next contents properties index

W3C

Scalable Vector Graphics (SVG)
Specification

W3C Working Draft 06 July 1999

Thisversion: http://www.w3.0rg/1999/07/06/WD-SV G-19990706/
Latest version: http://www.w3.orag/TR/SVG
Previous version: http://www.w3.0rg/1999/06/25/WD-SV G-19990625/

Editor: Jon Ferraiolo <jferraio@adobe.com>

Authors: John Bowler, Microsoft Corporation <johnbo@microsoft.com>
Milt Capsimalis, Autodesk Inc. <milt@autodesk.com>
Richard Cohn, Adobe Systems Incorporated <cohn@adobe.com>
Andrew Donoho, IBM <awd@us.ibm.com>
David Duce, RAL (CCLRC) <dad@inf.rl.ac.uk>
Jerry Evans, Sun Microsystems <jerry.evans@Eng.sun.com>
Jon Ferraiolo, Adobe Systems Incorporated <jferraio@adobe.com>
Scott Furman, Netscape Communications Corporation <fur@netscape.com>
Peter Graffagnino, Apple <pgraff @apple.com>
L ofton Henderson, Inso Corporation <lofton@cgm.com>
Alan Hester, Xerox Corporation <Alan.Hester @usa.xerox.com>
Bob Hopgood, RAL (CCLRC) <frah@inf.rl.ac.uk>
Kelvin Lawrence, IBM <klawrenc@us.ibm.com>
ChrisLilley, W3C <chris@w3.org>
Philip Mansfield, Inso Corporation <philipm@paradigmdev.com>
Kevin McCluskey, Netscape Communications Corporation <kmcclusk @netscape.com>
Tuan Nguyen, Microsoft Corporation <tuann@microsoft.com>
Troy Sandal, Visio Corporation <TroyS@visio.com>
Peter Santangeli, Macromedia <psantangeli @macromedia.com>
Haroon Sheikh, Corel Corporation <haroons@corel.ca>
Gavriel State, Corel Corporation <gavrielSQCOREL.CA>
Robert Stevahn, Hewlett-Packard Company <rstevahn@boi.hp.com>
Shenxue Zhou, Quark <szhou@quark.com>

file:///D|/Jon/SVGSpec/index#minitoc
http://www.w3.org/
http://www.w3.org/1999/07/06/WD-SVG-19990706/
http://www.w3.org/TR/SVG
http://www.w3.org/1999/06/25/WD-SVG-19990625/
mailto:jferraio@adobe.com
mailto:johnbo@microsoft.com
mailto:milt@autodesk.com
mailto:cohn@adobe.com
mailto:awd@us.ibm.com
mailto:dad@inf.rl.ac.uk
mailto:jerry.evans@Eng.sun.com
mailto:jferraio@adobe.com
mailto:fur@netscape.com
mailto:pgraff@apple.com
mailto:lofton@cgm.com
mailto:Alan.Hester@usa.xerox.com
mailto:frah@inf.rl.ac.uk
mailto:klawrenc@us.ibm.com
mailto:chris@w3.org
mailto:philipm@paradigmdev.com
mailto:kmcclusk@netscape.com
mailto:tuann@microsoft.com
mailto:TroyS@visio.com
mailto:psantangeli@macromedia.com
mailto:haroons@corel.ca
mailto:gavriels@COREL.CA
mailto:rstevahn@boi.hp.com
mailto:szhou@quark.com

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG), alanguage for
describing two-dimensional vector and mixed vector/raster graphicsin XML.

Status of this document

This document is an intermediate public review draft version of the SV G specification.

The SV G working group has been using a staged approach. Initially, the working group developed an
detailed set of SVG Requirements, which are listed in Appendix A: . These requirements were posted

for public review initially in November 1998. For the most part, the specification has been developed to
provide the feature set listed in the requirements document. Appendix A contains detailed editorial

comments about which requirements have been addressed in this draft (along with hyperlinks to the
relevant sections of the specification) and notes about which requirements have not been addressed yet
and why.

The SV G working group has achieved significant progress toward translating the SV G requirements into
an SV G specification. Much of the SV G language has been specified. A few major sections are still
under development and many minor changes are still expected. There is still a need for considerable
coordination work with other W3C working groups. Overall, it islikely that changesto the SVG
specification will occur before a Proposed Recommendation is delivered by the working group.

Degspite the preliminary nature of this draft specification, tools vendors and Web content creators are
encouraged to experiment and develop preliminary versions of tools and Web sites according this draft
specification, with the understanding that these tools and Web sites are experiemental/devel opmental in
nature only and will need to be adapted to the final SV G Recommendation. The SVG working group is
encouraged to see that several implementations of SVG are in progress, and encourages these
implementations to track towards the present draft.

The main goal with this draft specification isto solicit public review and feedback. Public discussion of
SV G features takes place on www-svg@w3.org, which is an automatically archived email list.
Information on how to subscribe to public W3C email lists can be found at
http://www.w3.org/Mail/Request. Review comments should be sent to www-svg@w3.0rg,

The home page for the W3C graphics activity is http://www.w3.0rg/Graphics/Activity.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.0rg/TR.

Available formats

The SVG specification is available in the following formats. (In future versions, the specification's
vector drawings will be available in both SV G and raster image formats. For now, only raster image
formats are available.)

http://www.w3.org/Mail/Lists.html#www-svg
http://lists.w3.org/Archives/Public/www-svg/
http://www.w3.org/Mail/Lists
mailto:www-svg@w3.org
http://www.w3.org/Graphics/Activity
http://www.w3.org/TR

HTML 4.0:

http://www.w3.0rg/1999/07/06/\WD-SV G-19990706/i ndex.html

and a PDF file:

http://www.w3.0rg/1999/07/06/WD-SV G-19990706/WD-SV G-19990706.pdf .

Available languages

The English version of this specification is the only normative version. However, for trandations in
other languages see http://www.w3.org/Graphics/SV G/svg-updates/trand ations.html.

Quick Table of Contents

1 Introduction to SVG

2 SV G Concepts

3 Conformance Requirements and Recommendations
4 SV G Document Structure

5 SVG Rendering Model

6 Clipping, Masking and Compositing

7 CSS Properties, XML Attributes, Cascading, and |nheritance

8 Coordinate Systems, Transformations and Units

9 Filling, Stroking and Paint Servers
10 Calor

11 Paths

12 Other Vector Graphic Shapes

13 Text

14 Images

15 Filter Effects

16 Interactivity

17 Animation

18 Backwards Compatibility, Descriptions and Titles
19 Embedding Foreign Object Types
20 Including Private Data

21 Extensihility

22 Metadata

Appendix A. SVG Requirements

Appendix B. Change History

http://www.w3.org/1999/07/06/WD-SVG-19990706/WD-SVG-19990706.pdf
http://www.w3.org/Graphics/SVG/svg-updates/translations.html

« Appendix C. Document Type Definition

« Appendix D. SVG's Document Object Model (DOM)
« Appendix E. Sample SVGfiles

» Appendix F. Accessibility Support

e Appendix G. Minimizing SVG File Sizes

« Appendix H. Implementation and performance notes for fonts

o Appendix |. References

The following sections have not been written yet, but are expected to be be present in later versions of
this specification:

« Appendix J. SVG Support for XML Fragments

« Appendix K. Internationalization Support

« Appendix L. Property and attribute index

« Appendix M. Index

Full Table of Contents

o 1lIntroductionto SVG
o 1.1About SVG
o 1.2SVG MIME Type
o 1.3 Compatibility with Other Standards Efforts
o 1.4 Terminology
o 2 SVG Concepts
« 3 Conformance Requirements and Recommendations

o 3.1 Introduction

o 3.2 Conforming SVG Documents
o 3.3 Conforming SVG Stand-Alone Files
o 3.4 Conforming SV G Included Documents

o 3.5 Conforming SVG Generators

o 3.6 Conforming SVG Interpreters

o 3.7 Conforming SVG Viewers

o 3.8 Genera Implemenation Notes
» 3.8.1 Forward and Undefined References
» 3.8.2 Referenced objects are "pinned” to their own coordinate systems
o 4 SVG Document Structure
o 4.1 Introduction

[}

4.2 Grouping and Naming Collections of Drawing Elements: the <g> Element

o 4.3 Defining referenced and undrawn elements; the <defs> element

s 4.3.1 The <style> sub-element to <defs>

s 4.3.2 The <script> sub-element to <defs>

o 4.4 The <symbol> element

o 4.5 The <use> element

0 4.6 The <image> element
« 5 SVG Rendering Model
o 5.1 Introduction
= 5.1.1 The painters model
= 5.1.2 Rendering Order
= 5.1.3 Grouping

s 5.1.4 Specifying paint

= 5.1.5 Specifying the painted region

s 5.1.6 Use of external bitmap images

s 5.1.7 Restricting painted regions

s 5.1.8 Filtering painted regions

s 5.1.9 Parent Compositing

o 5.2 Rendering Properties

e 6 Clipping, Masking and Compositing

o 6.1 Introduction

o 6.2 Simple Alpha Blending/Compositing

o 6.3 Clipping paths
o 6.4 Masking
o 6.5 Object And Group Opacity: the ‘opacity’ Property
o 7 CSS Properties, XML Attributes, Cascading, and Inheritance
o 7.1 Introduction
o 7.2 Cascading and Inheritance of XML Attributes and CSS Properties
o 7.3 The Scope/Range of CSS Styles

« 8 Coordinate Systems, Transformations and Units

o 8.1 Introduction

o 8.2 Establishing theinitial viewport

o 8.3 Establishing A New User Space: Transformations

o 8.4 Establishing an Initial User Coordinate System: the fit-box-to-viewport attribute

O

O

8.5 Madifying the User Coordinate System: the transform attribute

8.6 Establishing a New Viewport: the <svg> element within an SVG document
8.7 Properties to Establish a New Viewport

8.8 Units

8.9 Redefining the meaning of CSS unit specifiers

8.10 Further Examples

8.11 Implementation Notes

o 9Filling, Stroking and Paint Servers

O

O

O

O

O

O

9.1 Introduction
9.2 Fill Properties
9.3 Stroke Properties
9.4 Gradients
s 9.4.1 Linear Gradients
» 9.4.2 Radia Gradients
= 9.4.3 Gradient Stops
9.5 Patterns
9.6 Inheritance of Painting Properties

« 10 Color

O

O

10.1 Introduction

10.2 The'icc-profile' Property

e 11 Paths

O

O

O

11.1 Introduction

11.2 Path Data
= 11.2.1 General information about path data
s 11.2.2 The"moveto" commands

» 11.2.3 The"closepath" command

s 11.2.4 The"lineto" commands

= 11.2.5 The curve commands

= 11.2.6 The grammar for path data
11.3 Markers

= 11.3.1 The <marker> element

s 11.3.2 Marker properties
s 11.3.3 Details on How Markers are Rendered

11.4 Implementation Notes

o 12 Other Vector Graphic Shapes
o 12.1 Introduction

« 13 Text
o 13.1 Introduction

o 13.2 The <text> element

o 13.3 White space handling
o 13.4 Text selection
o 13.5 Text and font properties

o 13.6 Ligatures and aternate glyphs
o 13.7 Text on apath
« 14 1mages
15 Filter Effects
o 15.1 Introduction
o 15.2 Background
o 15.3 Basic Model
o 15.4 Defining and Invoking a Filter Effect
o 15.5 Filter Effects Region
o 15.6 Common Attributes
o 15.7 Filter Processing Nodes

o 16 Interactivity

o 16.1 Links: the <a> element
o 16.2 Event Handling
o 16.3 Zoom and pan control
o 17 Animation
o 17.1 Introduction
o 17.2 Animation Example Using the SVG DOM

« 18 Backwards Compatibility, Descriptions and Titles

o 18.1 Introduction

o 18.2 Backwards Compatibility

o 18.3 The <description> and <title> elements
» 19 Embedding Foreign Object Types
o 20 Including Private Data

o 20.1 Introduction
« 21 Extensibility

o 22 Metadata
o 22.1 Introduction
0 22.2 The SVG Metadata Schema
o 22.3 An Example

o Appendix A. SVG Requirements

« Appendix B. Change History

« Appendix C. Document Type Definition

« Appendix D. SVG's Document Object Model (DOM)
« Appendix E. Sample SVGfiles

» Appendix F. Accessibility Support

e Appendix G. Minimizing SVG File Sizes

« Appendix H. Implementation and performance notes for fonts

o Appendix |. References

o 1.1 Normative references

o 1.2 Informative references

The following sections have not been written yet, but are expected to be be present in later versions of
this specification:

o Appendix J. SVG Support for XML Fragments

« Appendix K. Internationalization Support

« Appendix L. Property and attribute index

o Appendix M. Index

Copyright © 1999 W3C (MIT, INRIA, Keio), All Rights Reserved.

next contents properties index

W3C 40 o

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://validator.w3.org/

previous next contents properties index

1 Introduction to SVG

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).

SVG isalanguage for describing two-dimensional graphicsin XML. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and
text. Graphical objects can be grouped, styled, transformed and composited into previously rendered
objects. The feature set includes nested transformations, clipping paths, alpha masks, filter effects,
template objects and extensibility.

SV G drawings can be dynamic and interactive. The Document Object Model (DOM) for SVG allows
for straightforward and efficient vector graphics animation via scripting. A rich set of event handlers
such as onmouseover and onclick can be assigned to any SV G graphical object. Because of its
compatibility and leveraging of other Web standards, features like scripting can be done on HTML and
SV G elements simultaneously within the same Web page.

1.2 SVG MIME Type

The MIME type for SVG will be"i mage/ svg". The W3C will register this MIME type around the
time which SVG is approved as a W3C Recommendation.

1.3 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts. By leveraging and
conforming to other standards, SVG becomes more powerful and makesit easier for usersto learn how
to incorporate SVG into their Web sites.

Here are some of the ways which SVG fitsin and conforms to other standards:
o SVGisan application of the XML 1.0 Recommendation

¢ SVG conformsto the XML Namespace Recommendation

o SVGistracking and will conform with XLink and XPointer (once these specifications become
Recommendations)

¢ SVG conforms to the Cascading Style Sheets (CSS) level 2 Recommendation

« SVG conforms to the Document Object Model (DOM) level 1 Recommendation and is tracking
the DOM level 2

http://www.w3.org/Graphics/SVG
http://www.w3.org//TR/REC-XML
http://www.w3.org//TR/REC-xml-names/
http://www.w3.org/TR/WD-xlink
http://www.w3.org/TR/WD-xptr
http://www.w3.org//TR/REC-CSS2
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-DOM-Level-2/

o SVG utilisesthe switch and test concepts from the SMIL 1.0 Recommendation.

o SVG attemptsto fit in with the HTML version 4 Recommendation, and is meant to work as a
component grammar with future versions of HTML which are expressed in XML as a set of
component XML grammars

Because SVG conformsto DOM, it will be scriptable just like HTML version 4 (sometimes called
DHTML). Thiswill allow a single scripting approach to be used simultaneously for both XML
documents and SV G graphics. Thus, interactive and dynamic effects will be possible on multiple XML
namespaces using the same set of scripts.

1.4 Terminology

Not yet written.

http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/MarkUp/Activity
http://www.w3.org/TR/WD-html-in-xml/
http://www.w3.org/TR/xhtml-modularization/

previous next contents properties index

2 SVG Concepts

Not yet written.

previous next contents properties index

3 Conformance Requirements and
Recommendations

3.1 Introduction

Different sets of SVG conformance requirements exist for:

Conforming SV G Documents

Conforming SV G Stand-Alone Files

Conforming SV G Included Documents

Conforming SV G Generators

Conforming SV G Interpreters

Conforming SVG Viewers

3.2 Conforming SVG Documents

An SV G document is a Conforming SVG Document if it adheres to the specification described in this
document (Scalable Vector Graphics (SVG) Specification) and also:

isawell-formed XML document

if all non-SVG namespace elements are removed from the given document, isavalid XML

document

conformsto the following W3C Recommendations:
o the XML 1.0 specification (Extensible Markup L anguage (XML) 1.0)

o (if any namespaces other than SV G are used in the document) Namespacesin XML

o any use of CSS styles and properties needs to conform to Cascading Style Sheets, level 2
CSS2 Specification

o any references to external style sheets should conform to Associating stylesheets with
XML documents

3.3 Conforming SVG Stand-Alone Files

A fileisa Conforming SVG Sand-Alone Fileif:

itisaConforming SVG Document

its outermost XML element isan svg element

http://www.w3.org/TR/REC-xml.html#sec-well-formed
http://www.w3.org/TR/REC-xml.html#sec-prolog-dtd
http://www.w3.org/TR/REC-xml.html#sec-prolog-dtd
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet

3.4 Conforming SVG Included Documents

SV G document can be included within parent XML documents using the XML namespace facilities
described in Namespacesin XML.

An SV G document that is included within a parent XML document is a Conforming Included SVG
Document if the SVG document, when taken out of the parent XML document, conforms to the SV G

Document Type Definitions (DTD).

In particular, note that individual elements from the SV G namespace cannot be used by themselves.
Thus, the SVG part of the following document is not conforming:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE SonePar ent XML.G anmar PUBLI C "-// SonePar ent "
"http://SomePar ent XMLGr anmar . dt d" >

<Par ent XM_>
<!-- Elenments from Parent XM. go here -->

<l-- The following is not conformng -->
<z:rect xmns:z="http://ww:.w3. org/ G aphi cs/ SVE svg-19990706. dt d"
x="0" y="0" w dth="10" hei ght="10" />

<l-- Mre elenents fromParent XM_. go here -->
</ Par ent XM.>

Instead, for the SV G part to become a Conforming Included SV G Document, the file could be modified
asfollows:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE SonePar ent XM_.Gr ammar PUBLI C "-// SonePar ent "
"http://SomePar ent XMLG anmrar . dt d" >

<Par ent XM_>
<!-- Elements from Parent XML go here -->

<l-- The following is conformng -->
<z:svg xm ns:z="http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d"
wi dt h="100px" hei ght ="100px" >
<z:rect x="0" y="0" wi dth="10" hei ght="10" />
</ z:svg>

<l-- Mre elenents fromParent XM_. go here -->
</ Par ent XM.>

3.5 Conforming SVG Generators

A Conforming SVG Generator is a program which:

« aways creates at least one of Conforming SV G Documents, Conforming SV G Stand-Alone Files
or Conforming SV G Included Documents

« does not create non-conforming SV G documents of any of the above types
« conformsto the SVG accessibility guidelines

SV G generators are encouraged to follow W3C developments in the area of internationalization. Of
particular interest is the W3C Character Model and the concept of Webwide Early Uniform

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/International/

Normalization, which promises to enhance the interchangability of Unicode character data across users
and applications. Future versions of the SVG Specification are likely to require support of the W3C
Character Model in Conforming SV G Generators.

3.6 Conforming SVG Interpreters

An SVG interpreter is a program which can parse and process SV G documents. A Conforming SVG
Interpreters must be able to:

« Successfully parse and process any Conforming SV G Document, (It is not required, however,
that every possible SV G feature be supported beyond parsing. Thus, for example, a Conforming
SVG Interpreter might bypass the processing of selected SVG elements.)

« If the program allows scriptsto run against the SV G document's Document Object Model, then a
Conforming SVG Interpreter must support the entire DOM model for SV G defined in this
specification

o The XML parser must be able to handle arbitrarily long data streams.

3.7 Conforming SVG Viewers

An SV G viewer is aprogram which can parse and process an SVG document and render the contents of
the document onto some sort of output medium such asadisplay or printer. Usualy, an SVG Viewer is
also an SVG Interpreter.

An SVG Viewer isaConforming SVG Viewer if:

« inthetypica case wherethe SVG Viewer isaso an SVG Interpreter, then the program must also
be a Conforming SV G Interpreter,

« al SVG features described in this specification (including all graphic elements, attributes and
properties) must be supported and rendered.

« if display devices are supported, facilities must exist for zooming and panning of standalone
SV G documents or SV G documents embedded within parent XML documents

« if printing devices are supported, SV G documents must be printable at printer resolutions with
the same graphics features available as required for display (e.g., color must print correctly on
color printers)

« theviewer should receive enough information from the parent environment to determine the
device resolution. (In situations where this information is impossible to determine, the parent
environment should pass a reasonable avalue for device resol ution which tends to approximate
most common target devices.)

« inweb browser environments, the ability to search and select text strings within SV G documents

« if display devices are supported, ability to select and copy text from an SV G document to the
system clipboard

« complete support for an ECMA Script binding of the SV G Document Object Model

« support for JPEG and PNG image formats
« support alpha channel blending of the SVG document image onto the target canvas
« supports the following W3C Recommendations with regard to SV G documents:

o complete support for the XML 1.0 specification (Extensible Markup Language (XML)
10

o complete support for inclusion of non-SV G namespaces within an SV G document
Namespaces in XML (Note that data from non-SV G namespaces can be ignored.)

o complete support for all features from CSS2 (Cascading Style Sheets, level 2 CSS2
Specification) that are described in this specification as applying to SVG

o complete support for external style sheets as described in Associating stylesheets with
XML documents

Although anti-aliasing support isn't a strict requirement for a Conforming SVG Viewer, it is highly
recommended. Lack of anti-aliasing support will generally result in poor results on display devices.

A higher class concept is that of a Conforming High-Quality SVG Viewer which must support the
following additional features:

« Generaly, professional-quality results with good processing and rendering performance and
smooth, flicker-free animations

« Support for anti-aliasing of strokes and text

« Progressive rendering and animation effects (i.e., the start of the document will start appearing
and animations will start running in parallel with downloading the rest of the document)

« Restricted screen updates (i.e., only required areas of the display are updated in response to
redraw events)

« Background downloading of images and fonts retrieved from aweb server, with updating of the
display once the downloads are complete

« Color management via Il CC profile support (i.e., the ability to support colors defined using ICC
profiles)

« Resampling of image data using algorithms at least as good as bicubic resampling methods

3.8 General Implementation Notes

The following are implementation notes that correspond to features which span multiple sections of the
SV G specifications. (Note that various other sections of this document contain additional
section-specific implementation notes.)

3.8.1 Forward and undefined references

SV G makes extensive use of URI references to other objects. For example, to fill arectangle with a
linear gradient, you define a <linear gradient> element and giveit an ID (e.g., <linear gradient
id="MyGradient" ...>, and then you can specify the rectangle as follows: <rect
style="fill:url(#MyGradient)" ...>.

In SV G, among the facilities that allow URI references are:
« the'clippath’ property
« the'mask’ property
« the'fill' property

http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet

« the'stroke property
« the'marker',' marker-start’, marker-mid' and ‘'marker-end properties

o the <use> element

Forward references are disallowed. All references should be to elements which are either defined in a
separate document or defined earlier in same document. References to elements in the same document
can only be to elements which are direct children of a <defs> element. (See Defining referenced and

undrawn elements: the <defs> element.).

Invalid references should be treated as if no value were provided for the referencing attribute or
property. For example, if there is no element with ID "BogusReference" in the current document, then
fill="url(#BogusReference)" would represent an invalid reference. In cases like this, the element
should be processed asif no fill' property were provided. Where alist of property values are possible
and one of the property values is an undefined reference, then processthe list asif the reference were
removed from the list.

3.8.2 Referenced objects are "pinned" to their own coordinate
systems

When a graphical object is referenced by another graphical object (such as when referenced graphical
object is used as a clipping path), the referenced object does not change location, size or orientation.
Thus, referenced graphical objects are "pinned” to the user coordinate system that isin place within its
own hierarchy of ancestors and is not affected by the user coordinate system of the referencing object.

previous next contents properties index

4 SVG Document Structure

4.1 Introduction

Each SV G document is contained within an <svg> outermost element.

An SVG "document” can range from a single SV G graphics element such as arectangle to a complex, deeply
nested collection of grouping and graphics elements. Also, an SV G document can be embedded inline as a
fragment within a parent document (an expectedly common situation with an XML Web pages) or it can stand by
itself as a self-contained graphicsfile.

The following example shows a simple SV G document embedded as a fragment within a parent XML document.
Note the use of XML namespaces to indicate that the <svg> and <rect> elements belong to the SVG namespace:

<?xm version="1.0" standal one="yes"?>
<parent xm ns="http://sonepl ace. org"
xm ns: svg="http://ww. wW3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<!-- parent stuff here -->
<svg: svg wi dt h="5cn' hei ght="8cni' >
<svg:ellipse rx="200" ry="130" />

</ svg: svg>

<l-- .. -
</ par ent >

->

Download this example

This example shows adlightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG
document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>Four separate rectangles
</ desc>
<rect wi dth="20" hei ght="60"/>
<rect width="30" height="70"/>
<rect wi dth="40" hei ght="80"/>
<rect width="50" hei ght="90"/>
</ svg>

Download this example

<svg> elements can appear in the middle of SVG documents. This is the mechanism by which SV G documents can
be embedded within other SVG documents.

Another use for <svg> elements within the middle of SVG documentsis to establish a new viewport and alter the
meaning of CSS unit specifiers. See Establishing a New Viewport: the <svg> element within an SV G document

and Redefining the meaning of CSS unit specifiers. .

file:///D|/Jon/SVGSpec/samples/structure01.xml
file:///D|/Jon/SVGSpec/samples/4rects.xml

4.2 Grouping and Naming Collections of Drawing
Elements: the <g> Element

The <g> element is the element for grouping and naming collections of drawing elements. If several drawing
elements share similar attributes, they can be collected together using a <g> element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dth="4in" height="3in">
<desc>Two groups, each of two rectangles
</ desc>
<g style="fillcolor:red">
<rect x="100" y="100" w dth="100" hei ght="100" />
<rect x="300" y="100" w dth="100" hei ght="100" />
</ g>
<g style="fillcol or: bl ue">
<rect x="100" y="300" w dth="100" hei ght="100" />
<rect x="300" y="300" w dth="100" hei ght="100" />
</ g>
</ svg>

Download this example

A group of drawing elements, aswell asindividual objects, can be given a name. Named groups are heeded for
several purposes such as animation and re-usabl e objects. The following example organizes the drawing elements
into two groups and assigns a name to each group:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dt h="4i n" hei ght="3in">
<desc>Two nanmed groups
</ desc>
<g id="OBJECT1">
<rect x="100" y="100" wi dth="100" hei ght="100" />
</ g>
<g id="OBJECT2" >
<circle cx="150" cy="300" r="25" />
</ g>
</ svg>

Download this example

A <g> element can contain other <g> elements nested within it, to an arbitrary depth. Thus, the following isvalid
SVG:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>G oups can nest
</ desc>
<g>
<g>
<g>
</ g>
</ g>
</ g>
</ svg>

Download this example

Any drawing element that is not contained within a<g> istreated (at least conceptualy) asif it werein itsown
group.

file:///D|/Jon/SVGSpec/samples/group01.xml
file:///D|/Jon/SVGSpec/samples/group02.xml
file:///D|/Jon/SVGSpec/samples/group03.xml

4.3 Defining referenced and undrawn elements: the
<defs> element

Every graphics element (???) in SVG can have a child <defs> element. The two main purpose of the <defs>
element are:

« Toidentify those objects which will be referenced by other objects later in the document. It is a requirement
that all referenced objects be defined within a <defs>. This requirement alows SV G user agents to
potentially perform optimizations because only those elements defined in <defs> need to be retained as the
remainder of the document is processed. (Additionally, all referenced elements from the same document
must be located before the referencing element; thus, forward referencing is disallowed.).

« To provide a convenient mechanism for defining objects that are not drawn directly. For example, most
clipping paths are only used for clipping purposes and not meant to be painted.

A <defs> element defines the child el ements that are contained within it. The child elements are not drawn at
definition.

The following example shows how a undrawn rectangle and a gradient can be defined within a <defs> element so
that they can be referenced later in the document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN' "http://ww. w3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg w dt h="4i n" hei ght="3in">
<def s>
<rect id="Tenpl ateoj ect 01" wi dt h="100" hei ght="37.34"/>
<l i neargradient id="Gadient01">
<stop of fset="30% style="col or: #39F"/ >
</lineargradient >

</ def s>
<desc>Defining things for |ater use
</ desc>
<l-- SVG elenents in here would reference/use
the elements defined in the <defs> -->
</ svg>

Download this example

4.3.1 The <style> sub-element to <defs>

A <style> element can appear as a subelement to any <defs> element. A <style> element is equivalent to the
<style> element in HTML and thus can contain any valid CSS definitions. Any CSS definitions within any <style>
element have a"global" scope across the entire current SV G document. It is useful to structurally associate style
with each definition, so that the style is available when the definition is used (possibly from another SV G graphic).

The following is an example of defining and using atext style:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg w dt h="4i n" hei ght="3in">
<def s>
<styl e><! [CDATA[
.TitleText { font-size: 16; font-famly: Helvetica }]]>
</styl e>
</ def s>
<text class="TitleText">Here is nmy title</text>
</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/defs.xml
file:///D|/Jon/SVGSpec/samples/style.xml

4.3.2 The <script> sub-element to <defs>

A <script> element can appear as a subelement to any <defs> element. A <script> element is equivalent to the
<script> element in HTML and thusis the place for scripts (e.g., ECMAScript). Any functions defined within any
<script> element have a"global" scope across the entire current SV G document.

The following is an example of defining an ECMA Script function and defining an event handler that invokes that
function:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dt h="4i n" hei ght="3in">
<def s>
<scri pt ><! [CDATA[
/* Beep on nouseclick */
Moused i ckHandl er () { beep(); }
11>
</script>
</ def s>
<circle onclick="MusedickHandl er()" r="85"/>
</ svg>

Download this example

4.4 The <symbol> element

The <symbol> element is used to define graphical objects which are meant for any of the following uses:
« A template object which will be used (i.e., instantiated) multiple times within a given document
o A member of astandard drawing symbol library that may be referenced by many different SVG documents

« Thedefinition of agraphic to use as a custom glyph within a <text> element (e.g., generaize
"text-on-a-path" to "SV G-on-a-path")

« Definition of a sprite for an animation

Closely related to the <symbol> element are the <marker> and <pattern> elements.

A <symbol> element can contain the same graphic elements that are alowed in <svg> and <g> elements. A
<symbol> element has the following additional attributes to meet the needs of the above situations:

« fit-box-to-viewport and preserve-aspect-ratio, which are described in Establishing an Initial User
Coordinate System: the fit-box-to-viewport attribute.

« ref-x, ref-y, which indicates a reference point for the symbol which is used in some cases (e.g., aligning an
arrowhead onto a path).

4.5 The <use> element

Any <svg>, <symbol>, <g> or graphics element defined within a <defs> and assigned an ID is potentialy a
template object that can be re-used (i.e., "instanced") anywhere in the SVG document.

The <use> element references another graphics object and indicates that the contents of that graphics object should
be included/drawn at that given point in the document. The <use> element conforms to XLink [??? Include
reference to XLink]. (Note that the XLink specification is currently under development and is subject to change.
The SV G working group will track and rationalize with XLink asit evolves.)

The <use> element can reference either:
« an element within the same SV G document whose immediate ancestor is a <defs> el ement

file:///D|/Jon/SVGSpec/samples/script.xml

« an element within adifferent SV G document whose immediate ancestor is a <defs> element
Unlike <image>, the <use> element cannot reference entire files.

In the example below, the first <g> element has inline content. After this comes a <use> element whose href value
indicates which predefined graphics object should be included/rendered at that point in the document. Finaly, the
second <g> element has both inline and referenced content. In this case, the referenced content will draw first,
followed by the inline content.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVGE svg- 19990706. dt d" >

<svg W dt h="4i n" hei ght="3in">

<def s>
<synbol id="Tenpl at eCbj ect 01" >
<I-- synbol definition here -->
</ synbol >
</ def s>

<desc>Exanpl es of inline and referenced content
</ desc>

<l-- <g> with inline content -->
<g>

<l-- Inline content goes here -->
</ g>

<l-- referenced content -->
<use href="#Tenpl at eObj ect 01" />

<I-- <g> with both referenced and inline content -->
<g>
<use href="#Tenpl at eCbj ect 01" />
<I-- Inline content goes here -->
</g>
</ svg>

Download this example

The <use> element has optional attributes x=, y=, width= and height= which are used to map areferenced
<symbol> element onto a rectangular region within the current coordinate system. The 'transform' property can also
be applied to do a subsequent transformation of the symbol's coordinates after those coordinates are mapped onto
the rectangular region.

Any graphics attributes specified on a <use> element override the attributes specified on the template/referenced
element. For example, if the stroke-width on the template object is 10 but the <use> specifies a stroke-width of 20,
then the object will draw with a stroke-width of 20.

The <use> element does not do the equivalent of a macro expansion. The SVG Document Object Model (DOM)
only contains a <use> element and its attributes.

4.6 The <image> element

The <image> element indicates that the contents of a complete file should be rendered into a given rectangle
within the current user coordinate system. The <image> element can refer to image files such as PNG or JPEG or
to fileswith MIME type of "image/svg". Conforming SV G viewers need to support at least PNG, JPEG and SVG

format files.

For more on image objects, refer to Images.

Unlike <use>, the <image> element cannot reference elements within an SV G file.

file:///D|/Jon/SVGSpec/samples/symbol-use.xml

previous next contents properties index

5 SVG Rendering Model

5.1 Introduction

Implementations of SVG are expected to behave as though they implement a rendering (or imaging)
model corresponding to the one described in this chapter. A real implementation is not required to
implement the model in thisway, but the result on any device supported by the implementation should
match that described by this model.

The chapter on conformance requirements describes the extent to which an actual implementation may
deviate from this description. In practice an actual implementation will deviate slightly because of
limitations of the output device (e.g. only alimited range of colors may be supported) and because of
practical limitations in implementing a precise mathematical model (e.g. for realistic performance curves
are approximated by straight lines, the approximation need only be sufficiently precise to match the
conformance requirements.)

5.1.1 The painters model

SVG uses a"painters model” of rendering. "Paint” is applied in successive operations to the output
device such that each operation paints over some area of the output device. When the area overlaps a
previously painted areathe new paint partially or completely obscures the old. This model is more
sophisticated than older modelsin that the paint may be only partially opague. When the paint is not
completely opague the result on the output device is defined by the (mathematical) rules for compositing
described under Simple Alpha Blending.

5.1.2 Rendering Order

Elementsin an SV G document have an implicit drawing order, with the first elementsin the SVG
document getting "painted” first. Subsequent elements are painted on top of previously painted
elements.

5.1.3 Grouping

Grouping elements such as the <g> have the effect of producing atemporary separate canvas onto which

child elements are painted. Upon the completion of the group, the effect isasif the group's canvasis
painted onto the ancestors canvas using the standard rendering rules for individual graphic objects.

5.1.4 Specifying paint
Paint is specified as a color and an opacity. Color is normally specified using the RGB values

traditionally used in computer systems. Thisis defined in Color. Opacity is ssimply a measure of the
amount of the underlying color that the new paint obscures - a percentage or fractional value.

Paint may also be specified as a combined color and opacity value by specifying an external bitmap
image. Thisisdiscussed in more detail below.

5.1.5 Specifying the painted region

Paint, when specified as color and opacity, is associated with a painting operation that fills a particular
region or draws aline along a particular path. SV G specifiesin Paths a syntax for defining such a path

aswell as rules which determine what parts of an output device are within the path and what parts are
outside. These latter rules allow a painted region to be determined from a path.

[The rendering model also needs a precise definition of how line width and joins are interpreted]

5.1.6 Use of external bitmap images

An image specifies both paint and the region that it fills by giving an array of values that specify the
paint color and opacity (often termed apha) at a series of points normally on arectangular grid.

SV G requires support for specified bitmap formats under conformance requirements.

When an image is rendered the origina samples are "resampled” using standard algorithms to produce
samples at the positions required on the output device. Resampling requirements are discussed under
conformance requirements.

5.1.7 Restricting painted regions

SVG dlows any painting operation to be limited to a sub-region of the output device by clipping and
masking. Thisis described in Clipping, Masking and Compositing.

Clipping uses a path to define aregion of the output device to which paint may be applied. Any painting
operation executed within the scope of the clipping must be rendered such that only those parts of the
device that fall within the clipping region are affected by the painting operation. "Within" is defined by
the same rules used to determine the interior of a path for painting.

Masking uses the alpha channel or color information in areferenced SVG element to restrict the painting
operation. In this case the opacity information within the alpha channel is used to define the region to
which paint may be applied - any region of the output device that, after resampling the apha channel
appropriately, has a zero opacity must not be affected by the paint operation. All other regions
composite the paint from the paint operation onto the the output device using the algorithms described in
Clipping, Masking and Compositing.

Masking may also be specified by applying a"global" opacity to a set of rendering operations. In this
case the mask defines an infinite apha channel with a single opacity. (See 'opacity’ property.)
Additionally, opacity can be set for fill and stroke operations. (See 'fill-opacity' property and
'stroke-opacity' property.

In al cases the SV G implementation must behave as though all qualified painting is donefirst to an
intermediate (imaginary) canvas then filtered through the clip area or mask. Thusif an area of the output
device is painted with a group opacity of 50% using opaque red paint followed by opague green paint
the result is as though it had been painted with just 50% opaque green paint. Thisis because the opaque
green paint completely obscures the red paint on the intermediate canvas before the intermediate as a

whole is rendered onto the output device.

5.1.8 Filtering painted regions

SVG dso adlows any painting operation to be filtered. (See Filter Effects)

In this case the result must be as though the paint operations had been applied to an intermediate canvas,
of asize determined by the rules given in Filter Effects then filtered by the processes defined in Filter

Effects.

5.1.9 Parent Compositing

SV G documents can be semi-opague. In many environments (e.g., web browsers), the SV G document
has afinal compositing step where the document as a whole is blended translucently into the background
canvas.

5.2 Rendering Properties

The creator of an SVG document might want to provide a hint to the implementation about what
tradeoffs to make as it renders vector graphics objects such as <path> elements and other vector graphic

shapes such as circles and rectangles. The 'shape-rendering' property provides these hints.

‘shape-rendering'
Value: default | optimize-speed | crisp-edges | geometric-precision | inherit
Initial: false
Appliesto: all elements
Inherited: yes
Percentages. N/A
Media: visual

‘shape-rendering' provides a hint to the SVG user agent about how to optimize its shape rendering.
default

Indicates that the user agent should make appropriate tradeoffs to balance speed, crisp edges and
geometric precision, but with geometric precision given more importance than speed and crisp
edges.
optimize-speed
Indicates that the user agent should emphasi ze rendering speed over geometric precision and
crisp edges. This option will sometimes cause the user agent to turn off shape anti-aliasing.
crisp-edges

Indicates that the user agent should attempt to emphasize the contrast between clean edges of
artwork over rendering speed and geometric precision. To achieve crisp edges, the user agent
might turn off anti-aliasing for al lines or possibly just for straight lines which are close to
vertical or horizontal. Also, the user agent might adjust line positions and line widths to align
edges with device pixels.

geometric-precision
Indicates that the user agent should emphasize geometric precision over speed and crisp edges.

file:///D|/Jon/SVGSpec/media.html#visual-media-group

The creator of an SVG document might want to provide a hint to the implementation about what
tradeoffs to make as it renderstext. The 'text-rendering’ property provides these hints.

'text-rendering'

Value: default | optimize-speed | optimize-legibility | geometric-precision | inherit
Initial: default

Appliesto: <text> elements

Inherited: yes

Percentages: N/A

Media: visua

'text-rendering' provides a hint to the SV G user agent about how to optimize its text rendering.
default

Indicates that the user agent should make appropriate tradeoffs to balance speed, legibility and
geometric precision, but with legibility given more importance than speed and geometric
precision.
optimize-speed
Indicates that the user agent should emphasize rendering speed over legibility and geometric
precision. This option will sometimes cause the user agent to turn off text anti-aliasing.
optimize-legibility

Indicates that the user agent should emphasize legibility over rendering speed and geometric
precision. The user agent will often choose whether to apply anti-aliasing techniques, built-in
font hinting or both to produce the most legible text.

geometric-precision

Indicates that the user agent should emphasi ze geometric precision over legibility and rendering
speed. This option will usually cause the user agent to suspend the use of hinting so that glyph
outlines are drawn with comparable geometric precision to the rendering of path data.

The creator of an SV G document might want to provide a hint to the implementation about how to make
speed vs. quality tradeoffs asit performs image processing. The 'image-rendering' property provides a
hint to the SV G user agent about how to optimize its image rendering.

‘image-rendering'

Value: default | optimize-speed | optimize-quality | inherit
Initial: default
Appliesto: <text> elements
Inherited: yes
Percentages. N/A
Media: visual
default

Indicates that the user agent should make appropriate tradeoffs to balance speed and quality, but
guality should be given more importance than speed.

optimize-speed

Indicates that the user agent should emphasi ze rendering speed over quality. This option will
sometimes cause the user agent to use a bilinear image resampling algorithm.

optimize-quality
Indicates that the user agent should emphasize quality over rendering speed. This option will

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

sometimes cause the user agent to use a bicubic image resampling agorithm.

The'visibility' indicates whether a given object should be rendered at all.

‘visibility'
Value: visible | hidden | inherit
Initial: visible
Appliesto: &l elements
Inherited: yes
Percentages: N/A
Media: visual

'visibility" indicates whether a given object should be drawn.
visible

The current object should be drawn.
hidden

The current object should not be drawn.

http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

previous next contents properties index

6 Clipping, Masking and Compositing

6.1 Introduction

SV G supports the following clipping/masking features:

« clipping paths, which uses a vector graphics shape or text string to serve as the outline of a(in
the absense of antialiasing) 1-bit mask, where everything on the "inside" of the outline is allowed
to show through but everything on the outside is masked out

« masks, which uses an arbitrary grayscale or color bitmap (explicit or generated from SVG
artwork) as a semi-transparent mask for compositing foreground objects into the current
background.

SV G supports only simple alpha blending compositing (see Simple Alpha Blending/Compositing).

(Insert drawings showing a clipping path, a grayscale imagemask, simple alpha blending and more
complex blending.)

6.2 Simple Alpha Blending/Compositing

[Insert discussion about color spaces and compositing techniques.]

Itislikely that our default compositing colorspace will be linearized-sRGB, where it is linearized with
respect to light energy. Any colors specified in SRGB would be composited after linearizing with the
formula (alpha*src2.2 + (1-apha)* dst"2.2)7(1/2.2).

6.3 Clipping paths

The clipping path restricts the region to which paint can be applied. Conceptually, any parts of the
drawing that lie outside of the region bounded by the currently active clipping path are not drawn. A
clipping path can be thought of as a 1-bit mask.

A clipping path is defined with a <clippath> element. A clipping path is used/referenced using the
‘clippath’ property.

A <clippath> element can contain <path> elements, <text> elements, other vector graphic shapes (such
as <circle>) or a<use> element. If a<use> element isa child of a <clippath> element, it must directly

reference path, text or vector graphic shape elements. Indirect references are an error and are processed
asif the <use> element were not present. The silhouettes of the child elements are logically OR'd
together to create a single silhouette which is then used to restrict the region onto which paint can be

applied.

If the 'clippath’ property references a non-existent object or if the referenced object is not a <clippath>
element, then the 'clippath’ property will be ignored.

For a given drawing element, the actual clipping path used will be the intersection of its specified
clippath with the clippaths of all its ancestors.

(There will be a mechanism for ensuring that an initial clipping path is set to the bounds of the entire
viewport into which the SV G is being drawn. The working group is also investigating ways to allow an
SV G drawing to draw outside of the initial viewport [i.e., initia clipping path goes beyond the bounds of
theinitial viewport].)

‘clippath’
Value: <uri> | none
Initial: The bounds of the viewport (see ???link to viewport).

Appliesto: all elements
Inherited: no
Percentages: N/A

Media: visua
<uri>
An XPointer to another graphical object within the same SV G document which will be used as
the clipping path.
‘cliprule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: &l elements
Inherited: yes
Percentages: N/A
Media: visual
evenodd
(??? Need detailed description plus drawings)
nonzero

(??? Need detailed description plus drawings)

6.4 Masking

In SV G, you can specify that any other graphics object or <g> element can be used as an apha mask for
compositing the current object into the background. One important distinction between a clipping path
and amask isthat clipping paths are hard masks (i.e., the silhouette consists of either fully opaque pixels
or fully transparent pixels, with the possible exception of antialiasing along the edge of the silhouette)
whereas masks consist of a one-channel image where pixel values can range from fully transparent to
semi-transparent to fully opague.

A mask is defined with a<mask> element. A mask is used/referenced using the 'mask’ property.
A <mask> can contain any graphical elements or grouping elements such as a <g>.

If the 'mask’ property references a non-existent object or if the referenced object is not a<mask>
element, then the 'mask’ property will be ignored.

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

The effect isasif the child elements of the <mask> are rendered into an offscreen image. Any graphical
object which uses/references the given <mask> element will be painted onto the background through
the mask, thus completely or partially masking out parts of the graphical object.

The following processing rules apply:

« If the child elements of the <mask> define a one-channel image, then use that channel as the
mask.

« If the child elements of the <mask> define athree-channel RGB image, then use the luminance
from the image as the mask, where the luminance is calculated using the following formula:
1.0-(.2126*R"2. 2+, 7152* Q2. 2+. 0722*B"2. 2).

« If the child elements of the <mask> define afour-channel RGBA image, then use the apha
channel as the mask.

Note that SV G <path>'s, shapes (e.g., <circle>) and <text> are all treated as four-channel RGBA images
for the purposes of masking operations.

In the following example, an image is used to mask a rectangle:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. W3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>Exanpl e of using a nask
</ desc>
<g>
<def s>
<mask id="M/Mask">
<i mage href="transp.png" />
</ mask>
</ def s>
<rect style="mask: url (#WMask)" wi dth="12.5" hei ght="30" />
</ g>
</ svg>

Download this example

A <mask> element can define aregion on the canvas for the mask using the following attributes:

« mask-units={ user space | object-bbox }. Defines the coordinate system for attributes x, y,
width, height. If mask-units=" userspace" (the default), x, y, width, height represent valuesin
the current user coordinate system in place at the time when the <mask> element is defined. If
mask-units=" object-bbox", then x, y, width, height represent values in an abstract coordinate
system where (0,0) is the (minx,miny) in user space of the tight bounding box of the object
referencing the mask, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note: the
bounding box represents the maximum extent of the shape of the object in X and Y with respect
to the user coordinate system of the object exclusive of stroke-width.)

« X, Y, width, height, which indicate the rectangle for the largest possible offscreen buffer, where
the values are either relative to the current user coordinate system (if mask-units="userspace") or
relative to the current object (if mask-units="target-object"). Note that the clipping path used to
render any graphics within the mask will consists of the intersection of the current clipping path
associated with the given object and the rectangle defined by x, y, width, height. The default
valuesfor x, y, width, height are 0%, 0%, 100% and 100%, respectively.

The following is a description of the 'mask’ property.

file:///D|/Jon/SVGSpec/samples/mask.xml

Ima‘§<l
Value: <uri> | none
Initial: none
Appliesto: &l elements
Inherited: no
Percentages: N/A
Media: visual
<uri>
An XPointer to another graphical object which will be used as the mask.

6.5 Object And Group Opacity: the 'opacity’
Property

There are several opacity properties within SVG:
« Fill opacity
« Stroke opacity
« Gradient stop opacity
« Object/group opacity

Except for object/group opacity (described just below), al other opacity properties areinvolved in
intermediate rendering operations. Object/group opacity can be thought of conceptually as a
postprocessing operation. Conceptually, after the object/group is rendered into an RGBA SourcePixmap
in viewport space, the object/group opacity setting specifies how to blend the SourcePixmap into the
current background.

‘opacity'

Value: <alphavalue> | <pct>

Initial: 100%

Appliesto: al elements

Inherited: no

Percentages. Yes, relative to the current viewport
Media: visual

<alphavalue>

The uniform opacity setting to be applied across an entire object expressed as an <number>
between 0 and 255. If the object isa <g>, then the effect is asif the contents of the <g> were
blended against the current background using an 8-bit MaskingPixmap where the value of each
pixel of MaskingPixmap is <a phavalue>.

<pct>
The uniform opacity setting to be applied across an entire object expressed as a percentage
(100% means fully opague). If the object is a<g>, then the effect is as if the contents of the <g>

were blended against the current background using an 8-bit MaskingPixmap where the value of
each pixel of MaskingPixmap is <pct>* 255.

file:///D|/Jon/SVGSpec/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

previous next contents properties index

/ CSS Properties, XML Attributes,
Cascading, and Inheritance

7.1 Introduction: CSS Properties vs. XML
Attributes

Any language which is an application of XML and supports Cascading Style Sheets (CSS) will

necessarily have some of its element parameters as XML attributes and others as CSS properties. SVG is
no exception.

In designing SV G, the following criteria were used to decide which parts of SV G were expressed as
XML attributes and which as CSS properties. In general, CSS properties were used for the following:

« Parameters which are clearly visual in nature and thus lend themselves to styling. Examples
include al attributes that define how an object is"painted” such asfill and stroke colors,
linewidths and dash styles.

« Parameters having to do with text styling such as font-family and font-size. (In fact, SVG
supports all of the text and font properties from CSS2.)

« Parameters which arguably fit in with CSS and which might have future use in multiple other
XML grammars. By defining these attributes as CSS properties, we are making progress toward
commonality across multiple languages. (Transformations are an example of this. ??? add link
here)

o Parameters which arguably fit in with CSS and which could allow for smaller file sizesif they
were defined as CSS properties rather than XML attributes.

All remaining parameters are XML attributes. The result is that the majority of parametersin SVG are
expressed as CSS properties.

7.2 Cascading and Inheritance of XML Attributes
and CSS Properties

SV G conforms fully to the cascading style rules of CSS (i.e., the rules by which the SV G user agent
decides which property setting appliesto a given element). See the CSS2 specification for a discussion

of these rules.

In this document, the definition of each XML attribute and CSS property indicates whether that
attribute/property can inherit the value of its parent.

file:///XML/
file:///Style/CSS
file:///TR/REC-CSS2
file:///TR/REC-CSS2

7.3 The Scope/Range of CSS Styles

The following define the scope/range of CSS styles:
Stand-alone SV G graphic

Thereis one parse tree, and all elements are in the SV G namespace. CSS styles defined
anywhere within the SV G graphic (in style elements or style attributes, or in external style sheets
linked with the stylesheet PI) apply across the entire SV G graphic.

Stand-alone SV G graphic embedded in an HTML document with the or <object> elements

There are two completely separate parse trees; one for the HTML document, and one for the
SV G graphic. CSS styles defined anywhere within the HTML document (in style elements or
style attributes, or in external style sheets linked with the stylesheet Pl) apply across the entire
HTML document. Since inheritance is down a parse tree, these styles do not affect the SVG
graphic. CSS styles defined anywhere within the SV G document (in style elements or style
attributes, or in external style sheets linked with the stylesheet PI) apply across the entire SV G
document. These styles do not affect the containing HTML document. To get the same styling
across both HTML document and SV G graphic, link them both to the same stylesheet.

Stand-alone SV G graphic textually included in an XML document

Thereisasingle parse tree, using multiple namespaces; one or more subtrees are in the SVG
namespace. CSS styles defined anywhere within the XML document (in style elements or style
attributes, or in external style sheets linked with the stylesheet PI) apply across the entire
document including those parts of it in the SV G namespace. To get different styling for the SVG
part, use the style attribute or <style> element on the <svg> element. Alternatively, put an ID on
the <svg> element and use contextual CSS selectors.

previous next contents properties index

8 Coordinate Systems, Transformations
and Units

8.1 Introduction

For all media, the term canvas describes "the space where the SV G document is rendered." The canvas
isinfinite for each dimension of the space, but rendering occurs relative to afinite rectangular region of
the canvas. Thisfinite rectangular region is called the viewport. For visual media, the viewport isthe
viewing areawhere the user sees the SV G document.

The size of the viewport (i.e., its width and height) is determined by a negotiation process (see
Establishing the size of the initial viewport) between the SV G document and its parent (real or implicit).

Once that negotiation process is completed, the SV G user agent is provided the following information:
« aninteger value that represents the width of the viewport in "pixels’
« aninteger value that represents the height of the viewport in "pixels’

o (highly desirable but not required) areal number value that indicates how many millimeters a
"pixel" represents

Using the above information, the SV G user agent establishes an initial current coor dinate system for
the SV G document such that the origin of the current coordinate system matches the origin of the
viewport, and one unit in the current coordinate system equals one "pixel” in the viewport. Thisinitial
current coordinate system defines the initial viewport space and theinitial user space (also called user
coordinate system).

Lengthsin SV G can be specified as:
e (if no unit designator is provided) valuesin user space -- for example, "15"
o (if aCSS unit specifier is provided) alength in CSS units -- for example, "15mm"

The supported CSS length unit specifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., anew current coordinate system) can be established at any placein the SVG
document by specifying transfor mationsin the form of transformation matrices or ssmple
transformation operations such as rotation, skewing, scaling and trandlation. Establishing new user

spaces via transformation operations are fundamental operations to 2D graphics and represent the typical
way of controlling the size, position, rotation and skew of graphic objects.

New viewports also can be established, but are for more specialized uses. By establishing a new
viewport, you can redefine the meaning of some of the various CSS unit specifiers (px, pt, pc, cm, mm,

in, and percentages) and provide a new reference rectangle for "fitting" a graphic into a particular
rectangular area. ("Fit" means that a given graphic is transformed in such away that its bounding box in

http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

user space aligns exactly with the edges of a given viewport.)

8.2 Establishing the initial viewport

The attributes of the initial viewport are established by either the CSS positioning parameters that are
defined by the outermost <svg> element in combination with the width= and height= XML attributes
that are required on the <svg> element.

The size (i.e., width and height) of theinitial viewport into which an SV G document should be rendered
is determined as follows. If the outermost <svg> element contains CSS positioning properties which
establish the width for the viewport, then the width of the viewport should be set to that size. If the CSS
positioning properties on the outermost <svg> element do not provide sufficient information to
determine the width of the viewport, then the XML attributes width= determines the width of the
viewport. Similarly, if the outermost <svg> element contains CSS positioning properties which establish
the height for the viewport, then the height of the viewport should be set to that size. If the CSS
positioning properties on the <svg> element do not provide sufficient information to determine the
height of the viewport, then the XML attributes height= determines the height of the viewport.

In the following example, an SV G graphic is embedded within a parent XML document which is
formatted using CSS layout rules. The width="100px" and height="200px" attributes are used to set
the size of the viewport:

<?xm version="1.0" standal one="yes" ?>
<parent xm ns="http://sone.url">

<l-- SVG graphic -->

<svg xm ns="http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d
wi dt h="100px" hei ght ="200px" >
<pat h d="ML00, 100 QO00, 400, 300, 100"/ >
<l-- rest of SVG graphic would go here -->

</ svg>

</ par ent >

Download this example

Theinitial clipping path for an SVG document is determined by the actual values of the'clip’ and
‘overflow' properties that apply to the outermost <svg> element. (These concepts and properties are
defined in the Cascading Style Sheets, level 2 CSS2 Specification.)

8.3 Establishing A New User Space:
Transformations

To change the current user space coordinate system, you define a transfor mation which defines how to
transform coordinates from the new user coordinate system into the previous user coordinate system.
Mathematically, the transformation is represented by atransfor mation matrix which maps coordinates
in the new user coordinate system into the previous user coordinate system. To illustrate:

(Insert an image which shows this concept.)

Transformation matrices define the mathematical mapping from one coordinate space into another. Of
particular interest isthe current transformation matrix (CTM) which defines the mapping from user

file:///D|/Jon/SVGSpec/samples/viewport.xml
http://www.w3.org/TR/REC-CSS2/cascade.html#q1
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-clip
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-overflow
http://www.w3.org/TR/REC-CSS2/

space into viewport space.

(Insert an image showing the CTM mapping user space into device space.)
Transformation matrices are specified as 3x3 matrices of the following form:
(Insert an image showing [ab 0 cd 0 ef 1], but as arectangular matrix.)

Because SV G's transformation matrices only have six entries that can be changed, these matrices will be
called 2x3 transfor mation matrices, which for convenience are often written as an array of six
numbers: [abcdef].

All coordinates in user space are expressed as (x,y) values. To calculate the transformation from the
current user space coordinate system into viewport space, you multiply the vector (x,y,1) by the current
transformation matrix (CTM) to yield (x',y',1):

(Insert an image showing [X',y',1]=[x,y,1][ab0cd 0 ef 1])

Whenever a new transformation is provided, anew CTM is calculated by the following formula. Note
that the new transformation is pre-multiplied to the CTM:

(Insert an image which shows newCTM{[ab c d e f]=[transformmatrix]*oldCTM[ab c d ef].)

It isimportant to understand the following key points regarding transformationsin SVG:

« Transformations alter coordinate systems, not objects. All objects defined outside the scope of a
transformation are unchanged by the transformation. All objects defined within the scope of a
transformation will be drawn in the transformed coordinate system.

« Transformations specify how to map the transformed (new) coordinate system to the
untransformed (old) coordinate system. All coordinates used within the scope the transformation
are specified in the transformed coordinate system.

« Transformations are always premultiplied to the CTM.

« Matrix operations are not commutative - the order in which transformations are specified is
significant. For example, atrandation followed by arotation will yield different results than a
rotation followed by atrandation:

(Insert an image illustrates the above concept.)

Mathematically, all transformations can be expressed as matrices. To illustrate:

« Trandationsare represented as[1 0 0 1 tx ty], where tx and ty are the distances to translate the
origin of the coordinate system in x and y, respectively.

« Scaling isobtained by [sx 0 0 sy 0 0]. This scales the coordinates so that one unit in thex and y
directions of the new coordinate system is the same as sx and sy units in the previous coordinate
system, respectively.

« Rotations are carried out by [cos(angle) sin(angle) -sin(angle) cos(angle) 0 0], which has the
effect of rotating the coordinate system axes by angle degrees counterclockwise.

« (Similar examples can be given for skew, reflect and other simple transformations. At thistime,
the SV G working group is still investigating these other simple transformations.)

(Insert an image illustrates the above concept.)

8.4 Establishing an Initial User Coordinate
System: the fit-box-to-viewport attribute

Various SVG elements have the effect of establishing a new viewport:
« Any <svg> element establishes a new viewport

« Any <use> element establishes atemporary new viewport for drawing instances of predefined
graphics objects

« Markers establish atemporary new viewport for drawing arrowheads and polymarkers

« When the text on a path facility tries to draw areferenced <symbol> or <svg> element, it
establishes a new temporary new viewport for the referenced graphic.

« When patterns are used to fill or stroke an object, atemporary new viewport is established for
each drawn instance of the pattern.

It is very common to have the requirement that a given SV G document, <symbol>, <marker> or
<pattern> should be scaled automatically to fit within atarget rectangle. The
fit-box-to-viewport="<min-x> <min-y> <width> <height>" attribute on the <svg> and <symbol>
elementsindicates that an initial coordinate system should be established such that the given rectanglein
user space (specified by the four numbers <min-x> <min-y> <width> <height>) maps exactly to the
current bounds of the viewport. For example:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >

<svg wi dth="4in" height="3in" fit-box-to-viewort"0 0 40 30">
<desc>This SVG drawi ng uses the fit-box-to-viewort
attribute to automatically create an initial user coordinate
system whi ch causes the graphic to scale to fit into the
vi ewport no matter what size the viewport is.

</ desc>
<I-- This rectangle goes from(0,0) to (40,30) in user space
Because of the fit-box-to-viewport attribute above,
the rectangle will end up filling the entire area
reserved for the SVG docunent. -->
<rect x="0" y="0" wi dth="40" height="30" style="fill: blue" />
</ svg>

Download this example

In some cases, it is necessary that the aspect ratio of the graphic be retained when utilizing
fit-box-to-viewport. A supplemental attribute preser ve-aspect-ratio=" <align> [<meet-or-dice>]"
indicates whether or not to preserve the aspect ratio of the original graphic. The <align> parameter
indicates whether to preserve aspect ratio and what alignment method should be used if aspect ratio is
preserved. The <align> parameter must be one of the following strings:

« none (the default) - Do not attempt to preserve aspect ratio. Scale the graphic non-uniformly if
necessary such that the graphic's bounding box exactly matches the viewport rectangle.

o XmMin-ymin - Attempt to preserve aspect ratio. Align the smallest X value of the graphic's
bounding box with the smallest X value of the viewport. Align the smallest Y value of the
graphic's bounding box with the smallest Y value of the viewport.

« Xmid-ymin - Attempt to preserve aspect ratio. Align the midpoint X value of the graphic's
bounding box with the midpoint X value of the viewport. Align the smallest Y value of the
graphic's bounding box with the smallest Y value of the viewport.

file:///D|/Jon/SVGSpec/samples/fit-simple.xml

e Xmax-ymin - Attempt to preserve aspect ratio. Align the maximum X value of the graphic's
bounding box with the maximum X value of the viewport. Align the smallest Y value of the
graphic's bounding box with the smallest Y value of the viewport.

o Xmin-ymid - Attempt to preserve aspect ratio. Align the smallest X value of the graphic's
bounding box with the smallest X value of the viewport. Align the midpoint Y value of the
graphic's bounding box with the midpoint Y value of the viewport.

« Xmid-ymid - Attempt to preserve aspect ratio. Align the midpoint X value of the graphic's
bounding box with the midpoint X value of the viewport. Align the midpoint Y value of the
graphic's bounding box with the midpoint Y value of the viewport.

« Xmax-ymid - Attempt to preserve aspect ratio. Align the maximum X value of the graphic's
bounding box with the maximum X value of the viewport. Align the midpoint Y value of the
graphic's bounding box with the midpoint Y value of the viewport.

e XmMin-ymax - Attempt to preserve aspect ratio. Align the smallest X value of the graphic's
bounding box with the smallest X value of the viewport. Align the maximum Y value of the
graphic's bounding box with the maximum Y value of the viewport.

« Xmid-ymax - Attempt to preserve aspect ratio. Align the midpoint X value of the graphic's
bounding box with the midpoint X value of the viewport. Align the maximum Y value of the
graphic's bounding box with the maximum Y value of the viewport.

o Xmax-ymax - Attempt to preserve aspect ratio. Align the maximum X value of the graphic's
bounding box with the maximum X value of the viewport. Align the maximum Y value of the
graphic's bounding box with the maximum Y value of the viewport.

The <meet-or -slice> parameter is optional and must be one of the following strings:
« Mmeet (the default) - Scale the graphic such that:
0 aspect ratio is preserved
o the entire graphic (as defined by its bounding box) is visible within the viewport
o the graphic is scaled up as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport
will extend beyond the bounds of the graphic (i.e., the area into which the graphic will draw will
be smaller than the viewport).

« dlice - Scale the graphic such that:
0 aspect ratio is preserved
o the entire viewport is covered by the graphic (as defined by its bounding box)
o the graphic is scaled down as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the graphic
will extend beyond the bounds of the viewport (i.e., the area into which the graphic will draw is
larger than the viewport).

8.5 Modifying the User Coordinate System: the
transform attribute

All modifications to the user coordinate system are specified with the transfor m attribute: The
transform attribute defines a new coordinate system transformation and thus implicitly a new user
gpace and anew CTM. A transform attribute takes a list of transformations, which are applied in the

order provided. The available transformations include:

o Mmatrix(<a> <c> <d> <e> <f>), which specifies that the given transformation matrix should
be premultiplied to the old CTM to yield anew CTM.

« trandate(<tx> [<ty>]), which indicates that the origin of the current user coordinate system
should be trandated by tx and ty If <ty> isnot provided, it is assumed to be zero.
[A trandateis equivalent to matrix(1 00 1 tx ty)].

« scale(<sx> [<sy>]), which indicates that the user coordinate system should be scaled by sx and
sy. If <sy> isnot provided, it is assumed to be equal to <sy>.
[A scaleis equivalent to matrix(sx 0 0 sy 0 0)].

« rotate(<rotate-angle>), which indicates that the current user coordinate system should be
rotated relative to its origin by <rotate-angle>, which is expressed in degrees.
[A rotation is equivalent to matrix(cos(angle) sin(angle) -sin(angle) cos(angle) 0 0)].

« skew-x(<skew-angle>), which indicates that the current user coordinate system should be
transformed such that, for positive values of <skew-angle>, increasingly positive Y values will
be tilted by increasing amounts in the direction of the positive X-axis. (??? Need picture).
<skew-angle> is expressed in degrees.

[A skew-X isequivalent to matrix(1 0 tan(angle) 1 0 0)].

« skew-y(<skew-angle>), which indicates that the current user coordinate system should be
transformed such that, for positive values of <skew-angle>, increasingly positive X values will
be tilted by increasing amounts in the direction of the positive Y-axis. (??? Need picture).
<skew-angle> is expressed in degrees.

[A skew-y isequivalent to matrix(1 tan(angle) 0 1 0 0)].

All values are real numbers.

If alist of transforms s provided, then the net effect is asif each transform had been applied separately
in the order provided. For example, transform="transate(-10,-20) scale(2) r otate(45)
trandate(5,10)" indicates that:

« theorigin of the user coordinate system should be trandated -10 unitsin X and -20 unitsin 'Y
(equivalent to transformation matrix [1 0 0 1 -10 -20]),

« then the user coordinate system should be scaled uniformly by a factor of 2 (equivalent to
transformation matrix [20 02 0 0]),

« then the user coordinate system should be rotated by 45 degrees (equivalent to transformation
matrix [cos(45) sin(45) -sin(45) cos(45)]),

« then origin of the user coordinate system should be translated by 5 unitsin X and 10 unitsin Y
(equivalent to transformation matrix [1 00 1 5 10]).

Theresult is equivalent to pre-multiplying all of the matrices together: [1 00 15 10] * [cos(45) sin(45)
-sin(45) cos(45)] * [200200] * [100 1 -10-20], which would be roughly equivalent to the following
transform definition: matrix(1.414 1.414 -1.414 1.414 -17.07 1.213).

Thetransform attribute is applied to an element before processing any other coordinate or length values
supplied for that element. Thus, in the element <r ect x="10" y="10" w dt h="20"

hei ght ="20" transfornm="scal e(2)" />,thex,y, width and height values are processed
after the current coordinate system has been scaled uniformly by afactor of 2 by the transform
attribute. Thus, x, y, width and height (and any other attributes or properties) are treated as valuesin the
new user coordinate system, not the previous user coordinate system.

8.6 Establishing a New Viewport: the <svg>
element within an SVG document

At any point in an SVG drawing, you can establish anew viewport into which all contained graphics
should be drawn by including an <svg> element inside an SV G document. By establishing a new
viewport, you aso implicitly establish anew initial user space, new meanings for many of the CSS unit

specifiers and, potentially, a new clipping path.

To establish a new viewport, you use the positioning properties from CSS such asleft:, top:, right:,
bottom:, width:, height:, margin properties and padding properties. Here is an example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ /DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" height="3in">
<desc>Thi s SVG draw ng enbeds anot her one,
t hus establishing a new vi ewport
</ desc>
<I-- The follow ng statenent establishing a new vi ewport
and renders SVG drawing B into that viewort -->
<svg style="left: 25% top: 25% wi dth="50% hei ght="50% >
<l-- drawing B goes here -->
</ svg>
</ svg>

Download this example

Y ou can also specify values for the'clip' and 'overflow' properties for <svg> elements within an SVG
document. If specified on an <svg> element, these properties will change the current clipping path.
(Note that these properties will be ignored if used on any other type of element.)

8.7 Properties to Establish a New Viewport

(Extract sections from chapter 8 of the CSS spec. Make modifications as hecessary.).

8.8 Units

All coordinates and lengths in SV G can be specified in one of the following ways:

o User units. If no unit specifier is provided, a given coordinate or length is assumed to be in user
units (i.e., avaluein user space). For example:

<text style="font-size: 50">Text size is 50 user units</text>

« CSSunits. If aunit designator is provided on a coordinate or length value, then the given value
isassumed to be in CSS units. Available unit designators are the absolute and relative unit
designators from CSS (em, ex, pX, pt, cm, mm, in and percentages). Asin CSS, the em and ex

file:///D|/Jon/SVGSpec/samples/viewport-nest.xml

unit designators are relative to the current font's font-size and x-height, respectively. Initially, the
various absolute unit specifiers from CSS (i.e., px, pt, cm, mm, in) represent lengths within the
initial user coordinate system and do not change their meaning as transformations alter the
current coordinate system. Thus, "12pt" can be made to represent exactly 12 points on the actual
visual medium even if the user coordinate system has been scaled. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>Denpnstration of coordinate transforns
</ desc>
<l-- The following two text elenents will both drawwith a
font height of 12 pixels -->
<text style="font-size: 12">This prints 12 pixels high.</text>
<text style="font-size: 12px">This prints 12 pixels high.</text>

<I-- Now scal e the coordi nate systemby 2. -->
<g transforn¥"scal e(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordi nate system equal s
2 units in the previous coordi nate system -->

<text style="font-size: 12">This prints 24 pixels high.</text>

<l-- The following text will actually still draw 12 pi xels high
because the CSS unit specifier has been provided. -->
<text style="font-size: 12px">This prints 12 pixels high.</text>

</ g>
</ svg>

Download this example

If possible, the SV G user agent should be passed the actual size of a px unit in inches or millimeters by
its parent user agent. (See Conformance Requirements and Recommendations.) If such information is
not available from the parent user agent, then the SV G user agent should assume a px is defined to be
exactly .28mm.

8.9 Redefining the meaning of CSS unit specifiers

The process of establishing a new viewport viaan <svg> element inside of an SV G document changes
the meaning of the following CSS unit specifiers: px, pt, cm, mm, in, and % (percentages). A "pixel"
(the px unit) becomes equivalent to a single unit in the user coordinate system for the given <svg>
element. The meaning of the other absolute unit specifiers (pt, cm, mm, in) are determined as an
appropriate multiple of a px unit using the actual size of px unit (as passed from the parent user agent to
the SV G user agent). Any percentage values that are relative to the current viewport will also represent
new values.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dt h="300px" hei ght ="3o00px" >
<desc>Transformation with establishnent of a new vi ewport
</ desc>
<l-- The following two text elenments will both draw with a
font height of 12 pixels -->
<text style="font-size: 12">This prints 12 pixels high. </text>
<text style="font-size: 12px">This prints 12 pixels high.</text>

file:///D|/Jon/SVGSpec/samples/transform.xml

<I-- Now scal e the coordi nate systemby 2. -->
<g style="transform scale(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordi nate system equal s
2 units in the previous coordi nate system -->

<text style="font-size: 12">This prints 24 pixels high.</text>

<l-- The following text will actually still draw 12 pi xels high
because the CSS unit specifier has been provided. -->
<text style="font-size: 12px">This prints 12 pixels high.</text>
</ g>

<lI-- This tine, scale the coordinate systemby 3. -->
<g style="transform scale(3)">

<I-- Establish a new viewport and thus change the meani ng of
sone CSS unit specifiers. -->

<svg style="left:0; top:0; right:100; bottom 100"
wi dt h="100% hei ght ="100% >

<l-- The following two text elements will both draw with a
font height of 36 screen pixels. The first text el enent
defines its height in user coordinates, which have been
scaled by 3. The second text elenent defines its height
in CSS px units, which have been redefined to be three tines
as big as screen pixels due the <svg> el enent establishing
a new viewport. -->
<text style="font-size: 12">This prints 36 pixels high.</text>
<text style="font-size: 12px">This prints 36 pixels high.</text>

</ svg>
</ g>

</ svg>

Download this example

8.10 Further Examples

(Include an example which shows multiple viewports, multiple user spaces and multiple use of different
units.)

8.11 Implementation Notes

Any values expressed in CSS units or percentages of the current viewport should be implemented such
that these values map to corresponding values in user space as follows:

« Coordinate values:

o If both X and Y are expressed in viewport-relative coordinates (e.g., <rect x="3in"
y="2in" ... />), then convert from CSS units into viewport space so that you have a
coordinate pair (X,Y) in viewport space. Then apply the inverse of the current
transformation matrix (CTM) onto (X,Y) to provide an (X',Y") coordinate value in user
space.

o If X isexpressed in viewport-relative units, but Y is expressed in user space units (e.g., in
<rect x="2in" y="15" ... />, X isexpressed in viewport-relative unitsbut Y is expressed
in user space units), then determine the equation of the line in user space which
corresponds to the vertical line through the point (X,0) in viewport space. (If user spaceis

file:///D|/Jon/SVGSpec/samples/viewport-transform.xml

rotated or skewed relative to the viewport, then the line in user space will no longer be
vertical.) Then the result point (X',Y") in user space that you want is the intersection of
the above equation with the horizontal line through the point (0,Y) in user space.

As aexample, suppose your viewport is 10 cm wide and 10 cm high and the CTM is[10
001000]. If you encounter <rect x="5cm" y="1" ... />, then determine the equation
of theline in user space that goes through (5cm, 0) in viewport space (the equation is x

= . 5). Theresult point (X',Y") in user space isthe intersection of thelinex = .5 with
theliney = 1,whichresultsinthepoint (X , Y')=(.5, 1) inuser space.

o IfY isexpressed in viewport-relative units, but X is expressed in user space units (e.g., in
<rect x="43" y="2cm" ... />, X isexpressed in user space unitsbut Y is expressed in
viewport-relative units), then determine the equation of the line in user space which
corresponds to the horizontal line through the point (0,Y) in viewport space. (If user
space isrotated or skewed relative to the viewport, then the line in user space will no
longer be vertical.) Then the result point (X',Y") in user space that you want is the
intersection of the above equation with the horizontal line through the point (0,Y) in user
space.

As aexample, suppose your viewport is 10 cm wide and 10 cm high and the CTM is[10
001000]. If you encounter <rect x="1" y="5cm" ... />, then determine the equation
of the line in user space that goes through (0, 5cm) in viewport space (the equation isy

= . 5). Theresult point (X',Y") in user space istheintersection of theliney = .5 with
thelinex = 1,whichresultsinthepoint (X' , Y')=(1,.5) inuser space.

« For any width value represented in a viewport-relative coordinate system (i.e., CSS units or
percentages), transform the points (0,0) and (width,0) from viewport space to current user space
using the inverse of the current transformation matrix, yielding two points in userspace Q1 and
Q2. Do adistance calculation between Q1 and Q2 (sgrt((Q2x-Q1x)** 2,(Q2y-Q1ly)**2)) and use
that as the width value for the given operation.

« For any height value represented in a viewport-relative coordinate system (i.e., CSS units or
percentages), do the same thing as above, but use points (0,0) and (0,height) instead.

« For any length value which isn't tied to an axis, we use an approach which gives appropriate
weighting to the contribution of the two dimensions of the viewport. Determine an angle
ang=atan(viewport-height/viewport-width), then determine a point P=(length* cos(ang),
length* sin(ang)) in viewport space. Transform the two points (0,0) and P from viewport space
into current userspace using the inverse of the current transformation matrix, yielding two points
in userspace Q1 and Q2. Do a distance calculation between Q1 and Q2
(sort((Q2x-Q1x)** 2,(Q2y-Q1ly)** 2)) and use that as the length value for the given operation.

previous next contents properties index

9 Filling, Stroking and Paint Servers

9.1 Introduction

Vector graphics shapes and text objects can be filled (which means painting the interior of the object)
and stroked (which means painting along the outline of the object). Filling and stroking both can be
thought of in more general terms as painting operations.

With SV G, you can paint (i.e., fill or stroke) with:
« asinglecolor
« agradient (linear or radial)
« apattern (vector or image, possibly tiled)
« custom paints available via the extensibility mechanism

SV G uses the general notion of apaint server. Gradients and patterns are just specific types of paint
servers. For example, first you define a gradient by including a <gradient> element within a <defs>,
assign an ID to that <gradient> object, and then reference that ID in a'fill' or 'stroke' property:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" height="3in">
<desc>Li near gradient exanple
</ desc>
<g>
<def s>
<lineargradi ent id="MyGadient">
<stop offset="0% style="col or: #F60"/ >
<stop offset="70% style="col or:#FF6"/>
</li neargradi ent >
</ def s>
<rect style="fill: url (#WG adient)" w dth="20" hei ght="15.8"/>
</ g>
</ svg>

Download this example

9.2 Fill Properties

fill'

file:///D|/Jon/SVGSpec/samples/lin-gradient.xml

none

Value: none |
current-color |
<color> [icc-color(<colorvalue>*)] |
inherit |
<uri> [none | current-color | <color> [icc-color(<colorvalue>*)] | inherit]
Initial: current-color
Appliesto: all elements
Inherited: see Inheritance of Painting Properties below

Percentages. N/A
Media: visual

Indicates that the object should not be filled.

current-color

Indicates that the object should filled with the color specified by the 'color' property. This
mechanism is provided to facilitate sharing of color attributes between parent grammars such as
other (non-SVG) XML. This mechanism allows you to define astylein your HTML which sets
the 'color' property and then pass that style to the SV G user agent so that your SV G text will
draw in the same color.

<color> [icc-color (<color value>*)]

<color> isthe explicit color (in the SRGB color space) to be used to fill the current object. SVG
supports all of CSS2's <color> specifications. If an optional [icc-color (<colorvalue>*)] is
provided, then the list of <colorvalue>'sisa set ICC-profile-specific color values. On platforms
which support |CC-based color management, the icc-color gets precedence over the <color>
(whichisin the SRGB color space). For more on | CC-based colors, refer to Color.

<uri>[none| current-color | <color> | inherit]

The <uri> is how you identify afancy paint style such as a gradient, a pattern or a custom paint
from extensibility. The <uri> should provide the ID of the paint server (e.g., agradient [??7? see
link] or a pattern [??? seelink]) to be used to paint the current object. If the XPointer is not valid
(e.g., it pointsto an object that doesn't exist or the object is not avalid paint server), then the
paint method following the <uri> (i.e., none | current-color | <color> | inherit) isused if
provided; otherwise, no gradient will occur.

Note that graphical objects that are not closed (e.g., a <path> without a closepath at the end or a
<polyline>) still can befilled. The fill operation automatically closes all open subpaths by connecting
the last point of the subpath with the first point of the subpath before painting the fill.

fillrule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visua
evenodd

(??? Need detailed description plus drawings)

nonzero

(??? Need detailed description plus drawings)

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

'fill-opacity’

Value: <opacity-value>
Initial: evenodd
Appliesto: &l elements
Inherited: yes
Percentages: Allowed

Media: visua

‘fill-opacity' specifies the opacity of the painting operation used to fill the current object. It isimportant
to note that any given object can have three different opacity properties: 'fill-opacity’, 'str oke-opacity’
and 'opacity'. The'fill" painting operation is done and blended into the current background (or
temporary offscreen buffer, if ‘opacity’ is not 1.0) using the value of 'fill-opacity'. Next, The 'stroke
painting operation is done and blended into the current background (or temporary offscreen buffer, if
‘opacity' isnot 1.0) using the value of 'stroke-opacity'. Finaly, if 'opacity’ isnot 1.0, the offscreen
holding the object as awholeis blended into the current background.

(The above paragraph needs to be moved someplace else, such as SVG Rendering Model.)
<opacity-value>

The opacity of the painting operation used to fill the current object. If a <number> is provided,
then it must be in the range of 0.0 (fully transparent) to 1.0 (fully opague). If a percentageis
provided, then it must be in the range of 0% to 100%. Any values outside of the acceptable range
are rounded to the nearest acceptable value.

‘fill-params
Value: <string> | inherit
Initial: Empty string
Appliesto: al elements
Inherited: yes
Percentages: Paint server-specific.
Media: visua

'fill-params' specifies an arbitrary <string> which is passed to the current fill paint server. The meaning
of <string> is paint server-specific. None of the built-in paint servers use 'fill-params. It ismeant asa
way to pass parameters to a custom paint servers defined via paint server extensibility.

<string>
A <string> containing parameters which should be passed to the current fill paint server.

9.3 Stroke Properties

'stroke'

Value: none |
current-color |
<color> [icc-color(<number>*)] |
inherit |
<uri> [none | current-color | <color> | inherit |
Initial: none
Appliesto: all elements
Inherited: see Inheritance of Painting Properties below

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

Percentages. N/A
Media: visual
none
(Same meaning as with 'fill'.)
current-color
(Same meaning as with 'fill'.)
<color>
(Same meaning as with 'fill'.)
<uri>[none | current-color | <color> [icc-color (<colorvalue>*)] | inherit]
(Same meaning as with 'fill'.)

‘stroke-width'
Value: <width> | inherit
Initial: 1
Appliesto: &l elements
Inherited: yes
Percentages. Yes
Media: visual

<width>

The width of the stroke on the current object, either expressed as a <length> in user units, a
<length> in Transformed CSS units (??? add link) or as a percentage. If a percentage is used, the

<width> is expressed as a percentage of the current viewport (??? add link).
‘stroke-linecap'

Value: butt | round | square | inherit
Initial: butt

Appliesto: al elements

Inherited: yes

Percentages: N/A

Media: visua

‘'stroke-linecap' specifies the shape to be used at the end of open subpaths when they are stroked.
butt
See drawing below.
round
See drawing below.
square
See drawing below.

(???insert drawing here)
‘stroke-ling oin’'
Value: miter | round | bevel | inherit
Initial: miter
Appliesto: &l elements
Inherited: yes

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

Percentages. N/A
Media: visual

‘stroke-lingloin' specifies the shape to be used at the corners of paths (or other vector shapes) that are
stroked. when they are stroked.
miter
See drawing below.
round
See drawing below.
bevel
See drawing below.

(???insert drawing here)
‘stroke-miterlimit'

Value: <miterlimit> | inherit
Initial: 8

Appliesto: all elements
Inherited: yes

Percentages: N/A

Media: visual

When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-lingoin’,

it is possible for the miter to extend far beyond the thickness of the line stroking the path. The
‘stroke-miterlimit' imposes alimit on the ratio of the miter length to the 'stroke-linewidth'.

<miterlimit>

The limit on the ratio of the miter length to the 'stroke-linewidth'. The value of <miterlimit>
must be a number greater than or equal to 1.

(???insert drawing here)

‘stroke-dasharray"
Value: none | <dasharray> | inherit
Initial: none
Appliesto: al elements
Inherited: yes
Percentages. Yes. See below.
Media: visua

'stroke-dasharray' controls the pattern of dashes and gaps used to stroke paths. The value of
<dasharray> isalist of space- or comma-separated <number>'s that specify the lengths of alternating
dashes and gaps.

none
Indicates that no dashing should be used. If stroked, the line should be drawn solid.
<dasharray>

A list of space- or comma-separated <length>'s which can be in user units or in any of the CSS
units, including percentages. A percentage represents a distance as a percentage of the current
viewport (??? Add link here).

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

An empty string for 'stroke-dasharray’ is equivalent to the value none.

(???insert drawing here)

‘stroke-dashoffset’
Value: <dashoffset> | inherit
Initial: 0
Appliesto: al elements
Inherited: yes
Percentages. Yes. See below.
Media: visua

'stroke-dashoffset’ specifies the distance into the dash pattern to start the dash.
<dashoffset>

A <length> which can bein user unitsor in any of the CSS units, including percentages. A
percentage represents a distance as a percentage of the current viewport (??? Add link here).

(???insert drawing here)

'str oke-opacity"
Value: <opacity-value> | inherit
Initial: evenodd
Appliesto: &l elements
Inherited: yes
Percentages: Allowed
Media: visua

‘stroke-opacity' specifies the opacity of the painting operation used to stroke the current object. (???
Add link about how different opacity parameters interact.)

<opacity-value>

The opacity of the painting operation used to stroke the current object. If a<number> is
provided, then it must be in the range of 0.0 (fully transparent) to 1.0 (fully opaque). If a
percentage is provided, then it must be in the range of 0% to 100%. Any values outside of the
acceptable range are rounded to the nearest acceptable value.

‘stroke-params
Value: <string> | inherit
Initial: Empty string
Appliesto: &l elements
Inherited: yes
Percentages. Paint server-specific.
Media: visua

‘stroke-params' specifies an arbitrary <string> which is passed to the current stroke paint server. The
meaning of <string> is paint server-specific. None of the built-in paint servers use 'stroke-params. It is
meant as away to pass parameters to a custom paint servers defined via paint server extensibility.

<string>
A <string> containing parameters which should be passed to the current stroke paint server.

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

9.4 Gradients

Gradients consist of continuously smooth color transitions along a vector from one color to another,
possibly followed by additional transitions along the same vector to other colors. SV G provides for two
types of gradients, linear gradients and radial gradients.(??? Include drawing)

Gradients are specified within a <defs> element and are then referenced using 'fill' or 'stroke' or

properties on a given graphics object (e.g., a <rect> element) to indicate that the given element should
be filled or stroked with the referenced gradient.

9.4.1 Linear Gradients

Linear gradients are defined by a <linear gradient> element. A <lineargradient> element can have the
following attributes:

« gradient-units={ user space | object-bbox }. Defines the coordinate system for attributes x1, y1,
x2, y2. If gradient-units=" user space" (the default), x1, y1, x2, y2 represent valuesin the
current user coordinate system in place at the time when the <lineargradient> element is defined.
If gradient-units=" object-bbox", then x1, y1, x2, y2 represent values in an abstract coordinate
system where (0,0) is the (minx,miny) in user space of the bounding box of the object getting
filled with the gradient, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note: the
bounding box represents the maximum extent of the shape of the object in X and Y with respect
to the user coordinate system of the object exclusive of stroke-width.)

« X1,Yy1, x2, y2 define agradient vector for the linear gradient. This gradient vector provides
starting and ending points onto which the <stops> are mapped (i.e., agradient stop at 0% is
mapped to the start of the gradient vector and a gradient stop at 100% is mapped to the end of the
gradient vector). Defaults values are x1="0%", y1="0%", x2="100%", y2="0%". (??? Add
drawing.)

« gradient-transform contains the definitions of an optional additional transformation from the
gradient coordinate system onto the target coordinate system (i.e., userspace or object-bbox).
This allows for things such as skewing the gradient. gradient-transform can take on the same
values as the transform attribute.

« spread-method indicates what happensif the the gradient starts or ends inside the bounds of the
target rectangle. Possible values are: stick (??? Need a better word. We mentioned one at the
face-to-face), which says to use the terminal colors of the gradient to fill the remainder of the
target region, reflect, which says to reflect the gradient pattern start-to-end, end-to-start,
start-to-end, etc. continuously until the target rectangleisfilled, and repeat, which says to repeat
the gradient pattern start-to-end, start-to-end, start-to-end, etc. continuously until the target
region isfilled.

Percentages are allowed for x1, y1, X2, y2. For gradient-units="userspace", percentages represent values
relative to the current viewport. For gradient-units="object-bbox", percentages represent values relative
to the bounding box for the object.

(??? Need to include some drawings here showing these attributes)

file:///D|/Jon/SVGSpec/LinearGradients
file:///D|/Jon/SVGSpec/RadialGradients

9.4.2 Radial Gradients

Radial gradients are defined by a <radialgradient> element. A <radialgradient> element can have the
following attributes:

« gradient-units={ user space | object-bbox }. Defines the coordinate system for attributes cx, cy,
r, fx, fy. If gradient-units=" userspace" (the default), cx, cy, r, fx, fy represent valuesin the
current user coordinate system in place at the time when the <radialgradient> element is defined.
If gradient-units=" object-bbox" , then cx, cy, r, fx, fy represent values in an abstract coordinate
system where (0,0) is the (minx,miny) in user space of the bounding box of the object getting
filled with the gradient, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note: the
bounding box represents the maximum extent of the shape of the object in X and Y with respect
to the user coordinate system of the object exclusive of stroke-width.)

e CX, ¢y, r define the largest/outermost circle for the radial gradient. The gradient will be drawn
such that the 100% gradient stop is mapped to the perimeter of this largest/outermost circle. (The
default value for each attribute is 50%.) (??? Add drawing.)

« fx, fy define the focal point for the radial gradient. The gradient will be drawn such that the 0%
gradient stop is mapped to (fx, fy). (The default value for each attribute is 50%.) (??? Add
drawing.)

« gradient-transform has the same meaning as for linear gradients.

Percentages are allowed for cx, cy, r, fx, fy. For gradient-units="userspace”, percentages represent
values relative to the current viewport. For gradient-units="object-bbox", percentages represent values
relative to the bounding box for the object.

(??? Need to include some drawings here showing these attributes)

9.4.3 Gradient Stops

The ramp of colorsto use on agradient is defined by the <stop> elements that are child elementsto
either the <lineargradient> element or the <radialgradient> element. Here is an example of the definition

of alinear gradient that consists of a smooth transition from white-to-red-to-black:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dth="4in" hei ght="3in">
<desc>Radi al gradient exanple with three gradi ent stops
</ desc>
<g>
<def s>
<radi al gradi ent id="MyGradi ent">
<stop offset="0% style="color:white"/>
<stop offset="50% style="color:red"/>
<stop of fset="100% style="col or: bl ack"/>
</ radi al gradi ent >
</ def s>
<circle style="fill: url(#WG adient)" r="42"/>
</ g>
</ svg>

Download this example

The offset attribute is either a <number> (usually ranging from O to 1) or a percentage (correspondingly

file:///D|/Jon/SVGSpec/LinearGradients
file:///D|/Jon/SVGSpec/RadialGradients
file:///D|/Jon/SVGSpec/samples/rad-gradient.xml

usually ranging from 0% to 100%) which indicates where the gradient stop should be placed. For linear
gradients, the offset attribute represents a location along the gradient vector. For radial gradients, it
represents a percentage distance from (fx,fy) to the edge of the outermost/largest circle.

The color property indicates what color to use at that gradient stop. All valid CSS2 color property
specifications are available.

An opacity property can be used to define the opacity of agiven gradient stop.

Some notes on gradients:

« Gradient offset values less than O (or less than 0%) are rounded up to 0%. Gradient offset values
greater than 1 (or greater than 100%) are rounded down to 100%.

« There needsto be at least two stops defined to have a gradient effect. If no stops are defined,
then painting should occur asif 'none’ were specified as the paint style. If one stop is defined,
then paint with the solid color fill using the color defined for that gradient stop.

« Each gradient offset value should be equal to or greater than the previous gradient stop's offset
value. If agiven gradient stop's offset value is not equal to or greater than all previous offset
values, then the offset value is adjusted to be equal to the largest of all previous offset values.

« |If two gradient stops have the same offset value, then the latter gradient stop controls the color
value at the overlap point.

9.5 Patterns

A pattern is used to fill or stroke an object using a pre-defined graphic object which can be replicated
("tiled") at fixed intervalsin x and y to cover the areas to be painted.

Patterns are defined using a <patter n> element and then referenced by propertiesfill: and stroke:. The
<pattern> element the same attributes as <symbol>, plus the following pattern-specific attributes:

« pattern-units={ user space | object-bbox }. Defines the coordinate system for attributes x, y,
width, height. If pattern-units=" userspace" (the default), X, y, width, height represent values
in the current user coordinate system when the <pattern> element is defined. If
patter n-units=" object-bbox" , then x, y, width, height represent valuesin an abstract
coordinate system where (0,0) is the (minx,miny) in user space of the bounding box of the object
getting filled with the pattern, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note:
the bounding box represents the maximum extent of the shape of the object in X and Y with
respect to the user coordinate system of the object exclusive of stroke-width.)

« X, Y, width, height indicate how the pattern tiles should be placed and spaced and represent
coordinates and values in the coordinate space specified by patter n-units.

« pattern-transform contains the definitions of an optional additional transformation from the
pattern coordinate system onto the target coordinate system (i.e., userspace or object-bbox). This
allows for things such as skewing the pattern tiles. patter n-transform can take on the same
values as the transform attribute.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dth="4in" height="3in" >
<def s>

<pattern id="Triangl ePattern”
pattern-units="userspace"
x="0" y="0" wi dth="25" hei ght="25"
pattern-transfornme"skew x(45)"
fit-bbox="0 0 10 10" >
<path d="M 0O O L 100 L 5 10 z" />

</ def s>

<l-- Fill this ellipse with the above pattern -->

<ellipse style="fill: url (#TrianglePattern)" rx="40" ry="27" />
</ svg>

Download this example

9.6 Inheritance of Painting Properties

The values of any of the painting properties described in this chapter can be inherited from a given
object's parent. Painting, however, is always done on each leaf-node individually, never at the <g> level.
Thus, for the following SV G, two distinct gradients are painted (one for each rectangle):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>Gradi ents apply to | eaf nodes
</ desc>
<g>
<def s>
<lineargradient id="MG adient">
<stop offset="0% style="col or: #F60"/ >
<stop offset="70% style="col or: #FF6"/>
</li neargradi ent >
</ def s>
<g style="fill: url (#M/G adi ent)">
<rect wi dth="20" hei ght="15.8"/>
<rect w dth="35" height="8"/>
</ g>
</ g>
</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/patternfill.xml
file:///D|/Jon/SVGSpec/samples/twin-gradients.xml

previous next contents properties index

10 Color

10.1 Introduction

All SVG colors are specified in the SRGB color space (see [SRGB]). At aminimum, SV G user agents
should conform to the color behavior requirements specified in the Colors chapter of the CSS2
specification (see [CSS2]).

Additionally, SV G documents can specify an alternate color specification using an ICC profiles (see
[ICC32]). If ICC-based colors are provided and the SV G user agent support |CC color, then the

| CC-based color takes precedence over the SRGB color specification.

For more on specifying color properties, refer to the descriptions of the 'fill' property and the 'stroke
property.

10.2 The 'icc-profile' Property

The'icc-profile’ property identifiesthe ICC profile which should be used to process all <icc-color>
definitions within the current object.

‘icc-profile
Value: SRGB | <profile-name> [<uri>] | inherit
Initial: SRGB
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visua
sRGB

Indicates that the currently active ICC profile is SRGB.
<profile-name> [<uri>]

Provides a <pr ofile-name> for the profile which is present mainly for caching and performance
reasons (e.g., if the profile is already installed on the user's system or isaready in use, then don't
download the profile from its URL). The <uri> indicates the location of the profile itself.
Although optional, the <uri> is recommended in order to guarantee that the given profile will be
available to the end user.

http://www.w3.org/TR/REC-CSS2/syndata.html#color-units
file:///D|/Jon/SVGSpec/media.html#visual-media-group

previous next contents properties index

11 Paths

11.1 Introduction

Path objects are used to represent an outline which can befilled, stroked (see Filling, Stroking and Paint
Servers) or used as a clipping path (see Clipping, Masking and Compositing), or for any combination of
the three.

A path is described using the concept of a current point. In an analogy with drawing on paper, the
current point can be thought of as the location of the pen. The position of the pen can be changed, and
the outline of a shape (open or closed) can be traced by dragging the pen in either straight lines or
Curves.

Paths represent an outline of an object which is defined in terms of moveto (set a new current point),
lineto (draw a straight line), curveto (draw a curve using a cubic bezier), arc (elliptical or circular arc)
and closepath (close the current shape by drawing aline to the last moveto) elements. Compound paths
(i.e., apath with subpaths, each consisting of a single moveto followed by one or more line or curve
operations) are possible to alow effects such as "donut holes" in objects.

11.2 Path Data

11.2.1 General information about path data

A path is defined by including a <path> element which contains ad=" (path data)" attribute, where the
d attribute contains the moveto, line, curve (both cubic and quadratic beziers), arc and closepath
instructions. The following example specifies a path in the shape of atriangle. (The M indicates a
moveto, the L'sindicate lineto's, and the z indicates a closepath:

<?xm version="1.0" standal one="yes"?>
<svg wi dth="4in" hei ght="3in"
xmns = "http://ww. w3. or g/ G aphi cs/ SVE svg-19990706. dt d' >
<path d="M 100 100 L 140 100 L 120 140 z"/>
</ svg>

Download this example

A <path> element can also contain child <data> elements which also contain d=" (path data)"
attributes. This ability to have child <data> elements allows for very long path data strings to be broken
up into more manageable smaller strings. Here is a <path> element equivalent to the <path> element
above, but whose path datais divided into four pieces:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'

file:///D|/Jon/SVGSpec/samples/path01.xml

"http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dth="4in" hei ght="3in">
<path d="M 100 100">
<data d="L 140 100"/>
<data d="L 120 140"/>
<data d="z"/>
</ pat h>
</ svg>

Download this example

All d= attributes are concatenated together to yield a single path specification, with the d= attribute (if
present) on the <path> element preceding the d= attributes on the <data> elements. Each d= attributeis
restricted to 1023 characters of data. Path data commands cannot be broken across different d=
attributes. For example, you cannot split a"moveto" command such that the X-coordinate in on one d=
attribute and the Y -coordinate is on another.

The syntax of path datais very abbreviated in order to allow for minimal file size and efficient
downloads, since many SVG fileswill be dominated by their path data. Some of the ways that SVG
attempts to minimize the size of path data are as follows:

« All instructions are expressed as one character (e.g., amoveto is expressed asan M)

« Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L
200 200" contains unnecessary spaces and could be expressed more compactly as "M 100
100L.200 200")

« The command letter can be eliminated on subsequent commands if the same command is used
multiple timesin arow (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100
-200" and use "M 100 200 L 200 100 -100 -200" instead)

« Relative versions of al commands are available (upper case means absol ute coordinates, lower
case means relative coordinates)

« Alternate forms of lineto are available to optimize the special cases of horizontal and vertical
lines (absolute and relative)

« Alternate forms of curve are available to optimize the specia cases where some of the control
points on the current segment can be determined automatically from the control points on the
previous segment

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable

decimal pointisaperiod (".") and no other delimiter characters are allowed. (For example, the following
isan invalid numeric value in a path data stream: "13,000.56". Instead, you should say: "13000.56".)

The following sections list the commands.

11.2.2 The "moveto" commands

The "moveto" commands (M or m) establish anew current point. The effect isasif the "pen" were lifted
and moved to anew location. A path data segment must begin with either one of the "moveto”
commands or one of the "arc" commands. Subsequent "moveto” commands (i.e., when the "moveto” is
not the first command) represent the start of a new subpath:

Command ’ Name ’Parameters Description

file:///D|/Jon/SVGSpec/samples/path02.xml

M (absolute)
m (relative)

moveto

(xy)*

Start a new sub-path at the given (x,y) coordinate. M
(uppercase) indicates that absolute coordinates will follow;
m (lowercase) indicates that relative coordinates will
follow. If arelative moveto (m) appears as the first element
of the path, then it istreated as a pair of absolute
coordinates. If amoveto is followed by multiple pairs of
coordinates, the subsequent pairs are treated as implicit
lineto commands.

11.2.3 The "closepath” command

The "closepath" (z) causes an automatic straight line to be drawn from the current point to the initial
point of the current subpath. " Closepath" differsin behavior from what happens when "manually"
closing a subpath viaa"lineto" command in how 'stroke-lingjoin' and 'stroke-linecap’ are implemented.
With "closepath”, the end of the final segment of the subpath is"joined" with the start of theinitial
segment of the subpath using the current value of 'stroke-lingjoin' . If you instead "manually" close the
subpath viaa"lineto" command, the start of the first ssgment and the end of the last segment are not
joined but instead are each capped using the current value of 'stroke-linecap':

Command Name | Parameters Description
Close the current subpath by drawing a straight line from
z closepath | (none) the current point to current subpath's most recent starting
point (usually, the most recent moveto point).

11.2.4 The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

Command

Name

Parameters

Description

L (absolute)
| (relative)

lineto

(xy)*

Draw aline from the current point to the given
(x,y) coordinate which becomes the new current
point. L (uppercase) indicates that absolute
coordinates will follow; | (lowercase) indicates
that relative coordinates will follow. A number of
coordinates pairs may be specified to draw a
polyline. At the end of the command, the new
current point is set to the final set of coordinates
provided.

Draws a horizontal line from the current point
(cpx, cpy) to (X, cpy). H (uppercase) indicates that
absolute coordinates will follow; h (lowercase)

H (absolute) . , . indicates that relative coordinates will follow.

h (relative) horizontal lineto | X Multiple x values can be provided (although
usually this doesn't make sense). At the end of the
command, the new current point becomes (X, cpy)
for the final value of x.

Draws avertical line from the current point (cpx,
cpy) to (cpx, y). V (uppercase) indicates that
absolute coordinates will follow; v (lowercase)

V (absolute) o . indicates that relative coordinates will follow.

v (relative) vertical lineto y Multiple y values can be provided (although
usually this doesn't make sense). At the end of the
command, the new current point becomes (cpx, Y)
for thefinal value of y.

11.2.5 The curve commands

These three groups of commands that draw curves:

« Cubic bezier commands (C, ¢, Sand s). A cubic bezier segment is defined by a start point, an
end point, and two control points.

o Quadratic bezier commands (Q, g, T and T). A quadratic bezier segment is defined by a start
point, an end point, and one control point.

« Elliptical arc commands (A, a, B and b). An elliptical arc segment draws a segment of an ellipse
defined by the formulas:

X = ¢cX + rx * cos(theta)

y cy +ry * sin(theta)

where the elliptical arc isdrawn as a sweep for every possible theta between a given start angle
and end engle.

The cubic bezier commands are as follows;

Command Name Parameters Description

C (absolute)
c (relative)

curveto

(x1ylx2y2xy)*

Draws a cubic bezier curve from
the current point to (x,y) using
(x1,y1) asthe control point at the
beginning of the curve and (x2,y2)
as the control point at the end of
the curve. C (uppercase) indicates
that absolute coordinates will
follow; c (lowercase) indicates that
relative coordinates will follow.
Multiple sets of coordinates may
be specified to draw a polybezier.
At the end of the command, the
new current point becomes the
final (x,y) coordinate pair used in
the polybezier.

S (absolute)
s(relative)

shorthand/smooth curveto | (x2y2 x y)*

Draws a cubic bezier curve from
the current point to (x,y). Thefirst
control point is assumed to be the
reflection of the second control
point on the previous command
relative to the current point. (If
there is no previous command or if
the previous command was not an
C, ¢, Sor s, assumethefirst
control point is coincident with the
current point.) (x2,y2) isthe
second control point (i.e., the
control point at the end of the
curve). S (uppercase) indicates that
absolute coordinates will follow; s
(lowercase) indicates that relative
coordinates will follow. Multiple
sets of coordinates may be
specified to draw a polybezier. At
the end of the command, the new
current point becomes the fina
(x,y) coordinate pair used in the
polybezier.

The quadratic bezier commands are as follows:

Command

Name Parameters Description

Q (absolute)
g (relative)

guadratic bezier curveto

(x1ylxy)*

Draws a quadratic bezier
curve from the current
point to (X,y) using (x1,y1)
asthe control point. Q
(uppercase) indicates that
absolute coordinates will
follow; q (lowercase)
indicates that relative
coordinates will follow.
Multiple sets of
coordinates may be
Specified to draw a
polybezier. At the end of
the command, the new
current point becomes the
final (x,y) coordinate pair
used in the polybezier.

T (absolute)
t (relative)

Shorthand/smooth quadratic bezier

curveto

(xy)*

Draws a quadratic bezier
curve from the current
point to (x,y). The control
point is assumed to be the
reflection of the control
point on the previous
command relative to the
current point. (If thereis
no previous command or if
the previous command
wasnotanQ, q, T or t,
assume the control point is
coincident with the current
point.) T (uppercase)
indicates that absolute
coordinates will follow; t
(lowercase) indicates that
relative coordinates will
follow. At the end of the
command, the new current
point becomes the final
(x,y) coordinate pair used
in the polybezier.

The elliptical arc commands are as follows:

Command

Name

Parameters

Description

Draws an elliptical arc from the
current point to (X, y). The sizeand
orientation of the ellipse is defined
two radii (rx, ry) and an
x-axis-rotation, which indicates
how the ellipse asawholeis
: : rotated relative to the current
I(;)r(rg_ ;(r-cz?ﬁs-rgt;tlon_ﬂ X y)* coordinate system. The center (cx,
9 ag sweep-tiag xy cy) of the ellipseis calculated
automatically to satisfy the
constraints imposed by the other
parameters. lar ge-ar c-flag and
sweep-flag contribute to the
automatic calculations and help
determine how the arc is drawn.

A (absolute)

a (relative) eliptical arc

The elliptical arc command draws a section of an ellipse which meets the following constraints:
« thearc starts at the current point
« thearcendsat point (X, y)
o thedlipse hasthe two radii (rx, ry)

« the X-axis of the ellipseis rotated by x-axis-rotation relative to the X-axis of the current
coordinate system.

For most situations, there are actually four different arcs (two different ellipses, each with two different
arc sweeps) that satisfy these constraints:. (Pictures will be forthcoming in afuture version of the spec)
lar ge-ar c-flag and sweep-flag indicate which one of the four arcs should be drawn, as follows:

« Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180
degrees (the "large-arc"), and two will represent an arc sweep of less than or equal to 180
degrees (the "small-arc"). If large-arc-flagis'l', then one of the two larger arc sweeps will be
chosen; otherwise, if large-arc-flag is'0’, one of the smaller arc sweeps will be chosen,

« If sweep-flagis'l, then the arc will be drawn in a"positive-angle" direction (i.e., the ellipse
formula x=cx+r x* cos(theta) and y=cy+ry* sin(theta) is evaluated such that theta starts at an
angle corresponding to the current point and increases positively until the arc reaches (x,y)). A
value of 0 causes the arc to be drawn in a"negative-angle" direction (i.e., theta starts at an angle
value corresponding to the current point and decreases until the arc reaches (x,y)).

(We need examplesto illustrate all of this! Here is one for the moment. Suppose you have acircle with
center (5,5) and radius 2 and you wish to draw an arc from O degrees to 90 degrees. Then one way to
achievethiswouldbeM 7,5 A 2,2 0 0 1 5, 7. Inthisexample, you move to the "0 degree"
location on the circle, which is (7,5), since the center is at (5,5) and the circle has radius 2. Since we
have circle, the two radii are the same, and in this example both are equal to 2. Since our sweep is 90
degrees, which is less than 180, we set large-arc-flag to 0. We want to draw the sweep in apositive
angle direction, so we set sweep-flag to 1. Since we want to draw the arc to the point which is at the 90
degree location of the circle, we set (x,y) to (5,7).)

11.2.6 The grammar for path data

(??? Thisrequires clean-up and a more formal write-up on the terminology.) The following is the BNF
for SVG paths. The following notation is used:

e *:0o0r more

e +:10r more

e 2200r1

(): grouping

o |- separates alternatives

« double quotes surround literals

svg- pat h:
wsp* subpat hs?

subpat hs:
subpat h
| subpat h subpat hs

subpat h:
novet o subpat h- el enent s?

subpat h-el enent s
subpat h- el enent - wsp
| subpat h- el enent -wsp subpat h-el ement s

subpat h- el ement - wsp:
subpat h- el ement wsp*

subpat h- el enent :

cl osepath
lineto
hori zontal -1i neto
vertical-lineto
curveto

I
I
|
I
| snoot h-curveto
| quadratic-bezier-curveto
| snoot h-quadrati c-bezi er-curveto
| elliptical-arc
novet o
("M | "') wsp* noveto-argunent-sequence

novet o- ar gunent - sequence:
coor di nat e- pai r
| coordinate-pair |ineto-argunent-sequence

cl osepat h:
("z' | "z") wep*
i neto:
("L"] "I") wsp* lineto-argunent-sequence

| i net o- ar gunment - sequence
coordi nate-pair
| coordinate-pair |ineto-argunent-sequence

hori zontal -1i neto:
("H | "h") wsp* horizontal -1lineto-argunent-sequence
hori zont al -1 i net o- ar gunent - sequence

hori zont al -1 i net o- ar gunment

| horizontal -1ineto-argument horizontal -1ineto-argunent-sequence

hori zont al -1 i net o- ar gunent :
coordi nat e

vertical -1ineto:

("V" | "v") wsp* vertical-Ilineto-argument-sequence
vertical -1ineto-argunment - sequence

vertical -1ineto-argunent

| vertical-lineto-argunent vertical-Ilineto-argument-sequence
vertical -1ineto-argunent:

coordi nate

curveto:
("C" | "c") wsp* curveto-argunent-sequence

curvet o- ar gunent - sequence:
curvet o- ar gunent
| curvet o-argunent curveto-argunent-sequence

curvet o- ar gunent :
coor di nat e- pai r coordi nat e-pair coordi nate-pair

snoot h- curvet o
("S" | "s") wsp* snpoth-curveto-argunent-sequence

snoot h- cur vet o- ar gunent - sequence
snoot h- cur vet o- ar gunent
| snoot h-curvet o-argunent snoot h- curvet o- ar gunent - sequence

snoot h- cur vet o- ar gunent :
coordi nate-pair coordinate-pair

quadr at i c- bezi er-curvet o:
("Q | "g") wsp* quadratic-bezier-curveto-argunent-sequence

quadr at i c- bezi er - curvet o- ar gunent - sequence
quadr at i c- bezi er - curvet o- ar gunent
| quadratic-bezier-curveto-argunent
quadr at i c- bezi er - curvet o- ar gunent - sequence

quadr ati c- bezi er-curvet o-argumnent :
coordi nat e-pair coordi nate-pair

snoot h- quadr ati c- bezi er-curvet o:
("T™ | "t") wsp* snooth-quadratic-bezier-curveto-argunment - sequence

snoot h- quadr ati c- bezi er-curvet o- ar gunent - sequence
coor di nat e- pai r
| coordinate-pair snooth-quadratic-bezier-curveto-argunment - sequence

elliptical-arc:
("A" | "a") wsp* elliptical-arc-argunent-sequence

el l'i ptical -arc-argunent - sequence
el l'i ptical-arc-argunent
| elliptical-arc-argunent elliptical-arc-argunent-sequence

el liptical-arc-argunent:
nonnegat i ve- nunber - comma- wsp nonnegati ve- nunber - conma-wsp nunber - comma- wsp
fl ag- comma-wsp fl ag- conma-wsp coordi nat e- pai r

coor di nat e- pai r:
coordi nate coordi nate

coordi nate

nunber - comma- wsp

nonnegat i ve- nunber - conma- wsp:
nonnegati ve- nunber wsp* comma? wsp*

number - coma- wWsp:
nunber wsp* comma? wsp*

nonnegat i ve- nunber:
i nt eger - const ant
| floating-point-constant

nunber :
sign? integer-constant
| sign? floating-point-constant

fl ag- comma- wsp:
flag wsp* comma? wsp*

fl ag:
NIRRT
conma:

i nt eger-constant:
di gi t - sequence

fl oating-point-constant:
fractional -constant exponent ?
| digit-sequence exponent

fractional - constant:
di gi t-sequence? "." digit-sequence
| digit-sequence "."

exponent :
("e" | "E") sign? digit-sequence
sign:
" +I| | " - "
di gi t - sequence:
digit
| digit digit-sequence
digit:
"o" | "1 | "2 | "3 | "4" | "5" | "€6" | "7 | "8 | "9"
wsp:
(#x20 | #x9 | #xD | #xA)+

11.3 Markers

To use amarker symbol for arrowheads or polymarkers, you need to define a <marker> element which
defines the marker symbol and then refer to that <marker> element using the various marker properties
(i.e., 'marker-start’, 'marker-end', 'marker-mid' or 'marker") on the given <path> element or vector
graphic shape. Here is an example which draws a triangular marker symbol that is drawn as an
arrowhead at the end of a path:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >

<svg wi dth="4in" hei ght="4in"
fit-box-to-viewort="0 0 4000 4000" >
<def s>

<mar ker id="Triangl e"
fit-bbox="0 0 10 10" ref-x="0" ref-y="5"
mar ker -wi dt h="1. 25" mar ker - hei ght ="1. 75"
ori ent="auto">
<path d="M 0 O L 10 5L 0 10 z" />

</ mar ker >
</ def s>
<desc>Pl aci ng an arrowhead at the end of a path.
</ desc>
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke: bl ack; stroke-wi dth:100;

mar ker -end: url (#Triangle)" />
</ svg>

Download this example

11.3.1 The <marker> element

The <marker> element defines the graphics that is to be used for drawing arrowheads or polymarkers
on agiven <path> element or vector graphic shape.

The <marker> element has all of the same attributes as the <symbol> element. Additionaly, it has the
following marker-specific attributes:

« marker-units, which can have values stroke-width (the default) or userspace. marker-units
indicates how to interpret the values of marker-width and marker-height (described as
follows). If marker-units=" user space" , then marker-width and marker-height represent
valuesin the user coordinate system in place for the graphic object referencing the marker. 1f
mar ker-units=" stroke-width" , then marker-width and marker-height represent scale factors
relative to the stroke width in place for graphic object referencing the marker.

« marker-width and marker-height represent the width and height, respectively, of the
temporary viewport that is to be created when drawing the marker. Default values for both
attributesis"3".

« orient, which can have values auto or <angle>. (The default value is an angle of zero degrees.)
The orient attribute indicates how the marker should be rotated. A value of auto indicates that
the marker should be oriented such that its positive X-axisis pointing in adirection that is the
average of the ending direction of path segment going into the vertex and the starting direction of
the path segment going out of the vertex. (Refer to Implementation Notes for a more thorough
discussion directionality of path segments.) A value of <angle> represents a particular orient in
the user space of the graphic object referencing the marker. For example, if avalue of "0" is
given, then the marker will be drawn such that its X-axiswill align with the X-axis of the user
space of the graphic object referencing the marker.

Markers are drawn such that their reference point (i.e., attributes ref-x and ref-y) is positioned at the
given vertex.

11.3.2 Marker properties

'marker-start’ defines the arrowhead or polymarker that should be drawn at the first vertex of the given
<path> element or vector graphic shape. 'marker-end’ defines the arrowhead or polymarker that should

be drawn at the final vertex. 'marker-mid' defines the arrowhead or polymarker that should be drawn at

file:///D|/Jon/SVGSpec/samples/marker.xml

every other vertex (i.e., every vertex except the first and last).
'marker-start’, 'marker-end’, marker-mid'

Value: none |
inherit |
<uri>

Initial: none

Appliesto: all elements

Inherited: see |nheritance of Painting Properties below
Percentages. N/A

Media: visual

none
Indicates that no marker symbol should be drawn at the given vertex (vertices).
<uri>

The <uri> is an XPointer (???) reference to the ID of a<marker> element which should be used
as the arrowhead symbol or polymarker at the given vertex (vertices). If the XPointer is not valid
(e.g., it points to an object that is undefined or the object is not a <marker> element), then the
marker(s) should not be drawn.

The'marker' property specifies the marker symbol that should be used for al points on the sets the
value for al vertices on the given <path> element or vector graphic shape. It is a short-hand for the

three individual marker properties:
‘marker’

Value: seeindividual properties

Initial: seeindividual properties

Appliesto: &l elements

Inherited: see |nheritance of Painting Properties below

Percentages: N/A
Media: visua

11.3.3 Details on How Markers are Rendered

The following provides details on how markers are rendered:
o Markers are drawn after the given object isfilled and stroked.

« Each marker isdrawn on the path by first creating atemporary viewport such that the origin of
the viewport coordinate system is at the given vertex and the axes are aligned according to the
orient attribute on the <marker> element.

« Thewidth and height of the viewport is established by evaluating the values of <marker-units>,
<marker-width> and <marker-height> and cal culating temporary values computed-width and
computed-height in the user coordinate system of the object referencing the markers.
computed-width and computed-height are used to determine the dimensions of the temporary
viewport.

o The marker isdrawn into the viewport.
For illustrative purposes, we'll repeat the marker example shown earlier:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'

file:///D|/Jon/SVGSpec/media.html#visual-media-group
file:///D|/Jon/SVGSpec/media.html#visual-media-group

"http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dt h="4in" hei ght="4in"
fit-box-to-viewort="0 0 4000 4000" >
<def s>
<mar ker id="Triangle"
fit-bbox="0 0 10 10" ref-x="0" ref-y="5"
mar ker -wi dt h="1. 25" mar ker - hei ght ="1. 75"
orient="auto">
<path d="MO0 O L 10 5L 0 10 z" />

</ mar ker >
</ def s>
<desc>Pl aci ng an arrowhead at the end of a path.
</ desc>
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke:black; stroke-w dth:100;

mar ker-end: url (#Triangle)" />
</ svg>

Download this example

The rendering effect of the above file will be visually identical to the following:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG svg- 19990706. dt d" >
<svg wi dt h="4in" hei ght="4in"
fit-box-to-viewport="0 0 4000 4000" >
<def s>
<!-- Note: toillustrate the effect of "marker",
replace "marker" with "synbol" and renove the various
mar ker-specific attri butes -->
<synbol id="Triangle"
fit-bbox="0 0 10 10" ref-x="0" ref-y="5">
<path d="M 0O O L 105 L 0 10 z" />
</ symbol >
</ def s>
<desc>Fi |l e which produces the sanme effect
as the marker exanple file, but w thout
usi ng narkers.

</ desc>
<l-- The path draws as before, but w thout the marker properties -->
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke: bl ack; stroke-wi dth:100" />
<!-- The following |logic sinulates drawi ng a narker
at final vertex of the path. -->
<I-- First off, nove the origin of the user coordinate system

so that the origin is now aligned with the end point of the path.

<g transform="transl at e(3000 2000)" >

<I-- Now, rotate the coordinate system 45 degrees because
the marker specified orient="auto" and the final segment
of the path is going in the direction of 45 degrees. -->

<g transforn¥"rotate(45)" >

<!-- Establish a new viewport with an <svg> el enent.
The wi dt h/ hei ght of the viewport are 1.25 and 1.75 tines
the current stroke-wi dth, respectively. Since the
current stroke-width is 100, the viewport's wi dth/hei ght
is 125 by 175. Apply the fit-box-to-viewport attribute
fromthe <marker> elenment onto this <svg> el ement.
Transformthe marker synbol to align (ref-x,ref-y) with
the origin of the viewort. -->

<svg wi dt h="125" hei ght="175"
fit-box-to-viewort="0 0 10 10"
transform="transl ate(0,-5)" >

o>

file:///D|/Jon/SVGSpec/samples/marker.xml

<!-- Expand out the contents of the <marker> elenent. -->
<path d="M 0O O L 105 L 0 10 z" />
</ svg>
</ g>
</ g>
</ svg>

Download this example

11.4 Implementation Notes

A conforming SVG user agent must implement path rendering as follows:
« Error handling:

o Thegenera rulefor error handling in path datais that the SV G user agent should render a
<path> element up to (but not including) the path command containing the first error in
the path data specification. Thiswill provide avisua clue to the user/devel oper about
where the error might be in the path data specification.

o Wherever feasible, all SV G user agents should report al errorsto the user. This rule will
greatly discourage generation of invalid SV G path data.

o Markers, directionality and zero-length path segments:

o If markers are specified, then a marker should be drawn on every applicable vertex, even
if the given vertex isthe end point of a zero-length path segment and even if "moveto”
commands follow each other.

o Certain line-capping and line-joining situations and markers require that a path segment
have directionality at its start and end points. Zero-length path segments have no
directionality. In these cases, the following algorithm should be used to establish
directionality: to determine the directionality of the start point of a zero-length path
segment, go backwards in the path data specification within the current subpath until you
find a segment which has directionality at its end point (e.g., a path segment with
non-zero length) and use its ending direction; otherwise, temporarily consider the start
point to lack directionality. Similarly, to determine the directionality of the end point of a
zero-length path segment, go forwards in the path data specification within the current
subpath until you find a segment which has directionality at its start point (e.g., a path
segment with non-zero length) and use its starting direction; otherwise, temporarily
consider the end point to lack directionality. If the start point has directionality but the
end point doesn't, then the end point should use the start point's directionality. If the end
point has directionality but the start point doesn't, then the start point should use the end
point's directionality. Otherwise, set the directionality for the path segment'’s start and end
points to align with the positive X-axis in user space.

o If 'stroke-linecap' is set to butt and the given path segment has zero length, do not draw
the linecap for that segment; however, do draw the linecap for zero-length path segments
when 'stroke-linecap’ is set to either round or square. (This allows round and square
dots to be drawn on the canvas.)

e 1023 character limitation on d= attributes;

o A conforming implementation must treat any SV G document which has a d= attribute
with more than 1023 characters asin error. The proper behavior isto draw all valid and
complete path data commands which are completely specified within the 1023 character
restriction and discard (i.e., do not draw) all other path data commands that follow,

file:///D|/Jon/SVGSpec/samples/marker-effect.xml

including path data commands on subsequent <data> elements within the same <path>
element.

Changes to the path data stream viathe DOM which cause the 1023 character restriction
to beisnot an error. A conforming implementation must shuffle path data commands
with the various <path> and <data> elements to ensure that the 1023 character restriction
is not violated by shifting entire path data commands from any d= that exceeds 1023
characters to the following <data> element until the 1023 character restriction is honored.
If the shifting causes a subsequent d= attribute to be greater than 1023, then shift whole
path data commands off the end of that d= attribute, and so on. If necessary, create
additional <data> elements to accommodate the overflow.

The S/s commands indicate that the first control point of the given cubic bezier segment
should be calculated by reflecting the previous path segments second control point
relative to the current point. The exact math that should be used is as follows. If the
current point is (curx, cury) and the second control point of the previous path segment is
(oldx2, oldy?2), then the reflected point (i.e., (newx1, newy1l), the first control point of the
current path segment) is:

(newxl, newyl) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
= (2*curx - oldx2, 2*cury - ol dy2)

A non-positive radius value should be treated as an error.

Unrecognized contents within a path data stream (i.e., contents that are not part of the
path data grammar) should be treated as an error.

previous next contents properties index

12 Other Vector Graphic Shapes

12.1 Introduction

SV G contains the following set of predefined graphic objects:

« <rect/> (arectangle with optional rounding attributes rx and ry which represents the radii of an
ellipse [axis-aligned with the rectangle] to use to round off the corners of the rectangle);

o <circle/>
o <dllipse/>
o <polyline/>
« <polygon/>
o <line/>
Mathematically, these shape elements are equivalent to the path objects that would construct the same

shape. They may be stroked, filled and used as clip paths, and all the properties described above for
paths apply equally to them.

For example, the following will draw ablue circle with ared outline:

<?xm version="1.0"7?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999/ /EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>This is a blue circle with a red outline

</ desc>
<g>
<circle style="fill: blue; stroke: red"
cx="200" cy="200" r="100"/>
</ g>
</ svg>

Download this example

This ellipse uses default values for the center.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" height="3in">
<desc>This is an ellipse, axis aligned and centered on the origin
</ desc>
<g>
<el lipse rx="85" ry="45"/>
</ g>
</ svg>

file:///D|/Jon/SVGSpec/samples/circle.xml

Download this example

Hereis apolyline; for comparison, the equivalent path element is also given.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ /DID SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" height="3in">
<desc>A sanpl e polyline, and equival ent path
</ desc>
<pol yl i ne poi nts="20,20 50, 100 200, 80 70, 300"/ >
<path d="M0, 20 L50, 100 L200, 80 L70, 300"/ >
</ svg>

Download this example

A polygon is exactly the same as a polyline, except that the figure is automatically closed.

The points attribute on <polyline> and <polygon> is restricted to 1023 characters. Thus, these elements
should only be used for graphics with arelatively small number of vertices. If you have geometry that
has any possibility of exceeding the 1023 character limit, use the <path> element instead.

file:///D|/Jon/SVGSpec/samples/ellipse.xml
file:///D|/Jon/SVGSpec/samples/polyline.xml

previous next contents properties index

13 Text

13.1 Introduction

SVG dlowstext to be inserted into the drawing. All of the same styling attributes available for paths and
vector graphic shapes are also available for text. (See Filling, Stroking and Paint Servers.)

13.2 The <text> element

The <text> element adds text to adrawing.

In the example below, the string "Hello, out there" is drawn in blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999/ /EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" hei ght="3in">
<text x=".5in" y="2in"
style="fill:blue">Hello, out there</text>
</ svg>

Download this example

<text> elements which are not positioned along a path (see Text On A Path below) can supply optional

attributes x= and y= which represents the location in user coordinates (or Transformed CSS unitsor a
percentage of the current viewport) for the initial current text position. Default valuesfor x= and y= are
zero in the user coordinate system. For left-aligned character strings, the placement point of the first
glyph will be positioned exactly at the current text position and the glyph will be rendered based on the
current set of text and font properties. After the glyph is rendered, the current text position is advanced
based on the metrics of the glyph that were used along with the current set of text and font properties.
For Roman text, the current text position is advanced along the x-axis by the width of that glyph. The
cyclerepeats until all charactersin the <text> element have been rendered.

Within a <text> element, text and font properties and the current text position can be modified by
including a <tspan> element. The <tspan> element can contain attributes style (which allows new
visua rendering attributes to be specified) and the following attributes, which perform adjustments on
the current text position:

« x=andy= - If provided, these attributes indicate a new (absolute) current text position within the
user coordinate system.

« dx=and dy=- If provided, these attributes indicate a new (relative) current text position within
the user coordinate system.

The x= and dx= values are cumulative; thus, if both are provided, the new current text position will have

file:///D|/Jon/SVGSpec/samples/text01.xml

an X-coordinate of x+dx. Similarly, if both x= and dx= are provided, the new current text position will
have a 'Y -coordinate of y+dy.

(Internationalization issues need to be addressed.)

A <tspan> element can also be used to specify that the character data from a different element should be
used as character data for the given <tspan> element. In the example below, the first <text> element
(withid="TextToUse") will not draw becauseit is part of a<defs> element. The second <text> element
drawsthe string "ABC". The third text element draws the string " XY Z" because it includes a <tspan>
element which is areference to element "TextToUse", and that element's character datais"XYZ":

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" height="3in">
<def s>
<t ext id="Text ToUse">XYZ</t ext>
</ def s>
<t ext >ABC</ t ext >
<t ext>
<t span href="#Text ToUse"/ >
</text>
</ svg>

Download this example

If a<tspan> element has both an href attribute and its own character data, the character data from the
href attribute draws before its own character data.

13.3 White space handling

SV G supports the standard XML attribute xml:space for determining how it should handle white space
characters within a given <text> element's character data. xml:space is an inheritable attribute which
can have one of two values:

« default (theinitial/default value for xml:space) - When xm : space="defaul t",theSVG
user agent will do the following. First, it will convert al carriage returns, linefeeds and tab
characters into space characters. Then, it will drop all strip off al leading and trailing space
characters. Finally, it will consolidate all contiguous space characters into a single space
character. (Thisagorithm is very close to standard practicein HTML4 web browsers.)

o preserve- Whenxnl : space="preserve", the SVG user agent will do the following. It
will convert al carriage returns, linefeeds and tab characters into space characters. Then, it will
draw al space characters, including leading, trailing and multiple contiguous space characters.
Thus, when drawn with xnl : space="pr eserve", thestring" a b" (three spaces
between "a" and "b") will produce alarger separation between "a' and "b' than" a b" (one
space between "a" and "b").

13.4 Text selection

SV G user agents running on systems with have clipboards for copy/paste operations and which are
equipped with input devices that allow for text selection should support the selection of text from an
SV G document and the ability to copy selected text strings to the system clipboard.

file:///D|/Jon/SVGSpec/samples/text02.xml

Within an SV G user agent which supports text selection and pointer devices such as a mouse, the
following behavior should exist. When the pointing device is clicked over an SV G character and then
dragged, then whenever the mouse goes over another character defined within the same <text> elements,
all characters whose position in the document is between the initial character and the current character
should be highlighted, no matter where they might be located on the canvas.

When feasible, generators of SV G should attempt to order their text strings to facilitate properly ordered
text selection within SV G viewing applications such as Web browsers.

13.5 Text and font properties

(Descriptions (or references to the CSS2 spec) for all of the text and font properties from CSS2 go here.
The following are SV G-specific text properties which go beyond the text and font properties already
defined in CSS2:)

13.6 Ligatures and alternate glyphs

There are situations such as ligatures, special-purpose fonts (e.g., afont for music symbols) or aternate
glyphs for Asian text strings where a different glyph should be used to render some text than the glyph
which normally corresponds to the given character data. Also, the W3C Character Model (?7?? add link)
requires early normalization of character data to facilitate meaningful and unambiguous exchange of
character data and correct comparisons between character strings. The W3C Character Model will bring
about many common situations where the normalized character data will be different than the glyphs
which the user want to use to render that character data.

To alow for control over the glyphs used to render particular character data, the 'altglyph' property is
available.

‘altglyph’

Value: unicode(<value>) |
glyphname(<string>) |
glyphid(<value>) |
ROS(<vaue>) cid(<vaue>) |
inherit

Initial: none

Appliesto: <text> elements

Inherited: yes

Percentages. N/A

Media: visual

unicode(<value>))

where <value> indicates a string of Unicode characters that should replace the text within the
<text> element

glyphname(<string>))

where <string> provides a string of which is the name of the glyph that should be used to replace
the text within the <text> element

glyphid(<value>))

where <value> a string of which is numeric ID/index of the glyph that should be used to replace
the text within the <text> or <t> element

file:///D|/Jon/SVGSpec/media.html#visual-media-group

ROSandcid
are required for Web fonts in OpenType/CFF format and operate similar to glyphid

13.7 Text on a path

In addition to text drawn in a straight line, SV G also includes the ability to place text along the shape of
a<path> element. The basic algorithm is such that each glyph is positioned at a specific point on the
path, with the glyph getting rotated such that the baseline of the glyph is either parallel or tangent to the
tangent of the curve at the given point. Here are some examples of text on a path:

(???include some drawings here)

The following is a simple example which illustrates many of the basic concepts:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DID SVG July 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<svg wi dth="4in" height="3in">
<desc>Si npl e text on a path
</ desc>
<path id="MyPath" style="visibility: hidden"
d="M 100 100 C 125 125 175 125 200 100" />
<t ext >
<text path href="#M/Pat h">Text on pat h</text pat h>
</text>
</ svg>

Download this example

The start-offset attribute defines the distance from the start of the path where the first character should
be positioned.

Various CSS properties control aspects of text drawn along a path. The standard set of text and font
properties from CSS2 apply, including 'text-align' and 'vertical-align'. Additional, the following
additional properties control how the text is formatted and rendered:

« text-direction: Possible values are: natural, which indicates that text advance from character to
character should be dictated by the natural text direction from the font, I-to-r (text should start
toward the beginning ofthe path and proceed toward the end of the path and the baseline of the
glyphs should be paralel to the path), r-to-I (text should start at the end of the path and the
baseline of the glyphs should be parallel to the path), t-to-b (text should start at the beginning of
the path and proceed toward the end of the path and the baseline of the glyphs should be
perpendicular to the path) and b-to-t (text should start at the end of the path and the baseline of
the glyphs should be parallel to the path),

« orient-to-path: Possible values are true and false, with a default of true. If true, the
glyph/symbol is rotated to have its coordinate system line up with the tangent of the curve.

« text-transform: which defines a transformation that should be applied (conceptually) after the
given glyph/symbol is properly sized, placed and oriented by all of the other CSS text properties.
The options for this property are the same as the transfor m: property (??? add link).

Text on a path opens the possibility of significant implementation differences due to different methods
of calculating distance along a path. In order to ensure that distance calculations are sufficiently precise,
the following two attributes are available on <path> elements. (??? Obviously, this section needs to be
moved to the <path> element section.)

file:///D|/Jon/SVGSpec/samples/toap01.xml

« flatness= A distance measurement in either local coordinates or in CSS units which servesas a
hint for the allowable error tolerance allowable in approximating a curve with a seriesline
segments. Commercia implementations should honor this attribute.

« nominal-length= The distance measurement (A) for the given <path> element computed at
authoring time. The SV G user agent should compute its own distance measurement (B). The
SV G user agent should then scale al distance-along-a-curve computations by A divided by B.

(??? Insert drawings here)

13.7.1 Vector graphics along a path

SV G'stext on a path features set has been generalized to allow for arbitrary SVG aong a path, by
adding the use element as avalid child of text.

previous next contents properties index

14 Images

Images are specified using the <image> element, which includes all relevant attributes from the HTML
 element and is used in similar ways. Textual descriptions are held in a<desc> sub element,
rather than in the alt attribute aswith HTML.

The SV G <image> element has the additional attributes x and y (both have default values of zero) to
indicate the location of the left/top corner of the image in user space.

The SV G <image> element is defined as an XLink and thus has the attribute href. (Note that the XLink
specification is currently under development and is subject to change. The SV G working group will
track and rationalize with XLink asit evolves.)

The default values for width and height are 1 user unit. A valid example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG svg- 19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>This graphic links to an external inage
</ desc>
<i mage x="200" y="200" style="wi dth: 100px; height: 100px"
hr ef =" nyi mage. png" >
<title>My image</title>
</i mage>
</ svg>

Download this example

A well-formed example:

<?xm version="1.0" standal one="yes" ?>

<svg wi dth="4in" hei ght="3in"

xm ns="http://ww. w3. or g/ G aphi cs/ SVE svg-19990706. dt d' >
<desc>This links to an external image

</ desc>
<i mage x="200" y="200" style="w dth: 100px; height: 100px"
xm:link = '"sinple" show = 'enbed actuate = 'auto

hr ef =" nyi mage. png" >
<title>My image</title>
</i mage>
</ svg>

Download this example

For more information, see the <image> element.

file:///D|/Jon/SVGSpec/samples/image-valid.xml
file:///D|/Jon/SVGSpec/samples/image-wf.xml

previous next contents properties index

15 Filter Effects

15.1 Introduction

A model for adding declarative raster-based rendering effects to a 2D graphics environment is presented. As aresult, the
expressiveness of the traditional 2D rendering model is greatly enhanced, while still preserving the device independence,
scalability, and high level geometric description of the underlying graphics.

15.2 Background

On the Web, many graphics are presented as bitmap images in gif, jpg, or png format. Among the many disadvantages of
this approach is the general difficulty of keeping the raster datain sync with the rest of the Web site. Many times, aweb
site designer must resort to a bitmap editor to simply change the title of a button. Asthe Web gets more dynamic, we desire
away to describe the "piece parts' of asitein amore flexible format. This chapter describes SV G's declarative filter effects
model, which when combined with the 2D power of SV G can describe much of the common artwork on the web in such a
way that client-side generation and alteration can be performed easily.

15.3 Basic Model

Thefilter effects model consists of a set of filtering operations (called "processing nodes" in the descriptions below) on one
or more graphic primitives. Each processing node takes a set of graphics primitives as input, performs some processing,
and generates revised graphics primitives as output. Because nearly all of the filtering operations are some form of image
processing, in amost all cases the output from most processing nodes consists of a single RGBA image.

For example, asimplefilter could replace one graphic by two -- by adding a black copy of original offset to create a drop
shadow. In effect, there are now two layers of graphics, both with the same original set of graphics primitives. In this
example, the bottommost shadow layer could be blurred and become araster layer, while the topmost layer could remain as
higher-order graphics primitives (e.g., text or vector objects). Ultimately, the two layers are composited together and
rendered into the background.

Filter effectsintroduce an additional step into the traditional 2D graphics pipeline. Consider the traditional 2D graphics
pipeline:

Traditional 2D graphics pipeline

Vector Graphics Code

<circle ...>
<triangle...>
<rect....>

Vector graphics primitives are specified abstractly and rendered onto the output device through a geometric transformation
called the current transformation matrix, or CTM. The CTM allows the vector graphics code to be specified in adevice
independent coordinate system. At rendering time, the CTM accounts for any differencesin resolution or orientation of the
input vector description space and the device coordinate system. According to the "painter's model", areas on the device
which are outside of the vector graphic shapes remain unchanged from their previous contents (in this case the dropl et
pattern).

Consider now, altering this pipeline slightly to allow rendering the graphics to an intermediate continuous tone image
which is then rendered onto the output device in a second pass:

Rendering via Continuous Tone
Intermediate Image

Vector Graphics Code
<triangle...>
<rect....>
Continuous Tone Image

> |CTM!
]

ETM x CTM'=CTM

We introduce a new transformation matrix called the Effect Transformation Matrix, or ETM. Vector primitives are
rendered viathe ETM onto an intermediate continuous tone image. Thisimage is then rendered onto the output device
using the standard 2D imaging path via a modified transform, CTM', such that the net effect of ETM followed by CTM' is

equivalent to the origina CTM. It isimportant to note that the intermediate continuous tone image contains coverage
information so that non rendered parts of the original graphic are transparent in the intermediate image and remain
unaffected on the output device, as required by the painter's model. A physical analog to this processisto imagine
rendering the vector primitives onto a sheet of clear acetate and then transforming and overlaying the acetate sheet onto the
output device. The resulting imaging model remains as device-independent as the original one, except we are now using
the 2D imaging model itself to generate images to render.

So far, we really haven't added any new expressiveness to the imaging model. What we have doneis reformulated the
traditional 2D rendering model to allow an intermediate continuous tone rasterization phase. However, now we can extend
this further by allowing the application of image processing operations on the intermediate image, still without sacrificing
device independence. In our model, the intermediate image can be operated on by a number of image processing operations
which can effect both the color and coverage channels. The resulting image(s) are then rendered onto the device in the
same way as above.

Rendering via Continuous Tone
Intermediate Step with Image Processing

Vector Graphics Code
<circle ...>

<triangle...>
<rect....>

Continuous Tone Image
Image Processing

- b Filter Pipeline

ETM x CTM'=CTM

In the picture above, the intermediate set of graphics primitives was processed in two ways. First asimple bump map
lighting calculation was applied to add a 3D look, then another copy of the original layer was offset, blurred and colored
black to form a shadow. The resulting transparent layers were then rendered via the painter's model onto the output device.

15.4 Defining and Invoking a Filter Effect

Filter effects are defined by a <filter > element with an associated ID. Filter effects are applied to elements which have a
filter: property which reference a <filter> element. Hereis an example:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG July 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE svg- 19990706. dt d" >

<svg W dt h="4in" height="3in">

<def s>
<filter id="Cool TextEffect">
<l-- Definition of filter goes here -->
</filter>
</ def s>
<text style="filter:url (#Cool TextEffect)">Text with a cool effect</text>
</ svg>

Download this example

When applied to grouping elements such as <g>, the filter: property applies to the contents of the group as awhole. The
effect should be asif the group's children did not render to the screen directly but instead just added their resulting graphics
primitives to the group's graphics display list (GDL), which is then passed to the filter for processing. After the group filter
is processed, then the result of the filter should be rendered to the target device (or passed onto a parent grouping element
for further processing in cases such as when the parent has its own group filter).

The <filter> element consists of a sequence of processing nodes which take a set of graphics primitives as input, apply
filter effects operations on the graphics primitives, and produce a modified set of graphics primitives as output. The
processing nodes are executed in sequential order. The resulting set of graphics primitives from the final processing node
(feMerge in the example below) represents the result of the filter. Here is an example:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//V8C//DTD SVG July 1999//EN'

"http://ww. w3. org/ G aphi cs/ SVE svg- 19990706. dt d" >
<filter id="Shadow'>

<f eGaussi anBl ur i n="Sour ceAl pha"

radi us="3"

nodei d="bl urr edAl pha" />
<feOffset i n="bl urredAl pha"

dx="2" dy="1"

nodei d="of f set Bl urr edAl pha" />
<feDi ffuseLighting in="blurredAl pha"
di ffuse-constant=".5"
nodei d="bunmpMapDi f f use" >
<f eDi stant Li ght/>
</ febDiffuseLi ghting>
<f eConposite i n="bunpMapDi f f use" i n2="Sour cePai nt"
operator="arithnetic" ki="1"
nodei d="litPaint" />
<f eSpecul ar Li ghti ng i n="bl urredAl pha"
specul ar - const ant =" . 5"
specul ar - exponent =" 10"
light-color="feDi stantLight"
nodei d="bunpMapSpecul ar" >
<f eDi st ant Li ght/>
</ feSpecul ar Li ghti ng>
<f eConposite in="litPaint" in2="bunpMapSpecul ar"
operator="arithretic" k2="1" k3="1"
nodei d="litPaint" />

<f eConposite in="litPaint"
i n2="Sour ceAl pha"
mode="Ai nB"

nodei d="litPaint" />
<f eMer ge>
<f eMergeNode in="litPaint" />
<f eMer geNode i n="of f set Bl urredAl pha" />
</ f eMer ge>
</filter>

<text style="font-size:36; fill:red; filter:url (#Shadow)"

x="10" y="250">Shadowed Text</text>
</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/filters01.xml
file:///D|/Jon/SVGSpec/samples/filters02.xml

For most processing nodes, the in (and sometimesin2) attribute identifies the graphics which serve as input and the nodeid
attribute gives a name for the resulting output. Thein and in2 attributes can point to either:

« A built-in keyword. In the example above, the <feGaussianBlur> processing node specifies keyword
SourceGraphic, which indicates that the original set of graphics primitives available at the start of the filter should
be used as input to the processing node.

« A referenceto an earlier nodeid. In the example above, the <feOffset> processing node refers to the most recent
processing node whose nodeid is blurredAlpha. (In this case, that would be the <feGaussianBlur> processing node.)

The default value for in is the output generated from the previous processing node. In those cases where the output from a
given processing node is used as input only by the next processing node, it is not necessary to specify the nodeid on the
previous processing node or the in attribute on the next processing node. In the example above, there are afew cases (show
highlighted) where nodeid and in did not have to be provided.

Filters do not use XML IDs for nodeids; instead, nodeids can be any arbitrary attribute string value. nodeids only are
meaningful within a given <filter> element and thus have only local scope. If anodeid appears multiple times within a
given <filter> element, then areference to that nodeid will use the closest preceding processing node with the given
nodeid. Forward references to nodeids are invalid.

15.5 Filter Effects Region

A <filter> element can define aregion on the canvas on which a given filter effect applies and can provide aresolution for
any intermediate continuous tone images used in to process any raster-based processing nodes. The <filter> element has
the following attributes:

« filter-units={ userspace | object-bbox }. Defines the coordinate system for attributes x, y, width, height. If
filter-units=" userspace" (the default), x, y, width, height represent values in the current user coordinate systemin
place at the time when the <filter> element is defined. If filter-units=" object-bbox" , then x, y, width, height
represent values in an abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight bounding
box of the object referencing the filter, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note: the
bounding box represents the maximum extent of the shape of the object in X and Y with respect to the user
coordinate system of the object exclusive of stroke-width.)

« X, Y, width, height, which indicate the rectangle for the largest possible offscreen buffer, where the values are
either relative to the current user coordinate system (if filter-units="userspace") or relative to the current object (if
filter-units="target-object"). Note that the clipping path used to render any graphics within the filter will consists of
the intersection of the current clipping path associated with the given object and the rectangle defined by X, v,
width, height. The default values for X, y, width, height are 0%, 0%, 100% and 100%, respectively.

« filter-res, which hastheform x- pi xel s [y- pi xel s]) and indicates the width/height of the intermediate
images in pixels. If not provided, then a reasonabl e default resolution appropriate for the target device will be used.
(For displays, an appropriate display resolution, preferably the current display's pixel resolution, should be the
default. For printing, an appropriate common printer resolution, such as 400dpi, should be the default.)

For performance reasons on display devices, it is recommended that the filter effect region is designed to match
pixel-for-pixel with the background pixmap.

It is often necessary to provide padding space because the filter effect might impact bits dightly outside the tight-fitting
bounding box on a given object. For these purposes, it is possible to provide negative percentage values for x, y and
percentages values greater than 100% for width, height. For example, x="-10%" y="-10%" width="110%"
height="110%".

15.6 Common Attributes

The following two attributes are available for all processing nodes (the exception is feMerge and fel mage, which do not
have an in attribute):

nodeid Assigned name for this node. If supplied, then the GDL resulting after
processing the given node is saved away and can be referenced asinput to a
subsequent processing node.

in If supplied, then indicates that this processing node should use either the
output of previous node as input or use some standard keyword to specify
alternate input. Available keywords include:

« SourceGraphic. Thisbuilt-in input represents the graphics elements that
were the original input into the <filter> element. For raster effects
processing nodes, the graphics elements will be rasterized into an
initially clear RGBA raster in image space. Pixels|eft untouched by the
original graphic will be left clear. Theimage is specified to be rendered
in linear RGBA pixels. The apha channel of thisimage captures any
anti-aliasing specified by SVG. (Since the raster islinear, the alpha
channel of thisimage will represent the exact percent coverage of each
pixel.)

« SourceAlpha. Same as SourceGraphic except only the alpha channel is
specified. The color channels of thisimage are implicitly black and are
unaffected by any image processing operations. Again, pixels unpainted
by the SourceGraphic will be 0. The SourceAlphaimage will also
reflects any Opacity settings in the SourceGraphic. If thisoption is used,
then some implementations may need to rasterize the graphics elements

Common in order to extract the alpha channel.

Attributes « Backgroundlmage This built-in input represents an image snapshot of
the rendering surface under the filter region at the time that the <filter>
element was invoked.

« BackgroundAlpha Same as Backgroundl mage except only the alpha
channel is specified.

« FillPaint Thisimage represents the color data specified by the current
SV G rendering state, transformed to image space. The FillPaint image
has conceptually infinite extent in image space. (Sinceit is usually either
just a constant color, or atile). Frequently thisimage is opaque
everywhere, but it might not be if the "paint” itself has alpha, asin the
case of an alphagradient or transparent pattern. For the ssmple case
where the source graphic represents asimple filled object, it is
guaranteed that: Sour ceGr aphic =
I n(Fill Pai nt, Sour ceAl pha) whereIn(A,B) representsthe
resulting image of Porter-Duff compositing operation A in B (see
below).

« StrokePaint Similar to FillPaint, except for the stroke color as specified
in SVG. Again for the simple case where the source graphic represents
stroked path, it is guaranteed that: Sour ceGr aphi ¢ =
I n(St rokePai nt, Sour ceAl pha) where In(A,B) represents the
resulting image of Porter-Duff compositing operation A in B (see
below).

15.7 Filter Processing Nodes

Thefollowing is acatalog of the individual processing nodes. Unless otherwise stated, all image filters operate on linear
premultiplied RGBA samples. Filters which work more naturally on non premultiplied data (feColorMatrix and
feComponentTransfer) will temporarily undo and redo premultiplication as specified. All raster effect filtering operations
take 1to N input RGBA images, additional attributes as parameters, and produce a single output RGBA image.

’NodeType]feBIend

Processing Node-Specific mode, One of the image blending modes (see table below). Default is: normal

Attributes in2, The second image ("B" in the formulas) for the compositing operation.

Description

This filter composites two objects together using commonly used high-end imaging software
blending modes. Performs the combination of the two input images pixel-wisein image
space.

Implementation Notes

The compositing formula, expressed using premultiplied colors:

gr = gb*(1l-ga) + ga*(1l-gb) + ga*qgb

cr = (1-ga)*cb + (1-gb)*ca + ga*qb* (Bl end(ca/qga, cb/ gb))
wher e

Result opacity

Result color (RGB) - premultiplied

ga = Opacity value at a given pixel for inage A

gb = Opacity value at a given pixel for image B

ca = Color (RGB) at a given pixel for image A - premultiplied

cb = Color (RGB) at a given pixel for inage B - prenultiplied

Bl end = | mage conpositing function, depending on the conpositing node

The following table provides the list of available image blending modes:

|Image Blending Mode |Blend() function
Inormal Ca
multiply Ca*Ch
screen 1-(1-Ca)* (1-Ch)
darken (to be provided later)
lighten (to be provided later)
NodeType feColor

Processing Node-Specific
Attributes

color, RGBA color (floating point?)

|Description

|Creat$ an image with infinite extent filled with color

’NodeType

]feCoIorMatrix

Processing Node-Specific
Attributes

type, string (one of: matrix, saturate, hue-rotate, luminance-to-alpha)

values

o For matrix: space-separated list of 20 element color transform (a00 a0l a02 a03 a04
al0 all ... a34). For example, the identity matrix could be expressed as:

type="matrix"
values="1 0000 01000 00100 00O010"

« For saturate: one real number (O to 1)
« For hue-rotate: one real number (degrees)
« Not applicable for luminance-to-apha

Thisfilter performs

| R | | a00 a0l a02 a03 a04 | | R
G		al0 all al2 al3 al4		G
B	=	a20 a21 a22 a23 a24	*	B
A	a30 a31 a32 a33 a34		A	
1		o o o 0 1		1]

for every pixel. The RGBA and R'G'B'A' values are automatically non-premultiplied
temporarily for this operation.

The following shortcut definitions are provide for compactness. The following tables show
the mapping from the shorthand form to the corresponding longhand (i.e., matrix with 20
values) form:

saturate value (0..100)

s = val ue/ 100

R		0.213+0.787s 0.715-0.715s 0.072-0.072s 0 O		R
G		0.213-0.213s 0.715+0.285s 0.072-0.072s 0 O		G
B	=]0.213-0.213s 0.715-0.715s 0.072+0.928s 0 0	*	B	
A		0 0 0 1 0]	A	
1		0 0 0 0 1		1]
hue-rotate val ue (0. .360)				
R		a00 a01 a02 0 O		R
Description				
G		al0 all al2 0 O]	G	
B	=	a20 a21 a22 0O O	*	B
A		O 0 0 1 0		A
1		0 0 0 0 1]	1]	

where the ternms a00, a0l, etc. are calculated as follows:

| all al2 ai3 | [+0.213 +0.715 +0.072]
| a21 a22 al3 | = [+0.213 +0.715 +0.072] +
| all al2 ai3 | [+0.213 +0.715 +0.072]

+0.787 -0.715 -0.072]
-0.212 +0.285 -0.072] +
-0.213 -0.715 +0.928]

cos(hue-rotate value) *

———

-0.213 -0.715+0. 928]
sin(hue-rotate value) * [+0.143 +0.140-0. 283]
[-0.787 +0.715+0.072]

Thus, the upper left termof the hue matrix turns out to be:

. 213 + cos(hue-rotate value)*.787 - sin(hue-rotate value)*.213

I um nance-t o- al pha

| R | | 0 0 0 0 0] | R
| G | [0 0 00 0] | G]J
| B | = | 0 0 0 0 0] *| B
| A | 0.299 0.587 0.114 0 O] | A|

[1 | [0 0 00 1] | 1]

Implementation issues

These matrices often perform an identity mapping in the apha channel. If that is the case, an
implementation can avoid the costly undoing & redoing of the premultiplication for all pixels
with A =1.

’NodeType]feComponentTran sfer
Processing Node-Specific None

Attributes

Processing Node-Specific

Each <feComponentTransfer> element needs to have at most one each of the following
sub-elements, each of which is an empty element:

<feFuncR>, transfer function for red component
<feFuncG>, transfer function for green component
<feFuncB>, transfer function for blue component
<feFuncA>, transfer function for a pha component

Each of these sub-elements (i.e., <feFuncR>, <feFuncG>, <feFuncB>, <feFuncA>) can
have the following attributes:

Common parametersto al transfer modes:
type, string (one of: identity, table, linear, gamma)

Sub-Elements Parameters specific to particular transfer modes:
For table:
table-values, list of real number values vO,v1,...vn.
For linear:
slope, real number value giving slope of linear equation.
intercept, real number value giving Y -intercept of linear equation.
For gamma (see descriptiong below for descriptions):
amplitude, real number value.
exponent, real number value.
offset, real number value.
This filter performs component-wise remapping of data as follows:
R = feFuncR(R)
G = feFunc G)
B' = feFuncB(B)
A = feFuncA(A)
for every pixel. The RGBA and R'G'B'A' values are automatically non-premultiplied
temporarily for this operation.
When type="table", the transfer function consists of alinearly interpolated lookup table.
Description
kIN <= C < (k+1)/N => C' =vk + (C - k/N)*N * (vk+1 - vk)
When type="linear", the transfer function consists of alinear function describes by the
following equation:
C' = dope*C + offset
When type="gamma", the transfer function consists of the following equation:
C' = amplitude* pow(C, exponent) + offset
Thisfilter allows operations like brightness adjustment, contrast adjustment, color balance or
Comments thresholding. We might want to consider some predefined transfer functions such as identity,

gamma, SRGB transfer, sine-wave, etc.

Implementation issues

Similar to the feColorMatrix filter, the undoing and redoing of the premultiplication can be
avoided if feFuncA istheidentity transformand A = 1.

NodeType

feComposite

Processing Node-Specific
Attributes

operator, one of (over, in, out, atop, xor, arithmetic). Default is: over.
arithmetic-constants, k1,k2,k3,k4

in2, The second image ("B" in the formulas) for the compositing operation.

Description

Thisfilter performs the combination of the two input images pixel-wise in image space.
over, in, atop, out, xor use the Porter-Duff compositing operations.
For these operations, the extent of the resulting image can be affected.

In other words, even if two images do not overlap in image space, the extent for over will
essentialy include the union of the extents of the two input images.

arithmetic evaluates k1*i1*i2 + k2*i1 + k3*i2 + k4, using componentwise arithmetic with
the result clamped between [0..1].

Comments

arithmetic are useful for combining the output from the feDiffuseLighting and
feSpecularLighting filters with texture data. arithmetic is also useful for implementing
dissolve.

NodeType

feDiffuseLighting

Processing Node-Specific
Attributes

result-scale (Multiplicative scale for the result. This allows the result of the
feDiffuseLighting nodeto represent values greater than 1)

surface-scale height of surface when Ain=1.

diffuse-constant kd in Phong lighting model. Range 0.0 to 1.0

light-color RGB

Processing Node-Specific
Sub-Elements

One of

<feDi stantLight azinuth= elevation= >

<f ePoi nt Li ght X= y= z= >

<f eSpot Li ght X= y= z=
poi nts-at-x=
poi nts-at-y=

points-at-z=
specul ar - exponent =>

Light an image using the alpha channel as a bump map. The resulting image is an RGBA
opaque image based on the light color with alpha= 1.0 everywhere. The lighting caculation
follows the standard diffuse component of the Phong lighting model. The resulting image
depends on the light color, light position and surface geometry of the input bump map. Color
or texture is mean to be applied viaa multiply (mul) composite operation.

Dr = (kd * NL * Lr) / result-scale
Dg = (kd * NNL * Lg) / result-scale
Db = (kd * NL * Lb) / result-scale
Da = 1.0 / result-scale

where

kd = diffuse lighting constant

N = surface normal unit vector, afunction of x and y

L = unit vector pointing from surface to light, a function of x andy in the point and spot light
cases

Lr,Lg,Lb=RGB components of light, a function of x and y in the spot light case

result-scale = overall scaling factor

N isafunction of x and y and depends on the surface gradient as follows:
The surface described by the input alphaimage Ain (X,y) is.
Z (x,y) = surface-scale * Ain (x,y)
Surface normal is calculated using the Sobel gradient 3x3 filter:
Nx (x,y)= - surface-scale * 1/4*((I(x+1,y-1) + 2*1(x+1,y)
+ 1 (x+1,y+1))
(1(x-1,y-1) + 2*1(x-1,y)
+ 1(x-1,y+1)))
Ny (X,y)= - surface-scale * 1/4*((1(x-1,y+1) + 2*1(x,y+1l) + |(x+1,y+1))
(I(x-1,y-1) + 2*1(x,y-1)
Description + 1(x+1,y-1)))
Nz (x,y) = 1.0
N = (Nx, Ny, Nz) / Norn((Nx, Ny, Nz))
L, the unit vector from the image sample to the light is calculated as follows:
For Infinite light sources it is constant:
Lx = cos(azi mut h)*cos(el evati on)
Ly = -sin(azimuth)*cos(el evation)
Lz = sin(el evation)
For Point and spot lightsit isafunction of position:
Lx = Lightx - x
Ly = Lighty - vy
Lz = Lightz - Z(x,y)
L = (Lx, Ly, Lz) / Nornm(Lx, Ly, Lz)
where Lightx, Lighty, and Lightz are the input light position.
Lr,Lg,Lb, thelight color vector isafunction of position in the spot light case only:
Lr = Lightr*pow((-L.S), specul ar - exponent)
Lg = Lightg*pow((-L.S), specul ar - exponent)
Lb = Lightb*pow((-L.S), specul ar - exponent)
where Sis the unit vector pointing from the light to the point (points-at-x, points-at-y,
points-at-z) in the x-y plane:
Sx = points-at-x - Lightx
Sy = points-at-y - Lighty
Sz = points-at-z - Lightz
S = (Sx, Sy, Sz) / Norn(Sx, Sy, Sz)
If L.Sispositiveno light ispresent. (Lr=Lg=Lb=0)
Thisfilter produces alight map, which can be combined with atexture image using the
Comments multiply term of the arithmetic <Composite> compositing method. Multiple light sources can
be simulated by adding several of these light maps together before applying it to the texture
image.
NodeType feDisplacementMap

Processing Node-Specific
Attributes

scale

x-channel-selector one of R,G,B or A.

y-channel-selector one of R,G,B or A

in2, The second image ("B" in the formulas) for the compositing operation.

Description

Uses Input2 to spatially displace Inputl, (similar to the Photoshop displacement filter). This
is the transformation to be performed:

P (x,y) <- P(x + scale * ((XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(X,y) is the source image, Inputl, and P(x,y) isthe destination. XC(x,y) and Y C(x,y)
are the component values of the designated by the x-channel-selector and y-channel-selector.
For example, to use the R component of Image2 to control displacement in x and the G
component of Image2 to control displacement iny, set x-channel-selector to "R" and
y-channel-selector to "G".

|Comments

|The displacement map defines the inverse of the mapping performed.

Implementation issues

Thisfilter can have arbitrary non-localized effect on the input which might require
substantial buffering in the processing pipeline. However with this formulation, any
intermediate buffering needs can be determined by scal e which represents the maximum
displacement in either x or y.

NodeType

feGaussianBlur

Processing Node-Specific
Attributes

std-deviation.

Description

Perform gaussian blur on the input image.

The Gaussian blur kernel is an appoximation of the normalized convolution:
H(x) = exp(-x2/ (2s2)) [/ sqrt(2* pi*s2)

where's' is the standard deviation specified by std-deviation.
This can be implemented as a separable convolution.

For larger values of 's' (s >= 2.0), an approximation can be used: Three successive box-blurs
build a piece-wise quadratic convolution kernel, which approximates the gaussian kernel to
within roughly 3%.

let d = floor(s * 3*sqrt(2*pi)/4 + 0.5)

... if disodd, use three box-blurs of size 'd', centered on the output pixel.

... if diseven, two box-blurs of size'd' (the first one centered one pixel to the left, the second
one centered one pixel to the right of the output pixel one box blur of size'd+1' centered on
the output pixel.

Implementation | ssues

Frequently this operation will take place on alpha-only images, such as that produced by the
built-in input, SourceAlpha. The implementation may notice this and optimize the single
channel case. If the input has infinite extent and is constant, this operation has no effect. If
the input has infinite extent and is atile, the filter is evaluated with periodic boundary
conditions.

NodeType

felmage

Processing Node-Specific
Attributes

href, reference to external image data.
transform, supplemental transformation specification

Description

Refers to an external image which isloaded or rendered into an RGBA raster. If
imaging-matrix is not specified, the image takes on its natural width and height and is
positioned at 0,0 in image space.

Theimageref could refer to an external image, or just be a reference to another piece of SVG.
This node produces an image similar to the builtin image source SourceGraphic except from
an external source.

NodeType

feMerge

Processing Node-Specific
Attributes

none

Processing Node-Specific

Each <feMerge> element can have any number of <feMergeNode> subelements, each of

Sub-Elements which has an in attribute.
Descrintion Composites input image layers on top of each other using the over operator with Inputl on
P the bottom and the last specified input, InputN, on top.
Many effects produce a number of intermediate layersin order to create the fina output
Comments image. Thisfilter allows usto collapse those into a single image. Although this could be done

by using n-1 Composite-filters, it is more convenient to have this common operation
availablein thisform, and offers the implementation some additional flexibility (see below).

Implementation issues

The canonical implementation of feMerge is to render the entire effect into one RGBA layer,
and then render the resulting layer on the output device. In certain cases (in particular if the
output device itself is a continuous tone device), and since merging is associative, it may be a
sufficient approximation to evaluate the effect one layer at atime and render each layer
individually onto the output device bottom to top.

NodeType

feMorphology

Processing Node-Specific
Attributes

operator,one of erode or dilate.
radius, extent of operation

Description

Thisfilter isintended to have a similar effect as the min/max filter in Photoshop and the
width layer attribute in ImageStyler. It is useful for "fattening” or "thinning" an apha
channel,

The dilation (or erosion) kernel isasquare of side 2*radius + 1.

Implementation issues

Frequently this operation will take place on alpha-only images, such as that produced by the
built-in input, SourceAlpha. In that case, the implementation might want to optimize the
single channel case.

If the input has infinite extent and is constant, this operation has no effect. If the input has
infinite extent and is atile, the filter is evaluated with periodic boundary conditions.

’NodeType ’feOffS et
Processing Node-Specific
Attributes dx.ay

|Deﬁcr iption |Offsets an image relative to its current position in the image space by the specified vector.
|Comments | Thisisimportant for effects like drop shadow ec.
’NodeType]feSpecuIarLighting

Processing Node-Specific
Attributes

surface-scale height of surface when Ain=1.
specular-constant ksin Phong lighting model. Range 0.0to 1.0

specular-exponent exponent for specular term, larger is more "shiny". Range 1.0 to 128.0.

light-color RGB

One of
<feDi st ant Li ght azimuth= el evati on= >
Processing Node-Specific fePointlight x=y=2z=>
pot Li ght X= y= z=
Sub-Elements poi nt s- at - x=
points-at-y=
points-at-z=
specul ar - exponent =>
Light an image using the alpha channel as a bump map. The resulting image is an RGBA
image based on the light color. The lighting caculation follows the standard specular
component of the Phong lighting model. The resulting image depends on the light color, light
position and surface geometry of the input bump map. The result of the lighting calculationis
added. We assume that the viewer is at infinity the z direction (i.e the unit vector in the eye
direction is (0,0,1) everywhere.
Sr = ks * pow(N. H, specul ar-exponent) * Lr
Sg = ks * pow(N. H, specul ar-exponent) * Lg
Sb = ks * pow(N. H, specul ar-exponent) * Lb
Sa = max(Sr, Sg, Sh)
wher e
ks = specul ar |ighting constant
N = surface normal unit vector, a function of x and y
Description H = "hal fway" unit vectorbetween eye unit vector and light unit vector
Lr,Lg,Lb = RGB conponents of Iight
See feDiffuselighting for definition of N and (Lr, Lg, Lb).
The definition of H reflects our assumption of the constant eye vector E = (0,0,1):
H= (L + E) / Norn(L+E)
where L isthe light unit vector.
Unlike the feDiffuseLighting, the feSpecularLighting filter produces a non-opaque image.
Thisis dueto the fact that specular result (Sr,Sg,Sh,Sa) is meant to be added to the textured
image. The alpha channel of the result is the max of the color components, so that where the
specular light is zero, no additional coverage is added to the image and a fully white
highlight will add opacity.
Thisfilter produces an image which contains the specular reflection part of the lighting
Comments calculation. Such amap isintended to be combined with a texture using the add term of the
arithmetic Composite method. Multiple light sources can be simulated by adding several of
these light maps before applying it to the texture image.
P The feDiffuseLighting and feSpecularLighting filters will often be applied together. An
I mplementation issues implementation may detect this and cal culate both maps in one pass, instead of two.

’NodeType]feTiIe
Processing Node-Specific none

Attributes

|Description

|Creates an image with infinite extent by replicating source image in image space.

NodeType

feTurbulence

Processing Node-Specific
Attributes

base-frequency
num-octaves
type, one offractal-noise or turbulence.

Adds noise to an image using the Perlin turbulence-function. It is possible to create
bandwidth-limited noise by synthesizing only one octave. For a detailed description the of

the Perlin turbulence-function, see " Texturing and Modeling", Ebert et a, AP Professional,
Description 1994.

If the input image isinfinite in extent, asis the case with a constant color or atile, the
resulting image will have maximal size in image space.

|Comments |This filter dlows the synthesis of artificial textures like clouds or marble.

S It might be useful to provide an actual implementation for the turbulence function, so that
I mplementation issues consistent results are achievable.

previous next contents properties index

16 Interactivity

16.1 Links: the <a> element

SV G provides an <a> element, analogous to like HTML's <a> element, to indicate hyperlinks; those
parts of the drawing which when clicked on will cause the current browser frame to be replaced by the
contents of the URL specified in the href attribute.

The <a> element uses Xlink. (Note that the XLink specification is currently under development and is
subject to change. The SV G working group will track and rationalize with XLink asit evolves.)

The following isavalid example of a hyperlink attached to a path (which in this case draws atriangle):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>This valid svg docunent draws a triangle which is a hyperlink
</ desc>

<path d="M 0 O L 200 O L 100 200 z"/>
</ a>
</ svg>

Download this example

Thisisthe well-formed equivalent example:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="4in" hei ght="3in"
xm ns = "http://ww. w3. org/ G aphi cs/ SV svg- 19990706. dt d' >
<desc>This well formed svg docunent draws a triangle which is a hyperlink
</ desc>

<a xm :link="sinple" show="repl ace" actuate="user" href="http://ww.w3. org">
<path d="M 0 O L 200 O L 100 200 z"/>
</ a>
</ svg>

Download this example

In both examples, if the path is clicked on, then the current browser frame will be replaced by the W3C
home page.

file:///D|/Jon/SVGSpec/samples/a-valid.xml
file:///D|/Jon/SVGSpec/samples/a-wf.xml

16.2 Event Handling

Any <g>, <image>, <path>, <text> or vector graphic shape (such as a <rect>) can be assigned any of the
following standard HTML event handlers:

Mouse Events

« onmousedown
e ONMOUSeUp

« onclick

« ondblclick

e ONMouseover
e Onmousemove
« Onmouseout

Keyboard Events

« onkeydown
« onkeypress
« onkeyup

State Change Events

« onload

« onunload (only applicable to outermost <svg> elements which are to be mapped into a
rectangular region/viewport)

« onzoom (only applicable to outermost <svg> elements which are to be mapped into a rectangul ar
region/viewport)

Additionally, SV G's scripting engine needs to have the altKey, ctrlKey and shiftKey properties available.

16.3 Zoom and pan control

The outermost <svg> element in an SV G document can have the optional attribute
allow-zoom-and-pan, which takes the possible values of trueand false. If true, the user agent should
allow the user to zoom in and pan around the given document. If false, the user agent should not allow
the user to zoom and pan on the given document.

previous next contents properties index

17 Animation

17.1 Introduction

The Web is adynamic medium and that SV G needs to support the ability to change vector graphics over
time. SV G documents can be animated in the following ways:

« (Syntax under development) SV G will include a syntax for describing simple time-based
maodifications on any attribute or property on any of its elements. Thus, there will be elementsin
the SV G language that will allow you to do the following, among others: motion path animation,
fade-in/fade-out effects, and objects which grow, shrink or spin. One objective isto provide
sufficient animation capability such that SV G can be used for banner ads as an aternative to
animated GIF.

« Usingthe SYG DOM. The SVG DOM conforms to key aspects of Document Object Model
(DOM) Level 1 Specification and Document Object Model (DOM) Level 2 Specification. Every
attribute and style sheet setting is accessible to scripting, and SV G offers a set of additional
DOM interfaces to support efficient animation via scripting. As aresult, virtually any kind of
animation can be achieved, including motion paths, color changes over time, and transparency
effects. The timer facilities in scripting languages such as ECMA Script can be used to start up
and control the animations. (See example below.)

« SV G documents can be components within SMIL (Synchronized Multimedia Integration
L anguage) documents.

« Inthefuture, it is expected that future versions of SMIL) will be modularized and that

components of it could be used in conjunction with SV G and other XML grammars such as
XHTML to achieve animation effects.

17.2 Animation Example Using the SVG DOM

The following example shows a simple animation:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG July 1999//EN'
"http://ww wW3. or g/ G aphi cs/ SVE svg-19990706. dt d" >
<svg wi dth="4in" hei ght="3in"
fit-box-to-viewort="0 0 400 300"
onl oad="Start Ani mation()" >

<def s>
<scri pt ><! [CDATA]

var timer_increnment = 50.

var max_tinme = 10000

var text el enent

Start Ani mation() {
text _el ement = docunent. get El ement Byl d(" Text El enent");
ShowAndGr owEl emrent (0) ;

}
ShowAndGr owEl enent (ti meval ue) {

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-DOM-Level-2/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/

timeval ue = tinevalue + tiner_increnent
if (tinevalue > max_tine)
timevalue = tinmevalue - floor(timevalue/max_tinme) * max_tine

/1 Scale the text string gradually until it is 20 tinmes |arger
scal efactor = (timevalue * 20.) / max_tine
text _elenent. SetAttribute("transfornt, "scale(" + scalefactor + ")")

/1 Make the string nore opaque
opacityfactor = tinevalue / max_tine
text _el enent.getStyle().setProperty("opacity", "opacity:" + opacityfactor, "")

/1 Call ShowAndGr owEl enent again <tiner_increnent> nilliseconds |ater.
set Ti neout (" ShowAndG owEl enent (" + tiner_increment + ")")

1]1></script>

</ def s>
<g transfornme"transl ate(50,300)" style="fill:red; font-size:10">
<text id="TextEl enent">SVG/text >
</ g>
</ svg>

Download this example

The above SV G file contains a single graphics el ement, atext string that says "SVG". The animation
loops continuously. The text string starts out small and transparent and grows to be large and opaque.
Here is an explanation of how this example works:

The <svg> element'swi dt h and hei ght attributes indicate that the document should take up a
rectangle of size 4inches by 3inches. Thef i t - box-t o- vi ewport attribute indicates that the
initial coordinate system should have (0,0) at its top left and (400,300) at its bottom right. (Thus,
1 inch equals 100 user units.) Theonl oad="St art Ani mati on()" attribute indicates that
when the document has been fully loaded and processed, then invoke ECMA Script function
StartAnimation().

The <script> element defines the ECM A Script which makes the animation happen. The

Start Ani mati on() functionisonly caled onceto give avaueto global variable

t ext _el enent and to make theinitial call to ShowAndG owEl enent () .

ShowAndG owEl enent () iscalled every 50 milliseconds and resetsthet r ansf or mand
st yl e attributes on the text element to new values each time it is called. At the end of
ShowAndGr owEl enent , the function tells the ECMAScript engine to call itself again after 50
more milliseconds.

The <g> element shifts the coordinate system so that the origin is shifted toward the lower-left of
the viewing area. It also defines the fill color and font-size to use when drawing the text string.

The <text> element contains the text string and is the element whose attributes get changed
during the animation.

file:///D|/Jon/SVGSpec/samples/animate-dom.xml

previous next contents properties index

18 Backwards Compatibility,
Descriptions and Titles

18.1 Introduction

SV G offersfeaturesto allow for:

» Backwards Compatibility Reasonable fallback behavior in the event an SVG fileisviewedin a
browser which doesn't support SVG

« <desc> Descriptive information on a section of graphics elements which is packaged in a
convenient way so that the visually impaired can understand the nature of the graphics

« <title> A short description on a section of graphics elements which can be used to provide
tooltipsin aviewing environment

18.2 Backwards Compatibility

A user agent (UA) might not have the ability to process and view SV G documents. The following list
outlines two of the backwards compatibility scenarios associated with SV G documents:

o For XML grammars with the ability to embed SV G documents, it is assumed that some sort of
alternate representation capability such as the <switch> element and some sort of
feature-availability test facility (such aswhat is described in the SMIL 1.0 specification (??? add
links)) will be available.

This <switch> element and feature-availability test facility (or their equivalents) are the
recommended way for XML authors to provide an alternate representation to an SV G document,
such as an image or atext string. The following example shows how to embed an SV G drawing
within a SMIL 1.0 document such that an alternate image will display in the event the UA
doesn't support SVG. (In this example, the SV G document isincluded viaa URL reference. With
some parent XML grammarsit will also be possible to include an SV G document inline within
the samefile asits parent grammar.)

<?xm version="1.0" standal one="yes" ?>

<sm | >
<body>
<l-- The SML <switch> elenment will process the
first child el enent which tests true and skip
past all others. -->
<swi t ch>
<l-- The systemrequired attribute tests to see if
the user agent supports SVG |If true, then
render the file draw ng.svg. -->

<ref systemrequired="http://ww.w3. org/ Graphi cs/ SVE svg- 19990706. dt d"

type="i mage/ svg" src="draw ng.svg" />

<!-- Else, render the alternate imge. -->
<inmg src="al ternate_inage.jpg" />
</ switch>
</ body>
</sml|>

Download this example

o For HTML 4.0, SVG drawings should be embedded using the <object> element. The alternate
representation should be included as the content of the <object> element. In this case, the SVG
document usually will be included viaa URL reference. The following example shows how to
use the <object> element to include an SV G drawing viaa URL reference with an image serving
as the alternate representation in the absence of an SV G user agent:

<htm >
<body>
<obj ect type="inmage/svg" data="draw ng.svg">
<l-- The contents of the <object> elenment (i.e., an alternate

i mage) are drawn in the event the user agent cannot process
the SVG drawi ng. -->
<ing src="alternate_imge.jpg" alt="short description" />
</ obj ect >
</ body>
</htm >

18.3 The <desc> and <title> elements

Each <g> or graphics object in an SVG drawing can supply a <desc> and/or a <title> description string
where the description is text-only. These description strings provide information about the graphicsto
visually impaired users. User agents which can process SV G in most cases will ignore the description
strings (except that the <title> might be used to provide atooltip).

The following is an example. In typical operation, the SV G user agent would ignore (i.e., not display)
the <desc> element and the <title> elements and would render the remaining contents of the <g>
element.

If thisfile were processed by an older browser (i.e., abrowser that doesn't have SV G support), then the
browser would treat the fileasHTML. All SVG elements would not be recognized and therefore
ignored. The browser would render all character data (including any character data within <desc> and
<title> elements) within the current text region using current text styling parameters.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM "htt p://ww. wW3. or g/ G aphi cs/ SV svg- 19990706. dt d" >
<svg wi dt h="4in" hei ght="3in">
<g>
<title>
Conpany sal es by region
</title>
<desc>
This is a bar chart which shows
conpany sal es by region.
</ desc>
<!-- Bar chart defined as vector data -->
</ g>
</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/switch.xml
file:///D|/Jon/SVGSpec/samples/desc.xml

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="4in" hei ght="3in"
xm ns="http://ww. w3. or g/ G aphi cs/ SVE svg- 19990706. dt d" >
<desc xm ns: nydoc="http://foo.org/ nydoc">
<mydoc:title>This is an exanple SVG file</nydoc:title>
<mydoc: para>The gl obal description uses markup fromthe
<mydoc: enmph>nydoc</ nydoc: enph> nanmespace. </ nydoc: par a>
</ desc>
<g>
<l-- the picture goes here -->
</ g>
</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/richdesc.xml

previous next contents properties index

19 Embedding Foreign Object Types

One goal for SVG isto provide a mechanism by which other XML language processors can render into
an areawithin an SV G drawing, with those renderings subject to the various transformations and
compositing parameters that are currently active within the SV G document. One particular example of
thisisto provide aframe for the HTML/CSS processor so that dynamically reflowing text (subject to
SV G transformations and compositing) could be inserted into the middle of an SV G document. Another
exampleisinserting aMathML expression into an SVG drawing.

The <foreignobject> element allows for inclusion of foreign namespaces which has graphical content
drawn by adifferent user agent, where the graphical content that is drawn is subject to SVG
transformations and compositing. The contents of <foreignobject> are assumed to be from a different
namespace. Any SVG elements within a <foreignobject> will not be drawn, except in the situation
where a properly defined SV G subdocument is recursively embedded within the different namespace
(e.g., an SV G document contains an XHTML document which in turn contains yet another SVG
document).

Additionally, there is a capability for alternative representations so that something meaningful will
appear in SV G viewing environments which do not have the ability to process a given <foreignobject>.
To accomplish this, SVG has a <switch> element and system-required attribute similar to the
corresponding facilities within the SMIL 1.0 Recommendation. The rules for <switch> are that the first

child element whose system-required evaluates to "true" will be processed and all othersignored.

Hereis an example:

<?xm version="1.0" standal one="yes"?>
<svg wi dth="4in" hei ght="3in"
xmns = "http://ww. w3. or g/ G aphi cs/ SVE svg-19990706. dt d' >
<desc>Thi s exanpl e uses the switch elenent to provide a
fall back graphical representation of an equation, if
Mat hML i s not supported.

</ desc>

<l-- The <switch> element will process the first child el ement
whose testing attributes evaluate to true.-->

<swi t ch>

<!-- Process the MathML if the systemrequired attribute
evaluates to true (i.e., the user agent supports MathM
enbedded within SVGQ. -->
<f or ei gnobj ect
systemrequired="http://ww. w3. or g/ TR/ REC- Mat hM_- 19980407"
w dt h="100" hei ght ="50">
<l-- MathM content goes here -->
</ f or ei gnobj ect >

<!-- Else, process the following alternate SVG
Note that there are no testing attributes on the <g> el ement.
If no testing attributes are provided, it is as if there
were testing attributes and they evaluated to true.-->
<g>
<!-- Draw a red rectangle with a text string on top. -->

http://www.w3.org/TR/REC-smil/

<rect style="fill: red"/>
<t ext >Fornul a goes here</text>
</ g>

</ swi tch>
</ svg>

Download this example

It isnot required that SV G user agent support the ability to invoke other arbitrary user agents to handle
embedded foreign object types; however, all conforming SV G user agents would need to support the
<switch> element and should be able to render valid SVG elements when they appear as one of the
alternatives within a <switch> element.

Ultimately, it is expected that commercial Web browsers will support the ability for SVG to embed
content from other XML grammars which use CSS layout or XSL to format their content, with the
resulting CSS- or X SL-formatted content subject to SV G transformations and compositing. At this time,
such afeature represents an objective, not a requirement.

(The exact mechanism for providing these capabilities hasn't been decided yet. Many details need to be
worked out.)

file:///D|/Jon/SVGSpec/samples/mathswitch.xml

previous next contents properties index

20 Private Data

20.1 Introduction

SVG dlowsinclusion of elements from foreign namespaces anywhere with the SV G document tree. In
general, the SV G user agent will ignore any unknown el ements except to include them within the DOM.
(The notable exception is described under Embedding Foreign Object Types.)

SVG's ahility to include foreign namespaces can be used for the following purposes:

« Application-specific information so that authoring applications can include model-level datain
the SV G document to serve their "roundtripping” purposes (i.e., the ability to write, then read a
file without loss of higher-level information).

« Supplemental datafor extensibility. For example, suppose you have an extrusion extension
which takes any 2D graphics and extrudes it in three dimensions. When applying the extrusion
extension, you probably will need to set some parameters. The parameters can be included in the
SV G document by inserting elements from an extrusion extension namespace.

To illustrate, a business graphics authoring application might want to include some private data within
an SV G document so that it could properly reassemble the chart (a pie chart in this case) upon reading it
back in:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="4in" hei ght="3in"
xmns = "http://ww. w3. or g/ G aphi cs/ SVGE svg- 19990706. dt d' >
<def s>
<myapp: pi echart xm ns: nmyapp="htt p:// myconpany/ mapapp"
title="Sal es by Region">
<myapp: pi eslice | abel ="Northern Regi on" val ue="1.23"/>
<myapp: pi eslice | abel ="Eastern Regi on" val ue="2.53"/>
<nmyapp: pi eslice | abel =" Sout hern Regi on" val ue="3.89"/>
<myapp: pi eslice | abel ="Western Regi on" val ue="2.04"/>

<l-- OQher private data goes here -->
</ nyapp: pi echart >

</ def s>

<desc>This chart includes private data in another nanmespace

</ desc>

<!-- In here would be the actual graphics el enents which
draw the pie chart -->

</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/private.xml

previous next contents properties index

21 Extensibility

It is highly desirable that SV G provides ageneral, robust extensibility mechanism which allows the
feature set of SV G to be enhanced without having to wait for SV G specification to be updated and new
SV G implementations to be deployed. The general model is that extensions could be implemented in
scripting (e.g., ECMAScript), Javaor CLSID/ActiveX, with each option offering different degrees of
platform-independence, performance, and universal availability.

Here isamini requirements definition for an extensibility mechanism:

1. Provisionsfor aternative renderingsin standard SVG (i.e., SVG without extensions) in the event
that a given extension is not available.

2. Allowsfor the possibility of extensions that are built into agiven SVG user agent. (For example,
aparticular SV G implementation might choose to have custom built-in SV G functionality in
order to serve the specia needs of a particular set of users.)

3. Allowsfor the possibility of extensions that are added on dynamically at run-time via scripting
(e.g., ECMAScript), JavalJAR or CLSID/ActiveX.

4. Leverages and conformsto others Web standards directions.
5. Providesthe extensibility mechanisms for the following:
o custom paint servers (i.e., fill and stroke types)

o custom object servers (e.g., 3D lettering) that allow for whole new object typesto be
added to SV G beyond the basic types of paths, images and text.

o Filter effects that allow transforming vector and/or raster data into other vector/raster data
before painting.

o Compositing effects that provide hooks for custom blending the object into its
background.

The exact mechanism for providing this capability hasn't been decided yet.

previous next contents properties index

22 Metadata

22.1 Introduction

Metadata is information about a document.

RDF is the appropriate language for metadata. The specifications for RDF can be found at:
» Resource Description Framework Model and Syntax Specification

o Resource Description Framework (RDF) Schema Specification

Metadata within an SV G document should be expressed in the appropriate RDF namespaces and should
be placed within the <metadata> child element to the document's <svg> root element. (See Example

below.)

Here are some suggestions for content creators regarding metadata:

« Content creators should refer to W3C M etadata Recommendations and activities when deciding
which metadata schemato use in their documents.

« Content creators should refer to the Dublin Core, which is a set of generally applicable core
metadata properties (e.g., Title, Creator/Author, Subject, Description, etc.).

« Additionally, SVG Metadata Schema (below) contains a set of additional metadata properties
that are common across most uses of vector graphics.

Individual industries or individual content creators are free to define their own metadata schema, but
everyone is encouraged to follow existing metadata standards and use standard metadata schema
wherever possible to promote interchange and interoperability. If a particular standard metadata schema
does not meet your needs, then it is usually better to define an additional metadata schemain RDF
which is used in combination with the given standard metadata schema than to totally avoid the standard
schema.

22.2 The SVG Metadata Schema

(This schema has not yet been defined. Here are some candidate attributes for the schema:
M eetsA ccessibilityGuidelines, UsesDynamicElements, ListOf ExtensionsUsed, ListOfl CCProfilesUsed,
LiistOf FontsUsed, ListOflmagesUsed, ListOfForeignObjectsUsed, ListOf External References.)

http://www.w3.org/TR/1999/REC-rdf-syntax
http://www.w3.org/TR/1999/PR-rdf-schema
http://www.w3.org/Metadata/
http://purl.org/DC/

22.3 An Example

Hereis an example of how metadata can be included in an SV G document. The example uses the Dublin
Core version 1.0 schema and the SVG metadata schema:

<?xm version="1.0" standal one="yes" ?>
<svg wi dth="4in" hei ght="3in"
xmns = "http://ww. w3. org/ G aphi cs/ SVGE svg- 19990706. dtd' >
<desc>Fl oor | ayout for MyConpany of fice space</desc>
<met adat a>
<r df : RDF
xmns:rdf = "http://ww. w3.org/...-rdf-syntax-ns"
xmns:rdfs = "http://ww. w3.org/ TR/ ... -schema"
xm ns:dc = "http://purl.org/dc/elements/1.0/"
xm ns: svgnetadata = "http://ww. w3.org/..." >
<rdf: Description about=""
dc:titl e="M/Conpany Fl oor Layout"
dc: description="Fl oor |ayout for MyConpany office space"
dc: publ i sher =" MyConpany | ncor por at ed"
dc: dat e="1999- 03- 03"
dc: f ormat ="i nmage/ svg"
dc: | anguage="en" >
<dc: creator>
<rdf : Bag>
<rdf:1i>Billy Potts</rdf:li>
<rdf:li>Mary Gahanx/rdf:li>
</ rdf: Bag>
</ dc: creator>
<svgnet adat a: General MeetsAccessi bilityCuidelines="true"/>
</rdf: Description>
</ r df : RDF>
</ met adat a>
</ svg>

Download this example

file:///D|/Jon/SVGSpec/samples/metadata.xml

previous next contents properties index

Appendix A: SVG Requirements

Introduction to SVG Requirements

This appendix contains the extensive list of Design Goals and Detailed Requirements which were
drafted initally before the SV G specification was written and then revised as the specification
developed.

I nterspersed within the Design Goals and Detailed Requirements are references into those sections of the
specification which correspond to the given Design Goal or Detailed Requirement.

SVG Requirements Table of Contents

SVG Design Goals

Open specification

Widely implemented and supported

Relationship to other Web standards efforts

Graphics features

Interactivity and Dynamic Behaviors

Interchange features

SVG Detailed Requirements

General requirements

1. Consistent visual results and behaviors across implementations

2. Elegant, uniform, complete and consistent

3. Packaging
4. Performance

5. Alternate representations

6.
7.
8.

Backward compatibility
Wl internationalized
Accessibility features

Graphical facilities

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.

V ector graphics shapes
Text data
Image data

Color support
Transparency support

Grouping and layering

Template objects/symbols

Fill options

Stroke options
Transformations

Coordinate systems, relationship to CSS positioning
Antialiasing
Stenciling and masking

Client-side filter effects such as shadowing
Compositing

CSS support
Connectabl e reference points

Parameter substitution and formulas

Print control

Interaction

28.
29.
30.
31
32.
33.

Zoom and pan
Links

Event handling

Object selection, clipboard

DOM access
Animation

Miscellaneous

34. Inclusion of private data (metadata)

35. Extensibility
36. Embedded fonts and images

SVG Design Goals

The following are the Design Goals for SV G. Besides providing a set of high-level objectivesfor SVG,
these goals act as the criteria by which proposed features are judged. Thus, the features list shown below
under SV G Detailed Requirements should reflect the higher-level goals listed here.

These SVG Design Goals are not listed in any particular order. It is recognized that some of the goals
might conflict or be unachievable and that tradeoffs will need to be made.

Open specification

1. The specification should be controlled by the membersin the W3C, not by asingle vendor. Thus,
the specification should not subject to sudden change by a single vendor.

2. The specification should be vendor neutral and thus should not contain features biased towards a
particular vendor.

EDITOR: None of the above goals has a direct impact on the specification.

Widely implemented and supported

3. SVG should be a standard feature in Web browsers

4. Implementations of SV G should be consistent so that the same visual results and behaviors exist
inal conforming SVG user agents.

5. There should not be subset problems and incompatible generator/reader sets. Thus, there should
be a single language specification, not a set of layered language specifications.

6. There should be widespread support in authoring applications and related tools

7. To promote widespread adoption and support, SV G should be specified to be as basic and smple
as possible while still providing necessary features to satisfy the needs of graphics on the Web.
While the chief goal isto aim at the middle ground, a basic and simple feature set will alow it to

be used on devices with awide range of resolutions and capabilities, from small mobile devices
through office computer monitors to high resolution printers.

8. Straightforward generation via hand-authoring with atext editor or server-side scripts (e.g., CGl)

9. SVG should be as self-contained as possible. While SV G should leverage and be compatible
with other W3C work, it should attempt to do so without introducing excessive dependencies on
other specifications.

10. Ready availahility to the casual implementor is desirable
EDITOR: The current draft of SV G attempts to meet these goals.

11.

Reference source code is desirable

EDITOR: The above goal isindependent of the specification.

Relationship to other Web standards efforts

12.
13.

Defined as an application of XML

Compatible with and/or leverages other relevant standards efforts, including XML namespaces,
XML links (XLink), DOM, CSS, XSL and metadata. For example:

o the elements and attributes of an SV G drawing should be scriptable viathe DOM
o text should be expressed as XML character data so that it can be found by search engines
o attributes which make sense to be part of a style should be expressed in CSS

The SV G working group will need to coordinate proactively with other working groups when it
is more appropriate to meet the SV G requirements through modifications to other
Recommendations.

EDITOR: The current draft of SV G attempts to meet these goals.

Graphics features

14.

15.

16.

17.

18.

19.

20.

Compl ete, general-purpose Web vector graphics format that satisfactorily meets the graphics
delivery needsfor al creators and consumers of Web vector graphics

Sufficiently powerful and precise to meet the needs of professional Web graphic designers such
that they will utilize SV G instead of raster formats in those cases where vector graphicsisamore
natural or appropriate format

EDITOR: The current draft of SV G attempts to meet these goals.

Sufficiently powerful to meet the needs of business presentation and diagramming applications
such that these drawings will be published on the Web using SV G instead of raster formats

EDITOR: The current draft of SV G attempts to meet the final-form needs of these applications,
but the higher-level (e.g., intelligent layout) needs of these applications are not addressed in the
current draft specification. It is unclear at thistime to what level the first version of SV G will
attempt to address these needs.

Feature set is rich enough such that a reasonable conversion of most existing standard static
graphicsfilesinto SVG is possible

Sufficiently compatible with the graphics design and publishing industries feature sets and file
formats such that thereis (as lossless as possible) a straightforward mapping from these
applications and file formats into SVG. The goals are to facilitate conversion of existing artwork
into SV G, promote the creation of lots of compelling new SVG artwork, make it as easy as
possible for the graphics design and publishing industries to adapt existing authoring tools, and
provide for new SV G authoring tools.

Compatible with the needs of non-technical persons who want a straightforward way to generate
relatively simple graphics either by hand-editing or via server-based graphics generation (e.g.,
CGl scripts).

Compatible with high-quality, efficient printing at full printer resolution and with reliable color

21. Focused on basic foundation, presentation-level graphicsfacilities, with acritical eye toward
higher-level (model-level) constructs which might be better suited to a higher-level standard
which would sit on top of SVG

22. Theworking group is investigating whether other Web standards (e.g., CSS, XSL, MathML,
Web Schematics) could use SVG asitslow-level rendering specification. (Thisgoal has
significant dependencies on other W3C initiatives such as the W3C Formatting Model and might
change accordingly.)

EDITOR: The current draft of SV G attempts to meet these goals.

23. The specification for SV G should take into account the possibility of building afuture 3D
graphics specification which either sits on top of SVG or which is entirely independent but with
asimilar syntax; however, the SVG working group should not let itself be slowed down or
constrained by 3D upgrade path issues.

EDITOR: This goal hasn't been addressed yet.

Interactivity and Dynamic Behaviors

24. Allowsfor interactive and dynamic Web pages
EDITOR: The current draft of SV G attempts to meet these goals.

Interchange features

25. Suitable as a platform-independent graphics exchange format

26. Mechanismsfor inclusion of application-specific (or industry specific) private data which would
facilitate use of SV G as a application-specific (or industry-specific) native file format for
authoring applications

27. Capable of use as aprint metafile: sufficiently expressive such that a higher-level print metafile
XML grammar could use SV G for its page imaging operators

EDITOR: The current draft of SV G attempts to meet these goals.

SVG Detailed Requirements

The following isthe detailed list of required features and capabilitiesin SVG. Items which are already
listed as a Design Goal are not repeated here. It is recognized that some of these requirements might
conflict or may not be possible.

General requirements

1. Consistent visual results and behaviors across implementations
1. The specification needs to be complete and unambiguous
2. Thegoal isto have at |east two independent implementations each of SVG viewers and

SV G generators under development as the specification is defined to help find and
remove ambiguities from the specification.

3. An extensive conformance test suite needs to be delivered in conjunction with the final
specification.

EDITOR: The above goals are independent of the specification.
2. Elegant, uniform, complete and consistent

1. Wherever possible, all graphical attributes and operations should be available to all object
types. For example, if 2x3 transformation matrices are available for shape objects, then
2x3 transformation matrices should also be available for text and image objects.

EDITOR: The current draft of SV G attempts to meet these goals.
3. Packaging

1. Stand-alone packaging: Compatible with the need of stand-alone graphics authoring
packages. It should be possible for a graphics authoring application to save a stand-alone
SVG file. ("Stand-alone packaging” meansthat an SVG fileis saved as a separate,
self-contained file, probably with a .svg extension on platforms where the extension is
important.)

2. Fragment packaging: Compatible with the need of consolidated full-page Web authoring
packages which would like to author/deliver full pages of XML with optional vector
graphics elements interspersed as isolated components within the page. ("Fragment
packaging" means that snippets of SVG would appear inside the content of a parent XML
grammar. For example, a picture of an arrow expressed in SVG might appear inline
within an XML file. The expected way this would be achieved would be by referencing
the SV G namespace within the XML file.)

EDITOR: In spec. See Two Indended Uses: Documents and Fragments.

4. Performance

1. Reasonable display performance on commonly used end-user machines. (EDITOR: The
current draft of SV G attempts to meet thisgoal.)

2. Highly efficient representation to minimize download times

1. The working group should investigate abbreviation schemes (particularly for path
data) to minimizefile sizes

EDITOR: The current draft of SV G attempts to meet this goal. This draft uses the
following strategies in order to achieve minimal download times on
uncompressed SVG files:

= A rich feature set on the client-side such as gradient fills, pattern fills and
filter effects allow complicated graphics to be specified with aminimal
number of characters.

= Path data can be expressed in an abbreviated form (see Path data)

= The elements and attributes which are most commonly used in files have
short names.

= Because most attributes are expressed via CSS properties, it will be
possible in some cases to minimize file size and download times by
combining common sets of attributes into named, reused CSS styles.

2. The working group should also collaborate with other working groups, such asthe
XML working group. on binary compression alternatives.

EDITOR: Flate compression is very suitable for compressing XML grammars
suchas SVG and it isaready part of HTTP 1.1.

3. Streamable (i.e., support progressive rendering)

4. Simple primitives (e.g., lines) should exhibit fast performance

EDITOR: The current draft of SV G attempts to meet these goals. See Other Vector
Graphic Shapes

5. Alternate representations

1. The working group should investigate the issue of alternative representations in the form
of text strings or image data. Alternate representations as text or images might provide a
good answer for backwards compatibility in some cases or provide for afaster display
option for some drawings. Alternate text strings would be particularly valuable to
visually impaired users.
6. Backward compatibility

1. The working group should develop a reasonable backward compatibility strategy for
when a user attemptsto view an SV G drawing in a browser which doesn't yet support
SVG.

EDITOR: The current draft describes suggested methods for achieving backward compatibility
with browsers that don't support SVG.

7. Well internationalized

1. By virtue of being written in XML, SVG will aready have baseline internationalisation
capability (Unicode characters, language tagging). The working group will collaborate
with the 118N working group to ensure that SV G is suitable for worldwide Web graphics.

EDITOR: The current draft of SVG has not yet addressed internationalization issues.
8. Accessihility

1. The working group should ensure that adaptive interfaces for people with disabilities are
fully supported, and that mapping SV G content to these contextsis easy and graceful.

EDITOR: The current draft of SV G attempts to meet this goal. See Accessibility Features.

Graphical facilities

9. Vector graphics shapes
(Note: in the remainder of this document, the terms "vector graphic shape" will be abbreviated to
"shape" or "shape objects")
1. Path data
1. Paths can be made up of any combination of the following:
= Straight line segments
= Cubic bezier curved segments

» Quadratic bezier curved segments
= Elliptical and circular arcs

= No other curve types (Other curve types such as splines or nurbs are either
technically very difficult, industry-specific and/or have not established
themselves as industry standards as much as beziers.)

2. Compound paths (i.e., paths with donut holes) should be supported. Both the
non-zero winding and even-odd fill rules should be supported in both fill and clip
operations to ensure compatibility with the design and publishing industries
existing file formats and authoring applications. (Also, it is much easier to
implement these fill rulesinside arenderer than it isin afile format converter.)

EDITOR: In spec. See Paths.

2. A set of predefined shape types such as rectangles, rounded rectangles, circles and
ellipses should be available so that simple objects can be defined without having to learn
bezier mathematics. The exact list of predefined object types has not been decided yet.

EDITOR: In spec. See Other Vector Graphic Shapes.

3. Any shape can befilled, stroked or used as a clipping path and/or mask. (See Fill options,
Stroke options and Stenciling and masking, below.)

EDITOR: In spec. See Filling, Stroking and Paint Servers and and Clipping, Masking and
Compositing.
10. Text data

1. Text strings should be expressed as XML character data which could be marked up with
arbitrary XML name spaces. (Text strings as XML character data allow search enginesto
find the strings.)

EDITOR: Text strings can either be expressed as XML character data or as X Pointer
references to other objects where the text string is expressed as XML character data. See
The <text> element

2. All text/font attributes from CSS should be supported. Compl ete support for CSSis what
the Web community will expect. (See CSS support, below)

EDITOR: All CSS text/font attributes that seem to make sense for final-form text are
available. See Text and Font Properties

3. Itisclear that precisetext sizing/positioning is arequirement for the graphics design
community. Thus, SV G should allow for precise control of text sizing, positioning,
rotation, and skewing on a character-by-character basis. In particular, the working group
should look to see if this feature could be packaged as to provide for precise text on a
path.

EDITOR: Precise text positioning is available because it is possible to position individual
characters and to locate the glyph origin at a particular location. See The <text> element.

Also, SVG will include a built-in text-on-a-path feature. See Text on a path.

4. Itisclear that precise control of fonts and glyphsis arequirement for the graphics design
community. It should be possible to achieve precise control of the exact font and the
exact glyphs within a given font to use for a given character sequence so that graphic
artists have away to ensure that the end user sees what was intended

EDITOR: Precise control of font by name is possible using the font specification from
CSSwhich SVG will use. (However, this still leaves open the possibility of the wrong
version of the given font being used; however, there are ways to set up your font
specification such that correct versioning can be achieved in al but highly unusual
circumstances.) Precise control of glyphsisavailablein SVG. See Ligatures and

Alternate Glyphs.

5. The same fill/stroke/clip/mask capabilities that can be used with vector data should also
be available to text data. For example, it should be possible to fill atext string with a
gradient or stroke it with adashed line pattern. Thisis awidely used feature in the
graphics design world and is required for compatibility with existing graphics content.

EDITOR: In spec. See Filling, Stroking and Paint Servers.

6. Theworking group hasn't investigated yet whether it is advisable to provide a capability
to automatically position atext string relative to another graphical element (e.g.,
automatically centering atext string within arectangle). It is clear that such afeature
would be a great convenience for hand-coders of certain types of drawings, such as
diagrams. The working group should investigate whether there is an easy-to-use (for a
hand-coder) yet robust and elegant way of achieving this.

EDITOR: Not in current draft spec of SVG.

7. Having atext string determine the dimensions of a parent graphical object (e.g., abox is
drawn to fit around atext string) is too high-level of a construct and is not planned for
version 1 of SVG.

EDITOR: Not in current draft spec of SVG.

8. Adding atext-on-a-path capability to SVG is still under consideration. The working
group recognizes that there are many technical complexities which make it difficult to
design the feature in such away that it will be both sufficiently powerful and sufficiently
compatible with the needs of various authoring scenarios.

EDITOR: SVG will include a built-in text-on-a-path feature. See Text on a path.

11. Image data
1. The same image formats available to HTML should be available to SVG

EDITOR: In spec. See Images.

2. The working group hasn't had time yet to address the issue of color management on
image data. The goals will be to:

1. achieve compatibility with how other specifications (e.g., HTML) perform color
management on image data

2. (just likethe rest of SVG) take full advantage of color management systems when
supported by the browser and/or the platform operating system (see Color support

below)

3. if different ICC profile are specified both as an attribute on an image and
embedded within the image, the attribute should win

EDITOR: Not addressed yet.
12. Color support
1. All colors need to be specified in the SRGB color space for compatibility with other Web

standards.

EDITOR: In spec. See Colors.

2. Itisclear that reliable color isimportant to both end users and Web content creators.
SRGB does not answer all precise color needs, and most desktop platforms support the
more complete | CC-based color management system. Thus, an alternative | CC-based
color representation should be available for all color attributes. If the SVG user agent
supports color management, then the ICC color takes precedence over the SRGB color.

EDITOR: In spec. See Colors.

3. There has been little discussion so far on spot color support. Spot colors might be
possible by specifying then using ICC profiles (perhaps viaa Named Color profile), or by
storing spot color information as private data (metadata) in the SVG file.

EDITOR: Not addressed yet.
13. Transparency support

Transparency support is becoming commonplace in authoring applications and is widely used
today in Web animations.

1. Many existing authoring applications achieve transparency by adding an opacity property
wherever acolor property is alowed. For compatibility with these applications, and
because this represents a good technical solution to many transparency needs, wherever a
color property is allowed, there will be a corresponding opacity property which indicates
how transparent a given object/component/attribute should be when blended into its
background

EDITOR: In spec. See 'fill-opacity’, 'stroke-opacity’ and Object And Group Opacity: the
‘opacity’ Property.

2. In group opacity, the collection of objects that makes up agroup is (in effect) drawn into
atemporary areain memory, and then the temporary areais blended as a single unit into
the background graphics. Group opacity is necessary when you have an aggregate object
such as a automobile which is drawn as a collection of overlapping, opague components
(e.g., the hubcap might be an opague circle that is drawn on top of an opaquetire) and
you want to blend that object as a unit into the background. Group opacity isa
reguirement for many animation applications and has utility with static graphics also. It is
straightforward to implement, particularly once you have support for transparent image
objects, which is needed for GIF and PNG. It isinfeasible to achieve these effects
without this feature. Thus, group opacity should be supported in SVG.

EDITOR: In spec. See Object And Group Opacity: the 'opacity’ Property.

3. Theworking group decided that identification of a transparency/blue-screen/chromaKey
color will not be supported for shapes and text because the opacity features are sufficient.
However, the transparency color feature that exists in image file formats such as GIF and
PNG will be supported.
EDITOR: Not in spec because we decided not to do support chromaKey.

4. See Compositing, below.

14. Grouping and layering
1. There needsto be an ability to define groups (i.e., collections) of objectsto allow for

convenient access for scripting applications. Groups should have the following attributes
(among others), al of which are accessible and/or controllable via scripting:

1. UniquelD

2. z-index for explicit layering
3. visibility

4. transformations

5. opacity

EDITOR: In spec. See Grouping and Naming Collections of Drawing Elements: the <g>
Element.

2. Implicit layering: unless an explicit z-index value is provided, objects will be drawn
bottom-to-top in the order which they appear in the input stream. This strategy is
compatible with most popular graphics file formats.

EDITOR: In spec. See SVG Rendering Moddl.

3. Explicit layering: objects or collections of objects can be assigned an explicit z-index
value, which takes precedence over the implicit bottom-to-top drawing order. (The
bottom-to-top drawing order of objects with the same z-index relative to each other isthe
the order in which they appear in the input stream.) This explicit layering is a requirement
for achieving certain types of animation effects.

EDITOR: Not in spec. The working group decided that a z-index effect can be achieved
either by having CSS manage multiple SV G drawings or by rearranging graphical
elements viathe DOM. A z-index option would complicate implementation and
streaming for little gain.

15. Template objects/symbols

1. There should be a capability for defining template objects that can be instantiated
multiple times with different attributes.

2. Thetemplate objects should be able to establish afull set of default attributes, and the
instantiated objects should be able to override any of these default attriubutes.

EDITOR: In spec. See Using template objects: the <use> element.
16. Fill options (i.e., painting the interior of a shape or text object)

The following fill options should be available:
1. Solid-color fill (see Color support above)

EDITOR: In spec. See Filling, Stroking and Paint Servers.

2. Gradients
1. Multiple gradient stops will be supported (not just two)
2. Both linear and radial gradients will be supported

3. Itisstill an open issue within the working group whether additional gradient types
should be supported. Examples: conical, elliptical, square, rectangular, Gouraud
shaded triangle and rectangular meshes.

4. Gradients should alow for both alinear ramp between gradient stops and a
well-defined sigma function for the calculation of the intermediate colors between

the stops.

For all gradients, the specification should provide details for the exact behavior of
the gradient ramp. If there is a disagreement about what the gradient ramps should
be, priority should be given to: (1) making sure the gradient ramp rules are
consistent with real-world lighting effects, (2) retaining compatibility with as
much existing content as possible (with a bias towards existing content whose
usersreally care about how their gradients |ook)

The suggestion has been made to allow for substitution of a different color table
for use with a given gradient. (The color stop positions stay the same, but the
colors used change.) This suggestion hasn't been discussed yet in the working
group.

EDITOR: In spec. See Gradients.
3. Patterns (i.e., tiled object fill)
1. Any objects (i.e., shapes, images, text) can be used to fill any other objects
2. When objects are used to fill other objects, parameters can be set to achieve tiling

effects.

3. Thetiling options should be at |east as capable as those found in the file formats

used by the design and publishing industries to ensure compatibility with existing
artwork and authoring applications.

EDITOR: In spec. See Peatterns.

4. Other fill styles - The working group hasn't decided yet whether other fill styles such as
fractal patterns are appropriate.

EDITOR: Not addressed yet.
5. Custom fill styles - See Extensibility, below.

EDITOR: In spec. See Extensibility.

17. Stroke options (i.e., drawing the outline of a shape or text object)

1. The same attributes available for filling an object (see Fill options, above) should be
available to stroke an object. For example, you should be allowed to stroke with a pattern.

EDITOR: In spec. See Stroke Properties.

2. The set of stroke options should be at |east as capable as the stroke optionsin the file
formats used by the design and publishing industries

1
2.

3.
4.

Arbitrary, continuous values for line width

The working group hasn't reached consensus yet on whether SV G should support
hairlines (i.e., instructing the device to draw the thinnest possible line)

User-defined dash patterns and initial phase offset
Caps, joins and miterlimits

EDITOR: In spec. See Stroke Properties.
3. Arrowheads and polymarkers
1. There should be asmall set of predefined arrowheads

2. Arrowheads are optiona and can be placed at the start and/or end of path objects

3. The working group should investigate the possibility of providing for custom
"arrowheads" at the start and/or end of a path object which are defined by
referencing a different graphical object or group. This capability would solve the
following needs:

= Diagramming applications might use arrowheads extensively, but the
predefined arrowheads might not be satisfactory

= Graphic designers who want to attach arrowheads to drawings will want
complete control of the visual characteristics of their arrowheads

= Thisfeature can be leveraged to provide a polymarker capability for
applications such as scatter diagrams

EDITOR: In spec. See Markers.

18. Transformations

1. Arbitrarily nested 2x3 matrix transformations should be available. Thisfacility is
necessary to ensure compatibility with existing artwork and authoring tools.

1. 2x3 matrices are sufficient to achieve any types of trandation, scaling, rotation
and skewing

2. Transformation matrices can be nested to an arbitrary depth. A given
transformation matrix is concatenated with the transformation matrices of all
parent objects.

EDITOR: In spec. See Coordinate systems and transformation matrices.

2. Inthe spirit of making SV G reasonably easy to use for content creators who would have
difficulty constructing 2x3 matrices, SV G should offer an alternative set of simpler
transformation attributes (e.g., rotation=, scale=). The SV G specification, however, needs
to defined unambiguously what should happen if both the simpler transformation
attributes and a 2x3 transformation matrix is provided.

EDITOR: In spec. See Coordinate systems and transformation matrices.

3. These transformations should apply to all object types (shapes, images and text) in a
uniform and consistent manner

EDITOR: In spec. See Coordinate systems and transformation matrices.

4. Transformed objects should have the option of exhibiting true scalability (where all
attributes should scale uniformly, and linewidths, images and text should scale along with
the sizes of the shapes). Additionally, transformed objects should also have the option of
selective scalability such that certain attributes (e.g., stroke size and textsize) are
invariant.

EDITOR: True scalability isin the current draft spec. There are some capabilities for
selective scalability by setting properties such as linewidths and font sizes using
Transformed CSS units. See Coordinate systems and transformation matrices.

19. Coordinate systems, relationship to CSS positioning

1. SVG should use CSS positioning for establishing a viewport for an outermost SVG
element, such as an <svg>...</svg> complete drawing or an SV G fragment within an
XML Web page.

2. SVG will support local user coordinates

3. Real number values (i.e., an integer followed by a possible decimal fractional
component) should be possible for al appropriate attributes and coordinates. The
language definition itself should not inhibit infinite precision.

EDITOR: In spec. See Coordinate Systems, Transformations and Units.
20. Antialiasing

1. Itisclear that the graphics design community not only wants antialiasing to be available,
but also wants to have the ability to turn antialiasing on/off on an object basisin order to
achieve precise control of the rendering and possibly to control drawing speed. Thus,
there will be an antialias control attribute on each graphics object in SVG.

EDITOR: In spec. See 'stroke-antialiasing' and 'text-antialiasing'.

2. Antialiasing adds a significant burden to the casual implementor and isn't a requirement
for al potentia applications of SVG, such asviewing CAD drawings. Thus, antialiasing
control will be regarded as a hint to the SV G user agent, which can choose whether or not
to honor it. Major general-purpose implementations of SV G user agents such as
commercial Web browsers should honor and implement the antialiasing control hint.

EDITOR: This had been in spec but got dropped accidentally between working drafts and
will be corrected.

21. Stenciling and masking
1. Clipping paths

Clipping paths are acommonly used feature in existing artwork and an integral part of all
authoring products used by graphic designers. Clipping paths are as fundamental to the
design and publishing industries’ existing file formats and authoring tools as are nested
transformation matrices. Clipping is relatively easy to implement in viewersusing a
raster mask approach in device space if you have code for drawing afilled path into an
offscreen buffer. Nested clipping paths are easy to achieve on top of an unnested clipping
path implementation by just looping through each parent clipping path one after another.
The performance overhead with nested clipping paths in animation scenarios is probably
small relative to other necessary computations (e.g, filling and stroking) and can be
overcome on the user end by simply avoiding/minimizing the use of the feature. Without
nested clipping paths, converters from the design and publishing industries' existing file
formats will have a significant burden in determining how to flatten the nested clipping
paths they encounter. Nested clipping paths are necessary to provide lossless tranglation
from the design and publishing industries existing file formats.

1. Any shape or text object can be used as a hard-edge clipping path
2. Clipping paths can be nested arbitrarily to ensure compatibility with existing
artwork and authoring tools.
EDITOR: In spec. See Clipping Path Properties.

2. Masks

8-bit masking is afundamental feature on all operating systems, and a key feature for
both static and dynamic Web pages.

1. Any graphics object (i.e., shape, text, or image) can be used as an 8-hit alpha
mask to control the alpha-compositing of a different object (or group/collection of

22.

23.

24,

objects) into other objects

EDITOR: In spec. See Masking Properties.
Client-side filter effects such as shadowing

Client-side filters provide for the possibility of significant file size and download time savingsin
many applications. An example istext drawn with a glow effect and a drop shadow. If client-side
glow and drop shadow filters were available, then only the text string and the names of the filters
would need to be downloaded, instead of today, where the text needs to be converted to araster
by the author.

1. SVG should include aset of built-in client-side filter effects for commonly used effects
such as shadowing. The definitions of these effects should be unambiguous so that all
implementations produce the same visual results.

2. Additionally, the working group should investigate the feasibility of a general filter
mechanism which would allow for custom filter effects to be downloaded and applied to
agiven graphical object (see Extensibility, below)

EDITOR: In spec to some level. See Filters. Extensibility features are mentioned in spec
but aren't detailed.

Compositing

Compositing means the rules by which aforeground object's colors are blended into a
background object's colors. There are many different approaches to compositing. Alpha
compositing (where each pixel has an 8-bit apha channel which determines how opague that
pixel is) isthe most common, but even this method has multiple variations.

1. Theworking group needs to define standard rules for how apha compositing should
work. Which color space (SRGB? Lab?)? What are the exact formulas?

EDITOR: In spec. This document will call for alpha compositing in the SRGB color
space using simple alpha and (1-alpha) algorithms. Details haven't been provided. See
Simple Alpha Blending/Compositing.

2. The working group needs to decide whether SV G should offer multiple compositing
options as standard features. Should SV G support all of the Porter/Duff compositing
options? Additionally, Photoshop offers many Adjustment Layer options. Should these be
supported?

EDITOR: Not addressed yet.

3. See Extensibility, below.

CSS support

1. All CSStext/font attributes from the most recently approved CSS recommendation

should be honored by all conforming SV G user agents.

EDITOR: All CSS text/font attributes that seem to make sense for final-form text are
available. See Text and Font Properties

2. Theissue of CSSinheritanceis still open. It is unclear that the standards world will have
addressed how a parent XML/HTML grammar passesits current style table to a child
grammar. Until thisissue is addressed, the SV G working group cannot promise that
version 1 of SVG will support the inheritance of CSS styles from a parent grammar. The
working group should work towards achieving this highly desirable capability, however.

25.

26.

Representatives from the CSS and XSL have requested working with the SV G working
on style sheet issues. They would like to discuss:

1. useeither XSL or CSS stylesheets within SVG

2. use stylesheetsto apply properties to both the text AND graphic
objects/assemblies within an embedded SV G component (to provide/enforce
"house style" or common properties across al illustrations in a document).

EDITOR: Not addressed yet.
Connectabl e reference points

Connectabl e reference points are useful constructs for many applications. In particular,
diagramming applications could use connectable reference points to define the start and end
points for lines that connect two different objects. The difficulty with connectable reference
pointsisthat they might introduce alarge degree of complexity into the specification and the
various implementations. It might be better to leave connectable reference pointsto a
higher-level XML grammar which sits on top of SVG.

1. Itisnot arequirement for version 1 of SVG to provide for a mechanism for defining
connectable reference points. Thisis a complex issue which might be better served by a
higher-level XML grammar.

2. However, the working group should not exclude this as an option for version 1 of SVG. If
one of the working group members can come up with a good proposal, then the working
group should consider the proposal serioudly.

3. See DOM access, below, for more on connectabl e reference points.

EDITOR: Not in current draft spec of SVG.
Parameter substitution and formulas on coordinates

Parameterized graphic objects, possibly built using a set of formulas to define how the object
grows and stretches based on the values of its parameters and other aspects of the graphics,
would provide for a powerful "intelligent graphics' capability. However, such as feature opens
up many complex issues which might be better off in ahigher-level XML grammar which sitson
top of SVG.

1. Parameter substitution and formulas on coordinates are not requirements for version 1 of
SVG.

2. A simple parameter substitution strategy, however, might be easy to define, simple to
implement, and provide lots of value. In other words, a simple parameter substitution
strategy might provide 90% of the value at 10% of the effort. If one of the working group
members can come up with a good proposal, then the working group should consider the
proposal serioudly.

3. Itisharder to conceive of asimple formula-based coordinate capability. However, if
someone of the working group members can come up with a good proposal, then the
working group should consider the proposal seriously.

EDITOR: Not in current draft spec of SVG.

27. Ability to control whether a given object is printed.

1. When the working group considers this feature, it should see whether CSS's print control
features are adequate.

EDITOR: Not addressed yet.

Interaction

28. Zoom and pan

1. An SV G user agent should support zoom and pan on graphics, with true scalability. Thus,
all objects and attributes (including such things as text and linewidths) should
grow/shrink uniformly with the zoom level.

EDITOR: In spec. See Zoom and pan control.

29. Links
1. It should be possible to assign alink to any graphic object or group.

2. SVG should support all of the kinds of links into and out of a drawing as would be
appropriate. For example, it should provide for links to other views in the samefile or
links to external media (i.e., aURL). Also, it should be possible to link into a particular
view within an SV G drawing.

3. Asmuch asis appropriate, SV G should be compatible with XLink.

4. The working group discussed briefly the concept of linking into amoment of time within
an animation application. This should be investigated by the working group as the
specification is devel oped.

EDITOR: Basically linking out of SVG isin the spec. Ideas are presented for linking into a
particular view within an SVG drawing. SVG linking is compatible with XLink. Thereis nothing
in the spec about linking into a moment of time (thisis probably best served by an animation
grammar on top of SVG). See Links: the <a> element

30. Event handling
1. It should be possible to assign event handlers to an individual graphic object or group.

2. Thelist of event handlers should at least be as extensive as what is available for HTML
(e.g., mouseovers, mouseclicks).

3. Additiona event handlers might prove to be valuable. For example, an onzoom event

handler might prove very useful to control what content appears based on zoom level.
The working group should investigate onzoom and other possible event handlers.

EDITOR: In spec (including an onzoom event handler). See Event Handling

31. Object selection, copying/pasting to clipboard
1. Itishighly desirable but not required that SV G viewing user agents have the ability to

selectively copy/paste graphical elements, particularly from the browser to the desktop
environment.

2. The working group has not investigated yet whether it makes sense to specify an object
selection mechanism in SVG. However, it is clear that the ability to select part of a
drawing is arequirement for clipboard/exchange purposes.

3. A particular detail is selecting text for the purposes of copying to the clipboard. The
working group hasn't discussed yet whether it should be possible to select text strings
(complete or partial) from within an SV G user agent.

EDITOR: The spec includes a provision for selecting text for the purposes of copying to the

32.

33.

clipboard. The spec doesn't say anything yet about other graphic object types, although this
seems like a desirable feature. See Defining Text Flows: the <textflow> element

DOM access
1. SVG should provide for complete DOM support for all attributes and elements.

2. To provide robust hooks for animation applications, the DOM should expose graphic
objects down to the individual point.

3. Supplemental utility methods (e.g., query an object's bounds, its center, its perimeter as
expressed as a path, access to "connectable" points for callouts or connection lines)
would be very helpful to people writing scripts that drive SVG drawings or to higher
level grammars (e.g., Web Schematics or MathML) which might want to perform layout
based on the bounds of a given graphics object. The SV G working group should
collaborate with the DOM working group to investigate whether it is possible within the
constraints of DOM to provide such utility methods.

EDITOR: We have concluded that SV G should have utility functions. These utility methods
have been mentioned for accessing individual points within a Path and for controlling an

animation Animation.

Animation

Built-in animation primitives will not be part of SVG. Animation will only be possible viathe
DOM or adifferent specification, which might sit on top of SVG.

EDITOR: Animation utility functions will be part of the SVG DOM. See Animation.

Miscellaneous

34.

35.

Inclusion of private data (metadata)

To promote the use of SV G as an interchange format or as a component of higher-level graphics
languages, there needs to be a provision for inclusion of application-specific or industry-specific
private data within an SV G drawing.

EDITOR: In spec. See Private Data.
Extensibility

It is highly desirable that SV G be extensible to cope with changing requirements and for
providing many valuable hooksto allow for creation of more efficient and compelling Web
pages. A well-designed extensibility mechanism can alow for tomorrow's innovations to be
available in today's browsers (i.e., no need to wait for a new version of the standard to be defined
an implemented in browsers). A well-designed extensibility mechanism could be the best
solution for many valuable features such as client-side filters on graphics data. Possible
extensibility facilities are custom paint servers (for filling and stroking), custom object types,
custom filters, custom compositing engines and custom color spaces. However, defining a useful
and workable extensibility mechanism is very difficult and frought with many obstacles, such as
deficiencies in cross-platform language standards. Thus, the working group should look into an
extensibility mechanism as a highly desirable feature and review proposals from the members,
but an extensibility mechanism is not an absolute requirement for version 1 of SVG.

EDITOR: In spec, except color space extensibility was dropped as this should be achieved by

providing an ICC profile. See Extensibility.
36. Embedded components to achieve self-contained graphicsfiles

1. Images - There has been some strong initial feedback has been that SV G should provide
for embedded images. The working group should collaborate with other working groups
(e.g., XML) to investigate the feasibility of allowing for embedded images within an
SVG drawing.

EDITOR: Not in spec. With the performance improvementsin HTTP 1.1, images can be
referenced just asin HTML without significant performance penalty.

2. Fonts - There has been some strong initial feedback has been that SV G should provide
for embedded fonts. The working group has yet to make decisions on thisissue. The
working group should collaborate with other working groups (e.g., XML) to investigate
the feasibility of allowing for embedded fonts within an SVG drawing.

EDITOR: Not in spec. CSS already provides for Web fonts. We are currently counting on
CSS Web fonts and are waiting on public feedback whether some sort of built-in font
strategy is also needed.

previous next contents properties index

Appendix B: Change History

Changes with the 06-July-1999 SVG Draft
Specification

Changes to Conformance Reguirements and Recommendations:

o In Conforming SVG Viewers, dropped GIF from the list of required formats. Now, only
JPEG and PNG are listed.

o In Forward and undefined references, indicated that forward references are disallowed
and included alink to the decription of the <defs> element.

Changes to Document Structure:

o Modified the description of the <defs> element to discuss how all referenced elements
must be direct children of a <defs> element.

o Modified the description of the <use> element to indicate that <use> can only refer to
elements within an SV G file (not entire files).

o Added a section on the <image> element. The <image> element is very comparable to
<use> except that it can only refer to whole file (not elements within afile).

« Changesto Rendering Model:

o Moved the recently modified/renamed properties shape-rendering, text-rendering and
image-rendering into this chapter. (There used to be properties 'stroke-antialiasing' and
'text-antialiasing'.)

« Changesto Clipping, Masking and Compositing:

o For Clipping paths, reformulated how clipping paths are specified. Now, thereisa
<clippath> element whose children can include <path> elements, <text> elements and
other vector graphic shapes such as <circle>. The silhouettes of the child elements are
logically OR'd together to create a single silhouette which is then used to restrict the
region onto which paint can be applied. Also, fixed a bug in the spec by replacing the
'inherit' value on 'clippath’ with a'none' value and fixed the spec to say that 'clippath’ does
not inherit the 'clippath’ property from its parent.

o For Masking, reformulated how clipping paths are specified. Now, thereis a <mask>
element whose children can include any graphical object. The <mask> element can have
attributes mask-units, X, y, width and height to indicate a sub-region of the canvas for the
masking operation. These changes obsolete the following old properties: 'mask-method’,
'mask-width', 'mask-height’, ‘'mask-bbox'.

Changesto Filling, Stroking and Paint Servers.

o Renamed stroke-antialiasing to shape-rendering, with possible values of defaullt,
crisp-edges, optimize-speed and geometric-precision. The revised property is now just a
hint to the implementation. Moved to Rendering chapter.

o Revised the wording on gradient stops to indicate that out-of-order gradient stops should
be resolved by adjusting offset values until the offset values become valid. (Previously,
the spec said that gradient stops would be sorted.)

Changes to Paths.

o Removed the old elliptical arc commands A|aand B|b and inserted a new elliptical arc
command called Ala, which has a different set of parameters than the previous two
formulations. The new arc command matches the formulation of the other path data

commands in that it starts with the current point and ends at an explicit (x,y) value.
Changes to Other Vector Graphic Shapes.

o Inthe sentence, "Mathematically, these shape elements are equivalent to the cubic bezier
path objects that would construct the same shape”, removed the words "cubic bezier”.

Changesto Text:

o Replaced the old <textflow>, <textblock>, <text> and <textsrc> with the new <text> and
<tgpan>, which is a subelement to <text> and has optional attributes x=, y=, dx=, dy=,
style= and href= (which alows it to take the place of <textsrc>). The only lost
functionality from this simplification is the ability to select text across discontiguous
blocks of text elements.

0 Made <textpath> a container element which can contain <tspan> elements or character
data. Thisreformulation was necessary given the changes in the previous bullet.

o Renamed text-antialiasing to text-rendering, with possible values of default,
optimize-legibility, optimize-speed and geometric-precision. The revised property is now
just a hint to the implementation. Moved to Rendering chapter.

Changes to Images.

o Added new property image-rendering, with possible values of default, optimize-speed

and optimize-quality. The new property isjust a hint to the implementation. The new
property is documented in the Rendering chapter.

Changesto Filter Effects:

o Removed vector effects, including VEAdjustGraphics and VEPathTurbulence -- the
working group decided that we hadn't found a critical mass of vector graphics effects
functionality sufficient to warrant the additional complexity

o Modified the names of all of the filter effects processing nodes to have the prefix "fe".
The prefix is meant to prevent name clashes (e.g., <felmage> won't clash with <image>).

o Removed the section on parameter substitution -- the WG didn't see why filter effects
deserved macro expansion over other features.

Changes to Animation chapter to indicate that SV G will include declarative animation. (Syntax
still under development.)

Oneline changein the SVG DOM chapter to change getStyle() to style property, per feedback
from the DOM working group.

Minor changes to the example in the M etadata chapter to fix incorrect references to Dublin Core

elements.
o Changesto DTD

O

O

Changesto DTD to reflect all of the changes described earlier in this section.

Flattened some double-indirect entity referencing into only single-indirect referencing.
Fixed bug where pattern used x,y,width,height twice.

Changed rx,ry on <rect> to be #/ MPLIED so that if one of them is missing the other one
will be assigned the same value (for circular fillets).

Changes with the 25-June-1999 SVG Draft
Specification

o Generd editoria activities:

O

Modified the titles and content of chapters 1 and 2. Chapter 1 is now a Introduction to
SVG and chapter 2 isnow SV G Concepts.

Included afirst pass of information about conformance requirements, including a
discussion of what makes a conforming document, generator, interpreter and viewer.
Included updated wording on the Rendering Model.

Reorganized the appendices. Added the beginnings of Appendix D. SVG's Document
Object Model (DOM), Appendix E. Sample SV G files, Appendix F. Accessibility

Support, Appendix G. Minimizing SV G File Sizes, Appendix H. |mplementation and
performance notes for fonts and Appendix |. References.

Included an example of DOM-based animation>.

Removed some of the wording that indicated tentativeness about certain features as the
specification of various featuresis firming up.

o Coordinate Systems, Transformations and Units modifications:

O

O

O

Changed the 'transform’ property into the transform attribute. The transform attribute

can now accept alist of transformations such as transfor m="translate(-10,-20) scale(2)
rotate(45) translate(5,10)" . Added skew-x and skew-y convenience transformations.
Removed the fit() options from the old transform property and created new attributes
fit-box-to-viewport= and preser ve-aspect-ratio, described in new section Establishing
an Initial User Coordinate System: the fit-box-to-viewport attribute.

Added an Implementation Notes section to the chapter on Coordinate Systems,
Transformations and Units.

Added a note to the description of the transform attribute to indicate that the transform
attribute is applied before other attributes or properties are processed.

o Paths modifications;

O

The Jjj commands (elliptical quadrant) have been dropped from the list of path data
commands because the working group felt the Jj commands would not receive wide

usage.

o The path data commands for switching between absolute and relative coordinates in the
middle of acommand (the former A and r commands) have been dropped because of
their high complexity relative to their limited space-saving value.

o The various arc commands in path data have been consolidated, renamed, and then

expanded. The new commands are: Ala (an arc whose sweep is described by a start angle
and end angle) and B|b (an arc whose sweep is described by two vectors whose
intersections with the ellipse define the start point and end points of the arc).

o Reformulated the T/t path data commands to be consistent with the rest of the path data
commands (i.e., vertices provided, control points automatically calculated asin S/s).

o Broke up the path data commands into separate tables to improve understandability.

o Modified the write-up on markers so that the <marker> element no longer isa
subelement to <path>. <marker> is now defined to be just like <symbol>, but with
marker-specific attributes mar ker -units, marker-width, marker-height and orient. To
use amarker on a given <path> or vector graphic shape, we have new properties
'marker-start’, 'marker-end', 'marker-mid' and 'marker'. See Markers.

o Indicated that each d= attribute in a <path> element is restricted to 1023 characters. See
Path Data.

o Added an Implementation Notes section to the document that describes various details
about expected processing and rendering behavior when drawing paths.

o Added The grammar for path data, a BNF for path data.
o Filling, Stroking and Paint Servers modifications:

o Included anote under 'fill' property that indicates that open paths and polylines still can
befilled.

o Provided amore detailed write-up on patterns to make the <pattern> element consistent
in various ways with <symbol>, <marker>, <lineargradient> and <radialgradient>.

o Modified gradients in various ways. Replaced attribute target-type with gradient-units.
Replaced <lineargradient> attributes vector-start-x, vector-start-y, vector-length,
vector-angle with x1, y1, x2, y2. Replaced <radialgradient> attributes outermost-origin-x,
outermost-origin-y, outermost-radius, innermost-x, innermost-y with cx, cy, r, fx, fy.
Removed attributes target-1eft, target-top, target-right, target-bottom, which were deemed
superfluous. Renamed attribute matrix to gradient-transform. Added gradient-transform
back to linear gradients (they werein an earlier draft). Renamed <gradientstop> to
<stop> to save space since the working group decided it didn't want to offer non-linear
gradient ramps. Removed attribute color from <stop> and included new paragraphs
indicating that color and opacity are set viathe 'color' and 'opacity’ properties.

o Added avalue of none to property 'stroke-dasharray'.

o Text modifications:

o Broke the <textflow> element into two elements <textblock> and <textflow> to greatly
simplify the feature, to remove the need to maintain consistent doubly linked lists, and to
remove the possibility of cyclic references. Removed <tf> and renamed <t> to <tref>

0 Renamed the <src> subelement to <text> to <textsrc> for more consistency in
nomenclature and to avoid use of such a generic element name for such a specific
purpose.

o Generad/Miscellaneous:

O

O

Added a syntax and various processing details for Filter Effects

Altered the description of the <symbol> element to reflect the changesin
transform-related attributes and properties.

In the chapter on Other Vector Graphic Shapes, changed the attributes on <ellipse> from

major/minor to rx/ry for consistency with other parts of the spec, removed the angle
attribute on ellipse, reformulated polygon to be exactly line polyline except that it
automatically closes, changed "verts" to "points’, and added rounding radii rx and ry to
rectangle. Also, included a note about the 1023 character limit on the "points" attribute
for <polyline> and <polygon>.

Removed property 'z-index'. The working group decided that a z-index effect can be
achieved either by having CSS manage multiple SVG drawings or by rearranging
graphical elements viathe DOM. A z-index option would complicate implementation and
streaming for little gain.

Add a chapter on Metadata, with an initial description of how metadata would work with
SVG.

Removed the <private> element after concluding it is unnecessary given XML

namespaces and the new W3C approach to validating namespaces. As a consequence,
modified the write-up under Private Data.

Updated the descriptions under Embedding Foreign Object Types to reflect increased
certainty about the direction SVG is headed in this area.

Added a General |mplementation Notes section to the chapter on Conformance
Requirements and Recommendations which discusses implementation issues that apply
across the entire SV G language. In particular, added sections Forward and Undefined
References (which explains implementation rules involving references that aren't valid at
initial processing time) and Referenced objects are "pinned” to their own coordinate
systems.

Changed all occurrences of "SV G processor” to "SV G user agent”.

Fixed all incorrect references to <description> and replaced them with <desc>.

o Summary of changesto the DTD:

O

O

O

Gave the <a> element have the same content model as the <g> element.
Add transform attribute to most graphic objects.

Added attributes fit-box-to-viewport and preserve-aspect-ratio to <svg> and <symbol>
elements

Added attributes x and y to the <svg> element.

For symbol _descriptor_attributes, renamed attributes x-min, y-min, X-max, y-max to X, Y,
width, height, respectively.

Modified the <marker> element to reflect the revised formulation for markers.

Added a <pattern> element which reflects the modified write-up on patterns. (The
<pattern> element was missing from the previous DTD.).

Modified the definitions of <lineargradient> and <radialgradient> to reflect the modified
write-up on gradients.

Renamed <gradientstop> to <stop>.
Removed attribute color from <stop>.

o Changed the attributes on <ellipse> from mgjor/minor to rx/ry for consistency with other
parts of the spec, removed the angle attribute on ellipse, reformulated polygon to be
exactly line polyline except that it automatically closes, changed "verts' to "points’, and
added rounding radii rx and ry to rectangle.

o Removed the <private> element after concluding it is unnecessary given XML
namespaces and the new W3C approach to validating namespaces.

o Added xml:space to every element that might have character data content somewhere
inside of it. Thiswill allow content developers to control whether white spaceis
preserved on <text> elements.

o Text-related: renamed <src> to <textsrc> for more consistency in nomenclature and to
avoid use of such ageneric element name for such a specific purpose. Because of
modificationsin the area of defining textflows, added <textblock>, renamed <t> to <tref>
and changed <textflow> so that if can only contain <tref> subelements.

o Added asyntax for Filter Effects
o Modified <foreignobject> such that it can only be the child of a <switch> element.
o Added an href attribute to the <script> element. (Oversight that it wasn't there before.)

o General clean-up in the area of anything using attributes x, y, width or height. Defined
standard entities xy_attributes, bbox_attributes optional and
bbox_attributes wh_required. In particular, the following elements now require width
and height attributes: <image>, <rect>, <foreignobject>, <pattern>.

Changes with the 12-April-1999 SVG Draft
Specification

e Included aDTD in Appendix C.

« Thereisnow an <svg> element which istheroot for all stand-alone SV G documents and for any
SV G fragments that are embedded inline within a parent XML grammar. (See SVG Document

Structure>.)

« Added initial descriptions of how text-on-a-path and SV G-along-a-path might work. (See Text
on aPath.)

« Added <symbol> and <marker> elements to provide packaging for the following:

o Necessary additional attributes on template objects
o A clean way of defining standard drawing symbol libraries

o The definition of a graphic to use as a custom glyph within a <text> element (e.g.,
generalize "text-on-a-path" to "SV G-on-a-path")

o Necessary additional attributes for pattern definitions (for pattern fill)
o Definition of a sprite for an animation

o Marker symbols
o Arrowheads

Also added a new optional <data> subelement to the <path> element to provide the necessary
hook to provide for custom arrowheads.

« Many changes to Coordinate Systems, Transformations and Units to make the section more
complete and more readable. The specific changes to this chapter include:

o Relatively minor changesin terminology to better match the terminology used in the
CSS2 specification. For example, the definitions of the terms canvas and viewport were
modified to be as close as possible to the corresponding definitions in the CSS2
specification.

o Theinitia coordinate system is now based on the parent document's notion of pixels
rather than points.

o When embedded inline within a parent XML grammar, the outermost <svg> element in
an SV G document acts like a block-level formatting object in the CSS layout model and
thus supports CSS positioning properties such as'left' and 'width' and the CSS
properties'clip' and 'overflow'.

o Nested <svg> elements are the mechanism for recursively including nested SVG
drawings, but also provide the one and only means of establishing a new viewport and
thus changing the meaning of the various CSS unit specifiers such as px, pt, cm and %
(percentages). Nested <svg> elements support the same CSS positioning properties as an
outermost <svg> element,

« Removed <piedlice>, which was considered to be of lesser general utility than the other
predefined vector graphic shapes, and added <line>, which allows a one-segment line to be
drawn. See Other Vector Graphic Shapes.

« Replaced the <athtml> element with a description for how to use the <switch> (or equivalent)
elementsin XML grammars or the <object> element in HTML 4.0 as the recommended way to
provide for alternate representations in the event the user agent cannot process an SV G drawing.
(See Backwards Compatibility.)

« Removed the comment in the discussion under <description> and <title> which said that the
given text string could be specified as an attribute. The text string now can only be supplied as
character data. (See The <description> and <title> elements.

« Changed the wording about text strings to say that the current point is advanced by the metrics of
the glyph(s) used rather than the character used. (See text positioning.)

« Added some details to the description of the <textflow> element to indicate that <text> elements
can be directly embedded within <textflow> and that the current text position is remembered
within a <textflow> from one <text> element to the next <text> element. (See Text Flows.)

« Added anew property 'text-antialiasing' to provide a hint to the user agent about whether or not

text should be antialiased. The lack of such a property was an inadvertant omission from
previous versions of the spec and was called for in the SVG Requirements document.

« Removed the 'matrix’ property from linear gradients because it was unnecessary
(overspecification) and the 'spread-method' property from radial gradients because it was
difficult to specify and implement, it didn't match current common usage and is of little apparent
utility. (See Gradients.)

« Included anew section 2.1 with a brief discussion about the "image/svg" MIME type.
Subsequent sections in chapter 2 have been renumbered accordingly. (See SVG MIME Type.)

« Added another bullet to the Accessibility section to indicate that SV G's zooming feature aids
those with partial visual impairment. (See Accessibility.)

 Elaborated to asmall level on how Embedded Foreign Object Types might work to reflect
progess within the working group on the issue.

« Changed altglyph from a subelement to <text> to a CSS property in response to discussion on
the W3C Character Model. See Alternate Glyphs.

« Inthe discussion about the <use> element, made clear that template objects could come from
either the same document or an external document.

« Minor changes to description under Event Handling to indicate that any element can have an

onload or onunload event handler to provide additional control via scripting as parts of the
drawing download progressively.

Changes with the 05Feb1999 SVG Draft
Specification

Thiswasthe first public working draft.

previous next contents properties index

Appendix C: Document Type Definition

The DTD is also available for download.

<IENTITY % nanespace
"xm ns CDATA #FI XED ' http://wwm. w3. or g/ G aphi cs/ SVE SVG 19990706' " >

<IENTITY % cl ass
"cl ass NMICKENS #| WMPLI ED' >

<IENTITY %id
"id I D #l MPLI ED" >

<IENTITY % ang
"xm : 1l ang NMIOKEN #| MPLI ED" >

<

ENTITY %style
"styl e CDATA #l MPLI ED" >

<

ENTITY % cl ass_i d_| ang
"%l ass;

% d;

%style; ">

<

ENTITY % class_id_|ang _style
"%l ass;

% d;

% ang;

Istyle;">

<IENTITY % structured_text

"cont ent CDATA #FI XED 'structured text'">

<

ENTI TY % xml space
"xm : space (defaul t|preserve) #l MPLIED'>

<IENTITY % g_event handl ers

"onnmousedown CDATA #| MPLI ED
onnmouseup CDATA #| MPLI ED
oncl i ck CDATA #l MPLI ED
ondbl cl i ck CDATA #l MPLI ED
onnmouseover CDATA #l MPLI ED
onnousenove CDATA #| MPLI ED
onnobuseout CDATA #| MPLI ED
onkeydown CDATA #| MPLI ED
onkeypr ess CDATA #l MPLI ED
onkeyup CDATA #l| MPLI ED
onl oad CDATA #l| VPLI ED
onsel ect CDATA #| MPLI ED' >

<IENTITY % r_eventhandl ers
"onunl oad CDATA #l MPLI ED
onzoom CDATA #l WPLI ED ">

<IENTITY % systemrequired
"systemrequi red CDATA #| MPLI ED' >

<IENTITY % repl aced
"xm :link CDATA #FI XED ' si npl e’

http://www.w3.org/Graphics/SVG/svg-19990706.dtd

show CDATA #FI XED ' enbed'
act uat e CDATA #FI XED ' aut o'
href CDATA #REQUI RED ">

<IENTITY % hyperlink
"xm :link CDATA #FI XED ' si npl e’
show CDATA #FI XED ' repl ace'
actuat e CDATA #FI XED ' user'
href CDATA #REQUI RED ">

<

ENTITY % xy_attri butes
"x CDATA #l MPLI ED
y CDATA #| MPLI ED" >

<

ENTI TY % dxdy_attri butes
"dx CDATA '0'
dy CDATA '0'">

<IENTITY % bbox_attri butes_optional
"Oxy_attributes;
wi dt h CDATA #l| MPLI ED

hei ght CDATA #l MPLI ED" >

<

ENTI TY % bbox_attri but es_wh_required
"Oxy_attributes;

wi dt h CDATA #REQUI RED

hei ght CDATA #REQUI RED" >

<

ENTITY %ref_xy_attributes
"ref-x CDATA #| MPLI ED
ref-y CDATA #l MPLI ED" >

<

ENTITY %fit_attributes
"fit-box-to-viewort CDATA #l MPLI ED
preserve-aspect-rati o CDATA 'xmd-ym d neet'">

<IENTITY %transformattributes

"t ransf or m CDATA #| MPLI ED' >

<IENTITY % shapes

"rect|circle|lellipse|polyline|polygon|line">

<

ENTITY % g_el enents
"(defs?,title?, desc?, (use|inage|text]|path|¥%hapes;|g|lsw tch|svg|la)*)">

<IENTITY % g_el enents_and_f or ei gnobj ect

"(defs?,title?, desc?, (use|inage|text|path|¥%hapes;|g|sw tch|svg|a|foreignobject)*)">

<IENTITY %filter_node_attributes
"in CDATA #l MPLI ED
nodei d CDATA #| MPLI ED' >

<IENTITY % conponent _transfer_function_attributes
"type CDATA #REQUI RED
t abl e-val ues CDATA #l MPLI ED
sl ope CDATA #l MPLI ED
i ntercept CDATA #l MPLI ED
anpl i tude CDATA #l MPLI ED
exponent CDATA #| MPLI ED
of f set CDATA #l| MPLI ED" >

<! ELEMENT svg %g_el enents; >
<I ATTLI ST svg
Y%manespace;
%l ass_id_|l ang_styl e;
Ysystem required;
%g_event handl ers;
% space;

<
<

<
<

<
<

<
<

<l

<

<
<

<
<

% _event handl ers;

% ransformattributes;
%bbox_attributes_wh_required;

% ef _xy_attributes;

% it_attributes;

al | ow- zoom and-pan (true | false) "true" >

ELEMENT g %g@_el ements; >
ATTLI ST g

%l ass_id_|lang_style;
Y%system required;
%y_event handl ers;

% space;

% ransformattributes; >

ELEMENT switch %_el enents_and_f or ei gnobj ect ;
ATTLI ST swi tch

%l ass_id_|l ang_styl e;

Y%system required;

%y_event handl ers;

% space,;

% ransformattributes; >

ELEMENT path (data)* >

ATTLI ST path

%! ass_i d_| ang;

Y%system required,

%y_event handl ers;

% ransformattributes;

d CDATA #REQUI RED

fl at ness CDATA #| MPLI ED

nom nal -1 engt h CDATA #| MPLI ED>

ELEMENT data EMPTY >
ATTLI ST data
d CDATA #REQUI RED >

ELEMENT rect EMPTY >

ATTLI ST rect

%l ass_i d_I| ang;

Y%system required;

%g_event handl ers;

% ransformattributes;
%bbox_attributes_wh_required;
rx CDATA "#l MPLI ED"

ry CDATA "#l MPLI ED" >

ELEMENT circl e EMPTY >
ATTLI ST circle

%! ass_i d_| ang;
Y%system required;
%y_event handl ers;

% ransformattributes;
cx CDATA "0"

cy CDATA "0"

r CDATA #REQUI RED>

ELEMENT el |i pse EMPTY >
ATTLI ST el li pse

%l ass_i d_I| ang;
Y%system required;
%y_event handl ers;

% ransformattributes;
cx CDATA "O0"

cy CDATA "0"

rx CDATA #REQUI RED

ry CDATA #REQUI RED>

>

<! ELEMENT pol yl i ne EMPTY >
<! ATTLI ST pol yli ne
%l ass_i d_| ang;
Y%system required;
%y_event handl ers;
% ransformattributes;
poi nts CDATA #REQUI RED>

<!
<

ELEMENT pol ygon EMPTY >
ATTLI ST pol ygon

%! ass_i d_| ang;

Y%system required,
%g_event handl ers;

% ransformattributes;
poi nt s CDATA #REQUI RED>

<
<

ELEMENT |ine EMPTY >
ATTLI ST line

%l ass_i d_I ang;
Y%system required;
%y_event handl ers;

% ransformattributes;
x1 CDATA "0"

x2 CDATA "0"

y1l CDATA "O0"

y2 CDATA "0">

<
<

ELEMENT text (#PCDATA|tspan|textpath)* >
ATTLI ST text

%l ass_id_|lang_style;

Y%system required;

%y_event handl ers;

% space;

% ransformattributes;

%y_attributes; >

<
<

ELEMENT t ext path (#PCDATA| tspan)* >
ATTLI ST textpath

start-of fset CDATA "0"

% epl aced; >

<
<

ELEMENT t span (#PCDATA)* >
ATTLI ST tspan

%l ass_id_|l ang_styl e;
Y%system required;

%y_event handl ers;

9% space,;

9%y _attributes;

%lixdy_attri butes;

% epl aced; >

<! ELEMENT use (desc?, title?) >
<! ATTLI ST use

%l ass_i d_| ang;

Y%system required;

%y_event handl ers;

% ransformattributes;

%box_attributes_optional;

% epl aced; >

<! ELEMENT i nmage (desc?, title?) >
<! ATTLI ST i mage

%l ass_id_|l ang_styl e;

Y%system required;

%y_event handl ers;

% space;

% ransformattributes;

%bbox_attributes_wh_required;
% epl aced; >

<! ELEMENT f or ei gnobj ect (#PCDATA)* >
<! ATTLI ST forei gnobj ect
%l ass_id_|l ang_styl e;
Y%system required;
%y_event handl ers;
9% space,;
% ransformattributes;
%box_attributes_wh_required;
%structured text; >

<! ELEMENT a %g_el enents; >
<I ATTLI ST a
ohyperlink; >

<! ELEMENT desc (#PCDATA)* >
<I ATTLI ST desc
%l ass_id_|l ang_styl e;
Y%system required;
%y_event handl ers;
% space,;
Ustructured text;>

<! ELEMENT title (#PCDATA)* >
<IATTLI ST title
%l ass_id_|lang_style;
% space;
structured_text;>

<! ELEMENT defs (path|use|image|text|¥%hapes;|g|sw tch|svg|
script]|style|
synbol | mar ker |
i near gradi ent|radi al gradi ent| pattern|
clippath|mask|filter)* >

<! ATTLI ST defs

%l ass_id_|l ang_styl e;
9% space; >

<! ELEMENT scri pt (#PCDATA)* >

<! ATTLI ST scri pt
| anguage CDATA "text/ecmascript"
% epl aced; >

<! ELEMENT styl e (#PCDATA)* >
<I ATTLI ST style type CDATA #FI XED "text/css">

<! ELEMENT synbol %g_el enents; >
<! ATTLI ST synbol
%l ass_id_|l ang_styl e;
% space;
%box_attributes_optional;
% ef _xy_attributes;
%it_attributes;>

<! ELEMENT mar ker %g_el enents; >
<! ATTLI ST narker
%l ass_id_|l ang_styl e;
% space,;
%box_attributes_optional;
% ef _xy_attributes;
% it _attributes;
marker-units (stroke-wi dth | userspace) "stroke-wi dth"
mar ker-wi dth CDATA "3"
mar ker - hei ght CDATA " 3"
ori ent CDATA "0">

<IENTITY %gradient.attrs
"gradient-units (userspace | object-bbox) 'userspace'
gradi ent -t ransf or m CDATA #| MPLI ED" >

<! ELEMENT | i neargradient (stop)* >
<I ATTLI ST | i near gr adi ent
id I D # MPLI ED
%gradi ent. attrs;
x1 CDATA #| MPLI ED
y1l CDATA #l MPLI ED
x2 CDATA #| MPLI ED
y2 CDATA #l MPLI ED
spread-nmethod (stick | reflect | repeat) "stick">

<! ELEMENT r adi al gradi ent (stop)* >
<! ATTLI ST radi al gr adi ent

id I D # MPLI ED

%gr adi ent . attrs;

cx CDATA #l MPLI ED

cy CDATA #l MPLI ED

r CDATA #l MPLI ED

fx CDATA #l MPLI ED

fy CDATA #I MPLI ED>

<! ELEMENT stop EMPTY >
<I ATTLI ST stop
st yl e;
id | D #l MPLI ED
of f set CDATA #REQUI RED>

<! ELEMENT pattern %_el enents; >
<! ATTLI ST pattern
%l ass_id_|l ang_styl e;
% space;
%box_attributes_wh_required;
% ef _xy_attributes;
% it_attributes;
pattern-units (userspace | object-bbox) "userspace"
pattern-transform CDATA #l MPLI ED>

<! ELEMENT cli ppath (path|text|%hapes;|use)* >
<I ATTLI ST cli ppath

%l ass_id_|l ang_styl e;

%m space; >

<! ELEMENT nask %g_el enents; >
<! ATTLI ST nask
%l ass_id_|l ang_styl e;
% space;
nmask-units (userspace | object-bbox) "userspace"
%bbox_attributes_optional ;>

<I'ELEMENT filter (feBlend|feColor|

f eCol or Mat ri x| f eConponent Tr ansf er |
feConposite|feDiffuseLighting|feD spl acement Map|
f eGaussi anBl ur | f el nage| f eMer ge|

f eMor phol ogy| f eOf f set | f eSpecul ar Li ght i ng|
feTile|feTurbul ence)* >

ATTLI ST filter

%! ass_i d_| ang;

filter-units (userspace | object-bbox) "userspace"
%box_attributes_optional;

filter-res CDATA #| MPLI ED>

<

<! ELEMENT feBl end EMPTY >
<! ATTLI ST feBl end
% ilter_node_attributes;
node (normal | nultiple | screen | darken | lighten) "normal"

<l
<!

<!
<l

<!
<l

<l
<!

<!
<

<!
<l

<

<l
<

<l
<!

i n2 CDATA #REQUI RED>

ELEMENT feCol or EMPTY >
ATTLI ST feCol or

% ilter_node_attributes;
col or CDATA #| WPLI ED>

ELEVMENT feCol orMatri x EMPTY >
ATTLI ST feCol orMatri x

% ilter_node_attributes;

type CDATA #REQUI RED

val ues CDATA #| VPLI ED>

I ELEMENT f eConponent Transfer (feFuncR?,feFuncG?, feFuncB?, f eFuncA?) >
I ATTLI ST f eConponent Tr ansf er

%ilter_node_attributes; >

I ELEMENT feFuncR EMPTY >
I ATTLI ST feFuncR

%onponent _transfer_function_attributes; >

| ELEMENT f eFuncG EMPTY >
I' ATTLI ST feFuncG

%onponent _transfer_function_attributes; >

ELEMENT feFuncB EMPTY >
ATTLI ST feFuncB
%onponent _transfer_function_attributes; >

ELEMENT feFuncA EMPTY >
ATTLI ST feFuncA
%onponent _transfer_function_attributes; >

ELEMENT f eConposite EMPTY >

ATTLI ST feConposite

% ilter _node_attributes;

operator (over | in | out | atop | xor | arithnmetic) "over"
k1l CDATA #l MPLI ED

k2 CDATA #l MPLI ED

k3 CDATA # MPLI ED

k4 CDATA #l MPLI ED

i n2 CDATA #REQUI RED>

ELEMENT feDiffuseLighting (feDi stantLight]|fePointLight]|feSpotLight) >
ATTLI ST feDiffuseLighting

% ilter_node_attributes;

resul t-scal e CDATA #| MPLI ED

surface-scal e CDATA #l MPLI ED

di f fuse- constant CDATA #l MPLI ED

I'i ght-col or CDATA #| MPLI ED>

ELEMENT feDi stantLi ght EMPTY >
ATTLI ST feDi stantLi ght

azi mut h CDATA #| MPLI ED

el evati on CDATA #l MPLI ED>

ELEMENT f ePoi nt Li ght EMPTY >
ATTLI ST fePoi ntLi ght

x CDATA #l MPLI ED

y CDATA #| MPLI ED

z CDATA #l MPLI ED>

ELEMENT feSpotLi ght EMPTY >
ATTLI ST feSpot Li ght

x CDATA #| MPLI ED

y CDATA #l MPLI ED

z CDATA #l MPLI ED

poi nt s-at-x CDATA #l MPLI ED

<l
<

<!
<

<l

<l
<

<l
<

<l
<

<l
<

<!
<l

A

poi nts-at-y CDATA #l MPLI ED
poi nts-at-z CDATA #l MPLI ED
specul ar - exponent CDATA #l MPLI ED>

ELEMENT feDi spl acenent Map EMPTY >
ATTLI ST f eEDi spl acenent Map
% ilter_node_attributes;
scal e CDATA #| MPLI ED
x-channel -selector (R | G|
y-channel -sel ector (R | G|
i n2 CDATA #REQUI RED>

B| A "A"
B| A "A"
ELEMENT f eGaussi anBl ur EMPTY >

ATTLI ST feGaussi anBl ur

% ilter _node_attributes;
st d-devi ati on CDATA #l MPLI ED>

| ELEMENT fel mage EMPTY >

ATTLI ST fel mage

nodei d CDATA #| MPLI ED
% epl aced;

% ransformattributes; >

ELEMENT feMerge (feMergeNode)* >
ATTLI ST feMerge
%ilter_node_attributes;>

ELEMENT f eMer geNode EMPTY >
ATTLI ST feMergeNode
in CDATA #| MPLI ED>

ELEMENT feMor phol ogy EMPTY >
ATTLI ST f eEMor phol ogy
%ilter_node_attributes;

operator (erode | dilate) "erode"
radi us CDATA #l| MPLI ED>

ELEMENT feOf fset EMPTY >
ATTLI ST feO fset

% ilter_node_attributes;
dx CDATA #I MPLI ED

dy CDATA #l MPLI ED>

ELEMENT feSpecul arLi ghting (feD stantLight|fePointLight]|feSpotlLight) >
ATTLI ST feSpecul arLi ghti ng

% ilter_node_attributes;

surface-scal e CDATA #l MPLI ED

specul ar - const ant CDATA #l MPLI ED

specul ar - exponent CDATA #l| MPLI ED

I'i ght-col or CDATA #| MPLI ED>

I ELEMENT feTile EMPTY >
PATTLI ST feTile

% ilter_node attributes; >

I ELEMENT f eTur bul ence EMPTY >
I ATTLI ST feTurbul ence

% ilter_node_attributes;

base-frequency CDATA #l MPLI ED

num oct aves CDATA #l MPLI ED

type (fractal -noise | turbul ence) "turbul ence">

previous next contents properties index

Appendix D: SVG's Document Object
Model (DOM)

D.1 SVG DOM Overview

The SVG DOM has the following general characteristics.

« It supportsall appropriate and relevant facilities defined by the two documents Document Object
Model (DOM) Level 1 Specification and Document Object Model (DOM) Level 2 Specification

« Wherever possible, the SVG DOM maintains consistency with the DOM for HTML 4.0, which
was defined initially in Document Object Model (HTML) Level 1 of the DOM Level 1

Specification and which has been enhanced in various ways in the DOM Level 2 Specification

« Inthose cases where the above two approaches do not provide sufficient capabilities,
SV G-gpecific DOM facilities are provided.

In particular, the following should be noted:
o The SVG DOM supportsthe CSS DOM facilities described in the DOM Level 2 Specification
document
« The SVG DOM supports the event handling facilities described in the DOM Level 2
Specification document

D.2 Naming Conventions

The SVG DOM follows similar naming conventionsto the HTML DOM Level 1.

All names are defined as one or more English words concatenated together to form a single string.
Property or method names start with the initial keyword in lowercase, and each subsequent word starts
with acapital letter. For example, a property that returns document meta information such as the date the
file was created might be named "fileDateCreated". In the ECM A Script binding, properties are exposed
as properties of a given object. In Java, properties are exposed with get and set methods.

The return value of an attribute that has a datatype that isavalue list is always capitalized, independent
of the case of the value in the source document. For example, if the value of the align attribute on a P
element is"left" then it isreturned as "L eft". For attributes with the CDATA data type, the case of the
return value is that given in the source document.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-DOM-Level-2/
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-DOM-Level-2/
http://www.w3.org/TR/WD-DOM-Level-2/
http://www.w3.org/TR/WD-DOM-Level-2/
http://www.w3.org/TR/WD-DOM-Level-2/
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

D.3 Objects related to SVG documents

| nterface SVGDocument

An SVGocunent istheroot of the SVG hierarchy and holds the entire content. Beside
providing access to the hierarchy, it also provides some convenience methods for accessing
certain sets of information from the document.

| DL Definition

interface SVGocunent

Docunent {

/! Same neanings as in HTM. DOM Level 1

readonly
readonly
readonly
voi d
voi d
voi d
voi d

El enent

attribute DOVStr
attribute DOVStr
attribute DOMStr
attribute DOVStr

ing title;
ing referrer;
ing donai n;
ing URL;
open();

cl ose();

wite(in DOVString text);
witeln(in DOVBtring text);
get El enent Byl d(in DOMString el enentld);

/1 Methods to elimnate flicker in animations.
unsi gned | ong suspend_redraw(in unsigned |long max_wait_milliseconds);
unsuspend_redraw(i n unsi gned | ong suspend_handl e_i d)

voi d

void

rai ses(DOVExcepti on);

unsuspend_redraw_al | ();

/1 The following utility nethods for matrix arithnmetic will be
abl e fromthe DOM

/1 avail
/] matri
/] matri
/1 matri
/] matri
/] matri
/1 matri
/] matri
/] matri
/1 matri
/] matri
/] matri
/] matri
/] matri
/] matri
/] matri
/] matri
/] matri

b
Attributes

title

x

X X X XX X X X X X X X X X X X

+= Vect or 2D
-= Vect or 2D
*= nunber

/= nunber

*= Vect or 2D
= Vector 2D
*= Matrix2D
== nunber

== Vect or 2D

. FSi npl e()

. Rot at e(angl e)

. Rot at e(Vect or 2D)

. Fli pX()

.FlipY()

. SkewX()

. SkewY()

.Inverse()

(Details not yet available.)
- translation
- translation
- scaling
- scaling
- non-orthogonal scaling
- non-orthogonal scaling
- matrix concatenation
- test scaling matrix identity
- test for sinple scaling
- transformation is an offset/scale
- rotation
- rotation defined by vector (atan(y/x))
- flip +x <-> -x
- flip 4y <-> -y
- skew in direction of X axis
- skewin direction of Y axis
- invert the matrix

The title of adocument as specified by theti t | e element withinthedef s
sub-element of the svg element that encompasses the document (i.e.,
<svg><defs><title>Here is the title</titl e></defs><svg>

referrer

Returns the URI of the page that linked to this page. The value is an empty string
if the user navigated to the page directly (not through alink, but, for example, via
a bookmark).

domai n

http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

The domain name of the server that served the document, or anull string if the
server cannot be identified by a domain name.

URL
The complete URI of the document.
Methods
open

Note. This method and the ones following alow a user to add to or replace the
structure model of a document using strings of unparsed SV G. Open a document
stream for writing. If adocument exists in the target, this method clearsiit.

This method has no parameters.

This method returns nothing.

This method raises no exceptions.

cl ose

Closes a document stream opened by open() and forces rendering.
This method has no parameters.

This method returns nothing.

This method raises no exceptions.

wite

Write a string of text to a document stream opened by open() . Thetext is parsed
into the document's structure model.

Parameters

t ext The string to be parsed into some structure in the document
structure model.

This method returns nothing.
This method raises no exceptions.

witeln

Write a string of text followed by a newline character to a document stream
opened by open() . Thetext is parsed into the document's structure model.

Parameters

t ext The string to be parsed into some structure in the document
structure model.

This method returns nothing.
This method raises no exceptions.

get El enent Byl d

Returns the Element whosei d is given by elementld. If no such element exists,
returnsnul | . Behavior is not defined if more than one e ement has thisi d.

Parameters
el enment 1 d Theuniquei d value for an element.

Return Value
The matching element.

This method raises no exceptions.
suspend_r edr aw

Takes atime-out value which indicates that redraw should not occur until: (a) the
corresponding unsuspend_r edr aw(suspend_handl e_i d) call has been
made, (b) anunsuspend_r edraw al | () call has been made, or () itstimer
has timed out. In environments that do not support interactivity (e.g., print media),
then redraw should not be suspended. suspend_handl e_id =
suspend_redraw(max_wait_mlliseconds) and

unsuspend_r edr awm suspend_handl e_i d) should be packaged as
balanced pairs. When you want to suspend redraw actions as a collection of SVG
DOM changes occur, then precede the changes to the SVG DOM with a method
cal similar tosuspend_handle_id =

suspend_redrawmax_wait_m || i seconds) andfollow the changes
with amethod call similar tounsuspend_r edr aw(suspend_handl e_i d) .
Note that multiple suspend_r edr aw calls can be used at once and that each
such method call istreated independently of the other suspend_r edr aw
method calls.

Parameters

max_wait_m | iseconds Theamount of timein millisecondsto
hold off before redrawing the device.
Values greater than 60 seconds will be
truncated down to 60 seconds.
Return Value

A number which acts as a unique identifier for the given
suspend_r edraw() call. Thisvaue should be passed as the parameter
to the corresponding unsuspend_r edr aw() method call.

This method raises no exceptions.
unsuspend_r edr aw

Cancels aspecified suspend_r edr aw() by providing aunique
suspend_handl e_i d.

Parameters
suspend_handl e_i d A number which acts as a unique identifier for
the desired suspend_r edraw() call. The
number supplied should be a value returned
from aprevious call to
suspend_redraw() .
Return Value
None.

This method will raise a DOMException with value NOT_FOUND_ERR if an
invalid value (i.e., no such suspend_handl e_i d isactive) for
suspend_handl e_i d isprovided.

unsuspend_redraw al |
Cancels al currently activesuspend_r edr aw() method calls. This method is

most useful at the very end of aset of SVG DOM calls to ensure that all pending
suspend_r edr aw() method calls have been cancelled.

Parameters
None.
Return Value
None.
This method raises no exceptions.

I nterface SVGElement

All SVG element interfaces derive from this class.
IDL Definition

interface SVGEl enent : El enment {
readonly attribute SVGocunent owner SVGocument;

b

CSSsStyl eDecl aration style;

| nter face SVGPathElement

Corresponds to the <path> element.
IDL Definition

interface SVGPat hEl enent : SVCGEl ement {
/1l Create an enpty SVGPat hSeg, specifying the type via a nunber.
/1 Al values initialized to zero.
SVGPat hSeg creat eSVGPat hSeg(i n unsi gned short pat hsegType)

/1
11

rai ses(DOVExcepti on);

Create an enpty SVGPat hSeg, specifying the type via a single character.
Al values initialized to zero.

SVGPat hSeg creat eSVGPat hSegFronletter(in DOVBtri ng pathsegTypeAsLetter)

/1
/1

rai ses(DOVExcepti on);

Create an SVGPat hSeg, specifying the path segnent as a string.
For exanple, "M 100 200". All irrelevant values are set to zero.

SVGPat hSeg creat eSVGPat hSegFronfString(in DOVBtri ng pat hsegStri ng)

rai ses(DOVExcept i on);

/1 This set of functions allows retrieval and nodification

/1 to the path segnents attached to this path object.

/1 Al 20 defined types of path segnments are avail able

/1 through these attributes and nethods.

readonly attribute unsigned | ong nunber_of pathsegs;

SVGPat hSeg get SVGPat hSeg(i n unsi gned | ong index);

DOVSt ri ng get SVGPat hSegAsString(in unsigned | ong index);
SVGPat hSeg i nsert SVGPat hSegBef ore(i n SVGPat hSeg newSVGPat hSeg,

i n unsigned | ong index)
rai ses(DOVExcepti on);

SVGPat hSeg repl aceSVGPat hSeg(i n SVGPat hSeg newSVGPat hSeg,

in unsigned | ong index)
rai ses(DOVExcepti on);

SVGPat hSeg renoveSVGPat hSeg(i n unsi gned | ong i ndex)

rai ses(DOVExcepti on);
SVGPat hSeg appendSVGPat hSeg(i n SVGPat hSeg newSVGPat hSeq)
rai ses(DOVExcepti on);

/1 This alternate set of functions also allows retrieval and nodification
/1 to the path segnents attached to this path object.

/1 These attributes and nmethods provide a "normalized" view of

/1 the path segnents where the path is expressed in terns of

/1 the follow ng subset of SVGPathSeg types:

/'l kSVG_PATHSEG MOVETO ABS (M, kSVG PATHSEG LI NETO ABS (L),

/1 kSVG_PATHSEG CURVETO CUBI C_ABS (C) and kSVG PATHSEG CLOSEPATH (z).
/1 Note that nunber_of pathsegs and nunber_of _normal i zed_pat hsegs

/1 may not be the sane. In particular, elenments such as arcs may

/1 be expanded into nultiple kSVG PATHSEG CURVETO CUBI C_ABS (C)

/'l pieces when retrieved in the "nornalized" view of the path object.

readonly attribute unsigned | ong nunber_of nornalized_pat hsegs;

SVGPat hSeg get Nor mal i zedSVGPat hSeg(i n unsi gned | ong i ndex);
DOVSt ri ng get Nor mal i zedSVGPat hSegAsStri ng(i n unsigned | ong index);
SVGPat hSeg i nsert Nornal i zedSVGPat hSegBef ore(i n SVGPat hSeg newSVGPat hSeg,

in unsigned | ong index)
rai ses(DOVExcepti on);
SVGPat hSeg repl aceNor nal i zedSVGPat hSeg(i n SVGPat hSeg newSVGPat hSeg,
in unsigned | ong index)
rai ses(DOVExcepti on);

SVGPat hSeg renoveNor mal i zedSVGPat hSeg(i n unsi gned | ong i ndex)
rai ses(DOVExcepti on);
SVGPat hSeg appendNor mal i zedSVGPat hSeg(i n SVGPat hSeg newSVGPat hSeq)

rai ses(DOVExcepti on);
s

Attributes

Details will be provided later.
M ethods

Details will be provided later.
| mplementation Notes

The following is recommended behavior (not required to be conforming) for SVG user
agents regarding d="..." and the DOM.

= The XML DOM aready provides access to the raw strings as entered for the
d=".." attributes on <path> and <data> elements. The recommended behavior is
that if the path data has not been changed viathe DOM, then any XML DOM
callsto get the attribute values of the d="..." attributes should return (to the best
degree possible) the strings as originally entered. (The simplest way to implement
path data logic to make this possible isto retain all path data stringsin their
origina form.)

= Whenever the path data has been changed viathe SVG DOM, the SVG DOM
should attempt to preserve as much of the original d="..." attribute strings as
possible. All path segments that were on a particular <path> or <data> elements
should stay with the original element. The exception is when modifications to the
path dataviathe SVG DOM causes particular d="..." attribute strings to exceed
the 1023 character limit. The rule should be as follows: whenever a change to the
DOM causes aparticular d="..." attribute to have more characters that 1023, take
segments off the end of the given d="..." attribute and push onto the beginning of
thed="..." attribute of the subsequent <data> element (creating a new such
element if necessary). If pushing new segments onto the beginning of a
subsequent <data> element causesitsd="..." attribute to exceed 1023 characters,
then take segments off of itsd="..." attribute and push onto the beginning of the

d="..." attribute of its subsequent <data> element, until all d="..." attributes
satisfy the 1023 character limit restriction.

I nterface SVGPathSeg

Corresponds to a single segment within a path data specification.
IDL Definition

interface SVGPat hSeg {
/1 Path Segnent Types

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

readonly attribute
readonly attribute

kSVG_PATHSEG UNKNOAN =0, [/ ?
kSVG_PATHSEG CLOSEPATH =1 /Il z
kSVG_PATHSEG _MOVETO ABS =2, /I M
kSVG_PATHSEG_MOVETO_REL =3 // m
kSVG_PATHSEG LI NETO_ABS =4 I/ L
kSVG_PATHSEG LI NETO_REL =5 /]|
kSVG_PATHSEG _CURVETO CUBI C_ABS =6, [/l C
kSVG_PATHSEG _CURVETO_CUBI C_REL =7 Il ¢
kSVG_PATHSEG_CURVETO_QUADRATI C_ABS =8 [/l Q
kSVG_PATHSEG_CURVETO_QUADRATI C_REL =9 // g
kSVG_PATHSEG ARC_SWEEP_ABS =10; /1 A
kSVG_PATHSEG ARC_SWEEP_REL =11; // a
kSVG_PATHSEG ARC_VECTOR ABS =12; // B
kSVG_PATHSEG ARC_VECTOR REL =13; // b
kSVG_PATHSEG LI NETO_HORI ZONTAL_ABS = 14: // H
kSVG_PATHSEG LI NETO_HORI ZONTAL_REL = 15: // h
kSVG_PATHSEG LI NETO_VERTI CAL_ABS =16; /1 V
kSVG_PATHSEG LI NETO_VERTI CAL_REL =17: /1 v
kSVG_PATHSEG _CURVETO_CUBI C_SMOOTH_ABS =18; /1 S
kSVG_PATHSEG _CURVETO_CUBI C_SMOOTH_REL =19; I/ s
kSVG_PATHSEG_CURVETO_QUADRATI C_SMOOTH_ABS = 20; // T
kSVG_PATHSEG CURVETO_QUADRATI C_SMOOTH _REL = 21; // t

unsi gned short pat hsegType
DOVSt ri ng pat hsegTypeAsLetter

/1 Attribute values for a path segnent.

/1 Each pathseg has slots for any possible path seg type

/1 (W don't want to define 20 different subclasses to PathSeg -
our document is

bute double

bute double

bute double

bute double

bute double

bute double

attri
attri
attri
attri
attri
attri

readonly
readonly
readonly
readonl y

attribute
attribute
attribute
attribute

I ong enough al ready.)
X; /1 end point for pathseg (or center for Al al/B/b)
y; /1 end point for pathseg (or center for Alal/B/b)

x0, y0; /1 for control points (start point for B/b)
x1,y1; /1 for control points (end point for B/b)
rl, r2; /1 radii for Aa/B/b

al,a2,a3; // angles for Ala

Pat h par ent Pat h;

SVGocunent owner SVGDocunent ;
SVGPat hSeg previ ousSi bl i ng;
SVGPat hSeg next Si bl i ng;

previous next contents properties index

Appendix E: Sample SVG Files

Not yet written.

previous next contents properties index

Appendix F: Accessibility Support
G.1 Accessibility and SVG

Drawings donein SV G will be much more accessible that drawings done as image formats for the
following reasons:

o Textstringsin SVG arerepresented as regular XML character data rather than bitsin an image.
(See Text.)

« Atany placeinthe SVG hierarchy, a drawing can include along set of descriptive text and/or a
short description in the form of atitle. Both of these features can be used to help the visually
impaired interpret both the intent and specific content of a drawing. The drawing can be
architected such that there is a single description for the drawing as a whole or there are multiple

descriptions which are distributed within the drawing and describe each separate component
within the drawing.

» Because of SVG's support of Cascading Style Sheets Level 2 (??? need to add link), there will be
the ability to set up personal style sheets to adjust the color contrast of graphic elements.

« Because SVG documents are scalable, people with partial visual impairment will be ableto
zoom in on graphics for easier viewing.

(Additional information on accessibility isforthcoming.)

G.1 SVG Accessibility Guidelines

(??? Still under development)

previous next contents properties index

Appendix G: Minimizing SVG File Sizes

Considerable effort has been made to make SV G file sizes as small as possible while still retaining the
benefits of XML and achieving compatibility and leverage with other W3C specifications.

Here are some of the featuresin SV G that promote small file sizes:

« SVG's path data definition was defined to produce a compact data stream for vector graphics
data: all commands are one character in length; relative coordinates are available; separator
characters don't have to be supplied when tokens can be identified implicitly; smooth curve
formulations are available (cubic beziers, quadratic beziers and elliptical arcs) to prevent the
need to tesselate into polylines; and shortcut formulations exist for common forms of cubic
bezier segments, quadratic bezier segments, and horizontal and vertical straight line segments so
that the minimum number of coordinates need to be specified.

« Text can be specified using XML character data -- no need to convert to outlines.

« SVG contains afacility for defining symbols once and referencing them multiple times using
different visual attributes and different sizing, positioning, clipping and client-side filter effects

o SVG supports CSS selectors and property inheritance, which allows commonly used sets of
attributes to be defined once as named styles.

« Filter effects alow for compelling visual results and effects typically found only in
image-authoring tools using small amounts of vector and/or raster data

Additionally, HTTP 1.1 allows for compressed data to be passed from server to client, which can result
in significant file size reduction. Here are some sample compression results using gzip compression on
SV G documents:

Uncompressed With gzip Compression

SVG compression ratio
30,203 8,680 71%
12,563 8,048 83%

7,106 2,395 66%

6,216 2,310 63%
4,381 2,198 50%

A related issue is progressive rendering. Some SV G viewers will support:

« the ability to display the first parts of an SV G document as the remainder of the document is
downloaded from the server; thus, the user will see part of the SVG drawing right away and
interact with it, even if the SVG filesizeislarge.

« delayed downloading of images and fonts. Just like some HTML browsers, some SV G viewers
will download images and Web fonts last, substituting atemporary image and system fonts,
respectively, until the given image and/or font is available.

Here are techniques for minimizing SV G file sizes and minimizing the time before the user is able to
start interacting with the SV G document:

Construct the SV G file such that any links which the user might want to click on are included at
the beginning of the SVG file

Use default values whenever possible rather than defining al attributes and properties explicitly.

Take advantage of the path data data compaction facilities: use relative coordinates; use h and v

for horizontal and vertical lines; use sor t for cubic and quadratic bezier segments whenever
possible; eliminate extraneous white space and separators.

Utilize symbolsif the same graphic appears multiple times in the document

Utilize CSS property inheritance and selectors to consolidate commonly used properties into
named styles or to assign the properties to a parent <g> element.

Utilize filter effects to help construct graphics via client-side graphics operations.

previous next contents properties index

Appendix H: Implementation and
Performance Notes for Fonts

Reliable delivery of fontsis considered acritical requirement for SVG. Designers should be able to
create SV G graphics with whatever fonts they care to use and then the same fonts should appear in the
end user's browser when viewing an SV G drawing, even if the given end user hasn't purchased the fonts
in question. This parallels the print world, where the designer uses a given font when authoring a
drawing for print, but when the end user views the same drawing within a magazine the text appears
with the correct font.

SVG utilizes CSS2's WebFont facility as a key mechanism for reliable delivery of font datato end users.
A common scenario is that SV G authoring applications will generate compressed, subsetted web fonts
for all text elementsincluded in agiven SV G document. Typicaly, the web fonts will be saved in a
nearby location to the SV G document itself.

http://www.w3.org/TR/REC-CSS2/fonts.html#font-selection

previous contents properties index

Appendix |. References

Contents
e 1.1 Normative references

o |.2 Informative references

.1 Normative references

[COLORIMETRY]

"Colorimetry, Second Edition", CIE Publication 15.2-1986, ISBN 3-900-734-00-3.
Available at http://www.hike.te.chiba-u.ac.j p/ikeda/CI E/publ/abst/15-2-86.html.
[CSS2]
"Cascading Style Sheets, level 2", B. Bos, H. W. Lig, C. Lilley, I. Jacobs, 12 May 1998.
Available at http://www.w3.0rg/TR/REC-CSS2.
[HTMLA40]
"HTML 4.0 Specification", D. Raggett, A. Le Hors, |. Jacobs, 8 July 1997.
Available at http://www.w3.0org/TR/REC-html40/. The Recommendation defines three document
type definitions: Strict, Transitional, and Frameset, all reachable from the Recommendation.

[1CC32]

"ICC Profile Format Specification, version 3.2", 1995.
Available at ftp://sgigate.sgi.com/pub/icc/| CC32.pdf.

"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies',
N. Freed and N. Borenstein, November 1996.
Available at ftp://ftp.internic.net/rfc/rfc2045.txt. Note that this RFC obsoletes RFC1521,

RFC1522, and RFC1590.
[RFC2068]

"HTTPVersion 1.1", R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, and T. Berners-Lee,
January 1997.
Available at ftp://ftp.internic.net/rfc/rfc2068.txt.

[SRGB]

"Proposal for a Standard Color Space for the Internet - SRGB", M. Anderson, R. Matta, S.
Chandrasekar, M. Stokes.
Available at http://www.w3.org/Graphics/Color/sRGB.html.

[UNICODE]

"The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers
Press, 1996. For bidirectionality, see also the corrigenda at
http://www.unicode.org/uni code/uni 2errata/bidi.htm. For more information, consult the Unicode

http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-html40
ftp://sgigate.sgi.com/pub/icc/ICC32.pdf
ftp://ftp.internic.net/rfc/rfc2045.txt
ftp://ftp.internic.net/rfc/rfc2068.txt
http://www.w3.org/Graphics/Color/sRGB.html
http://www.unicode.org/unicode/uni2errata/bidi.htm

Consortium's home page at http://www.unicode.org/.

The latest version of Unicode. For more information, consult the Unicode Consortium's home
page at http://www.unicode.org/.

[URI]

"Uniform Resource Identifiers (URI): Generic Syntax and Semantics', T. Berners-Lee, R.
Fielding, L. Masinter, 18 November 1997.

Available at http://www.ics.uci.edu/publ/ietf/uri/draft-fielding-uri-syntax-01.txt. Thisisawork in
progress that is expected to update [RFC1738] and [RFC1808].

[XML10]

"Extensible Markup Language (XML) 1.0" T. Bray, J. Paoli, C.M. Sperberg-McQueen, editors,
10 February 1998.
Available at http://www.w3.org/ TR/REC-xml/.

1.2 Informative references

[DOM]

"Document Object Model Specification”, L. Wood, A. Le Hors, 9 October 1997.
Available at http://www.w3.org/ TR/WD-DOM/

[WAI-PAGEAUTH]

"WAI Accesibility Guidelines. Page Authoring” for designing accessible documents are
available at:

http://www.w3.0org/ TR/ WD-WAI-PAGEAUTH.

http://www.unicode.org/
http://www.unicode.org/
http://www.ics.uci.edu/pub/ietf/uri/draft-fielding-uri-syntax-01.txt
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/WD-DOM/
http://www.w3.org/TR/WD-WAI-PAGEAUTH

previous contents properties index

Property Index

Thiswill contain the property index

previous contents properties index

Index

Thiswill contain the index

	Local Disk
	W3C Working Draft: Scalable Vector Graphics (SVG)
	Introduction to SVG
	SVG Concepts
	Conformance Requirements and Recommendations
	SVG Document Structure
	SVG Rendering Model
	Clipping, Masking and Compositing
	CSS Properties, XML Attributes, Cascading, and Inheritance
	Coordinate Systems, Transformations and Units
	Filling, Stroking and Paint Servers
	Color
	Paths
	Other Vector Graphic Shapes
	Text
	Images
	Filter Effects
	Interactivity
	Animation
	Backward Browser Compatibility, Descriptions and Titles
	Embedding Foreign Object Types
	Private Data
	Extensibility
	Metadata
	SVG Requirements
	Change History
	SVG DTD
	SVG DOM
	Sample SVG Files
	Accessibility Support
	Minimizing SVG File Sizes
	Notes on Fonts
	References
	Property Index
	Index

