫, ⤬, ⤭, ⤮, ⤯, ⤰, ⤱, ⤲, ⤳, ⤴, ⤵, ⤶, ⤷, ⤸, ⤹, ⤺, ⤻,
⤼, ⤽, ⤾, ⤿, ⥀, ⥁, ⥂, ⥃, ⥄, ⥅, ⥆, ⥇, ⥈, ⥉, ⥊, ⥋, ⥌, ⥍, ⥎, ⥏, ⥐, ⥑, ⥒, ⥓, ⥔, ⥕, ⥖, ⥗, ⥘, ⥙, ⥚, ⥛, ⥜, ⥝, ⥞,
⥟, ⥠, ⥡, ⥢, ⥣, ⥤, ⥥, ⥦, ⥧, ⥨, ⥩, ⥪, ⥫, ⥬, ⥭, ⥮, ⥯, ⥰, ⥱, ⥲, ⥳, ⥴, ⥵, ⥼, ⥽, ⥾, ⥿, ⧟, ⬀, ⬁, ⬂, ⬃, ⬄, ⬅,
⬆, ⬇, ⬈, ⬉, ⬊, ⬋, ⬌, ⬍, ⬎, ⬏, ⬐, ⬑, ⬰, ⬱, ⬲, ⬳, ⬴, ⬵, ⬶, ⬷, ⬸, ⬹, ⬺, ⬻, ⬼, ⬽, ⬾, ⬿, ⭀, ⭁, ⭂, ⭃, ⭄,
⭅, ⭆, ⭇, ⭈, ⭉, ⭊, ⭋, ⭌, , , , , , , , , , ←, ↑, →, ↓, ↔, ↕, , , , , , , , , , ,

, , , , , , , , , , , , , , ⇄, ⇅, , , , , , , , , , , , , , ➡, , , , ,
,

form:postfix lspace:0 rspace:0
Priority: 100

’, ”

Priority: 120
),], |, ||, }, ‖, ⌉, ⌋, 〉, ❳, ⟧, ⟩, ⟫, ⟭, ⟯, ⦀, ⦄, ⦆, ⦈, ⦊, ⦌, ⦎, ⦐, ⦒, ⦔, ⦖, ⦘, ⦙, ⧙, ⧛, ⧽

Priority: 820
!, !!, %, ′

Priority: 920
", &, ', ++, --, ^, _, `, ~, ¨, ¯, °, ², ³, ´, ¸, ¹, ˆ, ˇ, ˉ, ˊ, ˋ, ˍ, ˘, ˙, ˚, ˜, ˝, ˷, ̂, ̑, ‚, ‛, „, ‟, ″, ‴, ‵, ‶, ‷, ‾, ⁗, ⃛, ⃜, ⌢, ⌣, ⎴, ⎵, ⏍,
⏜, ⏝, ⏞, ⏟, ⏠, ⏡, 𞻰, 𞻱

form:prefix lspace:0 rspace:0
Priority: 100

‘, “

Priority: 120
(, [, {, |, ||, ‖, ⌈, ⌊, 〈, ❲, ⟦, ⟨, ⟪, ⟬, ⟮, ⦀, ⦃, ⦅, ⦇, ⦉, ⦋, ⦍, ⦏, ⦑, ⦓, ⦕, ⦗, ⦙, ⧘, ⧚, ⧼

Priority: 200
∴, ∵

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

329 of 434 26/08/2025, 11:30

Priority: 280
!, ¬, ∀, ∃, ∄, ∼, ⌐, ⌙, ⫬, ⫭

Priority: 580
∟, ∠, ∡, ∢, ⊾, ⊿, ⟀, ⦛, ⦜, ⦝, ⦞, ⦟, ⦠, ⦡, ⦢, ⦣, ⦤, ⦥, ⦦, ⦧, ⦨, ⦩, ⦪, ⦫, ⦬, ⦭, ⦮, ⦯

Priority: 720
+, -, ±, ∁, −, ∓, ➕, ➖

Priority: 780
∇

form:prefix lspace:3 rspace:0
Priority: 780

ⅅ, ⅆ, ∂

Priority: 860
√, ∛, ∜

form:prefix lspace:3 rspace:3
Priority: 440

∑, ⨊, ⨋, ⨝, ⨞

Priority: 460
⨁

Priority: 480
∫, ∬, ∭, ∮, ∯, ∰, ∱, ∲, ∳, ⨌, ⨍, ⨎, ⨏, ⨐, ⨑, ⨒, ⨓, ⨔, ⨕, ⨖, ⨗, ⨘, ⨙, ⨚, ⨛, ⨜

Priority: 500
⋃, ⨃, ⨄

Priority: 520
⋀, ⋁, ⋂, ⨀, ⨂, ⨅, ⨆, ⨇, ⨈, ⨉, ⫼, ⫿

Priority: 540
∏, ∐

▸ Show Section

Character Glyph Name form priority lspace rspace Properties

‘ ‘‘ left single quotation mark prefix 100 0 0

’ ’’ right single quotation mark postfix 100 0 0

“ ““ left double quotation mark prefix 100 0 0

” ”” right double quotation mark postfix 100 0 0

(((left parenthesis prefix 120 0 0 stretchy, symmetric

))) right parenthesis postfix 120 0 0 stretchy, symmetric

[[[left square bracket prefix 120 0 0 stretchy, symmetric

]]] right square bracket postfix 120 0 0 stretchy, symmetric

{ {{ left curly bracket prefix 120 0 0 stretchy, symmetric

| || vertical line prefix 120 0 0 stretchy, symmetric

| || vertical line postfix 120 0 0 stretchy, symmetric

B.3.2 Sortable Table View

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

330 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

|| |||| multiple character operator: || prefix 120 0 0

|| |||| multiple character operator: || postfix 120 0 0

} }} right curly bracket postfix 120 0 0 stretchy, symmetric

‖ ‖‖ double vertical line prefix 120 0 0 stretchy, symmetric

‖ ‖‖ double vertical line postfix 120 0 0 stretchy, symmetric

⌈ ⌈⌈ left ceiling prefix 120 0 0 stretchy, symmetric

⌉ ⌉⌉ right ceiling postfix 120 0 0 stretchy, symmetric

⌊ ⌊⌊ left floor prefix 120 0 0 stretchy, symmetric

⌋ ⌋⌋ right floor postfix 120 0 0 stretchy, symmetric

〈 〈 left-pointing angle bracket prefix 120 0 0 stretchy, symmetric

〉 〉 right-pointing angle bracket postfix 120 0 0 stretchy, symmetric

❲ ❲❲ light left tortoise shell bracket ornament prefix 120 0 0 stretchy, symmetric

❳ ❳❳ light right tortoise shell bracket ornament postfix 120 0 0 stretchy, symmetric

⟦ ⟦⟦ mathematical left white square bracket prefix 120 0 0 stretchy, symmetric

⟧ ⟧⟧ mathematical right white square bracket postfix 120 0 0 stretchy, symmetric

⟨ ⟨⟨ mathematical left angle bracket prefix 120 0 0 stretchy, symmetric

⟩ ⟩⟩ mathematical right angle bracket postfix 120 0 0 stretchy, symmetric

⟪ ⟪⟪ mathematical left double angle bracket prefix 120 0 0 stretchy, symmetric

⟫ ⟫⟫ mathematical right double angle bracket postfix 120 0 0 stretchy, symmetric

⟬ ⟬⟬ mathematical left white tortoise shell bracket prefix 120 0 0 stretchy, symmetric

⟭ ⟭⟭ mathematical right white tortoise shell bracket postfix 120 0 0 stretchy, symmetric

⟮ ⟮⟮ mathematical left flattened parenthesis prefix 120 0 0 stretchy, symmetric

⟯ ⟯⟯ mathematical right flattened parenthesis postfix 120 0 0 stretchy, symmetric

⦀ ⦀⦀ triple vertical bar delimiter prefix 120 0 0 stretchy, symmetric

⦀ ⦀⦀ triple vertical bar delimiter postfix 120 0 0 stretchy, symmetric

⦃ ⦃⦃ left white curly bracket prefix 120 0 0 stretchy, symmetric

⦄ ⦄⦄ right white curly bracket postfix 120 0 0 stretchy, symmetric

⦅ ⦅⦅ left white parenthesis prefix 120 0 0 stretchy, symmetric

⦆ ⦆⦆ right white parenthesis postfix 120 0 0 stretchy, symmetric

⦇ ⦇⦇ z notation left image bracket prefix 120 0 0 stretchy, symmetric

⦈ ⦈⦈ z notation right image bracket postfix 120 0 0 stretchy, symmetric

⦉ ⦉⦉ z notation left binding bracket prefix 120 0 0 stretchy, symmetric

⦊ ⦊⦊ z notation right binding bracket postfix 120 0 0 stretchy, symmetric

⦋ ⦋⦋ left square bracket with underbar prefix 120 0 0 stretchy, symmetric

⦌ ⦌⦌ right square bracket with underbar postfix 120 0 0 stretchy, symmetric

⦍ ⦍⦍ left square bracket with tick in top corner prefix 120 0 0 stretchy, symmetric

⦎ ⦎⦎ right square bracket with tick in bottom corner postfix 120 0 0 stretchy, symmetric

⦏ ⦏⦏ left square bracket with tick in bottom corner prefix 120 0 0 stretchy, symmetric

⦐ ⦐⦐ right square bracket with tick in top corner postfix 120 0 0 stretchy, symmetric

⦑ ⦑⦑ left angle bracket with dot prefix 120 0 0 stretchy, symmetric

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

331 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⦒ ⦒⦒ right angle bracket with dot postfix 120 0 0 stretchy, symmetric

⦓ ⦓⦓ left arc less-than bracket prefix 120 0 0 stretchy, symmetric

⦔ ⦔⦔ right arc greater-than bracket postfix 120 0 0 stretchy, symmetric

⦕ ⦕⦕ double left arc greater-than bracket prefix 120 0 0 stretchy, symmetric

⦖ ⦖⦖ double right arc less-than bracket postfix 120 0 0 stretchy, symmetric

⦗ ⦗⦗ left black tortoise shell bracket prefix 120 0 0 stretchy, symmetric

⦘ ⦘⦘ right black tortoise shell bracket postfix 120 0 0 stretchy, symmetric

⦙ ⦙⦙ dotted fence prefix 120 0 0 stretchy, symmetric

⦙ ⦙⦙ dotted fence postfix 120 0 0 stretchy, symmetric

⧘ ⧘⧘ left wiggly fence prefix 120 0 0 stretchy, symmetric

⧙ ⧙⧙ right wiggly fence postfix 120 0 0 stretchy, symmetric

⧚ ⧚⧚ left double wiggly fence prefix 120 0 0 stretchy, symmetric

⧛ ⧛⧛ right double wiggly fence postfix 120 0 0 stretchy, symmetric

⧼ ⧼⧼ left-pointing curved angle bracket prefix 120 0 0 stretchy, symmetric

⧽ ⧽⧽ right-pointing curved angle bracket postfix 120 0 0 stretchy, symmetric

; ;; semicolon infix 140 0 3 linebreakstyle=after

⦁ ⦁⦁ z notation spot infix 140 5 5

, ,, comma infix 160 0 3 linebreakstyle=after

⁣ invisible separator infix 160 0 0 linebreakstyle=after

: :: colon infix 180 0 3

⦂ ⦂⦂ z notation type colon infix 180 5 5

∴ ∴∴ therefore prefix 200 0 0

∵ ∵∵ because prefix 200 0 0

-> -->> multiple character operator: -> infix 220 5 5

⊶ ⊶⊶ original of infix 220 5 5

⊷ ⊷⊷ image of infix 220 5 5

⊸ ⊸⊸ multimap infix 220 5 5

⧴ ⧴⧴ rule-delayed infix 220 5 5

// //// multiple character operator: // infix 240 5 5

⊢ ⊢⊢ right tack infix 260 5 5

⊣ ⊣⊣ left tack infix 260 5 5

⊧ ⊧⊧ models infix 260 5 5

⊨ ⊨⊨ true infix 260 5 5

⊩ ⊩⊩ forces infix 260 5 5

⊪ ⊪⊪ triple vertical bar right turnstile infix 260 5 5

⊫ ⊫⊫ double vertical bar double right turnstile infix 260 5 5

⊬ ⊬⊬ does not prove infix 260 5 5

⊭ ⊭⊭ not true infix 260 5 5

⊮ ⊮⊮ does not force infix 260 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

332 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⊯ ⊯⊯ negated double vertical bar double right
turnstile

infix 260 5 5

⫞ ⫞⫞ short left tack infix 260 5 5

⫟ ⫟⫟ short down tack infix 260 5 5

⫠ ⫠⫠ short up tack infix 260 5 5

⫡ ⫡⫡ perpendicular with s infix 260 5 5

⫢ ⫢⫢ vertical bar triple right turnstile infix 260 5 5

⫣ ⫣⫣ double vertical bar left turnstile infix 260 5 5

⫤ ⫤⫤ vertical bar double left turnstile infix 260 5 5

⫥ ⫥⫥ double vertical bar double left turnstile infix 260 5 5

⫦ ⫦⫦ long dash from left member of double vertical infix 260 5 5

⫧ ⫧⫧ short down tack with overbar infix 260 5 5

⫨ ⫨⫨ short up tack with underbar infix 260 5 5

⫩ ⫩⫩ short up tack above short down tack infix 260 5 5

⫪ ⫪⫪ double down tack infix 260 5 5

⫫ ⫫⫫ double up tack infix 260 5 5

! !! exclamation mark prefix 280 0 0

¬ ¬¬ not sign prefix 280 0 0

∀ ∀∀ for all prefix 280 0 0

∃ ∃∃ there exists prefix 280 0 0

∄ ∄∄ there does not exist prefix 280 0 0

∼ ∼∼ tilde operator prefix 280 0 0

⌐ ⌐⌐ reversed not sign prefix 280 0 0

⌙ ⌙⌙ turned not sign prefix 280 0 0

⫬ ⫬⫬ double stroke not sign prefix 280 0 0

⫭ ⫭⫭ reversed double stroke not sign prefix 280 0 0

∈ ∈∈ element of infix 300 5 5

∉ ∉∉ not an element of infix 300 5 5

∊ ∊∊ small element of infix 300 5 5

∋ ∋∋ contains as member infix 300 5 5

∌ ∌∌ does not contain as member infix 300 5 5

∍ ∍∍ small contains as member infix 300 5 5

⊂ ⊂⊂ subset of infix 300 5 5

⊃ ⊃⊃ superset of infix 300 5 5

⊄ ⊄⊄ not a subset of infix 300 5 5

⊅ ⊅⊅ not a superset of infix 300 5 5

⊆ ⊆⊆ subset of or equal to infix 300 5 5

⊇ ⊇⊇ superset of or equal to infix 300 5 5

⊈ ⊈⊈ neither a subset of nor equal to infix 300 5 5

⊉ ⊉⊉ neither a superset of nor equal to infix 300 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

333 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⊊ ⊊⊊ subset of with not equal to infix 300 5 5

⊋ ⊋⊋ superset of with not equal to infix 300 5 5

⊏ ⊏⊏ square image of infix 300 5 5

⊐ ⊐⊐ square original of infix 300 5 5

⊑ ⊑⊑ square image of or equal to infix 300 5 5

⊒ ⊒⊒ square original of or equal to infix 300 5 5

⊰ ⊰⊰ precedes under relation infix 300 5 5

⊱ ⊱⊱ succeeds under relation infix 300 5 5

⊲ ⊲⊲ normal subgroup of infix 300 5 5

⊳ ⊳⊳ contains as normal subgroup infix 300 5 5

⋐ ⋐⋐ double subset infix 300 5 5

⋑ ⋑⋑ double superset infix 300 5 5

⋢ ⋢⋢ not square image of or equal to infix 300 5 5

⋣ ⋣⋣ not square original of or equal to infix 300 5 5

⋤ ⋤⋤ square image of or not equal to infix 300 5 5

⋥ ⋥⋥ square original of or not equal to infix 300 5 5

⋪ ⋪⋪ not normal subgroup of infix 300 5 5

⋫ ⋫⋫ does not contain as normal subgroup infix 300 5 5

⋬ ⋬⋬ not normal subgroup of or equal to infix 300 5 5

⋭ ⋭⋭ does not contain as normal subgroup or equal infix 300 5 5

⋲ ⋲⋲ element of with long horizontal stroke infix 300 5 5

⋳ ⋳⋳ element of with vertical bar at end of
horizontal stroke

infix 300 5 5

⋴ ⋴⋴ small element of with vertical bar at end of
horizontal stroke

infix 300 5 5

⋵ ⋵⋵ element of with dot above infix 300 5 5

⋶ ⋶⋶ element of with overbar infix 300 5 5

⋷ ⋷⋷ small element of with overbar infix 300 5 5

⋸ ⋸⋸ element of with underbar infix 300 5 5

⋹ ⋹⋹ element of with two horizontal strokes infix 300 5 5

⋺ ⋺⋺ contains with long horizontal stroke infix 300 5 5

⋻ ⋻⋻ contains with vertical bar at end of horizontal
stroke

infix 300 5 5

⋼ ⋼⋼ small contains with vertical bar at end of
horizontal stroke

infix 300 5 5

⋽ ⋽⋽ contains with overbar infix 300 5 5

⋾ ⋾⋾ small contains with overbar infix 300 5 5

⋿ ⋿⋿ z notation bag membership infix 300 5 5

⥹ ⥹⥹ subset above rightwards arrow infix 300 5 5

⥺ ⥺⥺ leftwards arrow through subset infix 300 5 5

⥻ ⥻⥻ superset above leftwards arrow infix 300 5 5

⪽ ⪽⪽ subset with dot infix 300 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

334 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⪾ ⪾⪾ superset with dot infix 300 5 5

⪿ ⪿⪿ subset with plus sign below infix 300 5 5

⫀ ⫀⫀ superset with plus sign below infix 300 5 5

⫁ ⫁⫁ subset with multiplication sign below infix 300 5 5

⫂ ⫂⫂ superset with multiplication sign below infix 300 5 5

⫃ ⫃⫃ subset of or equal to with dot above infix 300 5 5

⫄ ⫄⫄ superset of or equal to with dot above infix 300 5 5

⫅ ⫅⫅ subset of above equals sign infix 300 5 5

⫆ ⫆⫆ superset of above equals sign infix 300 5 5

⫇ ⫇⫇ subset of above tilde operator infix 300 5 5

⫈ ⫈⫈ superset of above tilde operator infix 300 5 5

⫉ ⫉⫉ subset of above almost equal to infix 300 5 5

⫊ ⫊⫊ superset of above almost equal to infix 300 5 5

⫋ ⫋⫋ subset of above not equal to infix 300 5 5

⫌ ⫌⫌ superset of above not equal to infix 300 5 5

⫍ ⫍⫍ square left open box operator infix 300 5 5

⫎ ⫎⫎ square right open box operator infix 300 5 5

⫏ ⫏⫏ closed subset infix 300 5 5

⫐ ⫐⫐ closed superset infix 300 5 5

⫑ ⫑⫑ closed subset or equal to infix 300 5 5

⫒ ⫒⫒ closed superset or equal to infix 300 5 5

⫓ ⫓⫓ subset above superset infix 300 5 5

⫔ ⫔⫔ superset above subset infix 300 5 5

⫕ ⫕⫕ subset above subset infix 300 5 5

⫖ ⫖⫖ superset above superset infix 300 5 5

⫗ ⫗⫗ superset beside subset infix 300 5 5

⫘ ⫘⫘ superset beside and joined by dash with
subset

infix 300 5 5

⫙ ⫙⫙ element of opening downwards infix 300 5 5

!= !!== multiple character operator: != infix 320 5 5

*= **== multiple character operator: *= infix 320 5 5

+= ++== multiple character operator: += infix 320 5 5

-= --== multiple character operator: -= infix 320 5 5

/= //== multiple character operator: /= infix 320 5 5

:= ::== multiple character operator: := infix 320 5 5

< << less-than sign infix 320 5 5

<= <<== multiple character operator: <= infix 320 5 5

= == equals sign infix 320 5 5

== ==== multiple character operator: == infix 320 5 5

> >> greater-than sign infix 320 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

335 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

>= >>== multiple character operator: >= infix 320 5 5

| || vertical line infix 320 5 5

|| |||| multiple character operator: || infix 320 5 5

∝ ∝∝ proportional to infix 320 5 5

∣ ∣∣ divides infix 320 5 5

∤ ∤∤ does not divide infix 320 5 5

∥ ∥∥ parallel to infix 320 5 5

∦ ∦∦ not parallel to infix 320 5 5

∷ ∷∷ proportion infix 320 5 5

∹ ∹∹ excess infix 320 5 5

∺ ∺∺ geometric proportion infix 320 5 5

∻ ∻∻ homothetic infix 320 5 5

∼ ∼∼ tilde operator infix 320 5 5

∽ ∽∽ reversed tilde infix 320 5 5

∾ ∾∾ inverted lazy s infix 320 5 5

≁ ≁≁ not tilde infix 320 5 5

≂ ≂≂ minus tilde infix 320 5 5

≃ ≃≃ asymptotically equal to infix 320 5 5

≄ ≄≄ not asymptotically equal to infix 320 5 5

≅ ≅≅ approximately equal to infix 320 5 5

≆ ≆≆ approximately but not actually equal to infix 320 5 5

≇ ≇≇ neither approximately nor actually equal to infix 320 5 5

≈ ≈≈ almost equal to infix 320 5 5

≉ ≉≉ not almost equal to infix 320 5 5

≊ ≊≊ almost equal or equal to infix 320 5 5

≋ ≋≋ triple tilde infix 320 5 5

≌ ≌≌ all equal to infix 320 5 5

≍ ≍≍ equivalent to infix 320 5 5

≎ ≎≎ geometrically equivalent to infix 320 5 5

≏ ≏≏ difference between infix 320 5 5

≐ ≐≐ approaches the limit infix 320 5 5

≑ ≑≑ geometrically equal to infix 320 5 5

≒ ≒≒ approximately equal to or the image of infix 320 5 5

≓ ≓≓ image of or approximately equal to infix 320 5 5

≔ ≔≔ colon equals infix 320 5 5

≕ ≕≕ equals colon infix 320 5 5

≖ ≖≖ ring in equal to infix 320 5 5

≗ ≗≗ ring equal to infix 320 5 5

≘ ≘≘ corresponds to infix 320 5 5

≙ ≙≙ estimates infix 320 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

336 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

≚ ≚≚ equiangular to infix 320 5 5

≛ ≛≛ star equals infix 320 5 5

≜ ≜≜ delta equal to infix 320 5 5

≝ ≝≝ equal to by definition infix 320 5 5

≞ ≞≞ measured by infix 320 5 5

≟ ≟≟ questioned equal to infix 320 5 5

≠ ≠≠ not equal to infix 320 5 5

≡ ≡≡ identical to infix 320 5 5

≢ ≢≢ not identical to infix 320 5 5

≣ ≣≣ strictly equivalent to infix 320 5 5

≤ ≤≤ less-than or equal to infix 320 5 5

≥ ≥≥ greater-than or equal to infix 320 5 5

≦ ≦≦ less-than over equal to infix 320 5 5

≧ ≧≧ greater-than over equal to infix 320 5 5

≨ ≨≨ less-than but not equal to infix 320 5 5

≩ ≩≩ greater-than but not equal to infix 320 5 5

≪ ≪≪ much less-than infix 320 5 5

≫ ≫≫ much greater-than infix 320 5 5

≬ ≬≬ between infix 320 5 5

≭ ≭≭ not equivalent to infix 320 5 5

≮ ≮≮ not less-than infix 320 5 5

≯ ≯≯ not greater-than infix 320 5 5

≰ ≰≰ neither less-than nor equal to infix 320 5 5

≱ ≱≱ neither greater-than nor equal to infix 320 5 5

≲ ≲≲ less-than or equivalent to infix 320 5 5

≳ ≳≳ greater-than or equivalent to infix 320 5 5

≴ ≴≴ neither less-than nor equivalent to infix 320 5 5

≵ ≵≵ neither greater-than nor equivalent to infix 320 5 5

≶ ≶≶ less-than or greater-than infix 320 5 5

≷ ≷≷ greater-than or less-than infix 320 5 5

≸ ≸≸ neither less-than nor greater-than infix 320 5 5

≹ ≹≹ neither greater-than nor less-than infix 320 5 5

≺ ≺≺ precedes infix 320 5 5

≻ ≻≻ succeeds infix 320 5 5

≼ ≼≼ precedes or equal to infix 320 5 5

≽ ≽≽ succeeds or equal to infix 320 5 5

≾ ≾≾ precedes or equivalent to infix 320 5 5

≿ ≿≿ succeeds or equivalent to infix 320 5 5

⊀ ⊀⊀ does not precede infix 320 5 5

⊁ ⊁⊁ does not succeed infix 320 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

337 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⊜ ⊜⊜ circled equals infix 320 5 5

⊦ ⊦⊦ assertion infix 320 5 5

⊴ ⊴⊴ normal subgroup of or equal to infix 320 5 5

⊵ ⊵⊵ contains as normal subgroup or equal to infix 320 5 5

⋈ ⋈⋈ bowtie infix 320 5 5

⋍ ⋍⋍ reversed tilde equals infix 320 5 5

⋔ ⋔⋔ pitchfork infix 320 5 5

⋕ ⋕⋕ equal and parallel to infix 320 5 5

⋖ ⋖⋖ less-than with dot infix 320 5 5

⋗ ⋗⋗ greater-than with dot infix 320 5 5

⋘ ⋘⋘ very much less-than infix 320 5 5

⋙ ⋙⋙ very much greater-than infix 320 5 5

⋚ ⋚⋚ less-than equal to or greater-than infix 320 5 5

⋛ ⋛⋛ greater-than equal to or less-than infix 320 5 5

⋜ ⋜⋜ equal to or less-than infix 320 5 5

⋝ ⋝⋝ equal to or greater-than infix 320 5 5

⋞ ⋞⋞ equal to or precedes infix 320 5 5

⋟ ⋟⋟ equal to or succeeds infix 320 5 5

⋠ ⋠⋠ does not precede or equal infix 320 5 5

⋡ ⋡⋡ does not succeed or equal infix 320 5 5

⋦ ⋦⋦ less-than but not equivalent to infix 320 5 5

⋧ ⋧⋧ greater-than but not equivalent to infix 320 5 5

⋨ ⋨⋨ precedes but not equivalent to infix 320 5 5

⋩ ⋩⋩ succeeds but not equivalent to infix 320 5 5

⟂ ⟂⟂ perpendicular infix 320 5 5

⥶ ⥶⥶ less-than above leftwards arrow infix 320 5 5

⥷ ⥷⥷ leftwards arrow through less-than infix 320 5 5

⥸ ⥸⥸ greater-than above rightwards arrow infix 320 5 5

⦶ ⦶⦶ circled vertical bar infix 320 5 5

⦷ ⦷⦷ circled parallel infix 320 5 5

⦹ ⦹⦹ circled perpendicular infix 320 5 5

⧀ ⧀⧀ circled less-than infix 320 5 5

⧁ ⧁⧁ circled greater-than infix 320 5 5

⧎ ⧎⧎ right triangle above left triangle infix 320 5 5

⧏ ⧏⧏ left triangle beside vertical bar infix 320 5 5

⧐ ⧐⧐ vertical bar beside right triangle infix 320 5 5

⧑ ⧑⧑ bowtie with left half black infix 320 5 5

⧒ ⧒⧒ bowtie with right half black infix 320 5 5

⧓ ⧓⧓ black bowtie infix 320 5 5

⧡ ⧡⧡ increases as infix 320 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

338 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⧣ ⧣⧣ equals sign and slanted parallel infix 320 5 5

⧤ ⧤⧤ equals sign and slanted parallel with tilde
above

infix 320 5 5

⧥ ⧥⧥ identical to and slanted parallel infix 320 5 5

⧦ ⧦⧦ gleich stark infix 320 5 5

⩦ ⩦⩦ equals sign with dot below infix 320 5 5

⩧ ⩧⩧ identical with dot above infix 320 5 5

⩨ ⩨⩨ triple horizontal bar with double vertical
stroke

infix 320 5 5

⩩ ⩩⩩ triple horizontal bar with triple vertical stroke infix 320 5 5

⩪ ⩪⩪ tilde operator with dot above infix 320 5 5

⩫ ⩫⩫ tilde operator with rising dots infix 320 5 5

⩬ ⩬⩬ similar minus similar infix 320 5 5

⩭ ⩭⩭ congruent with dot above infix 320 5 5

⩮ ⩮⩮ equals with asterisk infix 320 5 5

⩯ ⩯⩯ almost equal to with circumflex accent infix 320 5 5

⩰ ⩰⩰ approximately equal or equal to infix 320 5 5

⩱ ⩱⩱ equals sign above plus sign infix 320 5 5

⩲ ⩲⩲ plus sign above equals sign infix 320 5 5

⩳ ⩳⩳ equals sign above tilde operator infix 320 5 5

⩴ ⩴⩴ double colon equal infix 320 5 5

⩵ ⩵⩵ two consecutive equals signs infix 320 5 5

⩶ ⩶⩶ three consecutive equals signs infix 320 5 5

⩷ ⩷⩷ equals sign with two dots above and two dots
below

infix 320 5 5

⩸ ⩸⩸ equivalent with four dots above infix 320 5 5

⩹ ⩹⩹ less-than with circle inside infix 320 5 5

⩺ ⩺⩺ greater-than with circle inside infix 320 5 5

⩻ ⩻⩻ less-than with question mark above infix 320 5 5

⩼ ⩼⩼ greater-than with question mark above infix 320 5 5

⩽ ⩽⩽ less-than or slanted equal to infix 320 5 5

⩾ ⩾⩾ greater-than or slanted equal to infix 320 5 5

⩿ ⩿⩿ less-than or slanted equal to with dot inside infix 320 5 5

⪀ ⪀⪀ greater-than or slanted equal to with dot
inside

infix 320 5 5

⪁ ⪁⪁ less-than or slanted equal to with dot above infix 320 5 5

⪂ ⪂⪂ greater-than or slanted equal to with dot
above

infix 320 5 5

⪃ ⪃⪃ less-than or slanted equal to with dot above
right

infix 320 5 5

⪄ ⪄⪄ greater-than or slanted equal to with dot
above left

infix 320 5 5

⪅ ⪅⪅ less-than or approximate infix 320 5 5

⪆ ⪆⪆ greater-than or approximate infix 320 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

339 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⪇ ⪇⪇ less-than and single-line not equal to infix 320 5 5

⪈ ⪈⪈ greater-than and single-line not equal to infix 320 5 5

⪉ ⪉⪉ less-than and not approximate infix 320 5 5

⪊ ⪊⪊ greater-than and not approximate infix 320 5 5

⪋ ⪋⪋ less-than above double-line equal above
greater-than

infix 320 5 5

⪌ ⪌⪌ greater-than above double-line equal above
less-than

infix 320 5 5

⪍ ⪍⪍ less-than above similar or equal infix 320 5 5

⪎ ⪎⪎ greater-than above similar or equal infix 320 5 5

⪏ ⪏⪏ less-than above similar above greater-than infix 320 5 5

⪐ ⪐⪐ greater-than above similar above less-than infix 320 5 5

⪑ ⪑⪑ less-than above greater-than above double-
line equal

infix 320 5 5

⪒ ⪒⪒ greater-than above less-than above double-
line equal

infix 320 5 5

⪓ ⪓⪓ less-than above slanted equal above greater-
than above slanted equal

infix 320 5 5

⪔ ⪔⪔ greater-than above slanted equal above less-
than above slanted equal

infix 320 5 5

⪕ ⪕⪕ slanted equal to or less-than infix 320 5 5

⪖ ⪖⪖ slanted equal to or greater-than infix 320 5 5

⪗ ⪗⪗ slanted equal to or less-than with dot inside infix 320 5 5

⪘ ⪘⪘ slanted equal to or greater-than with dot
inside

infix 320 5 5

⪙ ⪙⪙ double-line equal to or less-than infix 320 5 5

⪚ ⪚⪚ double-line equal to or greater-than infix 320 5 5

⪛ ⪛⪛ double-line slanted equal to or less-than infix 320 5 5

⪜ ⪜⪜ double-line slanted equal to or greater-than infix 320 5 5

⪝ ⪝⪝ similar or less-than infix 320 5 5

⪞ ⪞⪞ similar or greater-than infix 320 5 5

⪟ ⪟⪟ similar above less-than above equals sign infix 320 5 5

⪠ ⪠⪠ similar above greater-than above equals sign infix 320 5 5

⪡ ⪡⪡ double nested less-than infix 320 5 5

⪢ ⪢⪢ double nested greater-than infix 320 5 5

⪣ ⪣⪣ double nested less-than with underbar infix 320 5 5

⪤ ⪤⪤ greater-than overlapping less-than infix 320 5 5

⪥ ⪥⪥ greater-than beside less-than infix 320 5 5

⪦ ⪦⪦ less-than closed by curve infix 320 5 5

⪧ ⪧⪧ greater-than closed by curve infix 320 5 5

⪨ ⪨⪨ less-than closed by curve above slanted equal infix 320 5 5

⪩ ⪩⪩ greater-than closed by curve above slanted
equal

infix 320 5 5

⪪ ⪪⪪ smaller than infix 320 5 5

⪫ ⪫⪫ larger than infix 320 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

340 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⪬ ⪬⪬ smaller than or equal to infix 320 5 5

⪭ ⪭⪭ larger than or equal to infix 320 5 5

⪮ ⪮⪮ equals sign with bumpy above infix 320 5 5

⪯ ⪯⪯ precedes above single-line equals sign infix 320 5 5

⪰ ⪰⪰ succeeds above single-line equals sign infix 320 5 5

⪱ ⪱⪱ precedes above single-line not equal to infix 320 5 5

⪲ ⪲⪲ succeeds above single-line not equal to infix 320 5 5

⪳ ⪳⪳ precedes above equals sign infix 320 5 5

⪴ ⪴⪴ succeeds above equals sign infix 320 5 5

⪵ ⪵⪵ precedes above not equal to infix 320 5 5

⪶ ⪶⪶ succeeds above not equal to infix 320 5 5

⪷ ⪷⪷ precedes above almost equal to infix 320 5 5

⪸ ⪸⪸ succeeds above almost equal to infix 320 5 5

⪹ ⪹⪹ precedes above not almost equal to infix 320 5 5

⪺ ⪺⪺ succeeds above not almost equal to infix 320 5 5

⪻ ⪻⪻ double precedes infix 320 5 5

⪼ ⪼⪼ double succeeds infix 320 5 5

⫚ ⫚⫚ pitchfork with tee top infix 320 5 5

⫮ ⫮⫮ does not divide with reversed negation slash infix 320 5 5

⫲ ⫲⫲ parallel with horizontal stroke infix 320 5 5

⫳ ⫳⫳ parallel with tilde operator infix 320 5 5

⫴ ⫴⫴ triple vertical bar binary relation infix 320 5 5

⫵ ⫵⫵ triple vertical bar with horizontal stroke infix 320 5 5

⫷ ⫷⫷ triple nested less-than infix 320 5 5

⫸ ⫸⫸ triple nested greater-than infix 320 5 5

⫹ ⫹⫹ double-line slanted less-than or equal to infix 320 5 5

⫺ ⫺⫺ double-line slanted greater-than or equal to infix 320 5 5

⯑ uncertainty sign infix 320 5 5

← ←← leftwards arrow infix 340 5 5 stretchy

↑ ↑↑ upwards arrow infix 340 5 5 stretchy

→ →→ rightwards arrow infix 340 5 5 stretchy

↓ ↓↓ downwards arrow infix 340 5 5 stretchy

↔ ↔↔ left right arrow infix 340 5 5 stretchy

↕ ↕↕ up down arrow infix 340 5 5 stretchy

↖ ↖↖ north west arrow infix 340 5 5

↗ ↗↗ north east arrow infix 340 5 5

↘ ↘↘ south east arrow infix 340 5 5

↙ ↙↙ south west arrow infix 340 5 5

↚ ↚↚ leftwards arrow with stroke infix 340 5 5 stretchy

↛ ↛↛ rightwards arrow with stroke infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

341 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

↜ ↜↜ leftwards wave arrow infix 340 5 5 stretchy

↝ ↝↝ rightwards wave arrow infix 340 5 5 stretchy

↞ ↞↞ leftwards two headed arrow infix 340 5 5 stretchy

↟ ↟↟ upwards two headed arrow infix 340 5 5 stretchy

↠ ↠↠ rightwards two headed arrow infix 340 5 5 stretchy

↡ ↡↡ downwards two headed arrow infix 340 5 5 stretchy

↢ ↢↢ leftwards arrow with tail infix 340 5 5 stretchy

↣ ↣↣ rightwards arrow with tail infix 340 5 5 stretchy

↤ ↤↤ leftwards arrow from bar infix 340 5 5 stretchy

↥ ↥↥ upwards arrow from bar infix 340 5 5 stretchy

↦ ↦↦ rightwards arrow from bar infix 340 5 5 stretchy

↧ ↧↧ downwards arrow from bar infix 340 5 5 stretchy

↨ ↨↨ up down arrow with base infix 340 5 5 stretchy

↩ ↩↩ leftwards arrow with hook infix 340 5 5 stretchy

↪ ↪↪ rightwards arrow with hook infix 340 5 5 stretchy

↫ ↫↫ leftwards arrow with loop infix 340 5 5 stretchy

↬ ↬↬ rightwards arrow with loop infix 340 5 5 stretchy

↭ ↭↭ left right wave arrow infix 340 5 5 stretchy

↮ ↮↮ left right arrow with stroke infix 340 5 5 stretchy

↯ ↯↯ downwards zigzag arrow infix 340 5 5

↰ ↰↰ upwards arrow with tip leftwards infix 340 5 5 stretchy

↱ ↱↱ upwards arrow with tip rightwards infix 340 5 5 stretchy

↲ ↲↲ downwards arrow with tip leftwards infix 340 5 5 stretchy

↳ ↳↳ downwards arrow with tip rightwards infix 340 5 5 stretchy

↴ ↴↴ rightwards arrow with corner downwards infix 340 5 5 stretchy

↵ ↵↵ downwards arrow with corner leftwards infix 340 5 5 stretchy

↶ ↶↶ anticlockwise top semicircle arrow infix 340 5 5

↷ ↷↷ clockwise top semicircle arrow infix 340 5 5

↸ ↸↸ north west arrow to long bar infix 340 5 5

↹ ↹↹ leftwards arrow to bar over rightwards arrow
to bar

infix 340 5 5 stretchy

↺ ↺↺ anticlockwise open circle arrow infix 340 5 5

↻ ↻↻ clockwise open circle arrow infix 340 5 5

↼ ↼↼ leftwards harpoon with barb upwards infix 340 5 5 stretchy

↽ ↽↽ leftwards harpoon with barb downwards infix 340 5 5 stretchy

↾ ↾↾ upwards harpoon with barb rightwards infix 340 5 5 stretchy

↿ ↿↿ upwards harpoon with barb leftwards infix 340 5 5 stretchy

⇀ ⇀⇀ rightwards harpoon with barb upwards infix 340 5 5 stretchy

⇁ ⇁⇁ rightwards harpoon with barb downwards infix 340 5 5 stretchy

⇂ ⇂⇂ downwards harpoon with barb rightwards infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

342 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⇃ ⇃⇃ downwards harpoon with barb leftwards infix 340 5 5 stretchy

⇄ ⇄⇄ rightwards arrow over leftwards arrow infix 340 5 5 stretchy

⇅ ⇅⇅ upwards arrow leftwards of downwards arrow infix 340 5 5 stretchy

⇆ ⇆⇆ leftwards arrow over rightwards arrow infix 340 5 5 stretchy

⇇ ⇇⇇ leftwards paired arrows infix 340 5 5 stretchy

⇈ ⇈⇈ upwards paired arrows infix 340 5 5 stretchy

⇉ ⇉⇉ rightwards paired arrows infix 340 5 5 stretchy

⇊ ⇊⇊ downwards paired arrows infix 340 5 5 stretchy

⇋ ⇋⇋ leftwards harpoon over rightwards harpoon infix 340 5 5 stretchy

⇌ ⇌⇌ rightwards harpoon over leftwards harpoon infix 340 5 5 stretchy

⇍ ⇍⇍ leftwards double arrow with stroke infix 340 5 5 stretchy

⇎ ⇎⇎ left right double arrow with stroke infix 340 5 5 stretchy

⇏ ⇏⇏ rightwards double arrow with stroke infix 340 5 5 stretchy

⇐ ⇐⇐ leftwards double arrow infix 340 5 5 stretchy

⇑ ⇑⇑ upwards double arrow infix 340 5 5 stretchy

⇒ ⇒⇒ rightwards double arrow infix 340 5 5 stretchy

⇓ ⇓⇓ downwards double arrow infix 340 5 5 stretchy

⇔ ⇔⇔ left right double arrow infix 340 5 5 stretchy

⇕ ⇕⇕ up down double arrow infix 340 5 5 stretchy

⇖ ⇖⇖ north west double arrow infix 340 5 5

⇗ ⇗⇗ north east double arrow infix 340 5 5

⇘ ⇘⇘ south east double arrow infix 340 5 5

⇙ ⇙⇙ south west double arrow infix 340 5 5

⇚ ⇚⇚ leftwards triple arrow infix 340 5 5 stretchy

⇛ ⇛⇛ rightwards triple arrow infix 340 5 5 stretchy

⇜ ⇜⇜ leftwards squiggle arrow infix 340 5 5 stretchy

⇝ ⇝⇝ rightwards squiggle arrow infix 340 5 5 stretchy

⇞ ⇞⇞ upwards arrow with double stroke infix 340 5 5 stretchy

⇟ ⇟⇟ downwards arrow with double stroke infix 340 5 5 stretchy

⇠ ⇠⇠ leftwards dashed arrow infix 340 5 5 stretchy

⇡ ⇡⇡ upwards dashed arrow infix 340 5 5 stretchy

⇢ ⇢⇢ rightwards dashed arrow infix 340 5 5 stretchy

⇣ ⇣⇣ downwards dashed arrow infix 340 5 5 stretchy

⇤ ⇤⇤ leftwards arrow to bar infix 340 5 5 stretchy

⇥ ⇥⇥ rightwards arrow to bar infix 340 5 5 stretchy

⇦ ⇦⇦ leftwards white arrow infix 340 5 5 stretchy

⇧ ⇧⇧ upwards white arrow infix 340 5 5 stretchy

⇨ ⇨⇨ rightwards white arrow infix 340 5 5 stretchy

⇩ ⇩⇩ downwards white arrow infix 340 5 5 stretchy

⇪ ⇪⇪ upwards white arrow from bar infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

343 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⇫ ⇫⇫ upwards white arrow on pedestal infix 340 5 5 stretchy

⇬ ⇬⇬ upwards white arrow on pedestal with
horizontal bar

infix 340 5 5 stretchy

⇭ ⇭⇭ upwards white arrow on pedestal with vertical
bar

infix 340 5 5 stretchy

⇮ ⇮⇮ upwards white double arrow infix 340 5 5 stretchy

⇯ ⇯⇯ upwards white double arrow on pedestal infix 340 5 5 stretchy

⇰ ⇰⇰ rightwards white arrow from wall infix 340 5 5 stretchy

⇱ ⇱⇱ north west arrow to corner infix 340 5 5

⇲ ⇲⇲ south east arrow to corner infix 340 5 5

⇳ ⇳⇳ up down white arrow infix 340 5 5 stretchy

⇴ ⇴⇴ right arrow with small circle infix 340 5 5 stretchy

⇵ ⇵⇵ downwards arrow leftwards of upwards arrow infix 340 5 5 stretchy

⇶ ⇶⇶ three rightwards arrows infix 340 5 5 stretchy

⇷ ⇷⇷ leftwards arrow with vertical stroke infix 340 5 5 stretchy

⇸ ⇸⇸ rightwards arrow with vertical stroke infix 340 5 5 stretchy

⇹ ⇹⇹ left right arrow with vertical stroke infix 340 5 5 stretchy

⇺ ⇺⇺ leftwards arrow with double vertical stroke infix 340 5 5 stretchy

⇻ ⇻⇻ rightwards arrow with double vertical stroke infix 340 5 5 stretchy

⇼ ⇼⇼ left right arrow with double vertical stroke infix 340 5 5 stretchy

⇽ ⇽⇽ leftwards open-headed arrow infix 340 5 5 stretchy

⇾ ⇾⇾ rightwards open-headed arrow infix 340 5 5 stretchy

⇿ ⇿⇿ left right open-headed arrow infix 340 5 5 stretchy

⌁ ⌁⌁ electric arrow infix 340 5 5

⍼ ⍼⍼ right angle with downwards zigzag arrow infix 340 5 5

⎋ ⎋⎋ broken circle with northwest arrow infix 340 5 5

➔ ➔➔ heavy wide-headed rightwards arrow infix 340 5 5 stretchy

➘ ➘➘ heavy south east arrow infix 340 5 5

➙ ➙➙ heavy rightwards arrow infix 340 5 5 stretchy

➚ ➚➚ heavy north east arrow infix 340 5 5

➛ ➛➛ drafting point rightwards arrow infix 340 5 5 stretchy

➜ ➜➜ heavy round-tipped rightwards arrow infix 340 5 5 stretchy

➝ ➝➝ triangle-headed rightwards arrow infix 340 5 5 stretchy

➞ ➞➞ heavy triangle-headed rightwards arrow infix 340 5 5 stretchy

➟ ➟➟ dashed triangle-headed rightwards arrow infix 340 5 5 stretchy

➠ ➠➠
heavy dashed triangle-headed rightwards
arrow

infix 340 5 5 stretchy

➡ ➡➡ black rightwards arrow infix 340 5 5 stretchy

➥ ➥➥
heavy black curved downwards and
rightwards arrow

infix 340 5 5 stretchy

➦ ➦➦
heavy black curved upwards and rightwards
arrow

infix 340 5 5 stretchy

➧ ➧➧ squat black rightwards arrow infix 340 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

344 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

➨ ➨➨
heavy concave-pointed black rightwards
arrow

infix 340 5 5 stretchy

➩ ➩➩ right-shaded white rightwards arrow infix 340 5 5 stretchy

➪ ➪➪ left-shaded white rightwards arrow infix 340 5 5 stretchy

➫ ➫➫ back-tilted shadowed white rightwards arrow infix 340 5 5 stretchy

➬ ➬➬ front-tilted shadowed white rightwards arrow infix 340 5 5 stretchy

➭ ➭➭
heavy lower right-shadowed white rightwards
arrow

infix 340 5 5 stretchy

➮ ➮➮
heavy upper right-shadowed white rightwards
arrow

infix 340 5 5 stretchy

➯ ➯➯
notched lower right-shadowed white
rightwards arrow

infix 340 5 5 stretchy

➱ ➱➱
notched upper right-shadowed white
rightwards arrow

infix 340 5 5 stretchy

➲ ➲➲ circled heavy white rightwards arrow infix 340 5 5

➳ ➳➳ white-feathered rightwards arrow infix 340 5 5 stretchy

➴ ➴➴ black-feathered south east arrow infix 340 5 5

➵ ➵➵ black-feathered rightwards arrow infix 340 5 5 stretchy

➶ ➶➶ black-feathered north east arrow infix 340 5 5

➷ ➷➷ heavy black-feathered south east arrow infix 340 5 5

➸ ➸➸ heavy black-feathered rightwards arrow infix 340 5 5 stretchy

➹ ➹➹ heavy black-feathered north east arrow infix 340 5 5

➺ ➺➺ teardrop-barbed rightwards arrow infix 340 5 5 stretchy

➻ ➻➻ heavy teardrop-shanked rightwards arrow infix 340 5 5 stretchy

➼ ➼➼ wedge-tailed rightwards arrow infix 340 5 5 stretchy

➽ ➽➽ heavy wedge-tailed rightwards arrow infix 340 5 5 stretchy

➾ ➾➾ open-outlined rightwards arrow infix 340 5 5 stretchy

⟰ ⟰⟰ upwards quadruple arrow infix 340 5 5 stretchy

⟱ ⟱⟱ downwards quadruple arrow infix 340 5 5 stretchy

⟲ ⟲⟲ anticlockwise gapped circle arrow infix 340 5 5

⟳ ⟳⟳ clockwise gapped circle arrow infix 340 5 5

⟴ ⟴⟴ right arrow with circled plus infix 340 5 5 stretchy

⟵ ⟵⟵ long leftwards arrow infix 340 5 5 stretchy

⟶ ⟶⟶ long rightwards arrow infix 340 5 5 stretchy

⟷ ⟷⟷ long left right arrow infix 340 5 5 stretchy

⟸ ⟸⟸ long leftwards double arrow infix 340 5 5 stretchy

⟹ ⟹⟹ long rightwards double arrow infix 340 5 5 stretchy

⟺ ⟺⟺ long left right double arrow infix 340 5 5 stretchy

⟻ ⟻⟻ long leftwards arrow from bar infix 340 5 5 stretchy

⟼ ⟼⟼ long rightwards arrow from bar infix 340 5 5 stretchy

⟽ ⟽⟽ long leftwards double arrow from bar infix 340 5 5 stretchy

⟾ ⟾⟾ long rightwards double arrow from bar infix 340 5 5 stretchy

⟿ ⟿⟿ long rightwards squiggle arrow infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

345 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⤀ ⤀⤀ rightwards two-headed arrow with vertical
stroke

infix 340 5 5 stretchy

⤁ ⤁⤁ rightwards two-headed arrow with double
vertical stroke

infix 340 5 5 stretchy

⤂ ⤂⤂ leftwards double arrow with vertical stroke infix 340 5 5 stretchy

⤃ ⤃⤃ rightwards double arrow with vertical stroke infix 340 5 5 stretchy

⤄ ⤄⤄ left right double arrow with vertical stroke infix 340 5 5 stretchy

⤅ ⤅⤅ rightwards two-headed arrow from bar infix 340 5 5 stretchy

⤆ ⤆⤆ leftwards double arrow from bar infix 340 5 5 stretchy

⤇ ⤇⤇ rightwards double arrow from bar infix 340 5 5 stretchy

⤈ ⤈⤈ downwards arrow with horizontal stroke infix 340 5 5 stretchy

⤉ ⤉⤉ upwards arrow with horizontal stroke infix 340 5 5 stretchy

⤊ ⤊⤊ upwards triple arrow infix 340 5 5 stretchy

⤋ ⤋⤋ downwards triple arrow infix 340 5 5 stretchy

⤌ ⤌⤌ leftwards double dash arrow infix 340 5 5 stretchy

⤍ ⤍⤍ rightwards double dash arrow infix 340 5 5 stretchy

⤎ ⤎⤎ leftwards triple dash arrow infix 340 5 5 stretchy

⤏ ⤏⤏ rightwards triple dash arrow infix 340 5 5 stretchy

⤐ ⤐⤐ rightwards two-headed triple dash arrow infix 340 5 5 stretchy

⤑ ⤑⤑ rightwards arrow with dotted stem infix 340 5 5 stretchy

⤒ ⤒⤒ upwards arrow to bar infix 340 5 5 stretchy

⤓ ⤓⤓ downwards arrow to bar infix 340 5 5 stretchy

⤔ ⤔⤔ rightwards arrow with tail with vertical stroke infix 340 5 5 stretchy

⤕ ⤕⤕ rightwards arrow with tail with double vertical
stroke

infix 340 5 5 stretchy

⤖ ⤖⤖ rightwards two-headed arrow with tail infix 340 5 5 stretchy

⤗ ⤗⤗ rightwards two-headed arrow with tail with
vertical stroke

infix 340 5 5 stretchy

⤘ ⤘⤘ rightwards two-headed arrow with tail with
double vertical stroke

infix 340 5 5 stretchy

⤙ ⤙⤙ leftwards arrow-tail infix 340 5 5 stretchy

⤚ ⤚⤚ rightwards arrow-tail infix 340 5 5 stretchy

⤛ ⤛⤛ leftwards double arrow-tail infix 340 5 5 stretchy

⤜ ⤜⤜ rightwards double arrow-tail infix 340 5 5 stretchy

⤝ ⤝⤝ leftwards arrow to black diamond infix 340 5 5 stretchy

⤞ ⤞⤞ rightwards arrow to black diamond infix 340 5 5 stretchy

⤟ ⤟⤟ leftwards arrow from bar to black diamond infix 340 5 5 stretchy

⤠ ⤠⤠ rightwards arrow from bar to black diamond infix 340 5 5 stretchy

⤡ ⤡⤡ north west and south east arrow infix 340 5 5

⤢ ⤢⤢ north east and south west arrow infix 340 5 5

⤣ ⤣⤣ north west arrow with hook infix 340 5 5

⤤ ⤤⤤ north east arrow with hook infix 340 5 5

⤥ ⤥⤥ south east arrow with hook infix 340 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

346 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⤦ ⤦⤦ south west arrow with hook infix 340 5 5

⤧ ⤧⤧ north west arrow and north east arrow infix 340 5 5

⤨ ⤨⤨ north east arrow and south east arrow infix 340 5 5

⤩ ⤩⤩ south east arrow and south west arrow infix 340 5 5

⤪ ⤪⤪ south west arrow and north west arrow infix 340 5 5

⤫ ⤫⤫ rising diagonal crossing falling diagonal infix 340 5 5

⤬ ⤬⤬ falling diagonal crossing rising diagonal infix 340 5 5

⤭ ⤭⤭ south east arrow crossing north east arrow infix 340 5 5

⤮ ⤮⤮ north east arrow crossing south east arrow infix 340 5 5

⤯ ⤯⤯ falling diagonal crossing north east arrow infix 340 5 5

⤰ ⤰⤰ rising diagonal crossing south east arrow infix 340 5 5

⤱ ⤱⤱ north east arrow crossing north west arrow infix 340 5 5

⤲ ⤲⤲ north west arrow crossing north east arrow infix 340 5 5

⤳ ⤳⤳ wave arrow pointing directly right infix 340 5 5

⤴ ⤴⤴ arrow pointing rightwards then curving
upwards

infix 340 5 5 stretchy

⤵ ⤵⤵ arrow pointing rightwards then curving
downwards

infix 340 5 5 stretchy

⤶ ⤶⤶ arrow pointing downwards then curving
leftwards

infix 340 5 5 stretchy

⤷ ⤷⤷ arrow pointing downwards then curving
rightwards

infix 340 5 5 stretchy

⤸ ⤸⤸ right-side arc clockwise arrow infix 340 5 5

⤹ ⤹⤹ left-side arc anticlockwise arrow infix 340 5 5

⤺ ⤺⤺ top arc anticlockwise arrow infix 340 5 5

⤻ ⤻⤻ bottom arc anticlockwise arrow infix 340 5 5

⤼ ⤼⤼ top arc clockwise arrow with minus infix 340 5 5

⤽ ⤽⤽ top arc anticlockwise arrow with plus infix 340 5 5

⤾ ⤾⤾ lower right semicircular clockwise arrow infix 340 5 5

⤿ ⤿⤿ lower left semicircular anticlockwise arrow infix 340 5 5

⥀ ⥀⥀ anticlockwise closed circle arrow infix 340 5 5

⥁ ⥁⥁ clockwise closed circle arrow infix 340 5 5

⥂ ⥂⥂ rightwards arrow above short leftwards arrow infix 340 5 5 stretchy

⥃ ⥃⥃ leftwards arrow above short rightwards arrow infix 340 5 5 stretchy

⥄ ⥄⥄ short rightwards arrow above leftwards arrow infix 340 5 5 stretchy

⥅ ⥅⥅ rightwards arrow with plus below infix 340 5 5 stretchy

⥆ ⥆⥆ leftwards arrow with plus below infix 340 5 5 stretchy

⥇ ⥇⥇ rightwards arrow through x infix 340 5 5 stretchy

⥈ ⥈⥈ left right arrow through small circle infix 340 5 5 stretchy

⥉ ⥉⥉ upwards two-headed arrow from small circle infix 340 5 5 stretchy

⥊ ⥊⥊ left barb up right barb down harpoon infix 340 5 5 stretchy

⥋ ⥋⥋ left barb down right barb up harpoon infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

347 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⥌ ⥌⥌ up barb right down barb left harpoon infix 340 5 5 stretchy

⥍ ⥍⥍ up barb left down barb right harpoon infix 340 5 5 stretchy

⥎ ⥎⥎ left barb up right barb up harpoon infix 340 5 5 stretchy

⥏ ⥏⥏ up barb right down barb right harpoon infix 340 5 5 stretchy

⥐ ⥐⥐ left barb down right barb down harpoon infix 340 5 5 stretchy

⥑ ⥑⥑ up barb left down barb left harpoon infix 340 5 5 stretchy

⥒ ⥒⥒ leftwards harpoon with barb up to bar infix 340 5 5 stretchy

⥓ ⥓⥓ rightwards harpoon with barb up to bar infix 340 5 5 stretchy

⥔ ⥔⥔ upwards harpoon with barb right to bar infix 340 5 5 stretchy

⥕ ⥕⥕ downwards harpoon with barb right to bar infix 340 5 5 stretchy

⥖ ⥖⥖ leftwards harpoon with barb down to bar infix 340 5 5 stretchy

⥗ ⥗⥗ rightwards harpoon with barb down to bar infix 340 5 5 stretchy

⥘ ⥘⥘ upwards harpoon with barb left to bar infix 340 5 5 stretchy

⥙ ⥙⥙ downwards harpoon with barb left to bar infix 340 5 5 stretchy

⥚ ⥚⥚ leftwards harpoon with barb up from bar infix 340 5 5 stretchy

⥛ ⥛⥛ rightwards harpoon with barb up from bar infix 340 5 5 stretchy

⥜ ⥜⥜ upwards harpoon with barb right from bar infix 340 5 5 stretchy

⥝ ⥝⥝ downwards harpoon with barb right from bar infix 340 5 5 stretchy

⥞ ⥞⥞ leftwards harpoon with barb down from bar infix 340 5 5 stretchy

⥟ ⥟⥟ rightwards harpoon with barb down from bar infix 340 5 5 stretchy

⥠ ⥠⥠ upwards harpoon with barb left from bar infix 340 5 5 stretchy

⥡ ⥡⥡ downwards harpoon with barb left from bar infix 340 5 5 stretchy

⥢ ⥢⥢ leftwards harpoon with barb up above
leftwards harpoon with barb down

infix 340 5 5 stretchy

⥣ ⥣⥣ upwards harpoon with barb left beside
upwards harpoon with barb right

infix 340 5 5 stretchy

⥤ ⥤⥤ rightwards harpoon with barb up above
rightwards harpoon with barb down

infix 340 5 5 stretchy

⥥ ⥥⥥ downwards harpoon with barb left beside
downwards harpoon with barb right

infix 340 5 5 stretchy

⥦ ⥦⥦ leftwards harpoon with barb up above
rightwards harpoon with barb up

infix 340 5 5 stretchy

⥧ ⥧⥧ leftwards harpoon with barb down above
rightwards harpoon with barb down

infix 340 5 5 stretchy

⥨ ⥨⥨ rightwards harpoon with barb up above
leftwards harpoon with barb up

infix 340 5 5 stretchy

⥩ ⥩⥩ rightwards harpoon with barb down above
leftwards harpoon with barb down

infix 340 5 5 stretchy

⥪ ⥪⥪ leftwards harpoon with barb up above long
dash

infix 340 5 5 stretchy

⥫ ⥫⥫ leftwards harpoon with barb down below long
dash

infix 340 5 5 stretchy

⥬ ⥬⥬ rightwards harpoon with barb up above long
dash

infix 340 5 5 stretchy

⥭ ⥭⥭ rightwards harpoon with barb down below
long dash

infix 340 5 5 stretchy

⥮ ⥮⥮ upwards harpoon with barb left beside
downwards harpoon with barb right

infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

348 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⥯ ⥯⥯ downwards harpoon with barb left beside
upwards harpoon with barb right

infix 340 5 5 stretchy

⥰ ⥰⥰ right double arrow with rounded head infix 340 5 5 stretchy

⥱ ⥱⥱ equals sign above rightwards arrow infix 340 5 5 stretchy

⥲ ⥲⥲ tilde operator above rightwards arrow infix 340 5 5 stretchy

⥳ ⥳⥳ leftwards arrow above tilde operator infix 340 5 5 stretchy

⥴ ⥴⥴ rightwards arrow above tilde operator infix 340 5 5 stretchy

⥵ ⥵⥵ rightwards arrow above almost equal to infix 340 5 5 stretchy

⥼ ⥼⥼ left fish tail infix 340 5 5 stretchy

⥽ ⥽⥽ right fish tail infix 340 5 5 stretchy

⥾ ⥾⥾ up fish tail infix 340 5 5 stretchy

⥿ ⥿⥿ down fish tail infix 340 5 5 stretchy

⧟ ⧟⧟ double-ended multimap infix 340 5 5

⬀ ⬀⬀ north east white arrow infix 340 5 5

⬁ ⬁⬁ north west white arrow infix 340 5 5

⬂ ⬂⬂ south east white arrow infix 340 5 5

⬃ ⬃⬃ south west white arrow infix 340 5 5

⬄ ⬄⬄ left right white arrow infix 340 5 5 stretchy

⬅ ⬅⬅ leftwards black arrow infix 340 5 5 stretchy

⬆ ⬆⬆ upwards black arrow infix 340 5 5 stretchy

⬇ ⬇⬇ downwards black arrow infix 340 5 5 stretchy

⬈ ⬈⬈ north east black arrow infix 340 5 5

⬉ ⬉⬉ north west black arrow infix 340 5 5

⬊ ⬊⬊ south east black arrow infix 340 5 5

⬋ ⬋⬋ south west black arrow infix 340 5 5

⬌ ⬌⬌ left right black arrow infix 340 5 5 stretchy

⬍ ⬍⬍ up down black arrow infix 340 5 5 stretchy

⬎ ⬎⬎ rightwards arrow with tip downwards infix 340 5 5 stretchy

⬏ ⬏⬏ rightwards arrow with tip upwards infix 340 5 5 stretchy

⬐ ⬐⬐ leftwards arrow with tip downwards infix 340 5 5 stretchy

⬑ ⬑⬑ leftwards arrow with tip upwards infix 340 5 5 stretchy

⬰ ⬰⬰ left arrow with small circle infix 340 5 5 stretchy

⬱ ⬱⬱ three leftwards arrows infix 340 5 5 stretchy

⬲ ⬲⬲ left arrow with circled plus infix 340 5 5 stretchy

⬳ ⬳⬳ long leftwards squiggle arrow infix 340 5 5 stretchy

⬴ ⬴⬴ leftwards two-headed arrow with vertical
stroke

infix 340 5 5 stretchy

⬵ ⬵⬵ leftwards two-headed arrow with double
vertical stroke

infix 340 5 5 stretchy

⬶ ⬶⬶ leftwards two-headed arrow from bar infix 340 5 5 stretchy

⬷ ⬷⬷ leftwards two-headed triple dash arrow infix 340 5 5 stretchy

⬸ ⬸⬸ leftwards arrow with dotted stem infix 340 5 5 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

349 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⬹ ⬹⬹ leftwards arrow with tail with vertical stroke infix 340 5 5 stretchy

⬺ ⬺⬺ leftwards arrow with tail with double vertical
stroke

infix 340 5 5 stretchy

⬻ ⬻⬻ leftwards two-headed arrow with tail infix 340 5 5 stretchy

⬼ ⬼⬼ leftwards two-headed arrow with tail with
vertical stroke

infix 340 5 5 stretchy

⬽ ⬽⬽ leftwards two-headed arrow with tail with
double vertical stroke

infix 340 5 5 stretchy

⬾ ⬾⬾ leftwards arrow through x infix 340 5 5 stretchy

⬿ ⬿⬿ wave arrow pointing directly left infix 340 5 5

⭀ ⭀⭀ equals sign above leftwards arrow infix 340 5 5 stretchy

⭁ ⭁⭁ reverse tilde operator above leftwards arrow infix 340 5 5 stretchy

⭂ ⭂⭂ leftwards arrow above reverse almost equal to infix 340 5 5 stretchy

⭃ ⭃⭃ rightwards arrow through greater-than infix 340 5 5 stretchy

⭄ ⭄⭄ rightwards arrow through superset infix 340 5 5 stretchy

⭅ ⭅⭅ leftwards quadruple arrow infix 340 5 5 stretchy

⭆ ⭆⭆ rightwards quadruple arrow infix 340 5 5 stretchy

⭇ ⭇⭇ reverse tilde operator above rightwards arrow infix 340 5 5 stretchy

⭈ ⭈⭈ rightwards arrow above reverse almost equal
to

infix 340 5 5 stretchy

⭉ ⭉⭉ tilde operator above leftwards arrow infix 340 5 5 stretchy

⭊ ⭊⭊ leftwards arrow above almost equal to infix 340 5 5 stretchy

⭋ ⭋⭋ leftwards arrow above reverse tilde operator infix 340 5 5 stretchy

⭌ ⭌⭌ rightwards arrow above reverse tilde operator infix 340 5 5 stretchy

⭍ downwards triangle-headed zigzag arrow infix 340 5 5

⭎ short slanted north arrow infix 340 5 5

⭏ short backslanted south arrow infix 340 5 5

⭚ slanted north arrow with hooked head infix 340 5 5

⭛ backslanted south arrow with hooked tail infix 340 5 5

⭜ slanted north arrow with horizontal tail infix 340 5 5

⭝ backslanted south arrow with horizontal tail infix 340 5 5

⭞ bent arrow pointing downwards then north
east

infix 340 5 5

⭟ short bent arrow pointing downwards then
north east

infix 340 5 5

⭠ ← leftwards triangle-headed arrow infix 340 5 5 stretchy

⭡ ↑ upwards triangle-headed arrow infix 340 5 5 stretchy

⭢ → rightwards triangle-headed arrow infix 340 5 5 stretchy

⭣ ↓ downwards triangle-headed arrow infix 340 5 5 stretchy

⭤ ↔ left right triangle-headed arrow infix 340 5 5 stretchy

⭥ ↕ up down triangle-headed arrow infix 340 5 5 stretchy

⭦ north west triangle-headed arrow infix 340 5 5

⭧ north east triangle-headed arrow infix 340 5 5

⭨ south east triangle-headed arrow infix 340 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

350 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⭩ south west triangle-headed arrow infix 340 5 5

⭪ leftwards triangle-headed dashed arrow infix 340 5 5 stretchy

⭫ upwards triangle-headed dashed arrow infix 340 5 5 stretchy

⭬ rightwards triangle-headed dashed arrow infix 340 5 5 stretchy

⭭ downwards triangle-headed dashed arrow infix 340 5 5 stretchy

⭮ clockwise triangle-headed open circle arrow infix 340 5 5

⭯ anticlockwise triangle-headed open circle
arrow

infix 340 5 5

⭰ leftwards triangle-headed arrow to bar infix 340 5 5 stretchy

⭱ upwards triangle-headed arrow to bar infix 340 5 5 stretchy

⭲ rightwards triangle-headed arrow to bar infix 340 5 5 stretchy

⭳ downwards triangle-headed arrow to bar infix 340 5 5 stretchy

⭶ north west triangle-headed arrow to bar infix 340 5 5

⭷ north east triangle-headed arrow to bar infix 340 5 5

⭸ south east triangle-headed arrow to bar infix 340 5 5

⭹ south west triangle-headed arrow to bar infix 340 5 5

⭺ leftwards triangle-headed arrow with double
horizontal stroke

infix 340 5 5 stretchy

⭻ upwards triangle-headed arrow with double
horizontal stroke

infix 340 5 5 stretchy

⭼ rightwards triangle-headed arrow with double
horizontal stroke

infix 340 5 5 stretchy

⭽ downwards triangle-headed arrow with double
horizontal stroke

infix 340 5 5 stretchy

⮀ leftwards triangle-headed arrow over
rightwards triangle-headed arrow

infix 340 5 5 stretchy

⮁ upwards triangle-headed arrow leftwards of
downwards triangle-headed arrow

infix 340 5 5 stretchy

⮂ ⇄ rightwards triangle-headed arrow over
leftwards triangle-headed arrow

infix 340 5 5 stretchy

⮃ ⇅ downwards triangle-headed arrow leftwards of
upwards triangle-headed arrow

infix 340 5 5 stretchy

⮄ leftwards triangle-headed paired arrows infix 340 5 5 stretchy

⮅ upwards triangle-headed paired arrows infix 340 5 5 stretchy

⮆ rightwards triangle-headed paired arrows infix 340 5 5 stretchy

⮇ downwards triangle-headed paired arrows infix 340 5 5 stretchy

⮈ leftwards black circled white arrow infix 340 5 5

⮉ upwards black circled white arrow infix 340 5 5

⮊ rightwards black circled white arrow infix 340 5 5

⮋ downwards black circled white arrow infix 340 5 5

⮌ anticlockwise triangle-headed right u-shaped
arrow

infix 340 5 5

⮍ anticlockwise triangle-headed bottom u-
shaped arrow

infix 340 5 5

⮎ anticlockwise triangle-headed left u-shaped
arrow

infix 340 5 5

⮏ anticlockwise triangle-headed top u-shaped
arrow

infix 340 5 5

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

351 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⮔ four corner arrows circling anticlockwise infix 340 5 5

⮕ ➡ rightwards black arrow infix 340 5 5 stretchy

⮠ downwards triangle-headed arrow with long
tip leftwards

infix 340 5 5 stretchy

⮡ downwards triangle-headed arrow with long
tip rightwards

infix 340 5 5 stretchy

⮢ upwards triangle-headed arrow with long tip
leftwards

infix 340 5 5 stretchy

⮣ upwards triangle-headed arrow with long tip
rightwards

infix 340 5 5 stretchy

⮤ leftwards triangle-headed arrow with long tip
upwards

infix 340 5 5 stretchy

⮥ rightwards triangle-headed arrow with long tip
upwards

infix 340 5 5 stretchy

⮦ leftwards triangle-headed arrow with long tip
downwards

infix 340 5 5 stretchy

⮧ rightwards triangle-headed arrow with long tip
downwards

infix 340 5 5 stretchy

⮨ black curved downwards and leftwards arrow infix 340 5 5 stretchy

⮩ black curved downwards and rightwards
arrow

infix 340 5 5 stretchy

⮪ black curved upwards and leftwards arrow infix 340 5 5 stretchy

⮫ black curved upwards and rightwards arrow infix 340 5 5 stretchy

⮬ black curved leftwards and upwards arrow infix 340 5 5 stretchy

⮭ black curved rightwards and upwards arrow infix 340 5 5 stretchy

⮮ black curved leftwards and downwards arrow infix 340 5 5 stretchy

⮯ black curved rightwards and downwards
arrow

infix 340 5 5 stretchy

⮰ ribbon arrow down left infix 340 5 5

⮱ ribbon arrow down right infix 340 5 5

⮲ ribbon arrow up left infix 340 5 5

⮳ ribbon arrow up right infix 340 5 5

⮴ ribbon arrow left up infix 340 5 5

⮵ ribbon arrow right up infix 340 5 5

⮶ ribbon arrow left down infix 340 5 5

⮷ ribbon arrow right down infix 340 5 5

⮸ upwards white arrow from bar with horizontal
bar

infix 340 5 5 stretchy

∪ ∪∪ union infix 360 4 4

⊌ ⊌⊌ multiset infix 360 4 4

⊍ ⊍⊍ multiset multiplication infix 360 4 4

⊎ ⊎⊎ multiset union infix 360 4 4

⊔ ⊔⊔ square cup infix 360 4 4

⋓ ⋓⋓ double union infix 360 4 4

⩁ ⩁⩁ union with minus sign infix 360 4 4

⩂ ⩂⩂ union with overbar infix 360 4 4

⩅ ⩅⩅ union with logical or infix 360 4 4

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

352 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⩊ ⩊⩊ union beside and joined with union infix 360 4 4

⩌ ⩌⩌ closed union with serifs infix 360 4 4

⩏ ⩏⩏ double square union infix 360 4 4

∩ ∩∩ intersection infix 380 4 4

⊓ ⊓⊓ square cap infix 380 4 4

⋒ ⋒⋒ double intersection infix 380 4 4

⨟ ⨟⨟ z notation schema composition infix 380 4 4

⨠ ⨠⨠ z notation schema piping infix 380 4 4

⨡ ⨡⨡ z notation schema projection infix 380 4 4

⨾ ⨾⨾ z notation relational composition infix 380 4 4

⩀ ⩀⩀ intersection with dot infix 380 4 4

⩃ ⩃⩃ intersection with overbar infix 380 4 4

⩄ ⩄⩄ intersection with logical and infix 380 4 4

⩆ ⩆⩆ union above intersection infix 380 4 4

⩇ ⩇⩇ intersection above union infix 380 4 4

⩈ ⩈⩈ union above bar above intersection infix 380 4 4

⩉ ⩉⩉ intersection above bar above union infix 380 4 4

⩋ ⩋⩋ intersection beside and joined with
intersection

infix 380 4 4

⩍ ⩍⩍ closed intersection with serifs infix 380 4 4

⩎ ⩎⩎ double square intersection infix 380 4 4

⫛ ⫛⫛ transversal intersection infix 380 4 4

+ ++ plus sign infix 400 4 4

- -- hyphen-minus infix 400 4 4

± ±± plus-minus sign infix 400 4 4

− −− minus sign infix 400 4 4

∓ ∓∓ minus-or-plus sign infix 400 4 4

∔ ∔∔ dot plus infix 400 4 4

∖ ∖∖ set minus infix 400 4 4

∨ ∨∨ logical or infix 400 4 4

∸ ∸∸ dot minus infix 400 4 4

⊕ ⊕⊕ circled plus infix 400 4 4

⊖ ⊖⊖ circled minus infix 400 4 4

⊝ ⊝⊝ circled dash infix 400 4 4

⊞ ⊞⊞ squared plus infix 400 4 4

⊟ ⊟⊟ squared minus infix 400 4 4

⊽ ⊽⊽ nor infix 400 4 4

⋎ ⋎⋎ curly logical or infix 400 4 4

➕ ➕➕ heavy plus sign infix 400 4 4

➖ ➖➖ heavy minus sign infix 400 4 4

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

353 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⦸ ⦸⦸ circled reverse solidus infix 400 4 4

⧅ ⧅⧅ squared falling diagonal slash infix 400 4 4

⧵ ⧵⧵ reverse solidus operator infix 400 4 4

⧷ ⧷⧷ reverse solidus with horizontal stroke infix 400 4 4

⧹ ⧹⧹ big reverse solidus infix 400 4 4

⧺ ⧺⧺ double plus infix 400 4 4

⧻ ⧻⧻ triple plus infix 400 4 4

⨢ ⨢⨢ plus sign with small circle above infix 400 4 4

⨣ ⨣⨣ plus sign with circumflex accent above infix 400 4 4

⨤ ⨤⨤ plus sign with tilde above infix 400 4 4

⨥ ⨥⨥ plus sign with dot below infix 400 4 4

⨦ ⨦⨦ plus sign with tilde below infix 400 4 4

⨧ ⨧⨧ plus sign with subscript two infix 400 4 4

⨨ ⨨⨨ plus sign with black triangle infix 400 4 4

⨩ ⨩⨩ minus sign with comma above infix 400 4 4

⨪ ⨪⨪ minus sign with dot below infix 400 4 4

⨫ ⨫⨫ minus sign with falling dots infix 400 4 4

⨬ ⨬⨬ minus sign with rising dots infix 400 4 4

⨭ ⨭⨭ plus sign in left half circle infix 400 4 4

⨮ ⨮⨮ plus sign in right half circle infix 400 4 4

⨹ ⨹⨹ plus sign in triangle infix 400 4 4

⨺ ⨺⨺ minus sign in triangle infix 400 4 4

⩒ ⩒⩒ logical or with dot above infix 400 4 4

⩔ ⩔⩔ double logical or infix 400 4 4

⩖ ⩖⩖ two intersecting logical or infix 400 4 4

⩗ ⩗⩗ sloping large or infix 400 4 4

⩛ ⩛⩛ logical or with middle stem infix 400 4 4

⩝ ⩝⩝ logical or with horizontal dash infix 400 4 4

⩡ ⩡⩡ small vee with underbar infix 400 4 4

⩢ ⩢⩢ logical or with double overbar infix 400 4 4

⩣ ⩣⩣ logical or with double underbar infix 400 4 4

⊻ ⊻⊻ xor infix 420 4 4

∑ ∑∑ n-ary summation prefix 440 3 3
largeop, movablelimits,
symmetric

⨊ ⨊⨊ modulo two sum prefix 440 3 3
largeop, movablelimits,
symmetric

⨋ ⨋⨋ summation with integral prefix 440 3 3 largeop, symmetric

⨝ ⨝⨝ join prefix 440 3 3
largeop, movablelimits,
symmetric

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

354 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⨞ ⨞⨞ large left triangle operator prefix 440 3 3
largeop, movablelimits,
symmetric

⨁ ⨁⨁ n-ary circled plus operator prefix 460 3 3
largeop, movablelimits,
symmetric

∫ ∫∫ integral prefix 480 3 3 largeop, symmetric

∬ ∬∬ double integral prefix 480 3 3 largeop, symmetric

∭ ∭∭ triple integral prefix 480 3 3 largeop, symmetric

∮ ∮∮ contour integral prefix 480 3 3 largeop, symmetric

∯ ∯∯ surface integral prefix 480 3 3 largeop, symmetric

∰ ∰∰ volume integral prefix 480 3 3 largeop, symmetric

∱ ∱∱ clockwise integral prefix 480 3 3 largeop, symmetric

∲ ∲∲ clockwise contour integral prefix 480 3 3 largeop, symmetric

∳ ∳∳ anticlockwise contour integral prefix 480 3 3 largeop, symmetric

⨌ ⨌⨌ quadruple integral operator prefix 480 3 3 largeop, symmetric

⨍ ⨍⨍ finite part integral prefix 480 3 3 largeop, symmetric

⨎ ⨎⨎ integral with double stroke prefix 480 3 3 largeop, symmetric

⨏ ⨏⨏ integral average with slash prefix 480 3 3 largeop, symmetric

⨐ ⨐⨐ circulation function prefix 480 3 3 largeop, symmetric

⨑ ⨑⨑ anticlockwise integration prefix 480 3 3 largeop, symmetric

⨒ ⨒⨒ line integration with rectangular path around
pole

prefix 480 3 3 largeop, symmetric

⨓ ⨓⨓ line integration with semicircular path around
pole

prefix 480 3 3 largeop, symmetric

⨔ ⨔⨔ line integration not including the pole prefix 480 3 3 largeop, symmetric

⨕ ⨕⨕ integral around a point operator prefix 480 3 3 largeop, symmetric

⨖ ⨖⨖ quaternion integral operator prefix 480 3 3 largeop, symmetric

⨗ ⨗⨗ integral with leftwards arrow with hook prefix 480 3 3 largeop, symmetric

⨘ ⨘⨘ integral with times sign prefix 480 3 3 largeop, symmetric

⨙ ⨙⨙ integral with intersection prefix 480 3 3 largeop, symmetric

⨚ ⨚⨚ integral with union prefix 480 3 3 largeop, symmetric

⨛ ⨛⨛ integral with overbar prefix 480 3 3 largeop, symmetric

⨜ ⨜⨜ integral with underbar prefix 480 3 3 largeop, symmetric

⋃ ⋃⋃ n-ary union prefix 500 3 3
largeop, movablelimits,
symmetric

⨃ ⨃⨃ n-ary union operator with dot prefix 500 3 3
largeop, movablelimits,
symmetric

⨄ ⨄⨄ n-ary union operator with plus prefix 500 3 3
largeop, movablelimits,
symmetric

⋀ ⋀⋀ n-ary logical and prefix 520 3 3
largeop, movablelimits,
symmetric

⋁ ⋁⋁ n-ary logical or prefix 520 3 3
largeop, movablelimits,
symmetric

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

355 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⋂ ⋂⋂ n-ary intersection prefix 520 3 3
largeop, movablelimits,
symmetric

⨀ ⨀⨀ n-ary circled dot operator prefix 520 3 3
largeop, movablelimits,
symmetric

⨂ ⨂⨂ n-ary circled times operator prefix 520 3 3
largeop, movablelimits,
symmetric

⨅ ⨅⨅ n-ary square intersection operator prefix 520 3 3
largeop, movablelimits,
symmetric

⨆ ⨆⨆ n-ary square union operator prefix 520 3 3
largeop, movablelimits,
symmetric

⨇ ⨇⨇ two logical and operator prefix 520 3 3
largeop, movablelimits,
symmetric

⨈ ⨈⨈ two logical or operator prefix 520 3 3
largeop, movablelimits,
symmetric

⨉ ⨉⨉ n-ary times operator prefix 520 3 3
largeop, movablelimits,
symmetric

⫼ ⫼⫼ large triple vertical bar operator prefix 520 3 3
largeop, movablelimits,
symmetric

⫿ ⫿⫿ n-ary white vertical bar prefix 520 3 3
largeop, movablelimits,
symmetric

∏ ∏∏ n-ary product prefix 540 3 3
largeop, movablelimits,
symmetric

∐ ∐∐ n-ary coproduct prefix 540 3 3
largeop, movablelimits,
symmetric

@ @@ commercial at infix 560 3 3

∟ ∟∟ right angle prefix 580 0 0

∠ ∠∠ angle prefix 580 0 0

∡ ∡∡ measured angle prefix 580 0 0

∢ ∢∢ spherical angle prefix 580 0 0

⊾ ⊾⊾ right angle with arc prefix 580 0 0

⊿ ⊿⊿ right triangle prefix 580 0 0

⟀ ⟀⟀ three dimensional angle prefix 580 0 0

⦛ ⦛⦛ measured angle opening left prefix 580 0 0

⦜ ⦜⦜ right angle variant with square prefix 580 0 0

⦝ ⦝⦝ measured right angle with dot prefix 580 0 0

⦞ ⦞⦞ angle with s inside prefix 580 0 0

⦟ ⦟⦟ acute angle prefix 580 0 0

⦠ ⦠⦠ spherical angle opening left prefix 580 0 0

⦡ ⦡⦡ spherical angle opening up prefix 580 0 0

⦢ ⦢⦢ turned angle prefix 580 0 0

⦣ ⦣⦣ reversed angle prefix 580 0 0

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

356 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⦤ ⦤⦤ angle with underbar prefix 580 0 0

⦥ ⦥⦥ reversed angle with underbar prefix 580 0 0

⦦ ⦦⦦ oblique angle opening up prefix 580 0 0

⦧ ⦧⦧ oblique angle opening down prefix 580 0 0

⦨ ⦨⦨ measured angle with open arm ending in
arrow pointing up and right

prefix 580 0 0

⦩ ⦩⦩ measured angle with open arm ending in
arrow pointing up and left

prefix 580 0 0

⦪ ⦪⦪ measured angle with open arm ending in
arrow pointing down and right

prefix 580 0 0

⦫ ⦫⦫ measured angle with open arm ending in
arrow pointing down and left

prefix 580 0 0

⦬ ⦬⦬ measured angle with open arm ending in
arrow pointing right and up

prefix 580 0 0

⦭ ⦭⦭ measured angle with open arm ending in
arrow pointing left and up

prefix 580 0 0

⦮ ⦮⦮ measured angle with open arm ending in
arrow pointing right and down

prefix 580 0 0

⦯ ⦯⦯ measured angle with open arm ending in
arrow pointing left and down

prefix 580 0 0

&& &&&& multiple character operator: && infix 600 4 4

∧ ∧∧ logical and infix 600 4 4

⊼ ⊼⊼ nand infix 600 4 4

⋏ ⋏⋏ curly logical and infix 600 4 4

⩑ ⩑⩑ logical and with dot above infix 600 4 4

⩓ ⩓⩓ double logical and infix 600 4 4

⩕ ⩕⩕ two intersecting logical and infix 600 4 4

⩘ ⩘⩘ sloping large and infix 600 4 4

⩙ ⩙⩙ logical or overlapping logical and infix 600 4 4

⩚ ⩚⩚ logical and with middle stem infix 600 4 4

⩜ ⩜⩜ logical and with horizontal dash infix 600 4 4

⩞ ⩞⩞ logical and with double overbar infix 600 4 4

⩟ ⩟⩟ logical and with underbar infix 600 4 4

⩠ ⩠⩠ logical and with double underbar infix 600 4 4

* ** asterisk infix 620 3 3

. .. full stop infix 620 3 3

· ·· middle dot infix 620 3 3

× ×× multiplication sign infix 620 3 3

• •• bullet infix 620 3 3

⁃ ⁃⁃ hyphen bullet infix 620 3 3

⁢ invisible times infix 620 0 0

∗ ∗∗ asterisk operator infix 620 3 3

∙ ∙∙ bullet operator infix 620 3 3

≀ ≀≀ wreath product infix 620 3 3

⊗ ⊗⊗ circled times infix 620 3 3

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

357 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

⊙ ⊙⊙ circled dot operator infix 620 3 3

⊛ ⊛⊛ circled asterisk operator infix 620 3 3

⊠ ⊠⊠ squared times infix 620 3 3

⊡ ⊡⊡ squared dot operator infix 620 3 3

⊺ ⊺⊺ intercalate infix 620 3 3

⋅ ⋅⋅ dot operator infix 620 3 3

⋆ ⋆⋆ star operator infix 620 3 3

⋇ ⋇⋇ division times infix 620 3 3

⋉ ⋉⋉ left normal factor semidirect product infix 620 3 3

⋊ ⋊⋊ right normal factor semidirect product infix 620 3 3

⋋ ⋋⋋ left semidirect product infix 620 3 3

⋌ ⋌⋌ right semidirect product infix 620 3 3

⌅ ⌅⌅ projective infix 620 3 3

⌆ ⌆⌆ perspective infix 620 3 3

⧆ ⧆⧆ squared asterisk infix 620 3 3

⧈ ⧈⧈ squared square infix 620 3 3

⧔ ⧔⧔ times with left half black infix 620 3 3

⧕ ⧕⧕ times with right half black infix 620 3 3

⧖ ⧖⧖ white hourglass infix 620 3 3

⧗ ⧗⧗ black hourglass infix 620 3 3

⧢ ⧢⧢ shuffle product infix 620 3 3

⨝ ⨝⨝ join infix 620 3 3

⨞ ⨞⨞ large left triangle operator infix 620 3 3

⨯ ⨯⨯ vector or cross product infix 620 3 3

⨰ ⨰⨰ multiplication sign with dot above infix 620 3 3

⨱ ⨱⨱ multiplication sign with underbar infix 620 3 3

⨲ ⨲⨲ semidirect product with bottom closed infix 620 3 3

⨳ ⨳⨳ smash product infix 620 3 3

⨴ ⨴⨴ multiplication sign in left half circle infix 620 3 3

⨵ ⨵⨵ multiplication sign in right half circle infix 620 3 3

⨶ ⨶⨶ circled multiplication sign with circumflex
accent

infix 620 3 3

⨷ ⨷⨷ multiplication sign in double circle infix 620 3 3

⨻ ⨻⨻ multiplication sign in triangle infix 620 3 3

⨼ ⨼⨼ interior product infix 620 3 3

⨽ ⨽⨽ righthand interior product infix 620 3 3

⨿ ⨿⨿ amalgamation or coproduct infix 620 3 3

⩐ ⩐⩐ closed union with serifs and smash product infix 620 3 3

% %% percent sign infix 640 3 3

\ \\ reverse solidus infix 660 0 0

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

358 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

/ // solidus infix 680 4 4

÷ ÷÷ division sign infix 680 4 4

⁄ ⁄⁄ fraction slash infix 680 4 4

∕ ∕∕ division slash infix 680 4 4

∶ ∶∶ ratio infix 680 4 4

⊘ ⊘⊘ circled division slash infix 680 4 4

➗ ➗➗ heavy division sign infix 680 4 4

⟋ ⟋⟋ mathematical rising diagonal infix 680 3 3

⟍ ⟍⟍ mathematical falling diagonal infix 680 3 3

⦼ ⦼⦼ circled anticlockwise-rotated division sign infix 680 4 4

⧄ ⧄⧄ squared rising diagonal slash infix 680 4 4

⧶ ⧶⧶ solidus with overbar infix 680 4 4

⧸ ⧸⧸ big solidus infix 680 4 4

⨸ ⨸⨸ circled division sign infix 680 4 4

⫶ ⫶⫶ triple colon operator infix 680 4 4

⫻ ⫻⫻ triple solidus binary relation infix 680 4 4

⫽ ⫽⫽ double solidus operator infix 680 4 4

⫾ ⫾⫾ white vertical bar infix 680 3 3

⩤ ⩤⩤ z notation domain antirestriction infix 700 3 3

⩥ ⩥⩥ z notation range antirestriction infix 700 3 3

+ ++ plus sign prefix 720 0 0

- -- hyphen-minus prefix 720 0 0

± ±± plus-minus sign prefix 720 0 0

∁ ∁∁ complement prefix 720 0 0

∆ ∆∆ increment infix 720 0 0

− −− minus sign prefix 720 0 0

∓ ∓∓ minus-or-plus sign prefix 720 0 0

➕ ➕➕ heavy plus sign prefix 720 0 0

➖ ➖➖ heavy minus sign prefix 720 0 0

⫝̸ ⫝⫝̸̸ forking infix 740 3 3

⫝ ⫝⫝ nonforking infix 740 3 3

** **** multiple character operator: ** infix 760 3 3

ⅅ ⅅⅅ double-struck italic capital d prefix 780 3 0

ⅆ ⅆⅆ double-struck italic small d prefix 780 3 0

∂ ∂∂ partial differential prefix 780 3 0

∇ ∇∇ nabla prefix 780 0 0

<> <<>> multiple character operator: <> infix 800 3 3

^ ^̂ circumflex accent infix 800 3 3

! !! exclamation mark postfix 820 0 0

!! !!!! multiple character operator: !! postfix 820 0 0

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

359 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

% %% percent sign postfix 820 0 0

′ ′′ prime postfix 820 0 0

? ?? question mark infix 840 3 3

√ √√ square root prefix 860 3 0

∛ ∛∛ cube root prefix 860 3 0

∜ ∜∜ fourth root prefix 860 3 0

⁡ function application infix 880 0 0

∘ ∘∘ ring operator infix 900 3 3

⊚ ⊚⊚ circled ring operator infix 900 3 3

⋄ ⋄⋄ diamond operator infix 900 3 3

⧇ ⧇⧇ squared small circle infix 900 3 3

" "" quotation mark postfix 920 0 0

& && ampersand postfix 920 0 0

' '' apostrophe postfix 920 0 0

++ ++++ multiple character operator: ++ postfix 920 0 0

-- ---- multiple character operator: -- postfix 920 0 0

^ ^̂ circumflex accent postfix 920 0 0 stretchy

_ __ low line postfix 920 0 0 stretchy

` `̀ grave accent postfix 920 0 0

~ ~~ tilde postfix 920 0 0 stretchy

¨ ¨̈ diaeresis postfix 920 0 0

¯ ¯̄ macron postfix 920 0 0 stretchy

° °° degree sign postfix 920 0 0

² ²² superscript two postfix 920 0 0

³ ³³ superscript three postfix 920 0 0

´ ´́ acute accent postfix 920 0 0

¸ ¸̧ cedilla postfix 920 0 0

¹ ¹¹ superscript one postfix 920 0 0

ˆ ˆ̂ modifier letter circumflex accent postfix 920 0 0 stretchy

ˇ ˇ̌ caron postfix 920 0 0 stretchy

ˉ ˉ̄ modifier letter macron postfix 920 0 0 stretchy

ˊ ˊ́ modifier letter acute accent postfix 920 0 0

ˋ ˋ̀ modifier letter grave accent postfix 920 0 0

ˍ ˍ̱ modifier letter low macron postfix 920 0 0 stretchy

˘ ˘̆ breve postfix 920 0 0

˙ ˙̇ dot above postfix 920 0 0

˚ ˚̊ ring above postfix 920 0 0

˜ ˜̃ small tilde postfix 920 0 0 stretchy

˝ ˝̋ double acute accent postfix 920 0 0

˷ ˷˷ modifier letter low tilde postfix 920 0 0 stretchy

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

360 of 434 26/08/2025, 11:30

Character Glyph Name form priority lspace rspace Properties

̂ ̂ ̂ combining circumflex accent postfix 920 0 0 stretchy

̑ ̑ ̑ combining inverted breve postfix 920 0 0

‚ ‚‚ single low-9 quotation mark postfix 920 0 0

‛ ‛‛ single high-reversed-9 quotation mark postfix 920 0 0

„ „„ double low-9 quotation mark postfix 920 0 0

‟ ‟‟ double high-reversed-9 quotation mark postfix 920 0 0

″ ″″ double prime postfix 920 0 0

‴ ‴‴ triple prime postfix 920 0 0

‵ ‵‵ reversed prime postfix 920 0 0

‶ ‶‶ reversed double prime postfix 920 0 0

‷ ‷‷ reversed triple prime postfix 920 0 0

‾ ‾‾ overline postfix 920 0 0 stretchy

⁗ ⁗⁗ quadruple prime postfix 920 0 0

⁤ invisible plus infix 920 0 0

⃛ ⃛ ⃛ combining three dots above postfix 920 0 0

⃜ ⃜ ⃜ combining four dots above postfix 920 0 0

⌢ ⌢⌢ frown postfix 920 0 0 stretchy

⌣ ⌣⌣ smile postfix 920 0 0 stretchy

⎴ ⎴⎴ top square bracket postfix 920 0 0 stretchy

⎵ ⎵⎵ bottom square bracket postfix 920 0 0 stretchy

⏍ ⏍⏍ square foot postfix 920 0 0

⏜ ⏜⏜ top parenthesis postfix 920 0 0 stretchy

⏝ ⏝⏝ bottom parenthesis postfix 920 0 0 stretchy

⏞ ⏞⏞ top curly bracket postfix 920 0 0 stretchy

⏟ ⏟⏟ bottom curly bracket postfix 920 0 0 stretchy

⏠ ⏠⏠ top tortoise shell bracket postfix 920 0 0 stretchy

⏡ ⏡⏡ bottom tortoise shell bracket postfix 920 0 0 stretchy

𞻰 𞻰𞻰 arabic mathematical operator meem with hah
with tatweel

postfix 920 0 0 stretchy

𞻱 𞻱𞻱 arabic mathematical operator hah with dal postfix 920 0 0 stretchy

_ __ low line infix 940 0 0

As an essential element of the Open Web Platform, the W3C MathML specification has the unprecedented potential to
enable content authors and developers to incorporate mathematical expressions on the web in such a way that the underlying
structural and semantic information can be exposed to other technologies. Enabling this information exposure is

C. MathML Accessibility

C.1 Introduction

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

361 of 434 26/08/2025, 11:30

foundational for accessibility, as well as providing a path for making digital mathematics content machine readable,
searchable and reusable

The internationally accepted standards and underpinning principles for creating accessible digital content on the web can be
found in the W3C's Web Content Accessibility Guidelines [WCAG21]. In extending these principles to digital content
containing mathematical information, WCAG provides a useful framework for defining accessibility wherever MathML is
used.

As the current WCAG guidelines provide no direct guidance on how to ensure mathematical content encoded as MathML
will be accessible to users with disabilities, this specification defines how to apply these guidelines to digital content
containing MathML.

A benefit of following these recommendations is that it helps to ensure that digital mathematics content meets the
accessibility requirements already widely used around the world for web content. In addition, ensuring that digital
mathematics materials are accessible will expand the readership of such content to both readers with and without disabilities.

Additional guidance on best practices will be developed over time in [MathML-Notes]. Placing these in Notes allows them
to adapt and evolve independent of the MathML specification, since accessibility practices often need more frequent
updating. The Notes are also intended for use with past, present, and future versions of MathML, in addition to
considerations for both the MathML-Core and the full MathML specification. The approach of a separate document ensures
that the evolution of MathML does not lock accessibility best practices in time, and allows content authors to apply the most
recent accessibility practices.

Many of the advances of mathematics in the modern world (i.e., since the late Renaissance) were arguably aided by the
development of early symbolic notation which continues to be evolved in our present day. While simple literacy text can be
used to state underlying mathematical concepts, symbolic notation provides a succinct method of representing abstract
mathematical constructs in a portable manner which can be more easily consumed, manipulated and understood by humans
and machines. Mathematics notation is itself a language intended for more than just visual rendering, inspection and
manipulation, as it is also intended to express the underlying meaning of the author. These characteristics of mathematical
notation have in turn a direct connection to mathematics accessibility.

Accessibility has been a purposeful consideration from the very beginning of the MathML specification, as alluded to in the
1998 MathML 1.0 specification. This understanding is further reflected in the very first version of the Web Content
Accessibility Guidelines (WCAG 1.0, W3C Recommendation 5-May-1999), which mentions the use of MathML as a
suggested technique to comply with Checkpoint 3.1, "When an appropriate markup language exists, use markup rather than
images to convey information," by including the example technique to "use MathML to mark up mathematical equations..."
It is also worth noting, that under the discussion of WCAG 1.0 Guideline 3, "Use markup and style sheets and do so
properly," that the editors have included the admonition that "content developers must not sacrifice appropriate markup
because a certain browser or assistive technology does not process it correctly." Now some 20 years after the publication of
the original WCAG recommendation, we still struggle with the fact that many content developers have been slow to adopt
MathML due to those very reasons. However, with the publication of MathML 4.0, the accessibility community is hopeful
of what the future will bring for widespread mathematics accessibility on the web.

Using MathML in digital content extends the potential to support a wide array of accessibility use cases. We discuss these
below.

C.2 Accessibility benefits of using MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

362 of 434 26/08/2025, 11:30

Auditory output. Technological means of providing dynamic text-to-speech output for mathematical expressions precedes
the origins of MathML, and this use case has had an impact on shaping the MathML specification from the beginning.
Beyond simply generating spoken text strings, the use of audio cues such as changes in spoken pitch to help provide an
auditory analog of two-dimensional visual structure has been found useful. Other audio applications have included other
types of audio cues such as binaural spatialization, earcons, and spearcons to help disambiguate mathematical expressions
rendered by synthetic speech. MathML provides a level of robust information about the structure and syntax of
mathematical expressions to enable these techniques. It is also important to note that the ability to create extensive sets of
automated speech rules used by MathML-aware TTS tools provide for virtually infinite portability of math speech to the
various human spoken languages (e.g., internationalization), as well as different styles of spoken math (e.g., ClearSpeak,
MathSpeak, SimpleSpeak, etc.). In the future, this could provide even more types of speech rules, such as when an
educational assessment needs to apply a more restrictive reading so as not to invalidate the testing construct, or when
instructional content aimed at early learners needs to adopt the spoken style used in the classroom for young students.

Braille output. The tactile rendering of mathematical expressions in braille is a very important use case. For someone who is
blind, interpreting mathematics through auditory rendering alone is a cognitive taxing experience except for the most basic
expressions. And for a deafblind user, auditory renderings are completely inaccessible. Several math braille codes are in
common use globally, such as the Nemeth braille code, UEB Technical, German braille mathematics code, French braille
mathematics code, etc. Dynamic mathematics braille translators such as Liblouis support translation of MathML content on
webpages for individuals who access the web via a refreshable braille display. Thus, using MathML is essential for
providing dynamic braille content for mathematics.

Other forms of visual transformation. Synchronized highlighting is a common addition to text-to-speech intended for sighted
users. Because MathML provides the ability to parse the underlying tree structure of expressions, individual elements of the
expression can be visually highlighted as they are spoken. This enhances the ability of TTS users to stay engaged with the
text reading, which can potentially increase comprehension and learning. Even for people visually reading without TTS,
visual highlighting within expressions as one navigates a web page using caret browsing can be a useful accessibility feature
which MathML can potentially support.

For individuals who are deaf or hard of hearing but are unable to use braille, mathematical equations rendered in MathML
can potentially be turned into visually displayed text. Since research has shown that, especially among school-age children
with reading impairments, the ability to understand symbolic notation occurring in mathematical expression is much more
difficult than reading literary text, enabling this capability could be a useful access technique for this population.

Another potential accessibility scaffold which MathML could provide for individuals who are deaf or hard of hearing would
be the ability to provide input to automated signing avatars. Automated signing avatar technology which generates
American Sign Language has already been applied to elementary level mathematics add citation . Sign languages vary by
county (and sometimes locality) and are not simply "word to sign" translations, as sign language has its own grammar, so
being able to access the underlying tree structure of mathematical expressions as can be done with MathML will provide the
potential for representing expressions in sign language from a digital document dynamically without having to use static
prerecorded videos of human signers.

Graphing an equation is a commonly used means of generating a visual output which can aid in comprehending the effects
and implications of the underlying mathematical expressions. This is helpful for all people, but can be especially impactful
for those with cognitive or learning impairments. Some dynamic graphing utilities (e.g., Desmos and MathTrax) have
extended this concept beyond a simple visual line trace, to auditory tracing (e.g., tones which rise and fall in pitch to provide
an audio construct of the visual trace) as well as a dynamically generated text description of the visual graph. Using
MathML in digital content will provide the potential for developers to apply such automated accessible graphing utilities to
their websites.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

363 of 434 26/08/2025, 11:30

User agents (e.g., web browsers) should leverage information in the MathML expression tree structure to maximize
accessibility. Browsers should process MathML into the DOM tree's internal representation, which contains objects
representing all the markup's elements and attributes. In general, user agents will expose accessibility information via a
platform accessibility service (e.g., an accessibility API), which is passed on to assistive technology applications via the
accessibility tree. The accessibility tree should contain accessibility-related information for most MathML elements.
Browsers should ensure the accessibility tree generated from the DOM tree retains this information so that Accessibility
APIs can provide a representation that can be understood by assistive technologies. However, in compliance with the W3C
User Agent Accessibility Guidelines Success Criterion 4.1.4, "If the user agent accessibility API does not provide sufficient
information to one or more platform accessibility services, then Document Object Models (DOM), must be made
programmatically available to assistive technologies" [UAAG20].

By ensuring that most MathML elements become nodes in the DOM tree, and the resulting accessibility tree, user agents can
expose math nodes for keyboard navigation within expressions. This can support important user needs such as the ability to
visually highlight elements of an expression and/or speak individual elements as one navigates with arrow keys. This can
further support other forms of synchronous navigation, such as individuals using refreshable braille displays along with
synthetic speech.

While it is common practice for the accessibility tree to ignore most DOM node elements that are primarily used for visual
display purposes, it is important to point out that math expressions often use what appears as visual styling to convey
information which can be important for some types of assistive technology applications. For example, omitting the
<mspace> element from the accessibility tree will impact the ability to generate a valid math braille representation of
expressions on a braille display. Further, when color is expressed in MathML with the mathcolor and mathbackground
attributes, these elements need to be included if they are used to express meaning.

The alttext attribute can be used to override standard speech rule processing (e.g., as is often done in standardized
assessments). However, there are numerous limitations to this method. For instance, the entire spoken text of the expression
must be given in the tag, even if the author is only concerned about one small portion. Further, alttext is limited to plain
text, so speech queues such as pausing and pitch changes cannot be included for passing on to speech engines. Also, the
alttext attribute has no direct linkage to the MathML tree, so there will be no way to handle synchronized highlighting of
the expression, nor will there be a way for users to navigate through an expression.

An early draft of MathML Accessiblity API Mappings 1.0 is available. This specification is intended for user agent
developers responsible for MathML accessibility in their product. The goal of this specification is to maximize the
accessibility of MathML content by ensuring each assistive technology receives MathML content with the roles, states, and
properties it expects. The placing of ARIA labels and aria-labeledby is not appropriate in MathML because this will
override braille generation.

C.3 Accessibility Guidance

C.3.1 User Agents

C.3.1.1 Accessibility tree

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

364 of 434 26/08/2025, 11:30

https://w3c.github.io/mathml-aam/
https://w3c.github.io/mathml-aam/

This section considers how to use WCAG to establish requirements for accessible MathML content on the web, using the
same four high-level content principles: that content should be perceivable, operable, understandable, and robust. Therefore,
this section defines how to apply the conformance criteria defined in WCAG to address qualities unique to digital content
containing MathML.

It is important that MathML be used for marking up all mathematics and linear chemical equation content. This precludes
simply using ASCII characters or expression images in HTML (even if alt text is used). Even a single letter variable ideally
should be marked up in MathML because it represents a mathematical expression. This way, audio, braille and visual
renderings of the variable will be consistent throughout the page.

MathML's intent and arg attributes has been developed to reduce notational ambiguity which cannot be reliably resolved
by assistive technology. This also includes blanks and units, which are covered by the Intent attribute.

Common use of mathematical notation employs several “invisible operators” whose symbols are not displayed but function
as if the visible operator were present. These operators should be marked up in MathML to preserve their meaning as well as
to prevent possible ambiguity for users of assistive technology.

Screen readers will not speak anything enclosed in an <mphantom> element; therefore, do not use <mphantom> in
combination with an operator to create invisible operators.

Implicit Multiplication: The “invisible times” operator (⁢) should be used to indicate multiplication whenever the
multiplication operator is used tacitly in traditional notation.

Function Application: The "apply function" operator (⁡) should be used to indicate function application.

Invisible Comma: The “invisible comma” or “invisible separator” operator (⁣) should be used to semantically

C.4 Content Authors

C.4.1 Overarching guidance

C.4.1.1 Always use markup

C.4.1.2 Use intent and arg attributes

C.4.2 Specific Markup Guidance

C.4.2.1 Invisible Operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

365 of 434 26/08/2025, 11:30

separate arguments or indices when commas are omitted.

Implicit Addition: In mixed fractions the “invisible plus” character (⁤) should be used as an operator between the
whole number and its fraction.

It is good practice to group sub-expressions as they would be interpreted mathematically. Properly grouping sub-expressions
using <mrow> can improve display by affecting spacing, allows for more intelligent linebreaking and indentation, it can
simplify semantic interpretation of presentation elements by screen readers and text-to-speech applications.

In general, the spacing elements <mspace>, <mphantom>, and <mpadded> should not be used to convey meaning.

All numeric quantities should be enclosed in an <mn> element. Digit group separators, such as commas, periods, or spaces,
should also be included as part of the number and should not be treated as operators.

It is important to apply superscripts and subscripts to the appropriate element or sub-expression. It is not correct to apply a
superscript or subscript to a closing parenthesis or any other grouping symbol. Important for navigation

Elementary notations have their own layout elements. For long division and stacked expressions use the proper elements
such as <mlongdiv> and <mstack> instead of <mtable>.

Blanks in a “fill-in-the-blank” style of question are often visualized by underlined spaces, empty circles, squares, or other
symbols. To indicate a blank, use the intent and arg attributes.

C.4.2.2 Proper Grouping of Sub-expressions

C.4.2.3 Spacing

C.4.2.4 Numbers

C.4.2.5 Superscripts and Subscripts

C.4.2.6 Elementary Math Notation

C.4.2.7 Fill-in-the-Blanks

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

366 of 434 26/08/2025, 11:30

In an interactive electronic environment where the user should fill the blank on the displayed page, JavaScript would
typically be used to invoke an editor when the blank is clicked on. To facilitate this, an id should be added to the element to
identify it for editing and eventual processing. Additionally, an onclick or similar event trigger should be added. The
details depend upon the type of interaction desired, along with the specific JavaScript being used.

MathML provides built-in support for tables and equation numbering, which complements HTML functionality with lists
and tables. In practice, it is not always clear which structural elements should be used. Ideally, a table (either HTML
<table> or MathML <mtable>) should be used when information between aligned rows or columns are semantically
related. In other cases, such as ordinary problem numbering or information presented in an ordered sequence, an HTML
ordered list ; is more appropriate.

Choosing between <table> and <mtable> may require some forethought in how best to meet the usability needs of the
intended audience and purpose of the table content. HTML structural elements are advantageous because screen readers
provide more robust table navigation, whereas the user may only "enter" or "exit" an <mtable> in a MathML island.
However, the <mtable> element is useful because it can be tweaked easily for visual alignment without creating new table
cells, which can improve reading flow for the user. However, <mtable> should still be used for matrices and other table-
like math layouts.

Instructional content for young learners may sometimes use the written form of math symbols. For example, the
multiplication sign × might be written as “times” or “multiplied by”. Because “times” and “multiplied by” are ordinary
words, speech engines will not have an issue reading them. However, in some cases, there may be a use-case for including
these terms in MathML. For instance, the word “times” in “x = 2 times a” could be marked up as an operator by means of
<mo>times</mo>.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, SHOULD, and SHOULD NOT in this document are to be interpreted as described in BCP 14
[RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Information nowadays is commonly generated, processed and rendered by software tools. The exponential growth of the
Web is fueling the development of advanced systems for automatically searching, categorizing, and interconnecting
information. In addition, there are increasing numbers of Web services, some of which offer technically based materials and
activities. Thus, although MathML can be written by hand and read by humans, whether machine-aided or just with much
concentration, the future of MathML is largely tied to the ability to process it with software tools.

C.4.2.8 Tables and Lists

C.4.2.9 Natural-language Mathematics

D. Conformance

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

367 of 434 26/08/2025, 11:30

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14

There are many different kinds of MathML processors: editors for authoring MathML expressions, translators for converting
to and from other encodings, validators for checking MathML expressions, computation engines that evaluate, manipulate,
or compare MathML expressions, and rendering engines that produce visual, aural, or tactile representations of
mathematical notation. What it means to support MathML varies widely between applications. For example, the issues that
arise with a validating parser are very different from those for an equation editor.

This section gives guidelines that describe different types of MathML support and make clear the extent of MathML support
in a given application. Developers, users, and reviewers are encouraged to use these guidelines in characterizing products.
The intention behind these guidelines is to facilitate reuse by and interoperability of MathML applications by accurately
setting out their capabilities in quantifiable terms.

The W3C Math Working Group maintains MathML Compliance Guidelines. Consult this document for future updates on
conformance activities and resources.

A valid MathML expression is an XML construct determined by the MathML RelaxNG Schema together with the additional
requirements given in this specification.

We shall use the phrase “a MathML processor” to mean any application that can accept or produce a valid MathML
expression. A MathML processor that both accepts and produces valid MathML expressions may be able to “round-trip”
MathML. Perhaps the simplest example of an application that might round-trip a MathML expression would be an editor
that writes it to a new file without modifications.

Three forms of MathML conformance are specified:

1. A MathML-input-conformant processor must accept all valid MathML expressions; it should appropriately translate all
MathML expressions into application-specific form allowing native application operations to be performed.

2. A MathML-output-conformant processor must generate valid MathML, appropriately representing all application-
specific data.

3. A MathML-round-trip-conformant processor must preserve MathML equivalence. Two MathML expressions are
“equivalent” if and only if both expressions have the same interpretation (as stated by the MathML Schema and
specification) under any relevant circumstances, by any MathML processor. Equivalence on an element-by-element
basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to guide
developers, the MathML specification includes advisory material; for example, there are many recommended rendering rules
throughout 3. Presentation Markup. However, in general, developers are given wide latitude to interpret what kind of
MathML implementation is meaningful for their own particular application.

To clarify the difference between conformance and interpretation of what is meaningful, consider some examples:

1. In order to be MathML-input-conformant, a validating parser needs only to accept expressions, and return “true” for
expressions that are valid MathML. In particular, it need not render or interpret the MathML expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presentation markup.
Provided the interface accepts all valid MathML expressions including those containing presentation markup, it would

D.1 MathML Conformance

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

368 of 434 26/08/2025, 11:30

https://www.w3.org/Math/iandi/compliance
https://www.w3.org/Math/iandi/compliance

be technically correct to characterize the application as MathML-input-conformant.

3. An equation editor might have an internal data representation that makes it easy to export some equations as MathML
but not others. If the editor exports the simple equations as valid MathML, and merely displays an error message to the
effect that conversion failed for the others, it is still technically MathML-output-conformant.

As the previous examples show, to be useful, the concept of MathML conformance frequently involves a judgment about
what parts of the language are meaningfully implemented, as opposed to parts that are merely processed in a technically
correct way with respect to the definitions of conformance. This requires some mechanism for giving a quantitative
statement about which parts of MathML are meaningfully implemented by a given application. To this end, the W3C Math
Working Group has provided a test suite.

The test suite consists of a large number of MathML expressions categorized by markup category and dominant MathML
element being tested. The existence of this test suite makes it possible, for example, to characterize quantitatively the
hypothetical computer algebra interface mentioned above by saying that it is a MathML-input-conformant processor which
meaningfully implements MathML content markup, including all of the expressions in the content markup section of the test
suite.

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged to itemize
the parts they leave out by referring to specific categories in the test suite.

For MathML-output-conformant processors, information about currently available tools to validate MathML is maintained
at the W3C MathML Validator. Developers of MathML-output-conformant processors are encouraged to verify their output
using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are
implemented by an application are encouraged to use the test suites as a part of their decision processes.

MathML 4.0 contains a number of features of earlier MathML which are now deprecated. The following points define what
it means for a feature to be deprecated, and clarify the relation between deprecated features and current MathML
conformance.

1. In order to be MathML-output-conformant, authoring tools may not generate MathML markup containing deprecated
features.

2. In order to be MathML-input-conformant, rendering and reading tools must support deprecated features if they are to
be in conformance with MathML 1.x or MathML 2.x. They do not have to support deprecated features to be considered
in conformance with MathML 4.0. However, all tools are encouraged to support the old forms as much as possible.

3. In order to be MathML-round-trip-conformant, a processor need only preserve MathML equivalence on expressions
containing no deprecated features.

D.1.1 MathML Test Suite and Validator

D.1.2 Deprecated MathML 1.x and MathML 2.x Features

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

369 of 434 26/08/2025, 11:30

https://www.w3.org/Math/testsuite/
https://www.w3.org/Math/testsuite/
https://www.w3.org/Math/validator/
https://www.w3.org/Math/validator/
https://www.w3.org/Math/validator/
https://www.w3.org/Math/validator/

MathML 4.0 defines three basic extension mechanisms: the mglyph element provides a way of displaying glyphs for non-
Unicode characters, and glyph variants for existing Unicode characters; the maction element uses attributes from other
namespaces to obtain implementation-specific parameters; and content markup makes use of the definitionURL attribute,
as well as Content Dictionaries and the cd attribute, to point to external definitions of mathematical semantics.

These extension mechanisms are important because they provide a way of encoding concepts that are beyond the scope of
MathML 4.0 as presently explicitly specified, which allows MathML to be used for exploring new ideas not yet susceptible
to standardization. However, as new ideas take hold, they may become part of future standards. For example, an emerging
character that must be represented by an mglyph element today may be assigned a Unicode code point in the future. At that
time, representing the character directly by its Unicode code point would be preferable. This transition into Unicode has
already taken place for hundreds of characters used for mathematics.

Because the possibility of future obsolescence is inherent in the use of extension mechanisms to facilitate the discussion of
new ideas, MathML can reasonably make no conformance requirements concerning the use of extension mechanisms, even
when alternative standard markup is available. For example, using an mglyph element to represent an 'x' is permitted.
However, authors and implementers are strongly encouraged to use standard markup whenever possible. Similarly,
maintainers of documents employing MathML 4.0 extension mechanisms are encouraged to monitor relevant standards
activity (e.g., Unicode, OpenMath, etc.) and to update documents as more standardized markup becomes available.

If a MathML-input-conformant application receives input containing one or more elements with an illegal number or type of
attributes or child schemata, it should nonetheless attempt to render all the input in an intelligible way, i.e., to render
normally those parts of the input that were valid, and to render error messages (rendered as if enclosed in an merror
element) in place of invalid expressions.

MathML-output-conformant applications such as editors and translators may choose to generate merror expressions to
signal errors in their input. This is usually preferable to generating valid, but possibly erroneous, MathML.

The MathML attributes described in the MathML specification are intended to allow for good presentation and content
markup. However it is never possible to cover all users' needs for markup. Ideally, the MathML attributes should be an
open-ended list so that users can add specific attributes for specific renderers. However, this cannot be done within the
confines of a single XML DTD or in a Schema. Although it can be done using extensions of the standard DTD, say, some
authors will wish to use non-standard attributes to take advantage of renderer-specific capabilities while remaining strictly in
conformance with the standard DTD.

To allow this, the MathML 1.0 specification Mathematical Markup Language (MathML) 1.0 Specification allowed the
attribute other on all elements, for use as a hook to pass on renderer-specific information. In particular, it was intended as a
hook for passing information to audio renderers, computer algebra systems, and for pattern matching in future macro/

D.1.3 MathML Extension Mechanisms and Conformance

D.2 Handling of Errors

D.3 Attributes for unspecified data

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

370 of 434 26/08/2025, 11:30

https://www.w3.org/TR/1998/REC-MathML-19980407/
https://www.w3.org/TR/1998/REC-MathML-19980407/

extension mechanisms. The motivation for this approach to the problem was historical, looking to PostScript, for example,
where comments are widely used to pass information that is not part of PostScript.

In the next period of evolution of MathML the development of a general XML namespace mechanism seemed to make the
use of the other attribute obsolete. In MathML 2.0, the other attribute is deprecated in favor of the use of namespace
prefixes to identify non-MathML attributes. The other attribute has been removed in MathML 4.0. although it is still valid
(with no defined behavior) in the mathml4-legacy schema.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific
implementation for the maction element (3.7.1 Bind Action to Sub-Expression), that information should be passed in using
the other attribute:

<maction actiontype="highlight" other="color='#ff0000'"> expression </maction>

From MathML 4.0 onwards, a data-* attribute could be used:

<body>
 ...
<maction actiontype="highlight" data-color="#ff0000"> expression </maction>

 ...
</body>

Note that the intent of allowing non-standard attributes is not to encourage software developers to use this as a loophole for
circumventing the core conventions for MathML markup. Authors and applications should use non-standard attributes
judiciously.

Web platform implementations of MathML should implement [MathML-Core], and so the Privacy Considerations specified
there apply.

Web platform implementations of MathML should implement [MathML-Core], and so the Security Considerations specified
there apply.

In some situations, MathML expressions can be parsed as XML. The security considerations of XML parsing apply then as
explained in [RFC7303].

D.4 Privacy Considerations

D.5 Security Considerations

E. The Content MathML Operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

371 of 434 26/08/2025, 11:30

https://www.w3.org/TR/mathml-core/#privacy-considerations
https://www.w3.org/TR/mathml-core/#privacy-considerations
https://www.w3.org/TR/mathml-core/#security-considerations
https://www.w3.org/TR/mathml-core/#security-considerations

The following tables summarize key syntax information about the Content MathML operator elements.

The following table gives the child element syntax for container elements that correspond to constructor symbols. See 4.3.1
Container Markup for details and examples.

The Name of the element is in the first column, and provides a link to the section that describes the constructor.

The Content column gives the child elements that may be contained within the constructor.

Name Content

set ContExp*
list ContExp*
vector ContExp*
matrix ContExp*
matrixrow ContExp*
lambda ContExp
interval ContExp,ContExp
piecewise piece*, otherwise?
piece ContExp,ContExp
otherwise ContExp

The following table lists the attributes that may be supplied on specific operator elements. In addition, all operator elements
allow the CommonAtt and DefEncAtt attributes.

The Name of the element is in the first column, and provides a link to the section that describes the operator.

The Attribute column specifies the name of the attribute that may be supplied on the operator element.

The Values column specifies the values that may be supplied for the attribute specific to the operator element.

Name Attribute Values

tendsto type? string
interval closure? open | closed | open-closed | closed-open
set type? set | multiset | text
list order numeric | lexicographic

The Name of the element is in the first column, and provides a link to the section that describes the operator.

The Symbol(s) column provides a list of csymbols that may be used to encode the operator, with links to the OpenMath

E.1 The Content MathML Constructors

E.2 The Content MathML Attributes

E.3 The Content MathML Operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

372 of 434 26/08/2025, 11:30

symbols used in the Strict Content MathML Transformation Algorithm.

The Class column specifies the operator class, which indicates how many arguments the operator expects, and may
determine the mapping to Strict Content MathML, as described in 4.3.4 Operator Classes.

The Qualifiers column lists the qualifier elements accepted by the operator, either as child elements (for container elements)
or as following sibling elements (for empty operator elements).

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

373 of 434 26/08/2025, 11:30

Name Symbol(s) Class Qualifiers

plus plus nary-arith BvarQ,DomainQ
times times nary-arith BvarQ,DomainQ
gcd gcd nary-arith BvarQ,DomainQ
lcm lcm nary-arith BvarQ,DomainQ

compose left_compose nary-functional BvarQ,DomainQ

and and nary-logical BvarQ,DomainQ
or or nary-logical BvarQ,DomainQ
xor xor nary-logical BvarQ,DomainQ

selector vector_selector, matrix_selector nary-linalg

union union nary-set BvarQ,DomainQ
intersect intersect nary-set BvarQ,DomainQ
cartesianproduct cartesian_product nary-set BvarQ,DomainQ

vector vector nary-constructor BvarQ,DomainQ
matrix matrix nary-constructor BvarQ,DomainQ
matrixrow matrixrow nary-constructor BvarQ,DomainQ

eq eq nary-reln BvarQ,DomainQ
gt gt nary-reln BvarQ,DomainQ
lt lt nary-reln BvarQ,DomainQ
geq geq nary-reln BvarQ,DomainQ
leq leq nary-reln BvarQ,DomainQ

subset subset nary-set-reln
prsubset prsubset nary-set-reln

max max nary-minmax BvarQ,DomainQ
min min nary-minmax BvarQ,DomainQ

mean mean, mean nary-stats BvarQ,DomainQ
median median nary-stats BvarQ,DomainQ
mode mode nary-stats BvarQ,DomainQ
sdev sdev, sdev nary-stats BvarQ,DomainQ
variance variance, variance nary-stats BvarQ,DomainQ

quotient quotient binary-arith
divide divide binary-arith
minus minus unary_minus, minus unary-arith, binary-arith
power power binary-arith
rem remainder binary-arith
root root root unary-arith, binary-arith degree

implies implies binary-logical
equivalent equivalent binary-logical BvarQ,DomainQ

neq neq binary-reln
approx approx binary-reln
factorof factorof binary-reln
tendsto limit binary-reln

vectorproduct vectorproduct binary-linalg
scalarproduct scalarproduct binary-linalg
outerproduct outerproduct binary-linalg

in in binary-set
notin notin binary-set
notsubset notsubset binary-set
notprsubset notprsubset binary-set
setdiff setdiff, setdiff binary-set

not not unary-logical

factorial factorial unary-arith
minus minus unary_minus, minus unary-arith, binary-arith
root root root unary-arith, binary-arith degree
abs abs unary-arith
conjugate conjugate unary-arith

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

374 of 434 26/08/2025, 11:30

https://openmath.org/cd/arith1#plus
https://openmath.org/cd/arith1#plus
https://openmath.org/cd/arith1#times
https://openmath.org/cd/arith1#times
https://openmath.org/cd/arith1#gcd
https://openmath.org/cd/arith1#gcd
https://openmath.org/cd/arith1#lcm
https://openmath.org/cd/arith1#lcm
https://openmath.org/cd/fns1#left_compose
https://openmath.org/cd/fns1#left_compose
https://openmath.org/cd/logic1#and
https://openmath.org/cd/logic1#and
https://openmath.org/cd/logic1#or
https://openmath.org/cd/logic1#or
https://openmath.org/cd/logic1#xor
https://openmath.org/cd/logic1#xor
https://openmath.org/cd/linalg1#vector_selector
https://openmath.org/cd/linalg1#vector_selector
https://openmath.org/cd/linalg1#matrix_selector
https://openmath.org/cd/linalg1#matrix_selector
https://openmath.org/cd/set1#union
https://openmath.org/cd/set1#union
https://openmath.org/cd/set1#intersect
https://openmath.org/cd/set1#intersect
https://openmath.org/cd/set1#cartesian_product
https://openmath.org/cd/set1#cartesian_product
https://openmath.org/cd/linalg2#vector
https://openmath.org/cd/linalg2#vector
https://openmath.org/cd/linalg2#matrix
https://openmath.org/cd/linalg2#matrix
https://openmath.org/cd/linalg2#matrixrow
https://openmath.org/cd/linalg2#matrixrow
https://openmath.org/cd/relation1#eq
https://openmath.org/cd/relation1#eq
https://openmath.org/cd/relation1#gt
https://openmath.org/cd/relation1#gt
https://openmath.org/cd/relation1#lt
https://openmath.org/cd/relation1#lt
https://openmath.org/cd/relation1#geq
https://openmath.org/cd/relation1#geq
https://openmath.org/cd/relation1#leq
https://openmath.org/cd/relation1#leq
https://openmath.org/cd/set1#subset
https://openmath.org/cd/set1#subset
https://openmath.org/cd/set1#prsubset
https://openmath.org/cd/set1#prsubset
https://openmath.org/cd/minmax1#max
https://openmath.org/cd/minmax1#max
https://openmath.org/cd/minmax1#min
https://openmath.org/cd/minmax1#min
https://openmath.org/cd/s_dist1#mean
https://openmath.org/cd/s_dist1#mean
https://openmath.org/cd/s_data1#mean
https://openmath.org/cd/s_data1#mean
https://openmath.org/cd/s_data1#median
https://openmath.org/cd/s_data1#median
https://openmath.org/cd/s_data1#mode
https://openmath.org/cd/s_data1#mode
https://openmath.org/cd/s_dist1#sdev
https://openmath.org/cd/s_dist1#sdev
https://openmath.org/cd/s_data1#sdev
https://openmath.org/cd/s_data1#sdev
https://openmath.org/cd/s_dist1#variance
https://openmath.org/cd/s_dist1#variance
https://openmath.org/cd/s_data1#variance
https://openmath.org/cd/s_data1#variance
https://openmath.org/cd/integer1#quotient
https://openmath.org/cd/integer1#quotient
https://openmath.org/cd/arith1#divide
https://openmath.org/cd/arith1#divide
https://openmath.org/cd/arith1#unary_minus
https://openmath.org/cd/arith1#unary_minus
https://openmath.org/cd/arith1#minus
https://openmath.org/cd/arith1#minus
https://openmath.org/cd/arith1#power
https://openmath.org/cd/arith1#power
https://openmath.org/cd/integer1#remainder
https://openmath.org/cd/integer1#remainder
https://openmath.org/cd/arith1#root
https://openmath.org/cd/arith1#root
https://openmath.org/cd/logic1#implies
https://openmath.org/cd/logic1#implies
https://openmath.org/cd/logic1#equivalent
https://openmath.org/cd/logic1#equivalent
https://openmath.org/cd/relation1#neq
https://openmath.org/cd/relation1#neq
https://openmath.org/cd/relation1#approx
https://openmath.org/cd/relation1#approx
https://openmath.org/cd/integer1#factorof
https://openmath.org/cd/integer1#factorof
https://openmath.org/cd/limit1#limit
https://openmath.org/cd/limit1#limit
https://openmath.org/cd/linalg1#vectorproduct
https://openmath.org/cd/linalg1#vectorproduct
https://openmath.org/cd/linalg1#scalarproduct
https://openmath.org/cd/linalg1#scalarproduct
https://openmath.org/cd/linalg1#outerproduct
https://openmath.org/cd/linalg1#outerproduct
https://openmath.org/cd/set1#in
https://openmath.org/cd/set1#in
https://openmath.org/cd/set1#notin
https://openmath.org/cd/set1#notin
https://openmath.org/cd/set1#notsubset
https://openmath.org/cd/set1#notsubset
https://openmath.org/cd/set1#notprsubset
https://openmath.org/cd/set1#notprsubset
https://openmath.org/cd/set1#setdiff
https://openmath.org/cd/set1#setdiff
https://openmath.org/cd/multiset1#setdiff
https://openmath.org/cd/multiset1#setdiff
https://openmath.org/cd/logic1#not
https://openmath.org/cd/logic1#not
https://openmath.org/cd/integer1#factorial
https://openmath.org/cd/integer1#factorial
https://openmath.org/cd/arith1#unary_minus
https://openmath.org/cd/arith1#unary_minus
https://openmath.org/cd/arith1#minus
https://openmath.org/cd/arith1#minus
https://openmath.org/cd/arith1#root
https://openmath.org/cd/arith1#root
https://openmath.org/cd/arith1#abs
https://openmath.org/cd/arith1#abs
https://openmath.org/cd/complex1#conjugate
https://openmath.org/cd/complex1#conjugate

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

375 of 434 26/08/2025, 11:30

MathML assigns semantics to content markup by defining a mapping to Strict Content MathML. Strict MathML, in turn, is
in one-to-one correspondence with OpenMath, and the subset of OpenMath expressions obtained from content MathML
expressions in this fashion all have well-defined semantics via the standard OpenMath Content Dictionary set.
Consequently, the mapping of arbitrary content MathML expressions to equivalent Strict Content MathML plays a key role
in underpinning the meaning of content MathML.

The mapping of arbitrary content MathML into Strict content MathML is defined algorithmically. The algorithm is
described below as a collection of rewrite rules applying to specific non-Strict constructions. The individual rewrite
transformations are described in the following subsections. The goal of this section is to outline the complete algorithm in
one place.

The algorithm is a sequence of nine steps. Each step is applied repeatedly to rewrite the input until no further application is
possible. Note that in many programming languages, such as XSLT, the natural implementation is as a recursive algorithm,
rather than the multi-pass implementation suggested by the description below. The translation to XSL is straightforward and
produces the same eventual Strict Content MathML. However, because the overall structure of the multi-pass algorithm is
clearer, that is the formulation given here.

To transform an arbitrary content MathML expression into Strict Content MathML, apply each of the following rules in turn
to the input expression until all instances of the target constructs have been eliminated:

1. Rewrite non-strict bind and eliminate deprecated elements: Change the outer bind tags in binding expressions to
apply if they have qualifiers or multiple children. This simplifies the algorithm by allowing the subsequent rules to be
applied to non-strict binding expressions without case distinction. Note that the later rules will change the apply
elements introduced in this step back to bind elements.

2. Apply special case rules for idiomatic uses of qualifiers:

F. The Strict Content MathML Transformation

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

376 of 434 26/08/2025, 11:30

1. Rewrite derivatives with rules Rewrite: diff, Rewrite: nthdiff, and Rewrite: partialdiffdegree to explicate the
binding status of the variables involved.

2. Rewrite integrals with the rules Rewrite: int, Rewrite: defint and Rewrite: defint limits to disambiguate the status
of bound and free variables and of the orientation of the range of integration if it is given as a lowlimit/uplimit
pair.

3. Rewrite limits as described in Rewrite: tendsto and Rewrite: limits condition.

4. Rewrite sums and products as described in 4.3.5.2 N-ary Sum <sum/> and 4.3.5.3 N-ary Product <product/>.

5. Rewrite roots as described in F.2.5 Roots.

6. Rewrite logarithms as described in F.2.6 Logarithms.

7. Rewrite moments as described in F.2.7 Moments.

3. Rewrite Qualifiers to domainofapplication: These rules rewrite all apply constructions using bvar and qualifiers
to those using only the general domainofapplication qualifier.

1. Intervals: Rewrite qualifiers given as interval and lowlimit/uplimit to intervals of integers via Rewrite:
interval qualifier.

2. Multiple conditions: Rewrite multiple condition qualifiers to a single one by taking their conjunction. The
resulting compound condition is then rewritten to domainofapplication according to rule Rewrite:
condition.

3. Multiple domainofapplications: Rewrite multiple domainofapplication qualifiers to a single one by
taking the intersection of the specified domains.

4. Normalize Container Markup:

1. Rewrite sets and lists by the rule Rewrite: n-ary setlist domainofapplication.

2. Rewrite interval, vectors, matrices, and matrix rows as described in F.3.1 Intervals, 4.3.5.8 N-ary Matrix
Constructors: <vector/>, <matrix/>, <matrixrow/>. Note any qualifiers will have been rewritten to
domainofapplication and will be further rewritten in Step 6.

3. Rewrite lambda expressions by the rules Rewrite: lambda and Rewrite: lambda domainofapplication.

4. Rewrite piecewise functions as described in 4.3.10.5 Piecewise declaration <piecewise>, <piece>,
<otherwise>.

5. Apply Special Case Rules for Operators using domainofapplication Qualifiers: This step deals with the special
cases for the operators introduced in 4.3 Content MathML for Specific Structures. There are different classes of special
cases to be taken into account:

1. Rewrite min, max, mean and similar n-ary/unary operators by the rules Rewrite: n-ary unary set, Rewrite: n-ary
unary domainofapplication and Rewrite: n-ary unary single.

2. Rewrite the quantifiers forall and exists used with domainofapplication to expressions using implication
and conjunction by the rule Rewrite: quantifier.

3. Rewrite integrals used with a domainofapplication element (with or without a bvar) according to the rules

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

377 of 434 26/08/2025, 11:30

Rewrite: int and Rewrite: defint.

4. Rewrite sums and products used with a domainofapplication element (with or without a bvar) as described
in 4.3.5.2 N-ary Sum <sum/> and 4.3.5.3 N-ary Product <product/>.

6. Eliminate domainofapplication: At this stage, any apply has at most one domainofapplication child and
special cases have been addressed. As domainofapplication is not Strict Content MathML, it is rewritten

1. into an application of a restricted function via the rule Rewrite: restriction if the apply does not contain a bvar
child.

2. into an application of the predicate_on_list symbol via the rules Rewrite: n-ary relations and Rewrite: n-ary
relations bvar if used with a relation.

3. into a construction with the apply_to_list symbol via the general rule Rewrite: n-ary domainofapplication for
general n-ary operators.

4. into a construction using the suchthat symbol from the set1 content dictionary in an apply with bound variables
via the Rewrite: apply bvar domainofapplication rule.

7. Rewrite non-strict token elements:

1. Rewrite numbers represented as cn elements where the type attribute is one of e-notation, rational,
complex-cartesian, complex-polar, constant as strict cn via rules Rewrite: cn sep, Rewrite: cn
based_integer and Rewrite: cn constant.

2. Rewrite any ci, csymbol or cn containing presentation MathML to semantics elements with rules Rewrite: cn
presentation mathml and Rewrite: ci presentation mathml and the analogous rule for csymbol.

8. Rewrite operators: Rewrite any remaining operator defined in 4.3 Content MathML for Specific Structures to a
csymbol referencing the symbol identified in the syntax table by the rule Rewrite: element. As noted in the
descriptions of each operator element, some require special case rules to determine the proper choice of symbol. Some
cases of particular note are:

1. The order of the arguments for the selector operator must be rewritten, and the symbol depends on the type of
the arguments.

2. The choice of symbol for the minus operator depends on the number of the arguments, minus or minus.

3. The choice of symbol for some set operators depends on the values of the type of the arguments.

4. The choice of symbol for some statistical operators depends on the values of the types of the arguments.

9. Rewrite non-strict attributes:

1. Rewrite the type attribute: At this point, all elements that accept the type, other than ci and csymbol, should
have been rewritten into Strict Content Markup equivalents without type attributes, where type information is
reflected in the choice of operator symbol. Now rewrite remaining ci and csymbol elements with a type
attribute to a strict expression with semantics according to rules Rewrite: ci type annotation and Rewrite:
csymbol type annotation.

2. Rewrite definitionURL and encoding attributes: If the definitionURL and encoding attributes on a
csymbol element can be interpreted as a reference to a content dictionary (see 4.2.3.2 Non-Strict uses of

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

378 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns2#predicate_on_list
https://openmath.org/cd/fns2#predicate_on_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/set1#suchthat
https://openmath.org/cd/set1#suchthat
https://openmath.org/cd/set1
https://openmath.org/cd/set1

<csymbol> for details), then rewrite to reference the content dictionary by the cd attribute instead.

3. Rewrite attributes: Rewrite any element with attributes that are not allowed in strict markup to a semantics
construction with the element without these attributes as the first child and the attributes in annotation elements
by rule Rewrite: attributes.

As described in 4.2.6 Bindings and Bound Variables <bind> and <bvar>, the strict form for the bind element does not
allow qualifiers, and only allows one non-bvar child element.

Replace the bind tag in each binding expression with apply if it has qualifiers or multiple non-bvar child elements.

This step allows subsequent rules that modify non-strict binding expressions using apply to be used for non-strict binding
expressions using bind without the need for a separate case.

Later rules will change these non-strict binding expressions using apply back to strict binding expressions using bind
elements.

Apply special case rules for idiomatic uses of qualifiers.

Rewrite derivatives using the rules Rewrite: diff, Rewrite: nthdiff, and Rewrite: partialdiffdegree to make the binding status
of the variables explicit.

For a differentiation operator it is crucial to realize that in the expression case, the variable is actually not bound by the
differentiation operator.

Rewrite: diff

Translate an expression

<apply><diff/>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</apply>

where <ci>expression-in-x</ci> is an expression in the variable x to the expression

F.1 Rewrite non-strict bind

F.2 Rewrite idiomatic qualifiers

F.2.1 Derivatives

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

379 of 434 26/08/2025, 11:30

<apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>E</ci>

</bind>
</apply>
<ci>x</ci>

</apply>

Note that the differentiated function is applied to the variable x making its status as a free variable explicit in strict
markup. Thus the strict equivalent of

<apply><diff/>
<bvar><ci>x</ci></bvar>
<apply><sin/><ci>x</ci></apply>

</apply>

is

<apply>
<apply><csymbol cd="calculus1">diff</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>
</apply>
<ci>x</ci>

</apply>

If the bvar element contains a degree element, use the nthdiff symbol.

Rewrite: nthdiff

<apply><diff/>
<bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
<ci>expression-in-x</ci>

</apply>

where <ci>expression-in-x</ci> is an expression in the variable x is translated to the expression

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

380 of 434 26/08/2025, 11:30

<apply>
<apply><csymbol cd="calculus1">nthdiff</csymbol>
<ci>n</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
</apply>
<ci>x</ci>

</apply>

For example

<apply><diff/>
<bvar><degree><cn>2</cn></degree><ci>x</ci></bvar>
<apply><sin/><ci>x</ci></apply>

</apply>

Strict Content MathML equivalent

<apply>
<apply><csymbol cd="calculus1">nthdiff</csymbol>
<cn>2</cn>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>
</apply>
<ci>x</ci>

</apply>

When applied to a function, the partialdiff element corresponds to the partialdiff symbol from the calculus1 content
dictionary. No special rules are necessary as the two arguments of partialdiff translate directly to the two arguments of
partialdiff.

Rewrite: partialdiffdegree

If partialdiff is used with an expression and bvar qualifiers it is rewritten to Strict Content MathML using the
partialdiffdegree symbol.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

381 of 434 26/08/2025, 11:30

https://openmath.org/cd/calculus1#partialdiff
https://openmath.org/cd/calculus1#partialdiff
https://openmath.org/cd/calculus1
https://openmath.org/cd/calculus1
https://openmath.org/cd/calculus1#partialdiff
https://openmath.org/cd/calculus1#partialdiff
https://openmath.org/cd/calculus1#partialdiffdegree
https://openmath.org/cd/calculus1#partialdiffdegree

<apply><partialdiff/>
<bvar><ci>x1</ci><degree><ci>n1</ci></degree></bvar>
<bvar><ci>xk</ci><degree><ci>nk</ci></degree></bvar>
<degree><ci>total-n1-nk</ci></degree>
<ci>expression-in-x1-xk</ci>

</apply>

where <ci>expression-in-x1-xk</ci> is an arbitrary expression involving the bound variables.

<apply>
<apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
<apply><csymbol cd="list1">list</csymbol>
<ci>n1</ci> <ci>nk</ci>

</apply>
<ci>total-n1-nk</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x1</ci></bvar>
<bvar><ci>xk</ci></bvar>
<ci>expression-in-x1-xk</ci>

</bind>
</apply>
<ci>x1</ci>
<ci>xk</ci>

</apply>

If any of the bound variables do not use a degree qualifier, <cn>1</cn> should be used in place of the degree. If the
original expression did not use the total degree qualifier then the second argument to partialdiffdegree should be the sum
of the degrees. For example

<apply><csymbol cd="arith1">plus</csymbol>
<ci>n1</ci> <ci>nk</ci>

</apply>

With this rule, the expression

<apply><partialdiff/>
<bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
<bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>
<apply><sin/>
<apply><times/><ci>x</ci><ci>y</ci></apply>

</apply>
</apply>

is translated into

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

382 of 434 26/08/2025, 11:30

https://openmath.org/cd/calculus1#partialdiffdegree
https://openmath.org/cd/calculus1#partialdiffdegree

<apply>
<apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
<apply><csymbol cd="list1">list</csymbol>
<ci>n</ci><ci>m</ci>

</apply>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>n</ci><ci>m</ci>

</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="transc1">sin</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>x</ci><ci>y</ci>

</apply>
</apply>

</bind>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

Rewrite integrals using the rules Rewrite: int, Rewrite: defint and Rewrite: defint limits to disambiguate the status of bound
and free variables and of the orientation of the range of integration if it is given as a lowlimit/uplimit pair.

As an indefinite integral applied to a function, the int element corresponds to the int symbol from the calculus1 content
dictionary. As a definite integral applied to a function, the int element corresponds to the defint symbol from the calculus1
content dictionary.

When no bound variables are present, the translation of an indefinite integral to Strict Content Markup is straight forward.
When bound variables are present, the following rule should be used.

Rewrite: int

Translate an indefinite integral, where <ci>expression-in-x</ci> is an arbitrary expression involving the bound
variable(s) <ci>x</ci>

<apply><int/>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</apply>

to the expression

F.2.2 Integrals

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

383 of 434 26/08/2025, 11:30

https://openmath.org/cd/calculus1#int
https://openmath.org/cd/calculus1#int
https://openmath.org/cd/calculus1
https://openmath.org/cd/calculus1
https://openmath.org/cd/calculus1#defint
https://openmath.org/cd/calculus1#defint
https://openmath.org/cd/calculus1
https://openmath.org/cd/calculus1

<apply>
<apply><csymbol cd="calculus1">int</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
</apply>
<ci>x</ci>

</apply>

Note that as x is not bound in the original indefinite integral, the integrated function is applied to the variable x making it
an explicit free variable in Strict Content Markup expression, even though it is bound in the subterm used as an argument
to int.

For instance, the expression

<apply><int/>
<bvar><ci>x</ci></bvar>
<apply><cos/><ci>x</ci></apply>

</apply>

has the Strict Content MathML equivalent

<apply>
<apply><csymbol cd="calculus1">int</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><cos/><ci>x</ci></apply>

</bind>
</apply>
<ci>x</ci>

</apply>

For a definite integral without bound variables, the translation is also straightforward.

For instance, the integral of a differential form f over an arbitrary domain C represented as

<apply><int/>
<domainofapplication><ci>C</ci></domainofapplication>
<ci>f</ci>

</apply>

is equivalent to the Strict Content MathML:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

384 of 434 26/08/2025, 11:30

https://openmath.org/cd/calculus1#int
https://openmath.org/cd/calculus1#int

<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>

Note, however, the additional remarks on the translations of other kinds of qualifiers that may be used to specify a domain
of integration in the rules for definite integrals following.

When bound variables are present, the situation is more complicated in general, and the following rules are used.

Rewrite: defint

Translate a definite integral, where <ci>expression-in-x</ci> is an arbitrary expression involving the bound
variable(s) <ci>x</ci>

<apply><int/>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>expression-in-x</ci>

</apply>

to the expression

<apply><csymbol cd="calculus1">defint</csymbol>
<ci>D</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
</apply>

But the definite integral with a lowlimit/uplimit pair carries the strong intuition that the range of integration is oriented,
and thus swapping lower and upper limits will change the sign of the result. To accommodate this, use the following special
translation rule:

Rewrite: defint limits

<apply><int/>
<bvar><ci>x</ci></bvar>
<lowlimit><ci>a</ci></lowlimit>
<uplimit><ci>b</ci></uplimit>
<ci>expression-in-x</ci>

</apply>

where <ci>expression-in-x</ci> is an expression in the variable x is translated to the expression:

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

385 of 434 26/08/2025, 11:30

<apply><csymbol cd="calculus1">defint</csymbol>
<apply><csymbol cd="interval1">oriented_interval</csymbol>
<ci>a</ci> <ci>b</ci>

</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
</apply>

The oriented_interval symbol is also used when translating the interval qualifier, when it is used to specify the domain
of integration. Integration is assumed to proceed from the left endpoint to the right endpoint.

The case for multiple integrands is treated analogously.

Note that use of the condition qualifier also requires special treatment. In particular, it extends to multivariate domains
by using extra bound variables and a domain corresponding to a cartesian product as in:

<bind><int/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<condition>
<apply><and/>
<apply><leq/><cn>0</cn><ci>x</ci></apply>
<apply><leq/><ci>x</ci><cn>1</cn></apply>
<apply><leq/><cn>0</cn><ci>y</ci></apply>
<apply><leq/><ci>y</ci><cn>1</cn></apply>

</apply>
</condition>
<apply><times/>
<apply><power/><ci>x</ci><cn>2</cn></apply>
<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>
</bind>

Strict Content MathML equivalent

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

386 of 434 26/08/2025, 11:30

https://openmath.org/cd/interval1#oriented_interval
https://openmath.org/cd/interval1#oriented_interval

<apply><csymbol cd="calculus1">defint</csymbol>
<apply><csymbol cd="set1">suchthat</csymbol>
<apply><csymbol cd="set1">cartesianproduct</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>

</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
<apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>
<apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>
<apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>

</apply>
<bind><csymbol cd="fns11">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>
<apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>

</apply>
</bind>

</apply>
</apply>

Rewrite limits using the rules Rewrite: tendsto and Rewrite: limits condition.

The usage of tendsto to qualify a limit is formally defined by writing the expression in Strict Content MathML via the rule
Rewrite: limits condition. The meanings of other more idiomatic uses of tendsto are not formally defined by this
specification. When rewriting these cases to Strict Content MathML, tendsto should be rewritten to an annotated identifier
as shown below.

Rewrite: tendsto

<tendsto/>

Strict Content MathML equivalent

<semantics>
<ci>tendsto</ci>
<annotation-xml encoding="MathML-Content">
<tendsto/>

</annotation-xml>
</semantics>

F.2.3 Limits

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

387 of 434 26/08/2025, 11:30

Rewrite: limits condition

<apply><limit/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><tendsto/><ci>x</ci><cn>0</cn></apply>

</condition>
<ci>expression-in-x</ci>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="limit1">limit</csymbol>
<cn>0</cn>
<csymbol cd="limit1">null</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
</apply>

where <ci>expression-in-x</ci> is an arbitrary expression involving the bound variable(s), and the choice of
symbol, null, depends on the type attribute of the tendsto element as described in 4.3.10.4 Limits <limit/>.

Rewrite sums and products as described in 4.3.5.2 N-ary Sum <sum/> and 4.3.5.3 N-ary Product <product/>.

When no explicit bound variables are used, no special rules are required to rewrite sums as Strict Content beyond the
generic rules for rewriting expressions using qualifiers. However, when bound variables are used, it is necessary to introduce
a lambda construction to rewrite the expression in the bound variables as a function.

Content MathML

<apply><sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

Strict Content MathML equivalent

F.2.4 Sums and Products

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

388 of 434 26/08/2025, 11:30

https://openmath.org/cd/limit1#null
https://openmath.org/cd/limit1#null

<apply><csymbol cd="arith1">sum</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn>0</cn>
<cn>100</cn>

</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>

</bind>
</apply>

When no explicit bound variables are used, no special rules are required to rewrite products as Strict Content beyond the
generic rules for rewriting expressions using qualifiers. However, when bound variables are used, it is necessary to introduce
a lambda construction to rewrite the expression in the bound variables as a function.

Content MathML

<apply><product/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">product</csymbol>
<apply><csymbol cd="interval1">integer_interval</csymbol>
<cn>0</cn>
<cn>100</cn>

</apply>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>

</bind>
</apply>

Rewrite roots as described in F.2.5 Roots.

In Strict Content markup, the root symbol is always used with two arguments, with the second indicating the degree of the
root being extracted.

F.2.5 Roots

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

389 of 434 26/08/2025, 11:30

https://openmath.org/cd/arith1#root
https://openmath.org/cd/arith1#root

Content MathML

<apply><root/><ci>x</ci></apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">root</csymbol>
<ci>x</ci>
<cn type="integer">2</cn>

</apply>

Content MathML

<apply><root/>
<degree><ci type="integer">n</ci></degree>
<ci>a</ci>

</apply>

Strict Content MathML equivalent

<apply><csymbol cd="arith1">root</csymbol>
<ci>a</ci>
<cn type="integer">n</cn>

</apply>

Rewrite logarithms as described in 4.3.7.9 Logarithm <log/> , <logbase>.

When mapping log to Strict Content, one uses the log symbol denoting the function that returns the log of its second
argument with respect to the base specified by the first argument. When logbase is present, it determines the base.
Otherwise, the default base of 10 must be explicitly provided in Strict markup. See the following example.

F.2.6 Logarithms

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

390 of 434 26/08/2025, 11:30

https://openmath.org/cd/transc1#log
https://openmath.org/cd/transc1#log

<apply><plus/>
<apply>
<log/>
<logbase><cn>2</cn></logbase>
<ci>x</ci>

</apply>
<apply>
<log/>
<ci>y</ci>

</apply>
</apply>

Strict Content MathML equivalent:

<apply>
<csymbol cd="arith1">plus</csymbol>
<apply>
<csymbol cd="transc1">log</csymbol>
<cn>2</cn>
<ci>x</ci>

</apply>
<apply>
<csymbol cd="transc1">log</csymbol>
<cn>10</cn>
<ci>y</ci>

</apply>
</apply>

Rewrite moments as described in 4.3.7.8 Moment <moment/>, <momentabout>.

When rewriting to Strict Markup, the moment symbol from the s_data1 content dictionary is used when the moment
element is applied to an explicit list of arguments. When it is applied to a distribution, then the moment symbol from the
s_dist1 content dictionary should be used. Both operators take the degree as the first argument, the point as the second,
followed by the data set or random variable respectively.

<apply><moment/>
<degree><cn>3</cn></degree>
<momentabout><ci>p</ci></momentabout>
<ci>X</ci>

</apply>

Strict Content MathML equivalent

F.2.7 Moments

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

391 of 434 26/08/2025, 11:30

https://openmath.org/cd/s_dist1#moment
https://openmath.org/cd/s_dist1#moment
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_dist1#moment
https://openmath.org/cd/s_dist1#moment
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_dist1

<apply><csymbol cd="s_dist1">moment</csymbol>
<cn>3</cn>
<ci>p</ci>
<ci>X</ci>

</apply>

Rewrite Qualifiers to domainofapplication. These rules rewrite all apply constructions using bvar and qualifiers to
those using only the general domainofapplication qualifier.

Rewrite qualifiers given as interval and lowlimit/uplimit to intervals of integers via Rewrite: interval qualifier.

F.3 Rewrite to domainofapplication

F.3.1 Intervals

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

392 of 434 26/08/2025, 11:30

Rewrite: interval qualifier

<apply><ci>H</ci>
<bvar><ci>x</ci></bvar>
<lowlimit><ci>a</ci></lowlimit>
<uplimit><ci>b</ci></uplimit>
<ci>C</ci>

</apply>

<apply><ci>H</ci>
<bvar><ci>x</ci></bvar>
<domainofapplication>
<apply><csymbol cd="interval1">interval</csymbol>
<ci>a</ci>
<ci>b</ci>

</apply>
</domainofapplication>
<ci>C</ci>

</apply>

The symbol used in this translation depends on the head of the application, denoted by <ci>H</ci> here. By default
interval should be used, unless the semantics of the head term can be determined and indicate a more specific interval
symbol. In particular, several predefined Content MathML elements should be used with more specific interval symbols.
If the head is int then oriented_interval is used. When the head term is sum or product, integer_interval should be used.

The above technique for replacing lowlimit and uplimit qualifiers with a domainofapplication element is also
used for replacing the interval qualifier. Note that interval is only interpreted as a qualifier if it immediately follows
bvar. In other contexts interval is interpreted as a constructor, F.4.2 Intervals, vectors, matrices.

Rewrite multiple condition qualifiers to a single one by taking their conjunction. The resulting compound condition is
then rewritten to domainofapplication according to rule Rewrite: condition.

The condition qualifier restricts a bound variable by specifying a Boolean-valued expression on a larger domain,
specifying whether a given value is in the restricted domain. The condition element contains a single child that represents
the truth condition. Compound conditions are formed by applying Boolean operators such as and in the condition.

Rewrite: condition

To rewrite an expression using the condition qualifier as one using domainofapplication,

<bvar><ci>x1</ci></bvar>
<bvar><ci>xn</ci></bvar>
<condition><ci>P</ci></condition>

F.3.2 Multiple conditions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

393 of 434 26/08/2025, 11:30

https://openmath.org/cd/interval1#interval
https://openmath.org/cd/interval1#interval
https://openmath.org/cd/interval1#oriented_interval
https://openmath.org/cd/interval1#oriented_interval
https://openmath.org/cd/interval1#integer_interval
https://openmath.org/cd/interval1#integer_interval

is rewritten to

<bvar><ci>x1</ci></bvar>
<bvar><ci>xn</ci></bvar>
<domainofapplication>
<apply><csymbol cd="set1">suchthat</csymbol>
<ci>R</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x1</ci></bvar>
<bvar><ci>xn</ci></bvar>
<ci>P</ci>

</bind>
</apply>

</domainofapplication>

If the apply has a domainofapplication (perhaps originally expressed as interval or an uplimit/lowlimit pair)
then that is used for <ci>R</ci>. Otherwise <ci>R</ci> is a set determined by the type attribute of the bound
variable as specified in 4.2.2.2 Non-Strict uses of <ci>, if that is present. If the type is unspecified, the translation
introduces an unspecified domain via content identifier <ci>R</ci>.

Rewrite multiple domainofapplication qualifiers to a single one by taking the intersection of the specified domains.

Rewrite sets and lists by the rule Rewrite: n-ary setlist domainofapplication.

The use of set and list follows the same format as other n-ary constructors, however when rewriting to Strict Content
MathML a variant of the usual rule is used, since the map symbol implicitly constructs the required set or list, and
apply_to_list is not needed in this case.

The elements representing these n-ary operators are specified in the schema pattern nary-setlist-constructor.class.

If the argument list is given explicitly, the Rewrite: element rule applies.

When qualifiers are used to specify the list of arguments, the following rule is used.

Rewrite: n-ary setlist domainofapplication

An expression of the following form, where <set/> is either of the elements set or list and <ci>expression-in-
x</ci> is an arbitrary expression involving the bound variable(s)

F.3.3 Multiple domainofapplications

F.4 Normalize container markup

F.4.1 Sets and Lists

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

394 of 434 26/08/2025, 11:30

https://openmath.org/cd/set1#map
https://openmath.org/cd/set1#map
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list

<set>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>expression-in-x</ci>

</set>

is rewritten to

<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
<ci>D</ci>

</apply>

Note that when <ci>D</ci> is already a set or list of the appropriate type for the container element, and the lambda
function created from <ci>expression-in-x</ci> is the identity, the entire container element should be rewritten
directly as <ci>D</ci>.

In the case of set, the choice of Content Dictionary and symbol depends on the value of the type attribute of the
arguments. By default the set symbol is used, but if one of the arguments has type attribute with value multiset, the
multiset symbol is used. If there is a type attribute with value other than set or multiset the set symbol should be used,
and the arguments should be annotated with their type by rewriting the type attribute using the rule Rewrite: attributes.

Rewrite interval, vectors, matrices, and matrix rows as described in F.3.1 Intervals, 4.3.5.8 N-ary Matrix Constructors:
<vector/>, <matrix/>, <matrixrow/>. Note any qualifiers will have been rewritten to domainofapplication and
will be further rewritten in a later step.

In Strict markup, the interval element corresponds to one of four symbols from the interval1 content dictionary. If
closure has the value open then interval corresponds to the interval_oo. With the value closed interval
corresponds to the symbol interval_cc, with value open-closed to interval_oc, and with closed-open to interval_co.

Rewrite lambda expressions by the rules Rewrite: lambda and Rewrite: lambda domainofapplication.

Rewrite: lambda

If the lambda element does not contain qualifiers, the lambda expression is directly translated into a bind expression.

F.4.2 Intervals, vectors, matrices

F.4.3 Lambda expressions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

395 of 434 26/08/2025, 11:30

https://openmath.org/cd/set1#set
https://openmath.org/cd/set1#set
https://openmath.org/cd/multiset1#multiset
https://openmath.org/cd/multiset1#multiset
https://openmath.org/cd/set1#set
https://openmath.org/cd/set1#set
https://openmath.org/cd/interval1
https://openmath.org/cd/interval1
https://openmath.org/cd/interval1#interval_oo
https://openmath.org/cd/interval1#interval_oo
https://openmath.org/cd/interval1#interval_cc
https://openmath.org/cd/interval1#interval_cc
https://openmath.org/cd/interval1#interval_oc
https://openmath.org/cd/interval1#interval_oc
https://openmath.org/cd/interval1#interval_co
https://openmath.org/cd/interval1#interval_co

<lambda>
<bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
<ci>expression-in-x1-xn</ci>

</lambda>

rewrites to the Strict Content MathML

<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
<ci>expression-in-x1-xn</ci>

</bind>

Rewrite: lambda domainofapplication

If the lambda element does contain qualifiers, the qualifier may be rewritten to domainofapplication and then the
lambda expression is translated to a function term constructed with lambda and restricted to the specified domain using
restriction.

<lambda>
<bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>expression-in-x1-xn</ci>

</lambda>

rewrites to the Strict Content MathML

<apply><csymbol cd="fns1">restriction</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
<ci>expression-in-x1-xn</ci>

</bind>
<ci>D</ci>

</apply>

Rewrite piecewise functions as described in 4.3.10.5 Piecewise declaration <piecewise>, <piece>, <otherwise>.

In Strict Content MathML, the container elements piecewise, piece and otherwise are mapped to applications of the
constructor symbols of the same names in the piece1 CD. Apart from the fact that these three elements (respectively
symbols) are used together, the mapping to Strict markup is straightforward:

Content MathML

F.4.4 Piecewise functions

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

396 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns1#lambda
https://openmath.org/cd/fns1#lambda
https://openmath.org/cd/fns1#restriction
https://openmath.org/cd/fns1#restriction
https://openmath.org/cd/piece1
https://openmath.org/cd/piece1

<piecewise>
<piece>
<cn>0</cn>
<apply><lt/><ci>x</ci><cn>0</cn></apply>

</piece>
<piece>
<cn>1</cn>
<apply><gt/><ci>x</ci><cn>1</cn></apply>

</piece>
<otherwise>
<ci>x</ci>

</otherwise>
</piecewise>

Strict Content MathML equivalent

<apply><csymbol cd="piece1">piecewise</csymbol>
<apply><csymbol cd="piece1">piece</csymbol>
<cn>0</cn>
<apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>

</apply>
<apply><csymbol cd="piece1">piece</csymbol>
<cn>1</cn>
<apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>

</apply>
<apply><csymbol cd="piece1">otherwise</csymbol>
<ci>x</ci>

</apply>
</apply>

Apply Special Case Rules for Operators using domainofapplication Qualifiers. This step deals with the special cases for
the operators introduced in 4.3 Content MathML for Specific Structures. There are different classes of special cases to be
taken into account.

Rewrite min, max, mean and similar n-ary/unary operators by the rules Rewrite: n-ary unary set, Rewrite: n-ary unary
domainofapplication and Rewrite: n-ary unary single.

Rewrite: n-ary unary set

When an element, <max/>, of class nary-stats or nary-minmax is applied to an explicit list of 0 or 2 or more arguments,

F.5 Rewrite domainofapplication qualifiers

F.5.1 N-ary/unary operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

397 of 434 26/08/2025, 11:30

<ci>a1</ci><ci>a2</ci><ci>an</ci>

<apply><max/><ci>a1</ci><ci>a2</ci><ci>an</ci></apply>

it is translated to the unary application of the symbol <csymbol cd="minmax1" name="max"/> as specified in the
syntax table for the element to the set of arguments, constructed using the <csymbol cd="set1" name="set"/>
symbol.

<apply><csymbol cd="minmax1">max</csymbol>
<apply><csymbol cd="set1">set</csymbol>
<ci>a1</ci><ci>a2</ci><ci>an</ci>

</apply>
</apply>

Like all MathML n-ary operators, the list of arguments may be specified implicitly using qualifier elements. This is
expressed in Strict Content MathML using the following rule, which is similar to the rule Rewrite: n-ary
domainofapplication but differs in that the symbol can be directly applied to the constructed set of arguments and it is not
necessary to use apply_to_list.

Rewrite: n-ary unary domainofapplication

An expression of the following form, where <max/> represents any element of the relevant class and <ci>expression-
in-x</ci> is an arbitrary expression involving the bound variable(s)

<apply><max/>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>expression-in-x</ci>

</apply>

is rewritten to

<apply><csymbol cd="minmax1">max</csymbol>
<apply><csymbol cd="set1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
<ci>D</ci>

</apply>
</apply>

Note that when <ci>D</ci> is already a set and the lambda function created from <ci>expression-in-x</ci> is the
identity, the domainofapplication term should be rewritten directly as <ci>D</ci>.

If the element is applied to a single argument the set symbol is not used and the symbol is applied directly to the argument.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

398 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/set1#set
https://openmath.org/cd/set1#set

Rewrite: n-ary unary single

When an element, <max/>, of class nary-stats or nary-minmax is applied to a single argument,

<apply><max/><ci>a</ci></apply>

it is translated to the unary application of the symbol in the syntax table for the element.

<apply><csymbol cd="minmax1">max</csymbol> <ci>a</ci> </apply>

Note: Earlier versions of MathML were not explicit about the correct interpretation of elements in this class, and left it
undefined as to whether an expression such as max(X) was a trivial application of max to a singleton, or whether it should
be interpreted as meaning the maximum of values of the set X. Applications finding that the rule Rewrite: n-ary unary single
can not be applied as the supplied argument is a scalar may wish to use the rule Rewrite: n-ary unary set as an error
recovery. As a further complication, in the case of the statistical functions the Content Dictionary to use in this case depends
on the desired interpretation of the argument as a set of explicit data or a random variable representing a distribution.

Rewrite the quantifiers forall and exists used with domainofapplication to expressions using implication and
conjunction by the rule Rewrite: quantifier.

If used with bind and no qualifiers, then the interpretation in Strict Content MathML is simple. In general if used with
apply or qualifiers, the interpretation in Strict Content MathML is via the following rule.

Rewrite: quantifier

An expression of following form where <exists/> denotes an element of class quantifier and <ci>expression-
in-x</ci> is an arbitrary expression involving the bound variable(s)

<apply><exists/>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>expression-in-x</ci>

</apply>

is rewritten to an expression

F.5.2 Quantifiers

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

399 of 434 26/08/2025, 11:30

<bind><csymbol cd="quant1">exists</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>D</ci></apply>
<ci>expression-in-x</ci>

</apply>
</bind>

where the symbols <csymbol cd="quant1">exists</csymbol> and <csymbol cd="logic1">and</csymbol>
are as specified in the syntax table of the element. (The additional symbol being and in the case of exists and implies in
the case of forall.) When no domainofapplication is present, no logical conjunction is necessary, and the
translation is direct.

When the forall element is used with a condition qualifier the strict equivalent is constructed with the help of logical
implication by the rule Rewrite: quantifier. Thus

<bind><forall/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>p</ci><rationals/></apply>
<apply><in/><ci>q</ci><rationals/></apply>
<apply><lt/><ci>p</ci><ci>q</ci></apply>

</apply>
</condition>
<apply><lt/>
<ci>p</ci>
<apply><power/><ci>q</ci><cn>2</cn></apply>

</apply>
</bind>

translates to

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

400 of 434 26/08/2025, 11:30

https://openmath.org/cd/logic1#and
https://openmath.org/cd/logic1#and
https://openmath.org/cd/logic1#implies
https://openmath.org/cd/logic1#implies

<bind><csymbol cd="quant1">forall</csymbol>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<apply><csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="set1">in</csymbol>
<ci>p</ci>
<csymbol cd="setname1">Q</csymbol>

</apply>
<apply><csymbol cd="set1">in</csymbol>
<ci>q</ci>
<csymbol cd="setname1">Q</csymbol>

</apply>
<apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply>

</apply>
<apply><csymbol cd="relation1">lt</csymbol>
<ci>p</ci>
<apply><csymbol cd="arith1">power</csymbol>
<ci>q</ci>
<cn>2</cn>

</apply>
</apply>

</apply>
</bind>

Rewrite integrals used with a domainofapplication element (with or without a bvar) according to the rules Rewrite: int
and Rewrite: defint. See F.2.2 Integrals.

Rewrite sums and products used with a domainofapplication element (with or without a bvar) as described in 4.3.5.2
N-ary Sum <sum/> and 4.3.5.3 N-ary Product <product/>. See F.2.4 Sums and Products.

At this stage, any apply has at most one domainofapplication child and special cases have been addressed. As
domainofapplication is not Strict Content MathML, it is rewritten as one of the following cases.

By applying the rules above, expressions using the interval, condition, uplimit and lowlimit can be rewritten using
only domainofapplication. Once a domainofapplication has been obtained, the final mapping to Strict markup is

F.5.3 Integrals

F.5.4 Sums and products

F.6 Eliminate domainofapplication

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

401 of 434 26/08/2025, 11:30

accomplished using the following rules:

Into an application of a restricted function via the rule Rewrite: restriction if the apply does not contain a bvar child.

Rewrite: restriction

An application of a function that is qualified by the domainofapplication qualifier (expressed by an apply element
without bound variables) is converted to an application of a function term constructed with the restriction symbol.

<apply><ci>F</ci>
<domainofapplication>
<ci>C</ci>

</domainofapplication>
<ci>a1</ci>
<ci>an</ci>

</apply>

may be written as:

<apply>
<apply><csymbol cd="fns1">restriction</csymbol>
<ci>F</ci>
<ci>C</ci>

</apply>
<ci>a1</ci>
<ci>an</ci>

</apply>

Into an application of the predicate_on_list symbol via the rules Rewrite: n-ary relations and Rewrite: n-ary relations bvar if
used with a relation.

Rewrite: n-ary relations

An expression of the form

<apply><lt/>
<ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>

</apply>

rewrites to Strict Content MathML

F.6.1 Restricted function

F.6.2 Predicate on list

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

402 of 434 26/08/2025, 11:30

https://openmath.org/cd/fns1#restriction
https://openmath.org/cd/fns1#restriction
https://openmath.org/cd/fns2#predicate_on_list
https://openmath.org/cd/fns2#predicate_on_list

<apply><csymbol cd="fns2">predicate_on_list</csymbol>
<csymbol cd="reln1">lt</csymbol>
<apply><csymbol cd="list1">list</csymbol>
<ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>

</apply>
</apply>

Rewrite: n-ary relations bvar

An expression of the form

<apply><lt/>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>R</ci></domainofapplication>
<ci>expression-in-x</ci>

</apply>

where <ci>expression-in-x</ci> is an arbitrary expression involving the bound variable, rewrites to the Strict
Content MathML

<apply><csymbol cd="fns2">predicate_on_list</csymbol>
<csymbol cd="reln1">lt</csymbol>
<apply><csymbol cd="list1">map</csymbol>
<ci>R</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
</apply>

</apply>

The above rules apply to all symbols in classes nary-reln.class and nary-set-reln.class. In the latter case the
choice of Content Dictionary to use depends on the type attribute on the symbol, defaulting to set1, but multiset1 should be
used if type=multiset.

Into a construction with the apply_to_list symbol via the general rule Rewrite: n-ary domainofapplication for general n-ary
operators.

If the argument list is given explicitly, the Rewrite: element rule applies.

Any use of qualifier elements is expressed in Strict Content MathML via explicitly applying the function to a list of
arguments using the apply_to_list symbol as shown in the following rule. The rule only considers the
domainofapplication qualifier as other qualifiers may be rewritten to domainofapplication as described earlier.

F.6.3 Apply to list

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

403 of 434 26/08/2025, 11:30

https://openmath.org/cd/set1
https://openmath.org/cd/set1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list
https://openmath.org/cd/fns2#apply_to_list

Rewrite: n-ary domainofapplication

An expression of the following form, where <union/> represents any element of the relevant class and
<ci>expression-in-x</ci> is an arbitrary expression involving the bound variable(s)

<apply><union/>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>expression-in-x</ci>

</apply>

is rewritten to

<apply><csymbol cd="fns2">apply_to_list</csymbol>
<csymbol cd="set1">union</csymbol>
<apply><csymbol cd="list1">map</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>expression-in-x</ci>

</bind>
<ci>D</ci>

</apply>
</apply>

The above rule applies to all symbols in the listed classes. In the case of nary-set.class the choice of Content Dictionary
to use depends on the type attribute on the arguments, defaulting to set1, but multiset1 should be used if type=multiset.

Note that the members of the nary-constructor.class, such as vector, use constructor syntax where the arguments
and qualifiers are given as children of the element rather than as children of a containing apply. In this case, the above rules
apply with the analogous syntactic modifications.

Into a construction using the suchthat symbol from the set1 content dictionary in an apply with bound variables via the
Rewrite: apply bvar domainofapplication rule.

In general, an application involving bound variables and (possibly) domainofapplication is rewritten using the
following rule, which makes the domain the first positional argument of the application, and uses the lambda symbol to
encode the variable bindings. Certain classes of operator have alternative rules, as described below.

Rewrite: apply bvar domainofapplication

A content MathML expression with bound variables and domainofapplication

F.6.4 Such that

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

404 of 434 26/08/2025, 11:30

https://openmath.org/cd/set1
https://openmath.org/cd/set1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/set1#suchthat
https://openmath.org/cd/set1#suchthat
https://openmath.org/cd/set1
https://openmath.org/cd/set1

<apply><ci>H</ci>
<bvar><ci>v1</ci></bvar>

...
<bvar><ci>vn</ci></bvar>
<domainofapplication><ci>D</ci></domainofapplication>
<ci>A1</ci>

...
<ci>Am</ci>

</apply>

is rewritten to

<apply><ci>H</ci>
<ci>D</ci>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>v1</ci></bvar>

...
<bvar><ci>vn</ci></bvar>
<ci>A1</ci>

</bind>
...

<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>v1</ci></bvar>

...
<bvar><ci>vn</ci></bvar>
<ci>Am</ci>

</bind>
</apply>

If there is no domainofapplication qualifier the <ci>D</ci> child is omitted.

Rewrite non-strict token elements

Rewrite numbers represented as cn elements where the type attribute is one of e-notation, rational, complex-
cartesian, complex-polar, constant as strict cn via rules Rewrite: cn sep, Rewrite: cn based_integer and Rewrite: cn
constant.

Rewrite: cn sep

If there are sep children of the cn, then intervening text may be rewritten as cn elements. If the cn element containing

F.7 Rewrite token elements

F.7.1 Numbers

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

405 of 434 26/08/2025, 11:30

sep also has a base attribute, this is copied to each of the cn arguments of the resulting symbol, as shown below.

<cn type="rational" base="b">n<sep/>d</cn>

is rewritten to

<apply><csymbol cd="nums1">rational</csymbol>
<cn type="integer" base="b">n</cn>
<cn type="integer" base="b">d</cn>

</apply>

The symbol used in the result depends on the type attribute according to the following table:

type attribute OpenMath Symbol

e-notation bigfloat

rational rational

complex-cartesian complex_cartesian

complex-polar complex_polar

Note: In the case of bigfloat the symbol takes three arguments, <cn type="integer">10</cn> should be inserted as
the second argument, denoting the base of the exponent used.

If the type attribute has a different value, or if there is more than one <sep/> element, then the intervening expressions
are converted as above, but a system-dependent choice of symbol for the head of the application must be used.

If a base attribute has been used then the resulting expression is not Strict Content MathML, and each of the arguments
needs to be recursively processed.

Rewrite: cn based_integer

A cn element with a base attribute other than 10 is rewritten as follows. (A base attribute with value 10 is simply
removed.)

<cn type="integer" base="16">FF60</cn>

<apply><csymbol cd="nums1">based_integer</csymbol>
<cn type="integer">16</cn>
<cs>FF60</cs>

</apply>

If the original element specified type integer or if there is no type attribute, but the content of the element just consists
of the characters [a-zA-Z0-9] and white space then the symbol used as the head in the resulting application should be
based_integer as shown. Otherwise it should be based_float.

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

406 of 434 26/08/2025, 11:30

https://openmath.org/cd/bigfloat1#bigfloat
https://openmath.org/cd/bigfloat1#bigfloat
https://openmath.org/cd/nums1#rational
https://openmath.org/cd/nums1#rational
https://openmath.org/cd/complex1#complex_cartesian
https://openmath.org/cd/complex1#complex_cartesian
https://openmath.org/cd/complex1#complex_polar
https://openmath.org/cd/complex1#complex_polar
https://openmath.org/cd/bigfloat1#bigfloat
https://openmath.org/cd/bigfloat1#bigfloat
https://openmath.org/cd/nums1#based_integer
https://openmath.org/cd/nums1#based_integer
https://openmath.org/cd/nums1#based_float
https://openmath.org/cd/nums1#based_float

Rewrite: cn constant

In Strict Content MathML, constants should be represented using csymbol elements. A number of important constants
are defined in the nums1 content dictionary. An expression of the form

<cn type="constant">c</cn>

has the Strict Content MathML equivalent

<csymbol cd="nums1">c2</csymbol>

where c2 corresponds to c as specified in the following table.

Content Description
OpenMath
Symbol

U+03C0 (π)
The usual π of trigonometry: approximately
3.141592653...

pi

U+2147 (ⅇ or
ⅇ)

The base for natural logarithms: approximately
2.718281828...

e

U+2148 (ⅈ or ⅈ) Square root of -1 i

U+03B3 (γ) Euler's constant: approximately 0.5772156649... gamma

U+221E (∞ or &infty;) Infinity. Proper interpretation varies with context infinity

Rewrite any ci, csymbol or cn containing presentation MathML to semantics elements with rules Rewrite: cn
presentation mathml and Rewrite: ci presentation mathml and the analogous rule for csymbol.

Rewrite: cn presentation mathml

If the cn contains Presentation MathML markup, then it may be rewritten to Strict MathML using variants of the rules
above where the arguments of the constructor are ci elements annotated with the supplied Presentation MathML.

A cn expression with non-text content of the form

<cn type="rational"><mi>P</mi><sep/><mi>Q</mi></cn>

is transformed to Strict Content MathML by rewriting it to

F.7.2 Token presentation

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

407 of 434 26/08/2025, 11:30

https://openmath.org/cd/nums1
https://openmath.org/cd/nums1
https://openmath.org/cd/nums1#pi
https://openmath.org/cd/nums1#pi
https://openmath.org/cd/nums1#e
https://openmath.org/cd/nums1#e
https://openmath.org/cd/nums1#i
https://openmath.org/cd/nums1#i
https://openmath.org/cd/nums1#gamma
https://openmath.org/cd/nums1#gamma
https://openmath.org/cd/nums1#infinity
https://openmath.org/cd/nums1#infinity

<apply><csymbol cd="nums1">rational</csymbol>
<semantics>
<ci>p</ci>
<annotation-xml encoding="MathML-Presentation">
<mi>P</mi>

</annotation-xml>
</semantics>
<semantics>
<ci>q</ci>
<annotation-xml encoding="MathML-Presentation">
<mi>Q</mi>

</annotation-xml>
</semantics>

</apply>

Where the identifier names, p and q, (which have to be a text string) should be determined from the presentation MathML
content, in a system defined way, perhaps as in the above example by taking the character data of the element ignoring
any element markup. Systems doing such rewriting should ensure that constructs using the same Presentation MathML
content are rewritten to semantics elements using the same ci, and that conversely constructs that use different
MathML should be rewritten to different identifier names (even if the Presentation MathML has the same character data).

A related special case arises when a cn element contains character data not permitted in Strict Content MathML usage,
e.g. non-digit, alphabetic characters. Conceptually, this is analogous to a cn element containing a presentation markup
mtext element, and could be rewritten accordingly. However, since the resulting annotation would contain no additional
rendering information, such instances should be rewritten directly as ci elements, rather than as a semantics construct.

The ci element can contain mglyph elements to refer to characters not currently available in Unicode, or a general
presentation construct (see 3.1.8 Summary of Presentation Elements), which is used for rendering (see 4.1.2 Content
Expressions).

Rewrite: ci presentation mathml

A ci expression with non-text content of the form

<ci><mi>P</mi></ci>

is transformed to Strict Content MathML by rewriting it to

<semantics>
<ci>p</ci>
<annotation-xml encoding="MathML-Presentation">
<mi>P</mi>

</annotation-xml>
</semantics>

Where the identifier name, p, (which has to be a text string) should be determined from the presentation MathML content,
in a system defined way, perhaps as in the above example by taking the character data of the element ignoring any
element markup. Systems doing such rewriting should ensure that constructs using the same Presentation MathML

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

408 of 434 26/08/2025, 11:30

content are rewritten to semantics elements using the same ci, and that conversely constructs that use different
MathML should be rewritten to different identifier names (even if the Presentation MathML has the same character data).

The following example encodes an atomic symbol that displays visually as 𝐶2 and that, for purposes of content, is treated
as a single symbol

<ci>
<msup><mi>C</mi><mn>2</mn></msup>

</ci>

The Strict Content MathML equivalent is

<semantics>
<ci>C2</ci>
<annotation-xml encoding="MathML-Presentation">
<msup><mi>C</mi><mn>2</mn></msup>

</annotation-xml>
</semantics>

Rewrite any remaining operator defined in 4.3 Content MathML for Specific Structures to a csymbol referencing the
symbol identified in the syntax table by the rule Rewrite: element.

Rewrite: element

For example,

<plus/>

is equivalent to the Strict form

<csymbol cd="arith1">plus</csymbol>

As noted in the descriptions of each operator element, some operators require special case rules to determine the proper
choice of symbol. Some cases of particular note are:

1. The order of the arguments for the selector operator must be rewritten, and the symbol depends on the type of the
arguments.

2. The choice of symbol for the minus operator depends on the number of the arguments, minus or minus.

3. The choice of symbol for some set operators depends on the values of the type of the arguments.

F.8 Rewrite operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

409 of 434 26/08/2025, 11:30

4. The choice of symbol for some statistical operators depends on the values of the types of the arguments.

5. The choice of symbol for the emptyset element depends on context.

The minus element can be used as a unary arithmetic operator (e.g. to represent - x), or as a binary arithmetic operator
(e.g. to represent x- y).

If it is used with one argument, minus corresponds to the unary_minus symbol.

If it is used with two arguments, minus corresponds to the minus symbol

In both cases, the translation to Strict Content markup is direct, as described in Rewrite: element. It is merely a matter of
choosing the symbol that reflects the actual usage.

When translating to Strict Content Markup, if the type has value multiset, then the in symbol from multiset1 should be
used instead.

When translating to Strict Content Markup, if the type has value multiset, then the notin symbol from multiset1 should
be used instead.

When translating to Strict Content Markup, if the type has value multiset, then the subset symbol from multiset1 should
be used instead.

When translating to Strict Content Markup, if the type has value multiset, then the prsubset symbol from multiset1
should be used instead.

When translating to Strict Content Markup, if the type has value multiset, then the notsubset symbol from multiset1
should be used instead.

When translating to Strict Content Markup, if the type has value multiset, then the notprsubset symbol from multiset1
should be used instead.

When translating to Strict Content Markup, if the type has value multiset, then the setdiff symbol from multiset1 should
be used instead.

When translating to Strict Content Markup, if the type has value multiset, then the size symbol from multiset1 should be
used instead.

When the mean element is applied to an explicit list of arguments, the translation to Strict Content markup is direct, using

F.8.1 Rewrite the minus operator

F.8.2 Rewrite the set operators

F.8.3 Rewrite the statistical operators

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

410 of 434 26/08/2025, 11:30

https://openmath.org/cd/arith1#unary_minus
https://openmath.org/cd/arith1#unary_minus
https://openmath.org/cd/arith1#minus
https://openmath.org/cd/arith1#minus
https://openmath.org/cd/multiset1#in
https://openmath.org/cd/multiset1#in
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#notin
https://openmath.org/cd/multiset1#notin
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#subset
https://openmath.org/cd/multiset1#subset
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#prsubset
https://openmath.org/cd/multiset1#prsubset
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#notsubset
https://openmath.org/cd/multiset1#notsubset
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#notprsubset
https://openmath.org/cd/multiset1#notprsubset
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#setdiff
https://openmath.org/cd/multiset1#setdiff
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1#size
https://openmath.org/cd/multiset1#size
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1

the mean symbol from the s_data1 content dictionary, as described in Rewrite: element. When it is applied to a distribution,
then the mean symbol from the s_dist1 content dictionary should be used. In the case with qualifiers use Rewrite: n-ary
domainofapplication with the same caveat.

When the sdev element is applied to an explicit list of arguments, the translation to Strict Content markup is direct, using
the sdev symbol from the s_data1 content dictionary, as described in Rewrite: element. When it is applied to a distribution,
then the sdev symbol from the s_dist1 content dictionary should be used. In the case with qualifiers use Rewrite: n-ary
domainofapplication with the same caveat.

When the variance element is applied to an explicit list of arguments, the translation to Strict Content markup is direct,
using the variance symbol from the s_data1 content dictionary, as described in Rewrite: element. When it is applied to a
distribution, then the variance symbol from the s_dist1 content dictionary should be used. In the case with qualifiers use
Rewrite: n-ary domainofapplication with the same caveat.

When the median element is applied to an explicit list of arguments, the translation to Strict Content markup is direct, using
the median symbol from the s_data1 content dictionary, as described in Rewrite: element.

When the mode element is applied to an explicit list of arguments, the translation to Strict Content markup is direct, using
the mode symbol from the s_data1 content dictionary, as described in Rewrite: element.

In some situations, it may be clear from context that emptyset corresponds to the emptyset symbol from the multiset1
content dictionary. However, as there is no method other than annotation for an author to explicitly indicate this, it is always
acceptable to translate to the emptyset symbol from the set1 content dictionary.

At this point, all elements that accept the type, other than ci and csymbol, should have been rewritten into Strict Content
Markup equivalents without type attributes, where type information is reflected in the choice of operator symbol. Now
rewrite remaining ci and csymbol elements with a type attribute to a strict expression with semantics according to rules
Rewrite: ci type annotation and Rewrite: csymbol type annotation.

Rewrite: ci type annotation

In Strict Content, type attributes are represented via semantic attribution. An expression of the form

<ci type="T">n</ci>

is rewritten to

F.8.4 Rewrite the emptyset operator

F.9 Rewrite attributes

F.9.1 Rewrite the type attribute

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

411 of 434 26/08/2025, 11:30

https://openmath.org/cd/s_data1#mean
https://openmath.org/cd/s_data1#mean
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_dist1#mean
https://openmath.org/cd/s_dist1#mean
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_data1#sdev
https://openmath.org/cd/s_data1#sdev
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_dist1#sdev
https://openmath.org/cd/s_dist1#sdev
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_data1#variance
https://openmath.org/cd/s_data1#variance
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_dist1#variance
https://openmath.org/cd/s_dist1#variance
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_dist1
https://openmath.org/cd/s_data1#median
https://openmath.org/cd/s_data1#median
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1#mode
https://openmath.org/cd/s_data1#mode
https://openmath.org/cd/s_data1
https://openmath.org/cd/s_data1
https://openmath.org/cd/multiset1#emptyset
https://openmath.org/cd/multiset1#emptyset
https://openmath.org/cd/multiset1
https://openmath.org/cd/multiset1
https://openmath.org/cd/set1#emptyset
https://openmath.org/cd/set1#emptyset
https://openmath.org/cd/set1
https://openmath.org/cd/set1

<semantics>
<ci>n</ci>
<annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
<ci>T</ci>

</annotation-xml>
</semantics>

In non-Strict usage csymbol allows the use of a type attribute.

Rewrite: csymbol type annotation

In Strict Content, type attributes are represented via semantic attribution. An expression of the form

<csymbol type="T">symbolname</csymbol>

is rewritten to

<semantics>
<csymbol>symbolname</csymbol>
<annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
<ci>T</ci>

</annotation-xml>
</semantics>

If the definitionURL and encoding attributes on a csymbol element can be interpreted as a reference to a content
dictionary (see 4.2.3.2 Non-Strict uses of <csymbol> for details), then rewrite to reference the content dictionary by the cd
attribute instead.

Rewrite any element with attributes that are not allowed in strict markup to a semantics construction with the element
without these attributes as the first child and the attributes in annotation elements by rule Rewrite: attributes.

A number of content MathML elements such as cn and interval allow attributes to specialize the semantics of the objects
they represent. For these cases, special rewrite rules are given on a case-by-case basis in 4.3 Content MathML for Specific
Structures. However, content MathML elements also accept attributes shared by all MathML elements, and depending on
the context, may also contain attributes from other XML namespaces. Such attributes must be rewritten in alternative form
in Strict Content Markup.

Rewrite: attributes

F.9.2 Rewrite definitionURL and encoding attributes

F.9.3 Rewrite attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

412 of 434 26/08/2025, 11:30

For instance,

<ci class="foo" xmlns:other="http://example.com" other:att="bla">x</ci>

is rewritten to

<semantics>
<ci>x</ci>
<annotation cd="mathmlattr"

name="class" encoding="text/plain">foo</annotation>
<annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content">
<apply><csymbol cd="mathmlattr">foreign_attribute</csymbol>
<cs>http://example.com</cs>
<cs>other</cs>
<cs>att</cs>
<cs>bla</cs>

</apply>
</annotation-xml>

</semantics>

For MathML attributes not allowed in Strict Content MathML the content dictionary mathmlattr is referenced, which
provides symbols for all attributes allowed on content MathML elements.

a (xhtml)
7.4.4 Linking

abs
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

and
4.3.5.5 N-ary Logical Operators: <and/>, <or/>, <xor/> F.3.2 Multiple conditions

annotation
2.1.7 Collapsing Whitespace in Input 2.2.1 Attributes 4.1.5 Strict Content MathML 4.2.3.1 Strict uses of <csymbol>
4.2.8 Attribution via semantics 6. Annotating MathML: semantics 6.1 Annotation keys 6.4 Annotation references 6.5.1
Description 6.6.1 Description 6.6.2 Attributes 6.7.3 Using annotation-xml in HTML documents 6.8.2 Content Markup
in Presentation Markup 7.1 Introduction 7.3 Transferring MathML 7.3.2 Recommended Behaviors when Transferring
7.3.3 Discussion F. The Strict Content MathML Transformation F.9.3 Rewrite attributes

annotation-xml
2.2.1 Attributes 3.8 Semantics and Presentation 4.1.5 Strict Content MathML 4.2.3.1 Strict uses of <csymbol> 4.2.8
Attribution via semantics 4.2.10 Encoded Bytes <cbytes> 6. Annotating MathML: semantics 6.1 Annotation keys 6.2

G. MathML Index

G.1 Index of elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

413 of 434 26/08/2025, 11:30

https://openmath.org/cd/mathmlattr
https://openmath.org/cd/mathmlattr

Alternate representations 6.4 Annotation references 6.5.1 Description 6.7.1 Description 6.7.2 Attributes 6.7.3 Using
annotation-xml in HTML documents 6.8.2 Content Markup in Presentation Markup 6.9.1 Top-level Parallel Markup
6.9.2 Parallel Markup via Cross-References 7.1 Introduction 7.2.4 Names of MathML Encodings 7.3 Transferring
MathML 7.3.2 Recommended Behaviors when Transferring 7.3.3 Discussion 7.4 Combining MathML and Other
Formats 7.4.3 Mixing MathML and HTML 7.4.5 MathML and Graphical Markup

apply
4.1.3 Expression Concepts 4.1.5 Strict Content MathML 4.2.1 Numbers <cn> 4.2.5.1 Strict Content MathML 4.2.7.2
An Acyclicity Constraint 4.3.1 Container Markup 4.3.2 Bindings with <apply> 4.3.5 N-ary Operators 4.3.5.1 N-ary
Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/> 4.3.5.2 N-ary Sum <sum/> 4.3.5.3 N-ary Product <product/>
4.3.5.5 N-ary Logical Operators: <and/>, <or/>, <xor/> 4.3.5.7 N-ary Set Operators: <union/>, <intersect/>,
<cartesianproduct/> 4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/> 4.3.8.3 Partial Differentiation
<partialdiff/> 7.4 Combining MathML and Other Formats F. The Strict Content MathML Transformation F.1 Rewrite
non-strict bind F.3 Rewrite to domainofapplication F.3.2 Multiple conditions F.5.2 Quantifiers F.6 Eliminate
domainofapplication F.6.1 Restricted function F.6.3 Apply to list F.6.4 Such that

approx
4.3.6.3 Binary Relations: <neq/>, <approx/>, <factorof/>, <tendsto/>

arg
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

bind
4.1.4 Variable Binding 4.1.5 Strict Content MathML 4.2.6.1 Bindings 4.2.6.3 Renaming Bound Variables 4.2.7.3
Structure Sharing and Binding 4.3.1.2 Container Markup for Binding Constructors 4.3.2 Bindings with <apply> 4.3.5
N-ary Operators F. The Strict Content MathML Transformation F.1 Rewrite non-strict bind F.4.3 Lambda expressions
F.5.2 Quantifiers

bvar
4.1.4 Variable Binding 4.1.5 Strict Content MathML 4.2.6.1 Bindings 4.2.6.2 Bound Variables 4.2.6.3 Renaming
Bound Variables 4.2.7.3 Structure Sharing and Binding 4.3.1.2 Container Markup for Binding Constructors 4.3.2
Bindings with <apply> 4.3.3 Qualifiers 4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit>
and <uplimit> 4.3.3.2 Uses of <degree> 4.3.5.2 N-ary Sum <sum/> 4.3.5.3 N-ary Product <product/> 4.3.8.2
Differentiation <diff/> 4.3.8.3 Partial Differentiation <partialdiff/> 4.3.10.2 Lambda <lambda> 4.3.10.3 Interval
<interval> 4.3.10.4 Limits <limit/> 6.8.2 Content Markup in Presentation Markup F. The Strict Content MathML
Transformation F.1 Rewrite non-strict bind F.2.1 Derivatives F.3 Rewrite to domainofapplication F.3.1 Intervals F.5.3
Integrals F.5.4 Sums and products F.6.1 Restricted function

card
4.3.7.5 Unary Set Operators: <card/>

cartesianproduct
4.3.5.7 N-ary Set Operators: <union/>, <intersect/>, <cartesianproduct/>

cbytes
4.1.5 Strict Content MathML 4.2.10 Encoded Bytes <cbytes>

ceiling
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

cerror
4.1.5 Strict Content MathML 4.2.9 Error Markup <cerror>

ci
2.1.7 Collapsing Whitespace in Input 3.2.3.1 Description 4.1.3 Expression Concepts 4.1.5 Strict Content MathML 4.2.2

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

414 of 434 26/08/2025, 11:30

Content Identifiers <ci> 4.2.2.1 Strict uses of <ci> 4.2.2.2 Non-Strict uses of <ci> 4.2.2.3 Rendering Content Identifiers
4.2.3.2 Non-Strict uses of <csymbol> 4.2.6.2 Bound Variables 6.8.1 Presentation Markup in Content Markup F. The
Strict Content MathML Transformation F.7.2 Token presentation F.9.1 Rewrite the type attribute

cn
2.1.7 Collapsing Whitespace in Input 3.2.4.1 Description 4.1.3 Expression Concepts 4.1.5 Strict Content MathML 4.2.1
Numbers <cn> 4.2.1.1 Rendering <cn>,<sep/>-Represented Numbers 4.2.1.2 Strict uses of <cn> 4.2.1.3 Non-Strict
uses of <cn> 4.2.2.1 Strict uses of <ci> 6.8.1 Presentation Markup in Content Markup F. The Strict Content MathML
Transformation F.7.1 Numbers F.7.2 Token presentation F.9.3 Rewrite attributes

codomain
4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

compose
4.3.5.4 N-ary Functional Operators: <compose/>

condition
4.3.3 Qualifiers 4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit> 4.3.10.1
Quantifiers: <forall/>, <exists/> 4.3.10.4 Limits <limit/> 6.8.2 Content Markup in Presentation Markup F. The Strict
Content MathML Transformation F.2.2 Integrals F.3.2 Multiple conditions F.5.2 Quantifiers F.6 Eliminate
domainofapplication

conjugate
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

cs
2.1.7 Collapsing Whitespace in Input 4.1.5 Strict Content MathML 4.2.4 String Literals <cs>

csymbol
2.1.7 Collapsing Whitespace in Input 2.2.1 Attributes 4.1.3 Expression Concepts 4.1.5 Strict Content MathML 4.1.6
Content Dictionaries 4.2.3 Content Symbols <csymbol> 4.2.3.1 Strict uses of <csymbol> 4.2.3.2 Non-Strict uses of
<csymbol> 4.2.3.3 Rendering Symbols 4.2.9 Error Markup <cerror> 6.8.1 Presentation Markup in Content Markup E.3
The Content MathML Operators F. The Strict Content MathML Transformation F.7.1 Numbers F.7.2 Token
presentation F.8 Rewrite operators F.9.1 Rewrite the type attribute F.9.2 Rewrite definitionURL and encoding attributes

curl
4.3.7.7 Unary Vector Calculus Operators: <divergence/>, <grad/>, <curl/>, <laplacian/>

declare
Changes to 4. Content Markup

degree
4.3.3 Qualifiers 4.3.3.2 Uses of <degree> 4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/
>, <real/>, <imaginary/>, <floor/>, <ceiling/>, <exp/>, <minus/>, <root/> 4.3.7.8 Moment <moment/>,
<momentabout> 4.3.8.2 Differentiation <diff/> 4.3.8.3 Partial Differentiation <partialdiff/> 6.8.2 Content Markup in
Presentation Markup F.2.1 Derivatives

determinant
4.3.7.3 Unary Linear Algebra Operators: <determinant/>, <transpose/>

diff
4.3.2 Bindings with <apply> 4.3.8.2 Differentiation <diff/>

divergence
4.3.7.7 Unary Vector Calculus Operators: <divergence/>, <grad/>, <curl/>, <laplacian/>

divide
4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>, <root/>

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

415 of 434 26/08/2025, 11:30

domain
4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

domainofapplication
4.3.3 Qualifiers 4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit> 4.3.10.2
Lambda <lambda> F. The Strict Content MathML Transformation F.3 Rewrite to domainofapplication F.3.1 Intervals
F.3.2 Multiple conditions F.3.3 Multiple domainofapplications F.4.2 Intervals, vectors, matrices F.4.3 Lambda
expressions F.5 Rewrite domainofapplication qualifiers F.5.1 N-ary/unary operators F.5.2 Quantifiers F.5.3 Integrals
F.5.4 Sums and products F.6 Eliminate domainofapplication F.6.1 Restricted function F.6.3 Apply to list F.6.4 Such that

emptyset
F.8 Rewrite operators F.8.4 Rewrite the emptyset operator

eq
4.3.5.10 N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

equivalent
4.3.6.2 Binary Logical Operators: <implies/>, <equivalent/>

exists
F. The Strict Content MathML Transformation F.5.2 Quantifiers

exp
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

factorial
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

factorof
4.3.6.3 Binary Relations: <neq/>, <approx/>, <factorof/>, <tendsto/>

floor
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

fn
Changes to 4. Content Markup

forall
4.3.10.1 Quantifiers: <forall/>, <exists/> F. The Strict Content MathML Transformation F.5.2 Quantifiers

gcd
4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/>

geq
4.3.5.10 N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

grad
4.3.7.7 Unary Vector Calculus Operators: <divergence/>, <grad/>, <curl/>, <laplacian/>

gt
4.3.5.10 N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

ident
4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

image
4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

imaginary
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

416 of 434 26/08/2025, 11:30

<ceiling/>, <exp/>, <minus/>, <root/>

img
3.2.1.1 Using images to represent symbols <mglyph/> 7.4.5 MathML and Graphical Markup

implies
4.3.6.2 Binary Logical Operators: <implies/>, <equivalent/>

in
4.3.6.5 Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

int
4.3.8.1 Integral <int/> F.2.2 Integrals F.3.1 Intervals

intersect
4.3.5.7 N-ary Set Operators: <union/>, <intersect/>, <cartesianproduct/>

interval
4.1.5 Strict Content MathML 4.3.1.1 Container Markup for Constructor Symbols 4.3.3 Qualifiers 4.3.3.1 Uses of
<domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit> 4.3.6 Binary Operators 4.3.10.3 Interval
<interval> F. The Strict Content MathML Transformation F.2.2 Integrals F.3.1 Intervals F.3.2 Multiple conditions F.4.2
Intervals, vectors, matrices F.6 Eliminate domainofapplication F.9.3 Rewrite attributes

inverse
4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

lambda
4.3.1.2 Container Markup for Binding Constructors 4.3.2 Bindings with <apply> 4.3.10.2 Lambda <lambda> F.2.4
Sums and Products F.4.3 Lambda expressions

laplacian
4.3.7.7 Unary Vector Calculus Operators: <divergence/>, <grad/>, <curl/>, <laplacian/>

lcm
4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/>

leq
4.3.5.10 N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

limit
4.3.10.4 Limits <limit/>

list
4.2.2.1 Strict uses of <ci> 4.3.5.9 N-ary Set Theoretic Constructors: <set>, <list> F.4.1 Sets and Lists

ln
4.3.7.4 Unary Functional Operators: <inverse/>, <ident/>, <domain/>, <codomain/>, <image/>, <ln/>,

log
4.1.5 Strict Content MathML 4.3.3.3 Uses of <momentabout> and <logbase> 4.3.7.9 Logarithm <log/> , <logbase>
F.2.6 Logarithms

logbase
4.3.3 Qualifiers 4.3.3.3 Uses of <momentabout> and <logbase> 4.3.7.9 Logarithm <log/> , <logbase> 6.8.2 Content
Markup in Presentation Markup F.2.6 Logarithms

lowlimit
4.3.3 Qualifiers 4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit> 4.3.5.2 N-
ary Sum <sum/> 4.3.5.3 N-ary Product <product/> 4.3.8.1 Integral <int/> 4.3.10.4 Limits <limit/> 6.8.2 Content
Markup in Presentation Markup F. The Strict Content MathML Transformation F.2.2 Integrals F.3.1 Intervals F.3.2
Multiple conditions F.6 Eliminate domainofapplication

lt

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

417 of 434 26/08/2025, 11:30

4.3.5.10 N-ary Arithmetic Relations: <eq/>, <gt/>, <lt/>, <geq/>, <leq/>

maction
3.1.3.2 Table of argument requirements 3.1.8.6 Enlivening Expressions 3.2.5.6.3 Exception for embellished operators
3.2.7.4 Definition of space-like elements 3.3.4.1 Description 3.5.4.3 Specifying alignment groups 3.7.1 Bind Action to
Sub-Expression 3.7.1.1 Attributes 7.4 Combining MathML and Other Formats D.1.3 MathML Extension Mechanisms
and Conformance D.3 Attributes for unspecified data

maligngroup
3.1.8.4 Tables and Matrices 3.2.7.1 Description 3.2.7.4 Definition of space-like elements 3.3.4.1 Description 3.5.1.2
Attributes 3.5.4 Alignment Markers <maligngroup/>, <malignmark/> 3.5.4.3 Specifying alignment groups 3.5.4.4
Table cells that are not divided into alignment groups 3.5.4.5 Specifying alignment points using <malignmark/> 3.5.4.7
A simple alignment algorithm 7.4.4 Linking

malignmark
3.1.5.2 Bidirectional Layout in Token Elements 3.1.8.4 Tables and Matrices 3.2.1 Token Element Content Characters,
<mglyph/> 3.2.7.4 Definition of space-like elements 3.2.8.1 Description 3.5.1.2 Attributes 3.5.4 Alignment Markers
<maligngroup/>, <malignmark/> 3.5.4.3 Specifying alignment groups 3.5.4.5 Specifying alignment points using
<malignmark/> 3.5.4.7 A simple alignment algorithm 7.4.4 Linking Changes to 3. Presentation Markup

math
2.1.2 MathML and Namespaces 2.2 The Top-Level <math> Element 2.2.1 Attributes 3.1.3.1 Inferred <mrow>s 3.1.3.2
Table of argument requirements 3.1.5.1 Overall Directionality of Mathematics Formulas 3.1.6 Displaystyle and
Scriptlevel 3.1.7.1 Control of Linebreaks 3.2.2 Mathematics style attributes common to token elements 3.2.5.2
Attributes 3.2.5.2.3 Indentation attributes 3.7.1 Bind Action to Sub-Expression 4.2.3.1 Strict uses of <csymbol> 6.7.3
Using annotation-xml in HTML documents 7.2.1 Recognizing MathML in XML 7.2.2 Recognizing MathML in HTML
7.3.1 Basic Transfer Flavor Names and Contents 7.3.2 Recommended Behaviors when Transferring 7.3.3 Discussion
7.4.3 Mixing MathML and HTML 7.5 Using CSS with MathML Changes to 2. MathML Fundamentals

matrix
4.2.2.1 Strict uses of <ci> 4.3.5.8 N-ary Matrix Constructors: <vector/>, <matrix/>, <matrixrow/>

matrixrow
4.3.5.8 N-ary Matrix Constructors: <vector/>, <matrix/>, <matrixrow/>

max
4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/> F. The Strict Content MathML Transformation F.5.1 N-
ary/unary operators

mean
4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/> 4.3.5.13 N-ary/Unary Statistical Operators: <mean/>,
<median/>, <mode/>, <sdev/>, <variance/> F. The Strict Content MathML Transformation F.5.1 N-ary/unary operators
F.8.3 Rewrite the statistical operators

median
4.3.5.13 N-ary/Unary Statistical Operators: <mean/>, <median/>, <mode/>, <sdev/>, <variance/> F.8.3 Rewrite the
statistical operators

menclose
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.7.1 Control of Linebreaks 3.1.8.2 General Layout
Schemata 3.3.9.1 Description 3.3.9.2 Attributes 3.3.9.3 Examples 3.6.8.1 Addition and Subtraction

merror
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.8.2 General Layout Schemata 3.3.5.1 Description
3.3.5.2 Attributes 4.2.9 Error Markup <cerror> D.2 Handling of Errors

mfenced
3.1.3.2 Table of argument requirements 3.1.7.1 Control of Linebreaks 3.1.8.2 General Layout Schemata 3.2.5.4

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

418 of 434 26/08/2025, 11:30

Examples with fences and separators 3.3.1.1 Description 3.3.8.1 Description 3.3.8.2 Attributes 3.3.8.3 Examples
3.5.4.3 Specifying alignment groups

mfrac
2.1.5.2.1 Additional notes about units 3.1 Introduction 3.1.3.2 Table of argument requirements 3.1.6 Displaystyle and
Scriptlevel 3.1.7.1 Control of Linebreaks 3.1.8.2 General Layout Schemata 3.2.5.6.3 Exception for embellished
operators 3.3.2.1 Description 3.3.2.2 Attributes 3.3.4.1 Description 3.3.4.3 Examples 3.3.5.3 Example 7.4 Combining
MathML and Other Formats

mfraction (mathml-error)
3.3.5.3 Example

mglyph
3.1.5.2 Bidirectional Layout in Token Elements 3.1.8.1 Token Elements 3.2 Token Elements 3.2.1 Token Element
Content Characters, <mglyph/> 3.2.1.1 Using images to represent symbols <mglyph/> 3.2.1.1.1 Description 3.2.1.1.2
Attributes 3.2.1.1.3 Example 3.2.8.1 Description 3.3.4.1 Description 4.2.1.3 Non-Strict uses of <cn> 4.2.3.2 Non-Strict
uses of <csymbol> 4.2.4 String Literals <cs> D.1.3 MathML Extension Mechanisms and Conformance F.7.2 Token
presentation Changes to 3. Presentation Markup

mi
2.1.7 Collapsing Whitespace in Input 3.1.5.2 Bidirectional Layout in Token Elements 3.1.7.1 Control of Linebreaks
3.1.8.1 Token Elements 3.2 Token Elements 3.2.1.1.1 Description 3.2.2 Mathematics style attributes common to token
elements 3.2.3.1 Description 3.2.3.2 Attributes 3.2.3.3 Examples 3.2.8.1 Description 4.2.2.3 Rendering Content
Identifiers 4.2.3.3 Rendering Symbols 6.8.1 Presentation Markup in Content Markup 8.2 Mathematical Alphanumeric
Symbols

min
4.3.5.12 N-ary/Unary Arithmetic Operators: <min/>, <max/> F. The Strict Content MathML Transformation F.5.1 N-
ary/unary operators

minus
4.2.5.1 Strict Content MathML 4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>,
<rem/>, <root/> 4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/
>, <floor/>, <ceiling/>, <exp/>, <minus/>, <root/> F. The Strict Content MathML Transformation F.8 Rewrite operators
F.8.1 Rewrite the minus operator

mlabeledtr
3.5.2.3 Equation Numbering 3.5.4.1 Removal Notice Changes to 3. Presentation Markup

mlongdiv
3.1.3.2 Table of argument requirements 3.1.8.5 Elementary Math Layout 3.3.9.2 Attributes 3.5 Tabular Math 3.6
Elementary Math 3.6.2.1 Description 3.6.2.2 Attributes 3.6.3.1 Description 3.6.3.2 Attributes 3.6.4.2 Attributes 3.6.5.1
Description 3.6.5.2 Attributes 3.6.7.2 Attributes C.4.2.6 Elementary Math Notation

mmultiscripts
3.1.3.2 Table of argument requirements 3.1.8.3 Script and Limit Schemata 3.2.5.6.3 Exception for embellished
operators 3.4.7.1 Description 3.4.7.2 Attributes 3.4.7.3 Examples

mn
2.1.7 Collapsing Whitespace in Input 3.1.5.2 Bidirectional Layout in Token Elements 3.1.7.1 Control of Linebreaks
3.1.8.1 Token Elements 3.2 Token Elements 3.2.1.1.1 Description 3.2.4.1 Description 3.2.4.2 Attributes 3.2.4.4
Numbers that should not be written using <mn> alone 3.6.4.1 Description 3.6.8.1 Addition and Subtraction 4.2.1.1
Rendering <cn>,<sep/>-Represented Numbers 6.8.1 Presentation Markup in Content Markup C.4.2.4 Numbers

mo
2.1.7 Collapsing Whitespace in Input 3.1.4 Elements with Special Behaviors 3.1.5.2 Bidirectional Layout in Token
Elements 3.1.6 Displaystyle and Scriptlevel 3.1.7.1 Control of Linebreaks 3.1.8.1 Token Elements 3.2 Token Elements

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

419 of 434 26/08/2025, 11:30

3.2.1.1.1 Description 3.2.4.1 Description 3.2.5.1 Description 3.2.5.2 Attributes 3.2.5.2.2 Linebreaking attributes
3.2.5.2.3 Indentation attributes 3.2.5.4 Examples with fences and separators 3.2.5.5 Invisible operators 3.2.5.6 Detailed
rendering rules for <mo> elements 3.2.5.6.1 The operator dictionary 3.2.5.6.2 Default value of the form attribute
3.2.5.6.3 Exception for embellished operators 3.2.5.7 Stretching of operators, fences and accents 3.2.5.7.3 Horizontal
Stretching Rules 3.2.7.2 Attributes 3.2.7.4 Definition of space-like elements 3.2.8.1 Description 3.3.1.1 Description
3.3.1.3.1 <mrow> of one argument 3.3.2.2 Attributes 3.3.4.1 Description 3.3.7.3 Examples 3.3.8.1 Description 3.3.8.2
Attributes 3.4.4.1 Description 3.4.4.2 Attributes 3.4.5.1 Description 3.4.5.2 Attributes 3.4.6.1 Description 3.5.4.2
Description 8.3 Non-Marking Characters Minus B. Operator Dictionary Changes to 3. Presentation Markup

mode
4.3.5.13 N-ary/Unary Statistical Operators: <mean/>, <median/>, <mode/>, <sdev/>, <variance/> F.8.3 Rewrite the
statistical operators

moment
4.3.3.2 Uses of <degree> 4.3.3.3 Uses of <momentabout> and <logbase> 4.3.7.8 Moment <moment/>,
<momentabout> F.2.7 Moments

momentabout
4.3.3 Qualifiers 4.3.3.3 Uses of <momentabout> and <logbase> 4.3.7.8 Moment <moment/>, <momentabout>

mover
3.1.3.2 Table of argument requirements 3.1.8.3 Script and Limit Schemata 3.2.5.2.1 Dictionary-based attributes
3.2.5.6.3 Exception for embellished operators 3.2.5.7.3 Horizontal Stretching Rules 3.3.4.1 Description 3.4.5.1
Description 3.4.5.2 Attributes 3.4.6.2 Attributes 3.4.6.3 Examples

mpadded
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.8.2 General Layout Schemata 3.2.5.6.3
Exception for embellished operators 3.2.7.4 Definition of space-like elements 3.3.4.1 Description 3.3.6.1 Description
3.3.6.2 Attributes 3.3.6.3 Meanings of size and position attributes 3.3.6.4 Examples 3.3.7.1 Description C.4.2.3 Spacing
Changes to 3. Presentation Markup

mphantom
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.8.2 General Layout Schemata 3.2.5.2.3
Indentation attributes 3.2.5.6.3 Exception for embellished operators 3.2.7.1 Description 3.2.7.4 Definition of space-like
elements 3.2.7.5 Legal grouping of space-like elements 3.3.7.1 Description 3.3.7.2 Attributes 3.3.7.3 Examples 3.5.4.3
Specifying alignment groups C.4.2.1 Invisible Operators C.4.2.3 Spacing

mprescripts
3.4.7.1 Description 7.4.4 Linking

mroot
3.1.3.2 Table of argument requirements 3.1.6 Displaystyle and Scriptlevel 3.1.7.1 Control of Linebreaks 3.1.8.2
General Layout Schemata 3.3.3.1 Description 3.3.3.2 Attributes

mrow
2.1.3 Children versus Arguments 2.2 The Top-Level <math> Element 3.1.1 Presentation MathML Structure 3.1.3.1
Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.5.1 Overall Directionality of Mathematics Formulas
3.1.7.1 Control of Linebreaks 3.1.8.2 General Layout Schemata 3.2.2 Mathematics style attributes common to token
elements 3.2.5.2.1 Dictionary-based attributes 3.2.5.2.3 Indentation attributes 3.2.5.6.2 Default value of the form
attribute 3.2.5.6.3 Exception for embellished operators 3.2.5.6.4 Spacing around an operator 3.2.5.7.2 Vertical
Stretching Rules 3.2.5.7.4 Rules Common to both Vertical and Horizontal Stretching 3.2.7.4 Definition of space-like
elements 3.2.7.5 Legal grouping of space-like elements 3.3.1.1 Description 3.3.1.2 Attributes 3.3.1.3 Proper grouping
of sub-expressions using <mrow> 3.3.1.3.1 <mrow> of one argument 3.3.1.3.2 Precise rule for proper grouping 3.3.1.4
Examples 3.3.2.2 Attributes 3.3.3.1 Description 3.3.4.1 Description 3.3.5.1 Description 3.3.6.1 Description 3.3.6.3
Meanings of size and position attributes 3.3.7.1 Description 3.3.7.3 Examples 3.3.8.1 Description 3.3.8.2 Attributes

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

420 of 434 26/08/2025, 11:30

3.3.8.3 Examples 3.3.9.1 Description 3.3.9.2 Attributes 3.4.7.1 Description 3.5.3.1 Description 3.5.3.2 Attributes
3.5.4.3 Specifying alignment groups 3.6.4.1 Description 3.6.5.1 Description 3.6.6.1 Description 3.6.8.1 Addition and
Subtraction 3.6.8.2 Multiplication 4.2.10 Encoded Bytes <cbytes> 6.8.1 Presentation Markup in Content Markup
C.4.2.2 Proper Grouping of Sub-expressions Changes to 3. Presentation Markup

ms
2.1.7 Collapsing Whitespace in Input 3.1.5.2 Bidirectional Layout in Token Elements 3.1.8.1 Token Elements 3.2
Token Elements 3.2.1.1.1 Description 3.2.8.1 Description 3.2.8.2 Attributes

mscarries
3.1.3.2 Table of argument requirements 3.1.8.5 Elementary Math Layout 3.6 Elementary Math 3.6.1.1 Description
3.6.5.1 Description 3.6.5.2 Attributes 3.6.6.1 Description 3.6.8.1 Addition and Subtraction

mscarry
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.8.5 Elementary Math Layout 3.6 Elementary
Math 3.6.5.1 Description 3.6.5.2 Attributes 3.6.6.1 Description 3.6.6.2 Attributes 3.6.8.1 Addition and Subtraction

msgroup
3.1.3.2 Table of argument requirements 3.1.8.5 Elementary Math Layout 3.6 Elementary Math 3.6.1.1 Description
3.6.2.1 Description 3.6.3.1 Description 3.6.3.2 Attributes 3.6.4.2 Attributes 3.6.5.2 Attributes 3.6.7.2 Attributes 3.6.8.2
Multiplication

msline
3.1.8.5 Elementary Math Layout 3.6 Elementary Math 3.6.1.1 Description 3.6.2.1 Description 3.6.7.1 Description
3.6.7.2 Attributes 3.6.8.1 Addition and Subtraction 3.6.8.4 Repeating decimal

mspace
2.1.7 Collapsing Whitespace in Input 3.1.7.1 Control of Linebreaks 3.1.8.1 Token Elements 3.2 Token Elements 3.2.1
Token Element Content Characters, <mglyph/> 3.2.2 Mathematics style attributes common to token elements 3.2.5.2.2
Linebreaking attributes 3.2.5.2.3 Indentation attributes 3.2.7.1 Description 3.2.7.2 Attributes 3.2.7.4 Definition of
space-like elements 3.3.4.1 Description 8.3 Non-Marking Characters C.3.1.1 Accessibility tree C.4.2.3 Spacing
Changes to 3. Presentation Markup

msqrt
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.7.1 Control of Linebreaks 3.1.8.2 General Layout
Schemata 3.3.3.1 Description 3.3.3.2 Attributes 3.3.9.2 Attributes

msrow
3.1.3.2 Table of argument requirements 3.1.8.5 Elementary Math Layout 3.6 Elementary Math 3.6.1.1 Description
3.6.4.1 Description 3.6.4.2 Attributes 3.6.5.2 Attributes 3.6.8.2 Multiplication 3.6.8.4 Repeating decimal

mstack
3.1.3.2 Table of argument requirements 3.1.8.5 Elementary Math Layout 3.3.4.1 Description 3.3.4.2 Attributes 3.5
Tabular Math 3.6 Elementary Math 3.6.1.1 Description 3.6.1.2 Attributes 3.6.2.1 Description 3.6.2.2 Attributes 3.6.3.1
Description 3.6.3.2 Attributes 3.6.4.1 Description 3.6.4.2 Attributes 3.6.5.1 Description 3.6.5.2 Attributes 3.6.7.1
Description 3.6.7.2 Attributes 3.6.8.4 Repeating decimal C.4.2.6 Elementary Math Notation

mstyle
2.1.5.2.1 Additional notes about units 2.1.5.3 Default values of attributes 2.2.1 Attributes 3.1.3.1 Inferred <mrow>s
3.1.3.2 Table of argument requirements 3.1.5.1 Overall Directionality of Mathematics Formulas 3.1.6 Displaystyle and
Scriptlevel 3.1.7.1 Control of Linebreaks 3.1.8.2 General Layout Schemata 3.2.2 Mathematics style attributes common
to token elements 3.2.5.2 Attributes 3.2.5.2.2 Linebreaking attributes 3.2.5.2.3 Indentation attributes 3.2.5.6.3
Exception for embellished operators 3.2.7.4 Definition of space-like elements 3.3.4.1 Description 3.3.4.2 Attributes
3.3.4.3 Examples 3.3.8.2 Attributes 3.4 Script and Limit Schemata 3.5.4.3 Specifying alignment groups 3.6.1.2
Attributes 3.6.4.1 Description Changes to 3. Presentation Markup

msub

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

421 of 434 26/08/2025, 11:30

3.1.3.2 Table of argument requirements 3.1.8.3 Script and Limit Schemata 3.2.3.1 Description 3.2.5.6.3 Exception for
embellished operators 3.4.1.1 Description 3.4.1.2 Attributes 3.4.3.1 Description

msubsup
3.1.3.2 Table of argument requirements 3.1.8.3 Script and Limit Schemata 3.2.5.6.3 Exception for embellished
operators 3.4.3.1 Description 3.4.3.2 Attributes 3.4.3.3 Examples 3.4.6.3 Examples 3.4.7.2 Attributes

msup
3.1.3.2 Table of argument requirements 3.1.4 Elements with Special Behaviors 3.1.8.3 Script and Limit Schemata
3.2.3.1 Description 3.2.5.6.3 Exception for embellished operators 3.2.7.5 Legal grouping of space-like elements 3.4.2.1
Description 3.4.2.2 Attributes 3.4.3.1 Description 5.7 Intent Examples

mtable
3.1.3.2 Table of argument requirements 3.1.6 Displaystyle and Scriptlevel 3.1.7.1 Control of Linebreaks 3.1.8.4 Tables
and Matrices 3.2.5.7.3 Horizontal Stretching Rules 3.3.4.1 Description 3.3.4.2 Attributes 3.5 Tabular Math 3.5.1.1
Description 3.5.1.2 Attributes 3.5.1.3 Examples 3.5.2.1 Description 3.5.2.2 Attributes 3.5.2.3 Equation Numbering
3.5.3.2 Attributes 3.5.4 Alignment Markers <maligngroup/>, <malignmark/> 3.5.4.1 Removal Notice 3.5.4.2
Description 3.5.4.3 Specifying alignment groups 3.5.4.7 A simple alignment algorithm 3.6.1.2 Attributes 4.3.5.8 N-ary
Matrix Constructors: <vector/>, <matrix/>, <matrixrow/> 5.7.2 Tables C.4.2.6 Elementary Math Notation C.4.2.8
Tables and Lists

mtd
3.1.3.1 Inferred <mrow>s 3.1.3.2 Table of argument requirements 3.1.8.4 Tables and Matrices 3.2.5.7.2 Vertical
Stretching Rules 3.2.5.7.3 Horizontal Stretching Rules 3.3.4.1 Description 3.5 Tabular Math 3.5.1.1 Description 3.5.2.1
Description 3.5.2.3 Equation Numbering 3.5.3.1 Description 3.5.3.2 Attributes 3.5.4.2 Description 3.5.4.3 Specifying
alignment groups 3.5.4.7 A simple alignment algorithm Changes to 3. Presentation Markup

mtext
2.1.7 Collapsing Whitespace in Input 3.1.5.2 Bidirectional Layout in Token Elements 3.1.8.1 Token Elements 3.2
Token Elements 3.2.1.1.1 Description 3.2.2.1 Embedding HTML in MathML 3.2.6.1 Description 3.2.6.2 Attributes
3.2.7.1 Description 3.2.7.4 Definition of space-like elements 3.2.8.1 Description 3.5.4.4 Table cells that are not divided
into alignment groups 7.4 Combining MathML and Other Formats 7.4.1 Mixing MathML and XHTML 7.4.3 Mixing
MathML and HTML Minus 8.4.2 Pseudo-scripts F.7.2 Token presentation

mtr
3.1.3.2 Table of argument requirements 3.1.8.4 Tables and Matrices 3.2.5.7.2 Vertical Stretching Rules 3.3.4.1
Description 3.5 Tabular Math 3.5.1.1 Description 3.5.2.1 Description 3.5.2.2 Attributes 3.5.2.3 Equation Numbering
3.5.3.1 Description 3.5.4.1 Removal Notice 3.5.4.7 A simple alignment algorithm 4.3.5.8 N-ary Matrix Constructors:
<vector/>, <matrix/>, <matrixrow/> Changes to 3. Presentation Markup

munder
3.1.3.2 Table of argument requirements 3.1.8.3 Script and Limit Schemata 3.2.5.2.1 Dictionary-based attributes
3.2.5.6.3 Exception for embellished operators 3.2.5.7.3 Horizontal Stretching Rules 3.3.4.1 Description 3.4.4.1
Description 3.4.4.2 Attributes 3.4.5.2 Attributes 3.4.6.2 Attributes 3.4.6.3 Examples

munderover
3.1.3.2 Table of argument requirements 3.1.8.3 Script and Limit Schemata 3.2.5.2.1 Dictionary-based attributes
3.2.5.6.3 Exception for embellished operators 3.2.5.7.3 Horizontal Stretching Rules 3.3.4.1 Description 3.4.6.1
Description 3.4.6.2 Attributes 3.4.6.3 Examples

neq
4.3.6.3 Binary Relations: <neq/>, <approx/>, <factorof/>, <tendsto/>

none/>
3.6.5.1 Description

none

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

422 of 434 26/08/2025, 11:30

7.4.4 Linking Changes to 3. Presentation Markup

not
4.3.7.1 Unary Logical Operators: <not/>

notin
4.3.6.5 Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

notprsubset
4.3.6.5 Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

notsubset
4.3.6.5 Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

ol>
C.4.2.8 Tables and Lists

OMA (openmath)
4.1.5 Strict Content MathML

OMATP (openmath)
4.1.5 Strict Content MathML

OMATTR (openmath)
4.1.5 Strict Content MathML

OMB (openmath)
4.1.5 Strict Content MathML

OMBIND (openmath)
4.1.5 Strict Content MathML

OMBVAR (openmath)
4.1.5 Strict Content MathML

OME (openmath)
4.1.5 Strict Content MathML

OMF (openmath)
4.1.5 Strict Content MathML

OMFOREIGN (openmath)
4.1.5 Strict Content MathML

OMI (openmath)
4.1.5 Strict Content MathML

OMR (openmath)
4.1.5 Strict Content MathML

OMS (openmath)
4.1.5 Strict Content MathML

OMSTR (openmath)
4.1.5 Strict Content MathML

OMV (openmath)
4.1.5 Strict Content MathML

or
4.3.5.5 N-ary Logical Operators: <and/>, <or/>, <xor/>

otherwise
4.3.1.1 Container Markup for Constructor Symbols 4.3.10.5 Piecewise declaration <piecewise>, <piece>, <otherwise>
F.4.4 Piecewise functions

outerproduct

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

423 of 434 26/08/2025, 11:30

4.3.6.4 Binary Linear Algebra Operators: <vectorproduct/>, <scalarproduct/>, <outerproduct/>

partialdiff
4.3 Content MathML for Specific Structures 4.3.8.3 Partial Differentiation <partialdiff/> F.2.1 Derivatives

piece
4.3.1.1 Container Markup for Constructor Symbols 4.3.10.5 Piecewise declaration <piecewise>, <piece>, <otherwise>
F.4.4 Piecewise functions

piecewise
4.3.1.1 Container Markup for Constructor Symbols 4.3.10.5 Piecewise declaration <piecewise>, <piece>, <otherwise>
F.4.4 Piecewise functions

plus
4.2.5.1 Strict Content MathML 4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/> 4.3.5.2 N-ary
Sum <sum/>

power
4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>, <root/>

product
4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/> 4.3.5.3 N-ary Product <product/> F.3.1
Intervals

prsubset
4.3.5.11 N-ary Set Theoretic Relations: <subset/>, <prsubset/>

quotient
4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>, <root/>

real
4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/>,
<ceiling/>, <exp/>, <minus/>, <root/>

reln
Changes to 4. Content Markup

rem
4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>, <root/>

root
4.3.3.2 Uses of <degree> 4.3.6.1 Binary Arithmetic Operators: <quotient/>, <divide/>, <minus/>, <power/>, <rem/>,
<root/> 4.3.7.2 Unary Arithmetic Operators: <factorial/>, <abs/>, <conjugate/>, <arg/>, <real/>, <imaginary/>, <floor/
>, <ceiling/>, <exp/>, <minus/>, <root/>

scalarproduct
4.3.6.4 Binary Linear Algebra Operators: <vectorproduct/>, <scalarproduct/>, <outerproduct/>

sdev
4.3.5.13 N-ary/Unary Statistical Operators: <mean/>, <median/>, <mode/>, <sdev/>, <variance/> F.8.3 Rewrite the
statistical operators

selector
4.3.5.6 N-ary Linear Algebra Operators: <selector/> F. The Strict Content MathML Transformation F.8 Rewrite
operators

semantics
3.2.5.6.3 Exception for embellished operators 3.2.7.4 Definition of space-like elements 3.5.4.3 Specifying alignment
groups 3.8 Semantics and Presentation 4.1.5 Strict Content MathML 4.2.2.2 Non-Strict uses of <ci> 4.2.6.2 Bound
Variables 4.2.8 Attribution via semantics 6. Annotating MathML: semantics 6.2 Alternate representations 6.4
Annotation references 6.5.1 Description 6.6.2 Attributes 6.7.2 Attributes 6.8.1 Presentation Markup in Content Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

424 of 434 26/08/2025, 11:30

6.9 Parallel Markup 6.9.1 Top-level Parallel Markup 6.9.2 Parallel Markup via Cross-References 7.1 Introduction 7.3
Transferring MathML 7.3.2 Recommended Behaviors when Transferring 7.3.3 Discussion 7.4 Combining MathML and
Other Formats 7.4.5 MathML and Graphical Markup F. The Strict Content MathML Transformation F.7.2 Token
presentation F.9.1 Rewrite the type attribute F.9.3 Rewrite attributes Changes to 6. Annotating MathML: semantics

sep
4.2.1 Numbers <cn> 4.2.1.1 Rendering <cn>,<sep/>-Represented Numbers 4.2.1.3 Non-Strict uses of <cn> F.7.1
Numbers

set
4.1.5 Strict Content MathML 4.2.2.1 Strict uses of <ci> 4.3.5.9 N-ary Set Theoretic Constructors: <set>, <list> F.4.1
Sets and Lists

setdiff
4.3.6.5 Binary Set Operators: <in/>, <notin/>, <notsubset/>, <notprsubset/>, <setdiff/>

share
4.1.5 Strict Content MathML 4.2.7.1 The share element 4.2.7.2 An Acyclicity Constraint 4.2.7.3 Structure Sharing and
Binding 4.2.7.4 Rendering Expressions with Structure Sharing Changes to 4. Content Markup

sin
4.1.5 Strict Content MathML

span (xhtml)
6.7.3 Using annotation-xml in HTML documents

subset
4.3.5.11 N-ary Set Theoretic Relations: <subset/>, <prsubset/>

sum
4.2.5.2 Rendering Applications 4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/> 4.3.5.2 N-ary
Sum <sum/> F.3.1 Intervals

svg (svg)
7.4.1 Mixing MathML and XHTML

table (xhtml)
3.5 Tabular Math C.4.2.8 Tables and Lists

td (xhtml)
3.5 Tabular Math

tendsto
4.3.6.3 Binary Relations: <neq/>, <approx/>, <factorof/>, <tendsto/> 4.3.10.4 Limits <limit/> F.2.3 Limits

times
4.3.5.1 N-ary Arithmetic Operators: <plus/>, <times/>, <gcd/>, <lcm/> 4.3.5.3 N-ary Product <product/>

tr (xhtml)
3.5 Tabular Math

transpose
4.3.7.3 Unary Linear Algebra Operators: <determinant/>, <transpose/>

union
4.3.5.7 N-ary Set Operators: <union/>, <intersect/>, <cartesianproduct/>

uplimit
4.3.3 Qualifiers 4.3.3.1 Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit> 4.3.5.2 N-
ary Sum <sum/> 4.3.5.3 N-ary Product <product/> 4.3.8.1 Integral <int/> 6.8.2 Content Markup in Presentation
Markup F. The Strict Content MathML Transformation F.2.2 Integrals F.3.1 Intervals F.3.2 Multiple conditions F.6
Eliminate domainofapplication

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

425 of 434 26/08/2025, 11:30

variance
4.3.5.13 N-ary/Unary Statistical Operators: <mean/>, <median/>, <mode/>, <sdev/>, <variance/> F.8.3 Rewrite the
statistical operators

vector
4.2.2.1 Strict uses of <ci> 4.3.5.8 N-ary Matrix Constructors: <vector/>, <matrix/>, <matrixrow/> F.6.3 Apply to list

vectorproduct
4.3.6.4 Binary Linear Algebra Operators: <vectorproduct/>, <scalarproduct/>, <outerproduct/>

xor
4.3.5.5 N-ary Logical Operators: <and/>, <or/>, <xor/>

This section is non-normative.

The current Math Working Group is chartered from April 2021, until May 2023 and is co-chaired by Neil Soiffer and Brian
Kardell (Igalia).

Between 2019 and 2021 the W3C MathML-Refresh Community Group was chaired by Neil Soiffer and developed the
initial proposal for MathML Core and requirements for MathML 4.

The W3C Math Working Group responsible for MathML 3 (2012–2013) was co-chaired by David Carlisle of NAG and
Patrick Ion of the AMS; Patrick Ion and Robert Miner of Design Science were co-chairs 2006-2011. Contact the co-chairs
about membership in the Working Group. For the current membership see the W3C Math home page.

Robert Miner, whose leadership and contributions were essential to the development of the Math Working Group and
MathML from their beginnings, died tragically young in December 2011.

Participants in the Working Group responsible for MathML 3.0 have been:

Ron Ausbrooks, Laurent Bernardin, Pierre-Yves Bertholet, Bert Bos, Mike Brenner, Olga Caprotti, David Carlisle,
Giorgi Chavchanidze, Ananth Coorg, Stéphane Dalmas, Stan Devitt, Sam Dooley, Margaret Hinchcliffe, Patrick Ion,
Michael Kohlhase, Azzeddine Lazrek, Dennis Leas, Paul Libbrecht, Manolis Mavrikis, Bruce Miller, Robert Miner,
Chris Rowley, Murray Sargent III, Kyle Siegrist, Andrew Smith, Neil Soiffer, Stephen Watt, Mohamed Zergaoui

All the above persons have been members of the Math Working Group, but some not for the whole life of the Working
Group. The 22 authors listed for MathML3 at the start of that specification are those who contributed reworkings and
reformulations used in the actual text of the specification. Thus the list includes the principal authors of MathML2 much of
whose text was repurposed here. They were, of course, supported and encouraged by the activity and discussions of the
whole Math Working Group, and by helpful commentary from outside it, both within the W3C and further afield.

For 2003 to 2006 W3C Math Activity comprised a Math Interest Group, chaired by David Carlisle of NAG and Robert
Miner of Design Science.

H. Working Group Membership and Acknowledgments

H.1 The Math Working Group Membership

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

426 of 434 26/08/2025, 11:30

https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/
https://www.w3.org/Math/

The W3C Math Working Group (2001–2003) was co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM from June
2001 to May 2002; afterwards Patrick Ion continued as chair until the end of the WG's extended charter.

Participants in the Working Group responsible for MathML 2.0, second edition were:

Ron Ausbrooks, Laurent Bernardin, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan Devitt, Max Froumentin,
Patrick Ion, Michael Kohlhase, Robert Miner, Luca Padovani, Ivor Philips, Murray Sargent III, Neil Soiffer, Paul
Topping, Stephen Watt

Earlier active participants of the W3C Math Working Group (2001 – 2003) have included:

Angel Diaz, Sam Dooley, Barry MacKichan

The W3C Math Working Group was co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM from July 1998 to
December 2000.

Participants in the Working Group responsible for MathML 2.0 were:

Ron Ausbrooks, Laurent Bernardin, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan Devitt, Angel Diaz, Ben
Hinkle, Stephen Hunt, Douglas Lovell, Patrick Ion, Robert Miner, Ivor Philips, Nico Poppelier, Dave Raggett, T.V.
Raman, Murray Sargent III, Neil Soiffer, Irene Schena, Paul Topping, Stephen Watt

Earlier active participants of this second W3C Math Working Group have included:

Sam Dooley, Robert Sutor, Barry MacKichan

At the time of release of MathML 1.0 [MathML1] the Math Working Group was co-chaired by Patrick Ion and Robert
Miner, then of the Geometry Center. Since that time several changes in membership have taken place. In the course of the
update to MathML 1.01, in addition to people listed in the original membership below, corrections were offered by David
Carlisle, Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and others.

Participants in the Math Working Group responsible for the finished MathML 1.0 specification were:

Stephen Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Brenda Hunt, Stephen Hunt, Patrick Ion, Robert Miner,
Nico Poppelier, Dave Raggett, T.V. Raman, Bruce Smith, Neil Soiffer, Robert Sutor, Paul Topping, Stephen Watt, Ralph
Youngen

Others who had been members of the W3C Math WG for periods at earlier stages were:

Stephen Glim, Arnaud Le Hors, Ron Whitney, Lauren Wood, Ka-Ping Yee

The Working Group benefited from the help of many other people in developing the specification for MathML 1.0. We
would like to particularly name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby Villegas and
Joe Yurvati for help and information in assembling the character tables in 8. Characters, Entities and Fonts, as well as Peter

H.2 Acknowledgments

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

427 of 434 26/08/2025, 11:30

Flynn, Russell S.S. O'Connor, Andreas Strotmann, and other contributors to the www-math mailing list for their careful
proofreading and constructive criticisms.

As the Math Working Group went on to MathML 2.0, it again was helped by many from the W3C family of Working
Groups with whom we necessarily had a great deal of interaction. Outside the W3C, a particularly active relevant front was
the interface with the Unicode Technical Committee (UTC) and the NTSC WG2 dealing with ISO 10646. There the STIX
project put together a proposal for the addition of characters for mathematical notation to Unicode, and this work was again
spearheaded by Barbara Beeton of the AMS. The whole problem ended split into three proposals, two of which were
advanced by Murray Sargent of Microsoft, a Math WG member and member of the UTC. But the mathematical community
should be grateful for essential help and guidance over a couple of years of refinement of the proposals to help mathematics
provided by Kenneth Whistler of Sybase, and a UTC and WG2 member, and by Asmus Freytag, also involved in the UTC
and WG2 deliberations, and always a stalwart and knowledgeable supporter of the needs of scientific notation.

• Changes to the references to match new W3C specification rules, and to use the new W3C CSS formatting style, most
notably affecting the table of contents styling.

• Update the Status of This Document, in particular using https and referencing the GitHub Issues page as required for
current W3C publications.

• Modified the definition of MathML color and length valued attributes to be explicitly based on the syntax used in
[MathML-Core] which in turn uses definitions provided by CSS3.

• Remove the mode and macros attributes from <math>. These have been deprecated since MathML 2. macros had no
defined behaviour, and mode can be replaced by suitable use of display. The mathml4-legacy schema makes these
valid if needed for legacy applications.

• Remove the other attribute. This have been deprecated since MathML 2. The mathml4-legacy schema makes this
valid if needed for legacy applications.

• Separate the examples in 3.2.3.3 Examples and 3.2.4.3 Examples to improve their appearance when rendered.

I. Changes

I.1 Changes between MathML 3.0 Second Edition and MathML 4.0

Changes to the Frontmatter

Changes to 2. MathML Fundamentals

Changes to 3. Presentation Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

428 of 434 26/08/2025, 11:30

https://lists.w3.org/Archives/Public/www-math/
https://lists.w3.org/Archives/Public/www-math/

• Clarify that negative numbers should be marked up with an explicit mo operator in 3.2.4.4 Numbers that should not be
written using <mn> alone.

• Correct the long division notation names in 3.6.2.2 Attributes.

• Clarify that the horizontal alignment of scripts in 3.4.7 Prescripts and Tensor Indices <mmultiscripts>,
<mprescripts/> is towards the base, and add a new example.

• The deprecated MathML 1 attributes on token elements: fontfamily, fontweight, fontstyle, fontsize, color
and background are removed in favor of mathvariant, mathsize, mathcolor and mathbackground. These
attributes are also no longer valid on mstyle. The mathml4-legacy schema makes these valid if needed for legacy
applications.

• All the deprecated font related attributes have been dropped from mglyph which is still retained to include images in
MathML.

• The value indentingnewline is no longer valid for mspace (it was equivalent to newline).

• In MathML table rows and cells must be explicitly marked wih mtr and mtd. The [MathML1] required that an
implementation infer the row markup if it was omitted.

• The use of malignmark has been restricted and simplified, matching the features implemented in existing
implementations. The groupalign attribute on table elements is no longer supported.

• The deprecated mo attributes, fence and separator, have been removed (and are also no longer listed as properties in
B. Operator Dictionary). They are still valid in the A.2.6 Legacy MathML schema, but invalid in the default schema.

• The deprecated element none is replaced by an empty mrow throughout, to match [MathML-Core].

• The element mlabeledtr and the associated attributes side and minlabelspacing are no longer specified. They are
removed from the default schema but valid in the Legacy Schema.

• To align with MathML-Core, the special extended syntax for mpadded length attributes ("+" | "-")?
unsigned-number (("%" pseudo-unit?) | pseudo-unit | unit | namedspace)? is no longer
supported. Most of the functionality is still available using standard CSS length syntax. See Note: mpadded lengths.

• Correct examples in 4.2.7.1 The share element, 4.2.7.2 An Acyclicity Constraint, 4.2.7.3 Structure Sharing and
Binding, 4.2.7.4 Rendering Expressions with Structure Sharing to use src (to match the normative schema) not href.
The previous examples were also valid, as href is a common presentational attribute allowed on all elements.

• The Content element syntax tables and mapping to OpenMath have been moved from Chapter 4 to a new appendix, E.3
The Content MathML Operators.

• All Information relating to the rewrite to Strict Content MathML has been collected together and moved to a new
appendix F. The Strict Content MathML Transformation.

• The deprecated elements reln, declare and fn have been removed. The mathml4-legacy schema makes these
valid if needed for legacy applications.

Changes to 4. Content Markup

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

429 of 434 26/08/2025, 11:30

• Introduced new chapter 5. Annotating MathML: intent describing the intent attribute.

• Renamed Chapter from “Mixing Markup Languages for Mathematical Expressions”

• The existing text on using the <semantics> element to mix Presentation and Content MathML is maintained in the
second section, although reduced with some non normative text and examples moved to [MathML-Notes].

• MathML 3 deprecated the use of encoding and definitionURL on <semantics>. They are invalid in this
specification. The mathml4-legacy schema may be used if these attributes need to be validated for a legacy
application.

• Some rewriting of the text and adjusting references as the Media type registrations have been moved from an Appendix
of this specification to a separate document, [MathML-Media-Types].

• Media type registrations have been moved from an Appendix of this specification to a separate document, [MathML-
Media-Types].

• The schema was updated to match MathML4

• The schema was refactored with a new mathml4-core schema matching [MathML-Core] being used as the basis for
mathml4-presentation, and a new mathml4-legacy schema that can be used to validate an existing corpus of
documents matching [MathML3].

• The spacing values and priorities of the elements were reviewed and adjusted.

Changes to 5. Annotating MathML: intent

Changes to 6. Annotating MathML: semantics

Changes to 7. Interactions with the Host Environment

Changes to Media Types

Changes to A. Parsing MathML

Changes to B. Operator Dictionary

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

430 of 434 26/08/2025, 11:30

• A new “compact” presentation is provided as well as the tabular presentation used previously.

• The underlying data files were updated to Unicode 14/15/16.

• This new appendix collects together requirements and issues related to accessibility.

• These new appendices collect together the syntax tables, mappings to OpenMath and rewrite rules that were previously
distributed throughout 4. Content Markup.

[Bidi]
Unicode Bidirectional Algorithm. Manish Goregaokar मनीष गोरेगांवकर; Robin Leroy. Unicode Consortium. 2 September
2024. Unicode Standard Annex #9. URL: https://www.unicode.org/reports/tr9/tr9-50.html

[CSS-Color-3]
CSS Color Module Level 3. Tantek Çelik; Chris Lilley; David Baron. W3C. 18 January 2022. W3C Recommendation.
URL: https://www.w3.org/TR/css-color-3/

[CSS-VALUES-3]
CSS Values and Units Module Level 3. Tab Atkins Jr.; Elika Etemad. W3C. 22 March 2024. W3C Candidate
Recommendation. URL: https://www.w3.org/TR/css-values-3/

[CSS21]
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. Bert Bos; Tantek Çelik; Ian Hickson; Håkon Wium
Lie. W3C. 7 June 2011. W3C Recommendation. URL: https://www.w3.org/TR/CSS21/

[DLMF]
NIST Digital Library of Mathematical Functions, Release 1.1.5. F. W. J. Olver; A. B. Olde Daalhuis; D. W. Lozier; B.
I. Schneider; R. F. Boisvert; C. W. Clark; B. R. Miller; B. V. Saunders; H. S. Cohl; M. A. McClain. 2022-03-15. URL:
http://dlmf.nist.gov/

[Entities]
XML Entity Definitions for Characters (3rd Edition). Patrick D F Ion; David Carlisle. W3C. 7 March 2023. W3C
Recommendation. URL: https://www.w3.org/TR/xml-entity-names/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Dominic Farolino; Ian Hickson; Philip Jägenstedt; Simon
Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/

Changes to C. MathML Accessibility

Changes to E.3 The Content MathML Operators and F. The Strict Content MathML Transformation

J. References

J.1 Normative references

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

431 of 434 26/08/2025, 11:30

https://www.unicode.org/reports/tr9/tr9-50.html
https://www.unicode.org/reports/tr9/tr9-50.html
https://www.unicode.org/reports/tr9/tr9-50.html
https://www.unicode.org/reports/tr9/tr9-50.html
https://www.unicode.org/reports/tr9/tr9-50.html
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-color-3/
https://www.w3.org/TR/css-values-3/
https://www.w3.org/TR/css-values-3/
https://www.w3.org/TR/css-values-3/
https://www.w3.org/TR/css-values-3/
https://www.w3.org/TR/css-values-3/
https://www.w3.org/TR/CSS21/
https://www.w3.org/TR/CSS21/
https://www.w3.org/TR/CSS21/
https://www.w3.org/TR/CSS21/
https://www.w3.org/TR/CSS21/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://www.w3.org/TR/xml-entity-names/
https://www.w3.org/TR/xml-entity-names/
https://www.w3.org/TR/xml-entity-names/
https://www.w3.org/TR/xml-entity-names/
https://www.w3.org/TR/xml-entity-names/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/

[IEEE754]
IEEE754.

[INFRA]
Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL: https://
infra.spec.whatwg.org/

[IRI]
Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc3987

[MathML-AAM]
MathML Accessiblity API Mappings 1.0. W3C. W3C Editor's Draft. URL: https://w3c.github.io/mathml-aam/

[MathML-Core]
MathML Core. David Carlisle; Frédéric Wang. W3C. 27 November 2023. W3C Working Draft. URL: https://
www.w3.org/TR/mathml-core/

[MathML-Media-Types]
MathML Media-type Declarations. W3C. W3C Editor's Draft. URL: https://w3c.github.io/mathml-docs/mathml-media-
types/

[Namespaces]
Namespaces in XML 1.0 (Third Edition). Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin; Henry
Thompson et al. W3C. 8 December 2009. W3C Recommendation. URL: https://www.w3.org/TR/xml-names/

[OpenMath]
The OpenMath Standard. S. Buswell; O. Caprotti; D. P. Carlisle; M. C. Dewar; M. Gaëtano; M. Kohlhase; J. H.
Davenport; P. D. F. Ion; T. Wiesing. The OpenMath Society. July 2019. URL: https://openmath.org/standard/
om20-2019-07-01/omstd20.html

[RELAXNG-SCHEMA]
Information technology -- Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based
validation -- RELAX NG. ISO/IEC. 2008. URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/
c052348_ISO_IEC_19757-2_2008(E).zip

[RFC2045]
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed; N.
Borenstein. IETF. November 1996. Draft Standard. URL: https://www.rfc-editor.org/rfc/rfc2045

[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed; N. Borenstein. IETF. November
1996. Draft Standard. URL: https://www.rfc-editor.org/rfc/rfc2046

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL:
https://www.rfc-editor.org/rfc/rfc2119

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005.
Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986

[RFC7303]
XML Media Types. H. Thompson; C. Lilley. IETF. July 2014. Proposed Standard. URL: https://www.rfc-editor.org/rfc/
rfc7303

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice.
URL: https://www.rfc-editor.org/rfc/rfc8174

[rfc9110]

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

432 of 434 26/08/2025, 11:30

https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://w3c.github.io/mathml-aam/
https://w3c.github.io/mathml-aam/
https://w3c.github.io/mathml-aam/
https://w3c.github.io/mathml-aam/
https://w3c.github.io/mathml-aam/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://www.w3.org/TR/mathml-core/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://w3c.github.io/mathml-docs/mathml-media-types/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://openmath.org/standard/om20-2019-07-01/omstd20.html
https://openmath.org/standard/om20-2019-07-01/omstd20.html
https://openmath.org/standard/om20-2019-07-01/omstd20.html
https://openmath.org/standard/om20-2019-07-01/omstd20.html
https://openmath.org/standard/om20-2019-07-01/omstd20.html
https://openmath.org/standard/om20-2019-07-01/omstd20.html
https://openmath.org/standard/om20-2019-07-01/omstd20.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
https://www.rfc-editor.org/rfc/rfc2045
https://www.rfc-editor.org/rfc/rfc2045
https://www.rfc-editor.org/rfc/rfc2045
https://www.rfc-editor.org/rfc/rfc2045
https://www.rfc-editor.org/rfc/rfc2045
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174

HTTP Semantics. R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed.. IETF. June 2022. Internet Standard. URL:
https://httpwg.org/specs/rfc9110.html

[SVG]
Scalable Vector Graphics (SVG) 1.1 (Second Edition). Erik Dahlström; Patrick Dengler; Anthony Grasso; Chris Lilley;
Cameron McCormack; Doug Schepers; Jonathan Watt; Jon Ferraiolo; Jun Fujisawa; Dean Jackson et al. W3C. 16
August 2011. W3C Recommendation. URL: https://www.w3.org/TR/SVG11/

[UAAG20]
User Agent Accessibility Guidelines (UAAG) 2.0. James Allan; Greg Lowney; Kimberly Patch; Jeanne F Spellman.
W3C. 15 December 2015. W3C Working Group Note. URL: https://www.w3.org/TR/UAAG20/

[Unicode]
The Unicode Standard. Unicode Consortium. URL: https://www.unicode.org/versions/latest/

[WCAG21]
Web Content Accessibility Guidelines (WCAG) 2.1. Michael Cooper; Andrew Kirkpatrick; Joshue O'Connor; Alastair
Campbell. W3C. 21 September 2023. W3C Recommendation. URL: https://www.w3.org/TR/WCAG21/

[XML]
Extensible Markup Language (XML) 1.0 (Fifth Edition). Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve
Maler; François Yergeau et al. W3C. 26 November 2008. W3C Recommendation. URL: https://www.w3.org/TR/xml/

[XMLSchemaDatatypes]
XML Schema Part 2: Datatypes Second Edition. Paul V. Biron; Ashok Malhotra. W3C. 28 October 2004. W3C
Recommendation. URL: https://www.w3.org/TR/xmlschema-2/

[XMLSchemas]
XML Schema Part 1: Structures Second Edition. Henry Thompson; David Beech; Murray Maloney; Noah Mendelsohn
et al. W3C. 28 October 2004. W3C Recommendation. URL: https://www.w3.org/TR/xmlschema-1/

[Concept-Lists]
Maintaining MathML Concept Lists. W3C. note. URL: https://w3c.github.io/mathml-docs/concept-lists/

[MathML-Notes]
Notes on MathML. W3C. note. URL: https://w3c.github.io/mathml-docs/notes-on-mathml/

[MathML-Types]
Structured Types in MathML 2.0. Stan Devitt; Michael Kohlhase; Max Froumentin. W3C. 10 November 2003. W3C
Working Group Note. URL: https://www.w3.org/TR/mathml-types/

[MathML1]
Mathematical Markup Language (MathML) 1.0 Specification. Patrick D F Ion; Robert R Miner. W3C. 7 April 1998.
W3C Recommendation. URL: https://www.w3.org/TR/1998/REC-MathML-19980407/

[MathML3]
Mathematical Markup Language (MathML) Version 3.0 2nd Edition. David Carlisle; Patrick D F Ion; Robert R Miner.
W3C. 10 April 2014. W3C Recommendation. URL: https://www.w3.org/TR/MathML3/

[MathMLforCSS]
MathMLforCSS.

[Modularization]
XHTML™ Modularization 1.1. Daniel Austin; Subramanian Peruvemba; Shane McCarron; Masayasu Ishikawa; Mark
Birbeck et al. W3C. 8 October 2008. W3C Recommendation. URL: https://www.w3.org/TR/2008/REC-xhtml-

J.2 Informative references

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

433 of 434 26/08/2025, 11:30

https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/UAAG20/
https://www.w3.org/TR/UAAG20/
https://www.w3.org/TR/UAAG20/
https://www.w3.org/TR/UAAG20/
https://www.w3.org/TR/UAAG20/
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://w3c.github.io/mathml-docs/concept-lists/
https://w3c.github.io/mathml-docs/concept-lists/
https://w3c.github.io/mathml-docs/concept-lists/
https://w3c.github.io/mathml-docs/concept-lists/
https://w3c.github.io/mathml-docs/concept-lists/
https://w3c.github.io/mathml-docs/notes-on-mathml/
https://w3c.github.io/mathml-docs/notes-on-mathml/
https://w3c.github.io/mathml-docs/notes-on-mathml/
https://w3c.github.io/mathml-docs/notes-on-mathml/
https://w3c.github.io/mathml-docs/notes-on-mathml/
https://www.w3.org/TR/mathml-types/
https://www.w3.org/TR/mathml-types/
https://www.w3.org/TR/mathml-types/
https://www.w3.org/TR/mathml-types/
https://www.w3.org/TR/mathml-types/
https://www.w3.org/TR/1998/REC-MathML-19980407/
https://www.w3.org/TR/1998/REC-MathML-19980407/
https://www.w3.org/TR/1998/REC-MathML-19980407/
https://www.w3.org/TR/1998/REC-MathML-19980407/
https://www.w3.org/TR/1998/REC-MathML-19980407/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/
https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/
https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/
https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/
https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/

modularization-20081008/

[OMDoc1.2]
OMDoc1.2.

[RDF]
Resource Description Framework (RDF): Concepts and Abstract Syntax. Graham Klyne; Jeremy Carroll. W3C. 10
February 2004. W3C Recommendation. URL: https://www.w3.org/TR/rdf-concepts/

[XHTML]
XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition). Steven Pemberton. W3C. 27 March
2018. W3C Recommendation. URL: https://www.w3.org/TR/xhtml1/

[XHTML-MathML-SVG]
An XHTML + MathML + SVG Profile. Masayasu Ishikawa. W3C. 9 August 2002. W3C Working Draft. URL: https://
www.w3.org/TR/XHTMLplusMathMLplusSVG/

[XLink]
XML Linking Language (XLink) Version 1.0. Steven DeRose; Eve Maler; David Orchard. W3C. 27 June 2001. W3C
Recommendation. URL: https://www.w3.org/TR/xlink/

↑

Mathematical Markup Language (MathML) Version 4.0 https://www.w3.org/TR/2024/WD-mathml4-20241119/

434 of 434 26/08/2025, 11:30

https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/
https://www.w3.org/TR/2008/REC-xhtml-modularization-20081008/
https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/
https://www.w3.org/TR/xlink/
https://www.w3.org/TR/xlink/
https://www.w3.org/TR/xlink/
https://www.w3.org/TR/xlink/
https://www.w3.org/TR/xlink/

