
HTML 5
Working Draft — 12 January 2008

You can take part in this work. Join the working group's discussion list.
Web designers! We have a FAQ, a forum, and a help mailing list for you!

One-page version:

http://www.whatwg.org/specs/web-apps/current-work/

Multiple-page version:

http://www.whatwg.org/specs/web-apps/current-work/multipage/

PDF print versions:

A4: http://www.whatwg.org/specs/web-apps/current-work/html5-a4.pdf
Letter: http://www.whatwg.org/specs/web-apps/current-work/html5-letter.pdf

Version history:

Twitter messages (non-editorial changes only): http://twitter.com/WHATWG
Commit-Watchers mailing list: http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org
Interactive Web interface: http://html5.org/tools/web-apps-tracker
Subversion interface: http://svn.whatwg.org/
HTML diff with the last version in Subversion: http://whatwg.org/specs/web-apps/current-
work/index-diff

Editor:

Ian Hickson, Google, ian@hixie.ch

© Copyright 2004-2007 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA.
You are granted a license to use, reproduce and create derivative works of this document.

Abstract

This specification introduces features to HTML and the DOM that ease the authoring of Web-based
applications. Additions include the context menus, a direct-mode graphics canvas, inline popup
windows, and server-sent events.

Status of this document

This is a work in progress! This document is changing on a daily if not hourly basis in response to
comments and as a general part of its development process. Comments are very welcome, please
send them to whatwg@whatwg.org. Thank you.

Implementors should be aware that this specification is not stable. Implementors who are not
taking part in the discussions are likely to find the specification changing out from under

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

1 of 458 30/12/2020, 08:08

them in incompatible ways. Vendors interested in implementing this specification before it
eventually reaches the call for implementations should join the WHATWG mailing list and take part in
the discussions.

This specification is also being produced by the W3C HTML WG. The two specifications are
identical from the table of contents onwards.

This specification is intended to replace (be the new version of) what was previously the HTML4,
XHTML 1.x, and DOM2 HTML specifications.

Stability

Different parts of this specification are at different levels of maturity.

Some of the more major known issues are marked like this. There are many other issues that
have been raised as well; the issues given in this document are not the only known issues! There
are also some spec-wide issues that have not yet been addressed: case-sensitivity is a very
poorly handled topic right now, and the firing of events needs to be unified (right now some
bubble, some don't, they all use different text to fire events, etc). It would also be nice to unify the
rules on downloading content when attributes change (e.g. src attributes) - should they initiate

downloads when the element immediately, is inserted in the document, when active scripts end,
etc. This matters e.g. if an attribute is set twice in a row (does it hit the network twice).

Table of contents

1. Introduction
1.1. Scope

1.1.1. Relationship to HTML 4.01, XHTML 1.1, DOM2 HTML
1.1.2. Relationship to XHTML2
1.1.3. Relationship to XUL, Flash, Silverlight, and other proprietary UI
languages

1.2. Structure of this specification
1.2.1. How to read this specification

1.3. Conformance requirements
1.3.1. Common conformance requirements for APIs exposed to JavaScript
1.3.2. Dependencies
1.3.3. Features defined in other specifications

1.4. Terminology
1.4.1. HTML vs XHTML

2. The Document Object Model
2.1. Documents

2.1.1. Security
2.1.2. Resource metadata management

2.2. Elements
2.2.1. Reflecting content attributes in DOM attributes

2.3. Common DOM interfaces
2.3.1. Collections

2.3.1.1. HTMLCollection

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

2 of 458 30/12/2020, 08:08

2.3.1.2. HTMLFormControlsCollection
2.3.1.3. HTMLOptionsCollection

2.3.2. DOMTokenList
2.3.3. DOM feature strings

2.4. DOM tree accessors
2.5. Dynamic markup insertion

2.5.1. Controlling the input stream
2.5.2. Dynamic markup insertion in HTML
2.5.3. Dynamic markup insertion in XML

2.6. APIs in HTML documents

3. Semantics and structure of HTML elements
3.1. Introduction
3.2. Common microsyntaxes

3.2.1. Common parser idioms
3.2.2. Boolean attributes
3.2.3. Numbers

3.2.3.1. Unsigned integers
3.2.3.2. Signed integers
3.2.3.3. Real numbers
3.2.3.4. Ratios
3.2.3.5. Percentages and dimensions
3.2.3.6. Lists of integers

3.2.4. Dates and times
3.2.4.1. Specific moments in time
3.2.4.2. Vaguer moments in time

3.2.5. Time offsets
3.2.6. Tokens
3.2.7. Keywords and enumerated attributes
3.2.8. References

3.3. Documents and document fragments
3.3.1. Semantics
3.3.2. Structure
3.3.3. Kinds of content

3.3.3.1. Metadata content
3.3.3.2. Prose content
3.3.3.3. Sectioning content
3.3.3.4. Heading content
3.3.3.5. Phrasing content
3.3.3.6. Embedded content
3.3.3.7. Interactive content

3.3.4. Transparent content models
3.3.5. Paragraphs

3.4. Global attributes
3.4.1. The id attribute

3.4.2. The title attribute

3.4.3. The lang (HTML only) and xml:lang (XML only) attributes

3.4.4. The dir attribute

3.4.5. The class attribute

3.4.6. The irrelevant attribute

3.5. Interaction
3.5.1. Activation

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

3 of 458 30/12/2020, 08:08

3.5.2. Focus
3.5.2.1. Focus management
3.5.2.2. Sequential focus navigation

3.5.3. Scrolling elements into view

3.6. The root element
3.6.1. The html element

3.7. Document metadata
3.7.1. The head element

3.7.2. The title element

3.7.3. The base element

3.7.4. The link element

3.7.5. The meta element

3.7.5.1. Standard metadata names
3.7.5.2. Other metadata names
3.7.5.3. Pragma directives
3.7.5.4. Specifying the document's character encoding

3.7.6. The style element

3.7.7. Styling

3.8. Sections
3.8.1. The body element

3.8.2. The section element

3.8.3. The nav element

3.8.4. The article element

3.8.5. The blockquote element

3.8.6. The aside element

3.8.7. The h1, h2, h3, h4, h5, and h6 elements

3.8.8. The header element

3.8.9. The footer element

3.8.10. The address element

3.8.11. Headings and sections
3.8.11.1. Creating an outline
3.8.11.2. Determining which heading and section applies to a particular
node
3.8.11.3. Distinguishing site-wide headers from page headers

3.9. Prose
3.9.1. The p element

3.9.2. The hr element

3.9.3. The br element

3.9.4. The dialog element

3.10. Preformatted text
3.10.1. The pre element

3.11. Lists
3.11.1. The ol element

3.11.2. The ul element

3.11.3. The li element

3.11.4. The dl element

3.11.5. The dt element

3.11.6. The dd element

3.12. Phrase elements
3.12.1. The a element

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

4 of 458 30/12/2020, 08:08

3.12.2. The q element

3.12.3. The cite element

3.12.4. The em element

3.12.5. The strong element

3.12.6. The small element

3.12.7. The m element

3.12.8. The dfn element

3.12.9. The abbr element

3.12.10. The time element

3.12.11. The progress element

3.12.12. The meter element

3.12.13. The code element

3.12.14. The var element

3.12.15. The samp element

3.12.16. The kbd element

3.12.17. The sub and sup elements

3.12.18. The span element

3.12.19. The i element

3.12.20. The b element

3.12.21. The bdo element

3.13. Edits
3.13.1. The ins element

3.13.2. The del element

3.13.3. Attributes common to ins and del elements

3.14. Embedded content
3.14.1. The figure element

3.14.2. The img element

3.14.3. The iframe element

3.14.4. The embed element

3.14.5. The object element

3.14.6. The param element

3.14.7. The video element

3.14.7.1. Video and audio codecs for video elements

3.14.8. The audio element

3.14.8.1. Audio codecs for audio elements

3.14.9. Media elements
3.14.9.1. Error codes
3.14.9.2. Location of the media resource
3.14.9.3. Network states
3.14.9.4. Loading the media resource
3.14.9.5. Offsets into the media resource
3.14.9.6. The ready states
3.14.9.7. Playing the media resource
3.14.9.8. Seeking
3.14.9.9. Cue ranges
3.14.9.10. User interface
3.14.9.11. Time range
3.14.9.12. Event summary
3.14.9.13. Security and privacy considerations

3.14.10. The source element

3.14.11. The canvas element

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

5 of 458 30/12/2020, 08:08

3.14.11.1. The 2D context
3.14.11.1.1. The canvas state
3.14.11.1.2. Transformations
3.14.11.1.3. Compositing
3.14.11.1.4. Colors and styles
3.14.11.1.5. Line styles
3.14.11.1.6. Shadows
3.14.11.1.7. Simple shapes (rectangles)
3.14.11.1.8. Complex shapes (paths)
3.14.11.1.9. Images
3.14.11.1.10. Pixel manipulation
3.14.11.1.11. Drawing model

3.14.12. The map element

3.14.13. The area element

3.14.14. Image maps
3.14.15. Dimension attributes

3.15. Tabular data
3.15.1. The table element

3.15.2. The caption element

3.15.3. The colgroup element

3.15.4. The col element

3.15.5. The tbody element

3.15.6. The thead element

3.15.7. The tfoot element

3.15.8. The tr element

3.15.9. The td element

3.15.10. The th element

3.15.11. Processing model
3.15.11.1. Forming a table
3.15.11.2. Forming relationships between data cells and header cells

3.16. Forms
3.16.1. The form element

3.16.2. The fieldset element

3.16.3. The input element

3.16.4. The button element

3.16.5. The label element

3.16.6. The select element

3.16.7. The datalist element

3.16.8. The optgroup element

3.16.9. The option element

3.16.10. The textarea element

3.16.11. The output element

3.16.12. Processing model
3.16.12.1. Form submission

3.17. Scripting
3.17.1. The script element

3.17.1.1. Scripting languages
3.17.2. The noscript element

3.17.3. The event-source element

3.18. Interactive elements
3.18.1. The details element

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

6 of 458 30/12/2020, 08:08

3.18.2. The datagrid element

3.18.2.1. The datagrid data model

3.18.2.2. How rows are identified
3.18.2.3. The data provider interface
3.18.2.4. The default data provider

3.18.2.4.1. Common default data provider method definitions for
cells

3.18.2.5. Populating the datagrid element

3.18.2.6. Updating the datagrid

3.18.2.7. Requirements for interactive user agents
3.18.2.8. The selection
3.18.2.9. Columns and captions

3.18.3. The command element

3.18.4. The menu element

3.18.4.1. Introduction
3.18.4.2. Building menus and tool bars
3.18.4.3. Context menus
3.18.4.4. Toolbars

3.18.5. Commands
3.18.5.1. Using the a element to define a command

3.18.5.2. Using the button element to define a command

3.18.5.3. Using the input element to define a command

3.18.5.4. Using the option element to define a command

3.18.5.5. Using the command element to define a command

3.19. Data Templates
3.19.1. Introduction
3.19.2. The datatemplate element

3.19.3. The rule element

3.19.4. The nest element

3.19.5. Global attributes for data templates
3.19.6. Processing model

3.19.6.1. The originalContent DOM attribute

3.19.6.2. The template attribute

3.19.6.3. The ref attribute

3.19.6.4. The NodeDataTemplate interface

3.19.6.5. Mutations
3.19.6.6. Updating the generated content

3.20. Miscellaneous elements
3.20.1. The legend element

3.20.2. The div element

4. Web browsers
4.1. Browsing contexts

4.1.1. Nested browsing contexts
4.1.2. Auxiliary browsing contexts
4.1.3. Secondary browsing contexts
4.1.4. Threads
4.1.5. Browsing context names

4.2. The default view
4.2.1. Security
4.2.2. Constructors

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

7 of 458 30/12/2020, 08:08

4.2.3. APIs for creating and navigating browsing contexts by name
4.2.4. Accessing other browsing contexts

4.3. Scripting
4.3.1. Running executable code
4.3.2. Origin
4.3.3. Unscripted same-origin checks
4.3.4. Security exceptions
4.3.5. The javascript: protocol

4.3.6. Events
4.3.6.1. Event handler attributes
4.3.6.2. Event firing
4.3.6.3. Events and the Window object

4.3.6.4. Runtime script errors

4.4. User prompts
4.5. Browser state

4.5.1. Custom protocol and content handlers
4.5.1.1. Security and privacy
4.5.1.2. Sample user interface

4.6. Offline Web applications
4.6.1. Introduction
4.6.2. Application caches
4.6.3. The cache manifest syntax

4.6.3.1. Writing cache manifests
4.6.3.2. Parsing cache manifests

4.6.4. Updating an application cache
4.6.5. Processing model

4.6.5.1. Changes to the networking model
4.6.6. Application cache API
4.6.7. Browser state

4.7. Session history and navigation
4.7.1. The session history of browsing contexts
4.7.2. The History interface

4.7.3. Activating state objects
4.7.4. The Location interface

4.7.4.1. Security
4.7.5. Implementation notes for session history

4.8. Navigating across documents
4.8.1. Page load processing model for HTML files
4.8.2. Page load processing model for XML files
4.8.3. Page load processing model for text files
4.8.4. Page load processing model for images
4.8.5. Page load processing model for content that uses plugins
4.8.6. Page load processing model for inline content that doesn't have a DOM
4.8.7. Navigating to a fragment identifier

4.9. Determining the type of a new resource in a browsing context
4.9.1. Content-Type sniffing: text or binary
4.9.2. Content-Type sniffing: unknown type
4.9.3. Content-Type sniffing: image
4.9.4. Content-Type sniffing: feed or HTML
4.9.5. Content-Type metadata

4.10. Client-side session and persistent storage of name/value pairs

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

8 of 458 30/12/2020, 08:08

4.10.1. Introduction
4.10.2. The Storage interface

4.10.3. The sessionStorage attribute

4.10.4. The globalStorage attribute

4.10.5. The storage event

4.10.6. Miscellaneous implementation requirements for storage areas
4.10.6.1. Disk space
4.10.6.2. Threads

4.10.7. Security and privacy
4.10.7.1. User tracking
4.10.7.2. Cookie resurrection
4.10.7.3. DNS spoofing attacks
4.10.7.4. Cross-directory attacks
4.10.7.5. Implementation risks

4.11. Client-side database storage
4.11.1. Introduction
4.11.2. Databases
4.11.3. Executing SQL statements
4.11.4. Database query results
4.11.5. Errors
4.11.6. Processing model
4.11.7. Privacy
4.11.8. Security

4.11.8.1. User agents
4.11.8.2. SQL injection

4.12. Links
4.12.1. Hyperlink elements
4.12.2. Following hyperlinks

4.12.2.1. Hyperlink auditing
4.12.3. Link types

4.12.3.1. Link type "alternate"

4.12.3.2. Link type "archives"

4.12.3.3. Link type "author"

4.12.3.4. Link type "bookmark"

4.12.3.5. Link type "contact"

4.12.3.6. Link type "external"

4.12.3.7. Link type "feed"

4.12.3.8. Link type "help"

4.12.3.9. Link type "icon"

4.12.3.10. Link type "license"

4.12.3.11. Link type "nofollow"

4.12.3.12. Link type "noreferrer"

4.12.3.13. Link type "pingback"

4.12.3.14. Link type "prefetch"

4.12.3.15. Link type "search"

4.12.3.16. Link type "stylesheet"

4.12.3.17. Link type "sidebar"

4.12.3.18. Link type "tag"

4.12.3.19. Hierarchical link types
4.12.3.19.1. Link type "index"

4.12.3.19.2. Link type "up"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

9 of 458 30/12/2020, 08:08

4.12.3.20. Sequential link types
4.12.3.20.1. Link type "first"

4.12.3.20.2. Link type "last"

4.12.3.20.3. Link type "next"

4.12.3.20.4. Link type "prev"

4.12.3.21. Other link types

4.13. Interfaces for URI manipulation

5. Editing
5.1. Introduction
5.2. The contenteditable attribute

5.2.1. User editing actions
5.2.2. Making entire documents editable

5.3. Drag and drop
5.3.1. The DragEvent and DataTransfer interfaces

5.3.2. Events fired during a drag-and-drop action
5.3.3. Drag-and-drop processing model

5.3.3.1. When the drag-and-drop operation starts or ends in another
document
5.3.3.2. When the drag-and-drop operation starts or ends in another
application

5.3.4. The draggable attribute

5.3.5. Copy and paste
5.3.5.1. Copy to clipboard
5.3.5.2. Cut to clipboard
5.3.5.3. Paste from clipboard
5.3.5.4. Paste from selection

5.3.6. Security risks in the drag-and-drop model

5.4. Undo history
5.4.1. The UndoManager interface

5.4.2. Undo: moving back in the undo transaction history
5.4.3. Redo: moving forward in the undo transaction history
5.4.4. The UndoManagerEvent interface and the undo and redo events

5.4.5. Implementation notes

5.5. Command APIs
5.6. The text selection APIs

5.6.1. APIs for the browsing context selection
5.6.2. APIs for the text field selections

6. Communication
6.1. Event definitions
6.2. Server-sent DOM events

6.2.1. The RemoteEventTarget interface

6.2.2. Connecting to an event stream
6.2.3. Parsing an event stream
6.2.4. Interpreting an event stream
6.2.5. Notes

6.3. Network connections
6.3.1. Introduction
6.3.2. The Connection interface

6.3.3. Connection Events
6.3.4. TCP connections

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

10 of 458 30/12/2020, 08:08

6.3.5. Broadcast connections
6.3.5.1. Broadcasting over TCP/IP
6.3.5.2. Broadcasting over Bluetooth
6.3.5.3. Broadcasting over IrDA

6.3.6. Peer-to-peer connections
6.3.6.1. Peer-to-peer connections over TCP/IP
6.3.6.2. Peer-to-peer connections over Bluetooth
6.3.6.3. Peer-to-peer connections over IrDA

6.3.7. The common protocol for TCP-based connections
6.3.7.1. Clients connecting over TCP
6.3.7.2. Servers accepting connections over TCP
6.3.7.3. Sending and receiving data over TCP

6.3.8. Security
6.3.9. Relationship to other standards

6.4. Cross-document messaging
6.4.1. Processing model

7. Repetition templates

8. The HTML syntax
8.1. Writing HTML documents

8.1.1. The DOCTYPE
8.1.2. Elements

8.1.2.1. Start tags
8.1.2.2. End tags
8.1.2.3. Attributes
8.1.2.4. Optional tags
8.1.2.5. Restrictions on content models
8.1.2.6. Restrictions on the contents of CDATA and RCDATA elements

8.1.3. Text
8.1.3.1. Newlines

8.1.4. Character entity references
8.1.5. Comments

8.2. Parsing HTML documents
8.2.1. Overview of the parsing model
8.2.2. The input stream

8.2.2.1. Determining the character encoding
8.2.2.2. Character encoding requirements
8.2.2.3. Preprocessing the input stream
8.2.2.4. Changing the encoding while parsing

8.2.3. Tokenisation
8.2.3.1. Tokenising entities

8.2.4. Tree construction
8.2.4.1. The initial phase
8.2.4.2. The root element phase
8.2.4.3. The main phase

8.2.4.3.1. The stack of open elements
8.2.4.3.2. The list of active formatting elements
8.2.4.3.3. Creating and inserting HTML elements
8.2.4.3.4. Closing elements that have implied end tags
8.2.4.3.5. The element pointers
8.2.4.3.6. The insertion mode
8.2.4.3.7. How to handle tokens in the main phase

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

11 of 458 30/12/2020, 08:08

8.2.4.4. The trailing end phase
8.2.5. The End

8.3. Namespaces
8.4. Serialising HTML fragments
8.5. Parsing HTML fragments
8.6. Entities

9. WYSIWYG editors
9.1. Presentational markup

9.1.1. WYSIWYG signature
9.1.2. The font element

10. Rendering
10.1. Rendering and the DOM
10.2. Rendering and menus/toolbars

10.2.1. The 'icon' property

11. Things that you can't do with this specification because they are better handled using
other technologies that are further described herein

11.1. Localisation
11.2. Declarative 2D vector graphics and animation
11.3. Declarative 3D scenes
11.4. Timers
11.5. Events

References

Acknowledgements

1. Introduction

This section is non-normative.

The World Wide Web's markup language has always been HTML. HTML was primarily designed as
a language for semantically describing scientific documents, although its general design and
adaptations over the years has enabled it to be used to describe a number of other types of
documents.

The main area that has not been adequately addressed by HTML is a vague subject referred to as
Web Applications. This specification attempts to rectify this, while at the same time updating the
HTML specifications to address issues raised in the past few years.

1.1. Scope

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated semantic-
level scripting APIs for authoring accessible pages on the Web ranging from static documents to
dynamic applications.

The scope of this specification does not include addressing presentation concerns (although default

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

12 of 458 30/12/2020, 08:08

rendering rules for Web browsers are included at the end of this specification).

The scope of this specification does not include documenting every HTML or DOM feature
supported by Web browsers. Browsers support many features that are considered to be very bad for
accessibility or that are otherwise inappropriate. For example, the blink element is clearly

presentational and authors wishing to cause text to blink should instead use CSS.

The scope of this specification is not to describe an entire operating system. In particular, hardware
configuration software, image manipulation tools, and applications that users would be expected to
use with high-end workstations on a daily basis are out of scope. In terms of applications, this
specification is targeted specifically at applications that would be expected to be used by users on
an occasional basis, or regularly but from disparate locations, with low CPU requirements. For
instance online purchasing systems, searching systems, games (especially multiplayer online
games), public telephone books or address books, communications software (e-mail clients, instant
messaging clients, discussion software), document editing software, etc.

For sophisticated cross-platform applications, there already exist several proprietary solutions (such
as Mozilla's XUL and Macromedia's Flash). These solutions are evolving faster than any standards
process could follow, and the requirements are evolving even faster. These systems are also
significantly more complicated to specify, and are orders of magnitude more difficult to achieve
interoperability with, than the solutions described in this document. Platform-specific solutions for
such sophisticated applications (for example the MacOS X Core APIs) are even further ahead.

1.1.1. Relationship to HTML 4.01, XHTML 1.1, DOM2 HTML

This section is non-normative.

This specification represents a new version of HTML4 and XHTML1, along with a new version of the
associated DOM2 HTML API. Migration from HTML4 or XHTML1 to the format and APIs described
in this specification should in most cases be straightforward, as care has been taken to ensure that
backwards-compatibility is retained.

This specification will eventually supplant Web Forms 2.0 as well. [WF2]

1.1.2. Relationship to XHTML2

This section is non-normative.

XHTML2 [XHTML2] defines a new HTML vocabulary with better features for hyperlinks, multimedia
content, annotating document edits, rich metadata, declarative interactive forms, and describing the
semantics of human literary works such as poems and scientific papers.

However, it lacks elements to express the semantics of many of the non-document types of content
often seen on the Web. For instance, forum sites, auction sites, search engines, online shops, and
the like, do not fit the document metaphor well, and are not covered by XHTML2.

This specification aims to extend HTML so that it is also suitable in these contexts.

XHTML2 and this specification use different namespaces and therefore can both be implemented in
the same XML processor.

1.1.3. Relationship to XUL, Flash, Silverlight, and other proprietary UI languages

This section is non-normative.

This specification is independent of the various proprietary UI languages that various vendors

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

13 of 458 30/12/2020, 08:08

provide. As an open, vender-neutral language, HTML provides for a solution to the same problems
without the risk of vendor lock-in.

1.2. Structure of this specification

This section is non-normative.

This specification is divided into the following important sections:

The DOM

The DOM, or Document Object Model, provides a base for the rest of the specification.

The Semantics

Documents are built from elements. These elements form a tree using the DOM. Each
element also has a predefined meaning, which is explained in this section. User agent
requirements for how to handle each element are also given, along with rules for authors on
how to use the element.

Browsing Contexts

HTML documents do not exist in a vacuum — this section defines many of the features that
affect environments that deal with multiple pages, links between pages, and running scripts.

APIs

The Editing APIs: HTML documents can provide a number of mechanisms for users to modify
content, which are described in this section.
The Communication APIs: Applications written in HTML often require mechanisms to
communicate with remote servers, as well as communicating with other applications from
different domains running on the same client.
Repetition Templates: A mechanism to support repeating sections in forms.

The Language Syntax

All of these features would be for naught if they couldn't be represented in a serialised form
and sent to other people, and so this section defines the syntax of HTML, along with rules for
how to parse HTML.

There are also a couple of appendices, defining shims for WYSIWYG editors, rendering rules for
Web browsers, and listing areas that are out of scope for this specification.

1.2.1. How to read this specification

This specification should be read like all other specifications. First, it should be read cover-to-cover,
multiple times. Then, it should be read backwards at least once. Then it should be read by picking
random sections from the contents list and following all the cross-references.

1.3. Conformance requirements

All diagrams, examples, and notes in this specification are non-normative, as are all sections
explicitly marked non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this
document are to be interpreted as described in RFC2119. For readability, these words do not appear
in all uppercase letters in this specification. [RFC2119]

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

14 of 458 30/12/2020, 08:08

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space
characters" or "return false and abort these steps") are to be interpreted with the meaning of the key
word ("must", "should", "may", etc) used in introducing the algorithm.

This specification describes the conformance criteria for user agents (relevant to implementors) and
documents (relevant to authors and authoring tool implementors).

Note: There is no implied relationship between document conformance requirements
and implementation conformance requirements. User agents are not free to handle
non-conformant documents as they please; the processing model described in this
specification applies to implementations regardless of the conformity of the input
documents.

User agents fall into several (overlapping) categories with different conformance requirements.

Web browsers and other interactive user agents

Web browsers that support XHTML must process elements and attributes from the HTML
namespace found in XML documents as described in this specification, so that users can
interact with them, unless the semantics of those elements have been overridden by other
specifications.

A conforming XHTML processor would, upon finding an XHTML script element in an

XML document, execute the script contained in that element. However, if the element is
found within an XSLT transformation sheet (assuming the UA also supports XSLT), then
the processor would instead treat the script element as an opaque element that forms

part of the transform.

Web browsers that support HTML must process documents labelled as text/html as

described in this specification, so that users can interact with them.

Non-interactive presentation user agents

User agents that process HTML and XHTML documents purely to render non-interactive
versions of them must comply to the same conformance criteria as Web browsers, except that
they are exempt from requirements regarding user interaction.

Note: Typical examples of non-interactive presentation user agents are
printers (static UAs) and overhead displays (dynamic UAs). It is expected that
most static non-interactive presentation user agents will also opt to lack
scripting support.

A non-interactive but dynamic presentation UA would still execute scripts, allowing forms
to be dynamically submitted, and so forth. However, since the concept of "focus" is
irrelevant when the user cannot interact with the document, the UA would not need to
support any of the focus-related DOM APIs.

User agents with no scripting support

Implementations that do not support scripting (or which have their scripting features disabled)
are exempt from supporting the events and DOM interfaces mentioned in this specification.
For the parts of this specification that are defined in terms of an events model or in terms of
the DOM, such user agents must still act as if events and the DOM were supported.

Note: Scripting can form an integral part of an application. Web browsers that
do not support scripting, or that have scripting disabled, might be unable to

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

15 of 458 30/12/2020, 08:08

fully convey the author's intent.

Conformance checkers

Conformance checkers must verify that a document conforms to the applicable conformance
criteria described in this specification. Conformance checkers are exempt from detecting
errors that require interpretation of the author's intent (for example, while a document is non-
conforming if the content of a blockquote element is not a quote, conformance checkers do

not have to check that blockquote elements only contain quoted material).

Conformance checkers must check that the input document conforms when scripting is
disabled, and should also check that the input document conforms when scripting is enabled.
(This is only a "SHOULD" and not a "MUST" requirement because it has been proven to be
impossible. [HALTINGPROBLEM])

The term "HTML5 validator" can be used to refer to a conformance checker that itself
conforms to the applicable requirements of this specification.

XML DTDs cannot express all the conformance requirements of this
specification. Therefore, a validating XML processor and a DTD cannot
constitute a conformance checker. Also, since neither of the two authoring
formats defined in this specification are applications of SGML, a validating
SGML system cannot constitute a conformance checker either.

To put it another way, there are three types of conformance criteria:

1. Criteria that can be expressed in a DTD.

2. Criteria that cannot be expressed by a DTD, but can still be checked by
a machine.

3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple DTD-based
validator only checks for the first class of errors and is therefore not a
conforming conformance checker according to this specification.

Data mining tools

Applications and tools that process HTML and XHTML documents for reasons other than to
either render the documents or check them for conformance should act in accordance to the
semantics of the documents that they process.

A tool that generates document outlines but increases the nesting level for each
paragraph and does not increase the nesting level for each section would not be
conforming.

Authoring tools and markup generators

Authoring tools and markup generators must generate conforming documents. Conformance
criteria that apply to authors also apply to authoring tools, where appropriate.

Authoring tools are exempt from the strict requirements of using elements only for their
specified purpose, but only to the extent that authoring tools are not yet able to determine
author intent.

For example, it is not conforming to use an address element for arbitrary contact

information; that element can only be used for marking up contact information for the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

16 of 458 30/12/2020, 08:08

author of the document or section. However, since an authoring tools is likely unable to
determine the difference, an authoring tool is exempt from that requirement.

Note: In terms of conformance checking, an editor is therefore required to
output documents that conform to the same extent that a conformance
checker will verify.

When an authoring tool is used to edit a non-conforming document, it may preserve the
conformance errors in sections of the document that were not edited during the editing
session (i.e. an editing tool is allowed to round-trip errorneous content). However, an
authoring tool must not claim that the output is conformant if errors have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from structure or
semantic data, and tools that work on a What-You-See-Is-What-You-Get media-specific
editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the structure in the
source information can be used to make informed choices regarding which HTML elements
and attributes are most appropriate.

However, WYSIWYG tools are legitimate, and this specification makes certain concessions to
WYSIWYG editors.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling
users to create well-structured, semantically rich, media-independent content.

Some conformance requirements are phrased as requirements on elements, attributes, methods or
objects. Such requirements fall into two categories; those describing content model restrictions, and
those describing implementation behaviour. The former category of requirements are requirements
on documents and authoring tools. The second category are requirements on user agents.

Conformance requirements phrased as algorithms or specific steps may be implemented in any
manner, so long as the end result is equivalent. (In particular, the algorithms defined in this
specification are intended to be easy to follow, and not intended to be performant.)

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to
prevent denial of service attacks, to guard against running out of memory, or to work around
platform-specific limitations.

For compatibility with existing content and prior specifications, this specification describes two
authoring formats: one based on XML (referred to as XHTML5), and one using a custom format
inspired by SGML (referred to as HTML5). Implementations may support only one of these two
formats, although supporting both is encouraged.

XHTML documents (XML documents using elements from the HTML namespace) that use the new
features described in this specification and that are served over the wire (e.g. by HTTP) must be
sent using an XML MIME type such as application/xml or application/xhtml+xml and

must not be served as text/html. [RFC3023]

Such XML documents may contain a DOCTYPE if desired, but this is not required to conform to this

specification.

Note: According to the XML specification, XML processors are not guaranteed to
process the external DTD subset referenced in the DOCTYPE. This means, for
example, that using entities for characters in XHTML documents is unsafe (except

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

17 of 458 30/12/2020, 08:08

for <, >, &, " and '). For interoperability, authors are advised to
avoid optional features of XML.

HTML documents, if they are served over the wire (e.g. by HTTP) must be labelled with the
text/html MIME type.

The language in this specification assumes that the user agent expands all entity references, and
therefore does not include entity reference nodes in the DOM. If user agents do include entity
reference nodes in the DOM, then user agents must handle them as if they were fully expanded
when implementing this specification. For example, if a requirement talks about an element's child
text nodes, then any text nodes that are children of an entity reference that is a child of that element
would be used as well.

1.3.1. Common conformance requirements for APIs exposed to JavaScript

A lot of arrays/lists/collections in this spec assume zero-based indexes but use the term "indexth"
liberally. We should define those to be zero-based and be clearer about this.

Unless other specified, if a DOM attribute that is a floating point number type (float) is assigned an

Infinity or Not-a-Number value, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a DOM attribute that is a signed numeric type is assigned a negative value,
a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a method with an argument that is a floating point number type (float) is

passed an Infinity or Not-a-Number value, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a method is passed fewer arguments than is defined for that method in its
IDL definition, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a method is passed more arguments than is defined for that method in its
IDL definition, the excess arguments must be ignored.

Unless other specified, if a method is expecting, as one of its arguments, as defined by its IDL
definition, an object implementing a particular interface X, and the argument passed is an object
whose [[Class]] property is neither that interface X, nor the name of an interface Y where this
specification requires that all objects implementing interface Y also implement interface X, nor the
name of an interface that inherits from the expected interface X, then a TYPE_MISMATCH_ERR

exception must be raised.

Anything else? Passing the wrong type of object, maybe? Implied conversions to int/float?

1.3.2. Dependencies

This specification relies on several other underlying specifications.

XML

Implementations that support XHTML5 must support some version of XML, as well as its
corresponding namespaces specification, because XHTML5 uses an XML serialisation with
namespaces. [XML] [XMLNAMES]

XML Base

User agents must follow the rules given by XML Base to resolve relative URIs in HTML and

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

18 of 458 30/12/2020, 08:08

XHTML fragments. That is the mechanism used in this specification for resolving relative
URIs in DOM trees. [XMLBASE]

Note: It is possible for xml:base attributes to be present even in HTML

fragments, as such attributes can be added dynamically using script.

DOM

Implementations must support some version of DOM Core and DOM Events, because this
specification is defined in terms of the DOM, and some of the features are defined as
extensions to the DOM Core interfaces. [DOM3CORE] [DOM3EVENTS]

ECMAScript

Implementations that use ECMAScript to implement the APIs defined in this specification
must implement them in a manner consistent with the ECMAScript Bindings for DOM
Specifications specification, as this specification uses that specification's terminology. [EBFD]

This specification does not require support of any particular network transport protocols, style sheet
language, scripting language, or any of the DOM and WebAPI specifications beyond those
described above. However, the language described by this specification is biased towards CSS as
the styling language, ECMAScript as the scripting language, and HTTP as the network protocol, and
several features assume that those languages and protocols are in use.

Note: This specification might have certain additional requirements on character
encodings, image formats, audio formats, and video formats in the respective
sections.

1.3.3. Features defined in other specifications

Some elements are defined in terms of their DOM textContent attribute. This is an attribute

defined on the Node interface in DOM3 Core. [DOM3CORE]

Should textContent be defined differently for dir="" and <bdo>? Should we come up with an
alternative to textContent that handles those and other things, like alt=""?

The interface DOMTimeStamp is defined in DOM3 Core. [DOM3CORE]

The term activation behavior is used as defined in the DOM3 Events specification.

[DOM3EVENTS] At the time of writing, DOM3 Events hadn't yet been updated to define that

phrase.

The rules for handling alternative style sheets are defined in the CSS object model specification.
[CSSOM]

See http://dev.w3.org/cvsweb/~checkout~/csswg/cssom/Overview.html?rev=1.35&content-
type=text/html;%20charset=utf-8

Certain features are defined in terms of CSS <color> values. When the CSS value currentColor

is specified in this context, the "computed value of the 'color' property" for the purposes of
determining the computed value of the currentColor keyword is the computed value of the 'color'

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

19 of 458 30/12/2020, 08:08

property on the element in question. [CSS3COLOR]

If a canvas gradient's addColorStop() method is called with the currentColor keyword as

the color, then the computed value of the 'color' property on the canvas element is the one that

is used.

1.4. Terminology

This specification refers to both HTML and XML attributes and DOM attributes, often in the same
context. When it is not clear which is being referred to, they are referred to as content attributes for
HTML and XML attributes, and DOM attributes for those from the DOM. Similarly, the term
"properties" is used for both ECMAScript object properties and CSS properties. When these are
ambiguous they are qualified as object properties and CSS properties respectively.

To ease migration from HTML to XHTML, UAs conforming to this specification will place elements in
HTML in the http://www.w3.org/1999/xhtml namespace, at least for the purposes of the

DOM and CSS. The term "elements in the HTML namespace", or "HTML elements" for short,
when used in this specification, thus refers to both HTML and XHTML elements.

Unless otherwise stated, all elements defined or mentioned in this specification are in the
http://www.w3.org/1999/xhtml namespace, and all attributes defined or mentioned in this

specification have no namespace (they are in the per-element partition).

The term HTML documents is sometimes used in contrast with XML documents to mean specifically
documents that were parsed using an HTML parser (as opposed to using an XML parser or created
purely through the DOM).

Generally, when the specification states that a feature applies to HTML or XHTML, it also includes
the other. When a feature specifically only applies to one of the two languages, it is called out by
explicitly stating that it does not apply to the other format, as in "for HTML, ... (this does not apply to
XHTML)".

This specification uses the term document to refer to any use of HTML, ranging from short static
documents to long essays or reports with rich multimedia, as well as to fully-fledged interactive
applications.

For readability, the term URI is used to refer to both ASCII URIs and Unicode IRIs, as those terms
are defined by RFC 3986 and RFC 3987 respectively. On the rare occasions where IRIs are not
allowed but ASCII URIs are, this is called out explicitly. [RFC3986] [RFC3987]

The term root element, when not qualified to explicitly refer to the document's root element, means
the furthest ancestor element node of whatever node is being discussed, or the node itself is there is
none. When the node is a part of the document, then that is indeed the document's root element.
However, if the node is not currently part of the document tree, the root element will be an orphaned
node.

An element is said to have been inserted into a document when its root element changes and is
now the document's root element.

The term tree order means a pre-order, depth-first traversal of DOM nodes involved (through the
parentNode/childNodes relationship).

When it is stated that some element or attribute is ignored, or treated as some other value, or
handled as if it was something else, this refers only to the processing of the node after it is in the
DOM. A user agent must not mutate the DOM in such situations.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

20 of 458 30/12/2020, 08:08

When an XML name, such as an attribute or element name, is referred to in the form
prefix:localName, as in xml:id or svg:rect, it refers to a name with the local name

localName and the namespace given by the prefix, as defined by the following table:

xml

http://www.w3.org/XML/1998/namespace

html

http://www.w3.org/1999/xhtml

svg

http://www.w3.org/2000/svg

For simplicity, terms such as shown, displayed, and visible might sometimes be used when referring
to the way a document is rendered to the user. These terms are not meant to imply a visual medium;
they must be considered to apply to other media in equivalent ways.

Various DOM interfaces are defined in this specification using pseudo-IDL. This looks like OMG IDL
but isn't. For instance, method overloading is used, and types from the W3C DOM specifications are
used without qualification. Language-specific bindings for these abstract interface definitions must
be derived in the way consistent with W3C DOM specifications. Some interface-specific binding
information for ECMAScript is included in this specification.

The current situation with IDL blocks is pitiful. IDL is totally inadequate to properly represent what
objects have to look like in JS; IDL can't say if a member is enumerable, what the indexing
behaviour is, what the stringification behaviour is, what behaviour setting a member whose type
is a particular interface should be (e.g. setting of document.location or element.className), what
constructor an object implementing an interface should claim to have, how overloads work, etc. I
think we should make the IDL blocks non-normative, and/or replace them with something else
that is better for JS while still being clear on how it applies to other languages. However, we do
need to have something that says what types the methods take as arguments, since we have to
raise exceptions if they are wrong.

The construction "a Foo object", where Foo is actually an interface, is sometimes used instead of

the more accurate "an object implementing the interface Foo".

A DOM attribute is said to be getting when its value is being retrieved (e.g. by author script), and is
said to be setting when a new value is assigned to it.

If a DOM object is said to be live, then that means that any attributes returning that object must
always return the same object (not a new object each time), and the attributes and methods on that
object must operate on the actual underlying data, not a snapshot of the data.

The terms fire and dispatch are used interchangeably in the context of events, as in the DOM Events
specifications. [DOM3EVENTS]

The term text node refers to any Text node, including CDATASection nodes (any Node with node

type 3 or 4).

Some of the algorithms in this specification, for historical reasons, require the user agent to pause
until some condition has been met. While a user agent is paused, it must ensure that no scripts
execute (e.g. no event handlers, no timers, etc). User agents should remain responsive to user input
while paused, however.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

21 of 458 30/12/2020, 08:08

1.4.1. HTML vs XHTML

This section is non-normative.

This specification defines an abstract language for describing documents and applications, and
some APIs for interacting with in-memory representations of resources that use this language.

The in-memory representation is known as "DOM5 HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this abstract
language, two of which are defined in this specification.

The first such concrete syntax is "HTML5". This is the format recommended for most authors. It is
compatible with all legacy Web browsers. If a document is transmitted with the MIME type
text/html, then it will be processed as an "HTML5" document by Web browsers.

The second concrete syntax uses XML, and is known as "XHTML5". When a document is
transmitted with an XML MIME type, such as application/xhtml+xml, then it is processed by

an XML processor by Web browsers, and treated as an "XHTML5" document. Generally speaking,
authors are discouraged from trying to use XML on the Web, because XML has much stricter syntax
rules than the "HTML5" variant described above, and is relatively newer and therefore less mature.

The "DOM5 HTML", "HTML5", and "XHTML5" representations cannot all represent the same
content. For example, namespaces cannot be represented using "HTML5", but they are supported in
"DOM5 HTML" and "XHTML5". Similarly, documents that use the noscript feature can be

represented using "HTML5", but cannot be represented with "XHTML5" and "DOM5 HTML".
Comments that contain the string "-->" can be represented in "DOM5 HTML" but not in "HTML5"

and "XHTML5". And so forth.

2. The Document Object Model

The Document Object Model (DOM) is a representation — a model — of a document and its
content. [DOM3CORE] The DOM is not just an API; the conformance criteria of HTML
implementations are defined, in this specification, in terms of operations on the DOM.

This specification defines the language represented in the DOM by features together called DOM5
HTML. DOM5 HTML consists of DOM Core Document nodes and DOM Core Element nodes,

along with text nodes and other content.

Elements in the DOM represent things; that is, they have intrinsic meaning, also known as
semantics.

For example, an ol element represents an ordered list.

In addition, documents and elements in the DOM host APIs that extend the DOM Core APIs,
providing new features to application developers using DOM5 HTML.

2.1. Documents

Every XML and HTML document in an HTML UA is represented by a Document object.

[DOM3CORE]

Document objects are assumed to be XML documents unless they are flagged as being HTML

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

22 of 458 30/12/2020, 08:08

documents when they are created. Whether a document is an HTML document or an XML
document affects the behaviour of certain APIs, as well as a few CSS rendering rules. [CSS21]

Note: A Document object created by the createDocument() API on the

DOMImplementation object is initially an XML document, but can be made into an

HTML document by calling document.open() on it.

All Document objects (in user agents implementing this specification) must also implement the

HTMLDocument interface, available using binding-specific methods. (This is the case whether or not

the document in question is an HTML document or indeed whether it contains any HTML elements
at all.) Document objects must also implement the document-level interface of any other

namespaces found in the document that the UA supports. For example, if an HTML implementation
also supports SVG, then the Document object must implement HTMLDocument and SVGDocument.

Note: Because the HTMLDocument interface is now obtained using binding-specific

casting methods instead of simply being the primary interface of the document
object, it is no longer defined as inheriting from Document.

interface HTMLDocument {
 // Resource metadata management
 readonly attribute Location location;
 readonly attribute DOMString URL;
 attribute DOMString domain;
 readonly attribute DOMString referrer;
 attribute DOMString cookie;
 readonly attribute DOMString lastModified;
 readonly attribute DOMString compatMode;

 // DOM tree accessors
 attribute DOMString title;
 attribute DOMString dir;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 NodeList getElementsByName(in DOMString elementName);
 NodeList getElementsByClassName(in DOMString classNames);

 // Dynamic markup insertion
 attribute DOMString innerHTML;

HTMLDocument open();
HTMLDocument open(in DOMString type);
HTMLDocument open(in DOMString type, in DOMString replace);
Window open(in DOMString url, in DOMString name, in DOMString

features);
Window open(in DOMString url, in DOMString name, in DOMString

features, in boolean replace);
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

23 of 458 30/12/2020, 08:08

 // Interaction
 readonly attribute Element activeElement;
 readonly attribute boolean hasFocus;

 // Commands
 readonly attribute HTMLCollection commands;

 // Editing
 attribute boolean designMode;
 boolean execCommand(in DOMString commandId);
 boolean execCommand(in DOMString commandId, in boolean doShowUI);
 boolean execCommand(in DOMString commandId, in boolean doShowUI, in
DOMString value);

Selection getSelection();

};

Since the HTMLDocument interface holds methods and attributes related to a number of disparate

features, the members of this interface are described in various different sections.

2.1.1. Security

User agents must raise a security exception whenever any of the members of an HTMLDocument

object are accessed by scripts whose origin is not the same as the Document's origin.

2.1.2. Resource metadata management

The URL attribute must return the document's address.

The domain attribute must be initialised to the document's domain, if it has one, and null otherwise.

On getting, the attribute must return its current value. On setting, if the new value is an allowed value
(as defined below), the attribute's value must be changed to the new value. If the new value is not an
allowed value, then a security exception must be raised instead.

A new value is an allowed value for the document.domain attribute if it is equal to the attribute's

current value, or if the new value, prefixed by a U+002E FULL STOP ("."), exactly matches the end
of the current value. If the current value is null, new values other than null will never be allowed.

If the Document object's address is hierarchical and uses a server-based naming authority, then its

domain is the <host>/<ihost> part of that address. Otherwise, it has no domain.

Note: The domain attribute is used to enable pages on different hosts of a domain to

access each others' DOMs , though this is not yet defined by this specification .

we should handle IP addresses here

The referrer attribute must return either the URI of the page which navigated the browsing

context to the current document (if any), or the empty string if there is no such originating page, or if
the UA has been configured not to report referrers, or if the navigation was initiated for a hyperlink

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

24 of 458 30/12/2020, 08:08

with a noreferrer keyword.

Note: In the case of HTTP, the referrer DOM attribute will match the Referer (sic)

header that was sent when fetching the current page.

The cookie attribute must, on getting, return the same string as the value of the Cookie HTTP

header it would include if fetching the resource indicated by the document's address over HTTP, as
per RFC 2109 section 4.3.4. [RFC2109]

On setting, the cookie attribute must cause the user agent to act as it would when processing

cookies if it had just attempted to fetch the document's address over HTTP, and had received a
response with a Set-Cookie header whose value was the specified value, as per RFC 2109

sections 4.3.1, 4.3.2, and 4.3.3. [RFC2109]

Note: Since the cookie attribute is accessible across frames, the path restrictions

on cookies are only a tool to help manage which cookies are sent to which parts of
the site, and are not in any way a security feature.

The lastModified attribute, on getting, must return the date and time of the Document's source

file's last modification, in the user's local timezone, in the following format:

1. The month component of the date.

2. A U+002F SOLIDUS character ('/').

3. The day component of the date.

4. A U+002F SOLIDUS character ('/').

5. The year component of the date.

6. A U+0020 SPACE character.

7. The hours component of the time.

8. A U+003A COLON character (':').

9. The minutes component of the time.

10. A U+003A COLON character (':').

11. The seconds component of the time.

All the numeric components above, other than the year, must be given as two digits in the range
U+0030 DIGIT ZERO to U+0039 DIGIT NINE representing the number in base ten, zero-padded if
necessary.

The Document's source file's last modification date and time must be derived from relevant features

of the networking protocols used, e.g. from the value of the HTTP Last-Modified header of the

document, or from metadata in the filesystem for local files. If the last modification date and time are
not known, the attribute must return the string 01/01/1970 00:00:00.

The compatMode DOM attribute must return the literal string "CSS1Compat" unless the document

has been set to quirks mode by the HTML parser, in which case it must instead return the literal
string "BackCompat". The document can also be set to limited quirks mode (also known as

"almost standards" mode). By default, the document is set to no quirks mode (also known as

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

25 of 458 30/12/2020, 08:08

"standards mode").

As far as parsing goes, the quirks I know of are:

Comment parsing is different.

p can contain table

Safari and IE have special parsing rules for <% ... %> (even in standards mode, though
clearly this should be quirks-only).

2.2. Elements

The nodes representing HTML elements in the DOM must implement, and expose to scripts, the
interfaces listed for them in the relevant sections of this specification. This includes XHTML
elements in XML documents, even when those documents are in another context (e.g. inside an
XSLT transform).

The basic interface, from which all the HTML elements' interfaces inherit, and which must be used
by elements that have no additional requirements, is the HTMLElement interface.

interface HTMLElement : Element {
 // DOM tree accessors
 NodeList getElementsByClassName(in DOMString classNames);

 // dynamic markup insertion
 attribute DOMString innerHTML;

 // metadata attributes
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
 readonly attribute DOMTokenList classList;

 // interaction
 attribute boolean irrelevant;
 attribute long tabIndex;
 void click();
 void focus();
 void blur();
 void scrollIntoView();
 void scrollIntoView(in boolean top);

 // commands
 attribute HTMLMenuElement contextMenu;

 // editing
 attribute boolean draggable;
 attribute DOMString contentEditable;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

26 of 458 30/12/2020, 08:08

 // data templates
 attribute DOMString template;
 readonly attribute HTMLDataTemplateElement templateElement;
 attribute DOMString ref;
 readonly attribute Node refNode;
 attribute DOMString registrationMark;
 readonly attribute DocumentFragment originalContent;

 // event handler DOM attributes
 attribute EventListener onabort;
 attribute EventListener onbeforeunload;
 attribute EventListener onblur;
 attribute EventListener onchange;
 attribute EventListener onclick;
 attribute EventListener oncontextmenu;
 attribute EventListener ondblclick;
 attribute EventListener ondrag;
 attribute EventListener ondragend;
 attribute EventListener ondragenter;
 attribute EventListener ondragleave;
 attribute EventListener ondragover;
 attribute EventListener ondragstart;
 attribute EventListener ondrop;
 attribute EventListener onerror;
 attribute EventListener onfocus;
 attribute EventListener onkeydown;
 attribute EventListener onkeypress;
 attribute EventListener onkeyup;
 attribute EventListener onload;
 attribute EventListener onmessage;
 attribute EventListener onmousedown;
 attribute EventListener onmousemove;
 attribute EventListener onmouseout;
 attribute EventListener onmouseover;
 attribute EventListener onmouseup;
 attribute EventListener onmousewheel;
 attribute EventListener onresize;
 attribute EventListener onscroll;
 attribute EventListener onselect;
 attribute EventListener onsubmit;
 attribute EventListener onunload;

};

As with the HTMLDocument interface, the HTMLElement interface holds methods and attributes

related to a number of disparate features, and the members of this interface are therefore described
in various different sections of this specification.

2.2.1. Reflecting content attributes in DOM attributes

Some DOM attributes are defined to reflect a particular content attribute. This means that on
getting, the DOM attribute returns the current value of the content attribute, and on setting, the DOM

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

27 of 458 30/12/2020, 08:08

attribute changes the value of the content attribute to the given value.

If a reflecting DOM attribute is a DOMString attribute whose content attribute is defined to contain a

URI, then on getting, the DOM attribute must return the value of the content attribute, resolved to an
absolute URI, and on setting, must set the content attribute to the specified literal value. If the
content attribute is absent, the DOM attribute must return the default value, if the content attribute
has one, or else the empty string.

If a reflecting DOM attribute is a DOMString attribute whose content attribute is defined to contain

one or more URIs, then on getting, the DOM attribute must split the content attribute on spaces and
return the concatenation of each token URI, resolved to an absolute URI, with a single U+0020
SPACE character between each URI; and on setting, must set the content attribute to the specified
literal value. If the content attribute is absent, the DOM attribute must return the default value, if the
content attribute has one, or else the empty string.

If a reflecting DOM attribute is a DOMString whose content attribute is an enumerated attribute, and

the DOM attribute is limited to only known values, then, on getting, the DOM attribute must return
the value associated with the state the attribute is in (in its canonical case), or the empty string if the
attribute is in a state that has no associated keyword value; and on setting, if the new value case-
insensitively matches one of the keywords given for that attribute, then the content attribute must be
set to that value, otherwise, if the new value is the empty string, then the content attribute must be
removed, otherwise, the setter must raise a SYNTAX_ERR exception.

If a reflecting DOM attribute is a DOMString but doesn't fall into any of the above categories, then

the getting and setting must be done in a transparent, case-preserving manner.

If a reflecting DOM attribute is a boolean attribute, then the DOM attribute must return true if the
attribute is set, and false if it is absent. On setting, the content attribute must be removed if the DOM
attribute is set to false, and must be set to have the same value as its name if the DOM attribute is
set to true. (This corresponds to the rules for boolean content attributes.)

If a reflecting DOM attribute is a signed integer type (long) then the content attribute must be

parsed according to the rules for parsing signed integers first. If that fails, or if the attribute is absent,
the default value must be returned instead, or 0 if there is no default value. On setting, the given
value must be converted to a string representing the number as a valid integer in base ten and then
that string must be used as the new content attribute value.

If a reflecting DOM attribute is an unsigned integer type (unsigned long) then the content

attribute must be parsed according to the rules for parsing unsigned integers first. If that fails, or if
the attribute is absent, the default value must be returned instead, or 0 if there is no default value.
On setting, the given value must be converted to a string representing the number as a valid non-
negative integer in base ten and then that string must be used as the new content attribute value.

If a reflecting DOM attribute is an unsigned integer type (unsigned long) that is limited to only

positive non-zero numbers, then the behavior is similar to the previous case, but zero is not
allowed. On getting, the content attribute must first be parsed according to the rules for parsing
unsigned integers, and if that fails, or if the attribute is absent, the default value must be returned
instead, or 1 if there is no default value. On setting, if the value is zero, the user agent must fire an
INDEX_SIZE_ERR exception. Otherwise, the given value must be converted to a string representing

the number as a valid non-negative integer in base ten and then that string must be used as the new
content attribute value.

If a reflecting DOM attribute is a floating point number type (float) and the content attribute is

defined to contain a time offset, then the content attribute must be parsed according to the rules for
parsing time ofsets first. If that fails, or if the attribute is absent, the default value must be returned

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

28 of 458 30/12/2020, 08:08

instead, or the not-a-number value (NaN) if there is no default value. On setting, the given value
must be converted to a string using the time offset serialisation rules, and that string must be used
as the new content attribute value.

If a reflecting DOM attribute is of the type DOMTokenList, then on getting it must return a

DOMTokenList object whose underlying string is the element's corresponding content attribute.

When the DOMTokenList object mutates its underlying string, the attribute must itself be

immediately mutated. When the attribute is absent, then the string represented by the
DOMTokenList object is the empty string; when the object mutates this empty string, the user agent

must first add the corresponding content attribute, and then mutate that attribute instead.
DOMTokenList attributes are always read-only. The same DOMTokenList object must be returned

every time for each attribute.

If a reflecting DOM attribute has the type HTMLElement, or an interface that descends from

HTMLElement, then, on getting, it must run the following algorithm (stopping at the first point where

a value is returned):

1. If the corresponding content attribute is absent, then the DOM attribute must return null.

2. Let candidate be the element that the document.getElementById() method would find if

it was passed as its argument the current value of the corresponding content attribute.

3. If candidate is null, or if it is not type-compatible with the DOM attribute, then the DOM
attribute must return null.

4. Otherwise, it must return candidate.

On setting, if the given element has an id attribute, then the content attribute must be set to the

value of that id attribute. Otherwise, the DOM attribute must be set to the empty string.

2.3. Common DOM interfaces

2.3.1. Collections

The HTMLCollection, HTMLFormControlsCollection, and HTMLOptionsCollection

interfaces represent various lists of DOM nodes. Collectively, objects implementing these interfaces
are called collections.

When a collection is created, a filter and a root are associated with the collection.

For example, when the HTMLCollection object for the document.images attribute is

created, it is associated with a filter that selects only img elements, and rooted at the root of the

document.

The collection then represents a live view of the subtree rooted at the collection's root, containing
only nodes that match the given filter. The view is linear. In the absence of specific requirements to
the contrary, the nodes within the collection must be sorted in tree order.

Note: The rows list is not in tree order.

An attribute that returns a collection must return the same object every time it is retrieved.

2.3.1.1. HTMLCollection

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

29 of 458 30/12/2020, 08:08

The HTMLCollection interface represents a generic collection of elements.

interface HTMLCollection {
 readonly attribute unsigned long length;
 Element item(in unsigned long index);
 Element namedItem(in DOMString name);
};

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no indexth node

in the collection, then the method must return null.

The namedItem(key) method must return the first node in the collection that matches the following

requirements:

It is an a, applet, area, form, img, or object element with a name attribute equal to key,

or,

It is an HTML element of any kind with an id attribute equal to key. (Non-HTML elements,

even if they have IDs, are not searched for the purposes of namedItem().)

If no such elements are found, then the method must return null.

In ECMAScript implementations, objects that implement the HTMLCollection interface must also

have a [[Get]] method that, when invoked with a property name that is a number, acts like the
item() method would when invoked with that argument, and when invoked with a property name

that is a string, acts like the namedItem() method would when invoked with that argument.

2.3.1.2. HTMLFormControlsCollection

The HTMLFormControlsCollection interface represents a collection of form controls.

interface HTMLFormControlsCollection {
 readonly attribute unsigned long length;

HTMLElement item(in unsigned long index);
 Object namedItem(in DOMString name);
};

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no indexth node

in the collection, then the method must return null.

The namedItem(key) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that has either
an id attribute or a name attribute equal to key, then return that node and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an id attribute or a name

attribute equal to key, then return null and stop the algorithm.

3. Otherwise, create a NodeList object representing a live view of the

HTMLFormControlsCollection object, further filtered so that the only nodes in the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

30 of 458 30/12/2020, 08:08

NodeList object are those that have either an id attribute or a name attribute equal to key.

The nodes in the NodeList object must be sorted in tree order.

4. Return that NodeList object.

In the ECMAScript DOM binding, objects implementing the HTMLFormControlsCollection

interface must support being dereferenced using the square bracket notation, such that
dereferencing with an integer index is equivalent to invoking the item() method with that index,

and such that dereferencing with a string index is equivalent to invoking the namedItem() method

with that index.

2.3.1.3. HTMLOptionsCollection

The HTMLOptionsCollection interface represents a list of option elements.

interface HTMLOptionsCollection {
 attribute unsigned long length;
 HTMLOptionElement item(in unsigned long index);
 Object namedItem(in DOMString name);
};

On getting, the length attribute must return the number of nodes represented by the collection.

On setting, the behaviour depends on whether the new value is equal to, greater than, or less than
the number of nodes represented by the collection at that time. If the number is the same, then
setting the attribute must do nothing. If the new value is greater, then n new option elements with

no attributes and no child nodes must be appended to the select element on which the

HTMLOptionsCollection is rooted, where n is the difference between the two numbers (new

value minus old value). If the new value is lower, then the last n nodes in the collection must be
removed from their parent nodes, where n is the difference between the two numbers (old value
minus new value).

Note: Setting length never removes or adds any optgroup elements, and never

adds new children to existing optgroup elements (though it can remove children

from them).

The item(index) method must return the indexth node in the collection. If there is no indexth node

in the collection, then the method must return null.

The namedItem(key) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that has either
an id attribute or a name attribute equal to key, then return that node and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an id attribute or a name

attribute equal to key, then return null and stop the algorithm.

3. Otherwise, create a NodeList object representing a live view of the

HTMLOptionsCollection object, further filtered so that the only nodes in the NodeList

object are those that have either an id attribute or a name attribute equal to key. The nodes

in the NodeList object must be sorted in tree order.

4. Return that NodeList object.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

31 of 458 30/12/2020, 08:08

In the ECMAScript DOM binding, objects implementing the HTMLOptionsCollection interface

must support being dereferenced using the square bracket notation, such that dereferencing with an
integer index is equivalent to invoking the item() method with that index, and such that

dereferencing with a string index is equivalent to invoking the namedItem() method with that index.

We may want to add add() and remove() methods here too because IE implements

HTMLSelectElement and HTMLOptionsCollection on the same object, and so people use them
almost interchangeably in the wild.

2.3.2. DOMTokenList

The DOMTokenList interface represents an interface to an underlying string that consists of an

unordered set of unique space-separated tokens.

Which string underlies a particular DOMTokenList object is defined when the object is created. It

might be a content attribute (e.g. the string that underlies the classList object is the class

attribute), or it might be an anonymous string (e.g. when a DOMTokenList object is passed to an

author-implemented callback in the datagrid APIs).

interface DOMTokenList {
 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 boolean has(in DOMString token);
 void add(in DOMString token);
 void remove(in DOMString token);
 boolean toggle(in DOMString token);
};

The length attribute must return the number of unique tokens that result from splitting the

underlying string on spaces.

The item(index) method must split the underlying string on spaces, sort the resulting list of

tokens by Unicode codepoint, remove exact duplicates, and then return the indexth item in this list. If
index is equal to or greater than the number of tokens, then the method must return null.

In ECMAScript implementations, objects that implement the DOMTokenList interface must also

have a [[Get]] method that, when invoked with a property name that is a number, acts like the
item() method would when invoked with that argument.

The has(token) method must run the following algorithm:

1. If the token argument contains any spaces, then raise an INVALID_CHARACTER_ERR

exception and stop the algorithm.

2. Otherwise, split the underlying string on spaces to get the list of tokens in the object's
underlying string.

3. If the token indicated by token is one of the tokens in the object's underlying string then return
true and stop this algorithm.

4. Otherwise, return false.

The add(token) method must run the following algorithm:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

32 of 458 30/12/2020, 08:08

1. If the token argument contains any spaces, then raise an INVALID_CHARACTER_ERR

exception and stop the algorithm.

2. Otherwise, split the underlying string on spaces to get the list of tokens in the object's
underlying string.

3. If the given token is already one of the tokens in the DOMTokenList object's underlying

string then stop the algorithm.

4. Otherwise, if the last character of the DOMTokenList object's underlying string is not a space

character, then append a U+0020 SPACE character to the end of that string.

5. Append the value of token to the end of the DOMTokenList object's underlying string.

The remove(token) method must run the following algorithm:

1. If the token argument contains any spaces, then raise an INVALID_CHARACTER_ERR

exception and stop the algorithm.

2. Otherwise, remove the given token from the underlying string.

The toggle(token) method must run the following algorithm:

1. If the token argument contains any spaces, then raise an INVALID_CHARACTER_ERR

exception and stop the algorithm.

2. Otherwise, split the underlying string on spaces to get the list of tokens in the object's
underlying string.

3. If the given token is already one of the tokens in the DOMTokenList object's underlying

string then remove the given token from the underlying string, and stop the algorithm,
returning false.

4. Otherwise, if the last character of the DOMTokenList object's underlying string is not a space

character, then append a U+0020 SPACE character to the end of that string.

5. Append the value of token to the end of the DOMTokenList object's underlying string.

6. Return true.

In the ECMAScript DOM binding, objects implementing the DOMTokenList interface must stringify

to the object's underlying string representation.

2.3.3. DOM feature strings

DOM3 Core defines mechanisms for checking for interface support, and for obtaining
implementations of interfaces, using feature strings. [DOM3CORE]

A DOM application can use the hasFeature(feature, version) method of the

DOMImplementation interface with parameter values "HTML" and "5.0" (respectively) to

determine whether or not this module is supported by the implementation. In addition to the feature
string "HTML", the feature string "XHTML" (with version string "5.0") can be used to check if the

implementation supports XHTML. User agents should respond with a true value when the
hasFeature method is queried with these values. Authors are cautioned, however, that UAs

returning true might not be perfectly compliant, and that UAs returning false might well have support
for features in this specification; in general, therefore, use of this method is discouraged.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

33 of 458 30/12/2020, 08:08

The values "HTML" and "XHTML" (both with version "5.0") should also be supported in the context of

the getFeature() and isSupported() methods, as defined by DOM3 Core.

Note: The interfaces defined in this specification are not always supersets of the
interfaces defined in DOM2 HTML; some features that were formerly deprecated,
poorly supported, rarely used or considered unnecessary have been removed.
Therefore it is not guarenteed that an implementation that supports "HTML" "5.0"

also supports "HTML" "2.0".

2.4. DOM tree accessors

The html element of a document is the document's root element, if there is one and it's an html

element, or null otherwise.

The head element of a document is the first head element that is a child of the html element, if

there is one, or null otherwise.

The title element of a document is the first title element that is a child of the head element, if

there is one, or null otherwise.

The title attribute must, on getting, run the following algorithm:

1. If the root element is an svg element in the "http://www.w3.org/2000/svg" namespace,

and the user agent supports SVG, then the getter must return the value that would have been
returned by the DOM attribute of the same name on the SVGDocument interface.

2. Otherwise, it must return a concatenation of the data of all the child text nodes of the title

element, in tree order, or the empty string if the title element is null.

On setting, the following algorithm must be run:

1. If the root element is an svg element in the "http://www.w3.org/2000/svg" namespace,

and the user agent supports SVG, then the setter must defer to the setter for the DOM
attribute of the same name on the SVGDocument interface. Stop the algorithm here.

2. If the head element is null, then the attribute must do nothing. Stop the algorithm here.

3. If the title element is null, then a new title element must be created and appended to

the head element.

4. The children of the title element (if any) must all be removed.

5. A single Text node whose data is the new value being assigned must be appended to the

title element.

The title attribute on the HTMLDocument interface should shadow the attribute of the same name

on the SVGDocument interface when the user agent supports both HTML and SVG.

The body element of a document is the first child of the html element that is either a body element

or a frameset element. If there is no such element, it is null. If the body element is null, then when

the specification requires that events be fired at "the body element", they must instead be fired at the
Document object.

The body attribute, on getting, must return the body element of the document (either a body

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

34 of 458 30/12/2020, 08:08

element, a frameset element, or null). On setting, the following algorithm must be run:

1. If the new value is not a body or frameset element, then raise a

HIERARCHY_REQUEST_ERR exception and abort these steps.

2. Otherwise, if the new value is the same as the body element, do nothing. Abort these steps.

3. Otherwise, if the body element is not null, then replace that element with the new value in the
DOM, as if the root element's replaceChild() method had been called with the new value

and the incumbent body element as its two arguments respectively, then abort these steps.

4. Otherwise, the the body element is null. Append the new value to the root element.

The images attribute must return an HTMLCollection rooted at the Document node, whose filter

matches only img elements.

The links attribute must return an HTMLCollection rooted at the Document node, whose filter

matches only a elements with href attributes and area elements with href attributes.

The forms attribute must return an HTMLCollection rooted at the Document node, whose filter

matches only form elements.

The anchors attribute must return an HTMLCollection rooted at the Document node, whose

filter matches only a elements with name attributes.

The getElementsByName(name) method a string name, and must return a live NodeList

containing all the a, applet, button, form, iframe, img, input, map, meta, object, select,

and textarea elements in that document that have a name attribute whose value is equal to the

name argument.

The getElementsByClassName(classNames) method takes a string that contains an unordered

set of unique space-separated tokens representing classes. When called, the method must return a
live NodeList object containing all the elements in the document that have all the classes specified

in that argument, having obtained the classes by splitting a string on spaces. If there are no tokens
specified in the argument, then the method must return an empty NodeList.

The getElementsByClassName() method on the HTMLElement interface must return a live

NodeList with the nodes that the HTMLDocument getElementsByClassName() method would

return when passed the same argument(s), excluding any elements that are not descendants of the
HTMLElement object on which the method was invoked.

HTML, SVG, and MathML elements define which classes they are in by having an attribute in the
per-element partition with the name class containing a space-separated list of classes to which the

element belongs. Other specifications may also allow elements in their namespaces to be labelled
as being in specific classes. UAs must not assume that all attributes of the name class for

elements in any namespace work in this way, however, and must not assume that such attributes,
when used as global attributes, label other elements as being in specific classes.

Given the following XHTML fragment:

<div id="example">
 <p id="p1" class="aaa bbb"/>
 <p id="p2" class="aaa ccc"/>
 <p id="p3" class="bbb ccc"/>
</div>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

35 of 458 30/12/2020, 08:08

A call to document.getElementById('example').getElementsByClassName('aaa')

would return a NodeList with the two paragraphs p1 and p2 in it.

A call to getElementsByClassName('ccc bbb') would only return one node, however,

namely p3. A call to

document.getElementById('example').getElementsByClassName('bbb ccc ')

would return the same thing.

A call to getElementsByClassName('aaa,bbb') would return no nodes; none of the

elements above are in the "aaa,bbb" class.

Note: The dir attribute on the HTMLDocument interface is defined along with the dir

content attribute.

2.5. Dynamic markup insertion

The document.write() family of methods and the innerHTML family of DOM attributes enable

script authors to dynamically insert markup into the document.

Because these APIs interact with the parser, their behaviour varies depending on whether they are
used with HTML documents (and the HTML parser) or XHTML in XML documents (and the XML
parser). The following table cross-references the various versions of these APIs.

document.write() innerHTML

For documents that are HTML documents document.write() in HTML innerHTML in HTML

For documents that are XML documents document.write() in XML innerHTML in XML

Regardless of the parsing mode, the document.writeln(...) method must call the

document.write() method with the same argument(s), and then call the document.write()

method with, as its argument, a string consisting of a single line feed character (U+000A).

2.5.1. Controlling the input stream

The open() method comes in several variants with different numbers of arguments.

When called with two or fewer arguments, the method must act as follows:

1. Let type be the value of the first argument, if there is one, or "text/html" otherwise.

2. Let replace be true if there is a second argument and it has the value "replace", and false
otherwise.

3. If the document has an active parser that isn't a script-created parser, and the insertion point
associated with that parser's input stream is not undefined (that is, it does point to somewhere
in the input stream), then the method does nothing. Abort these steps and return the
Document object on which the method was invoked.

Note: This basically causes document.open() to be ignored when it's called

in an inline script found during the parsing of data sent over the network,
while still letting it have an effect when called asynchronously or on a
document that is itself being spoon-fed using these APIs.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

36 of 458 30/12/2020, 08:08

4. onbeforeunload, onunload

5. If the document has an active parser, then stop that parser, and throw away any pending

content in the input stream. what about if it doesn't, because it's either like a text/plain, or

Atom, or PDF, or XHTML, or image document, or something?

6. Remove all child nodes of the document.

7. Create a new HTML parser and associate it with the document. This is a script-created
parser (meaning that it can be closed by the document.open() and document.close()

methods, and that the tokeniser will wait for an explicit call to document.close() before

emitting an end-of-file token).

8. Mark the document as being an HTML document (it might already be so-marked).

9. If type does not have the value "text/html", then act as if the tokeniser had emitted a pre

element start tag, then set the HTML parser's tokenisation stage's content model flag to
PLAINTEXT.

10. If replace is false, then:

1. Remove all the entries in the browsing context's session history after the current entry
in its Document's History object

2. Remove any earlier entries that share the same Document

3. Add a new entry just before the last entry that is associated with the text that was
parsed by the previous parser associated with the Document object, as well as the

state of the document at the start of these steps. (This allows the user to step
backwards in the session history to see the page before it was blown away by the
document.open() call.)

11. Finally, set the insertion point to point at just before the end of the input stream (which at this
point will be empty).

12. Return the Document on which the method was invoked.

We shouldn't hard-code text/plain there. We should do it some other way, e.g. hand off to the

section on content-sniffing and handling of incoming data streams, the part that defines how this
all works when stuff comes over the network.

When called with three or more arguments, the open() method on the HTMLDocument object must

call the open() method on the Window interface of the object returned by the defaultView

attribute of the DocumentView interface of the HTMLDocument object, with the same arguments as

the original call to the open() method, and return whatever that method returned. If the

defaultView attribute of the DocumentView interface of the HTMLDocument object is null, then

the method must raise an INVALID_ACCESS_ERR exception.

The close() method must do nothing if there is no script-created parser associated with the

document. If there is such a parser, then, when the method is called, the user agent must insert an
explicit "EOF" character at the insertion point of the parser's input stream.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

37 of 458 30/12/2020, 08:08

2.5.2. Dynamic markup insertion in HTML

In HTML, the document.write(...) method must act as follows:

1. If the insertion point is undefined, the open() method must be called (with no arguments) on

the document object. The insertion point will point at just before the end of the (empty) input

stream.

2. The string consisting of the concatenation of all the arguments to the method must be
inserted into the input stream just before the insertion point.

3. If there is a script that will execute as soon as the parser resumes, then the method must now
return without further processing of the input stream.

4. Otherwise, the tokeniser must process the characters that were inserted, one at a time,
processing resulting tokens as they are emitted, and stopping when the tokeniser reaches the
insertion point or when the processing of the tokeniser is aborted by the tree construction
stage (this can happen if a script start tag token is emitted by the tokeniser).

Note: If the document.write() method was called from script executing

inline (i.e. executing because the parser parsed a set of script tags), then

this is a reentrant invocation of the parser.

5. Finally, the method must return.

In HTML, the innerHTML DOM attribute of all HTMLElement and HTMLDocument nodes returns a

serialisation of the node's children using the HTML syntax. On setting, it replaces the node's children
with new nodes that result from parsing the given value. The formal definitions follow.

On getting, the innerHTML DOM attribute must return the result of running the HTML fragment

serialisation algorithm on the node.

On setting, if the node is a document, the innerHTML DOM attribute must run the following

algorithm:

1. If the document has an active parser, then stop that parser, and throw away any pending

content in the input stream. what about if it doesn't, because it's either like a text/plain, or

Atom, or PDF, or XHTML, or image document, or something?

2. Remove the children nodes of the Document whose innerHTML attribute is being set.

3. Create a new HTML parser, in its initial state, and associate it with the Document node.

4. Place into the input stream for the HTML parser just created the string being assigned into the
innerHTML attribute.

5. Start the parser and let it run until it has consumed all the characters just inserted into the
input stream. (The Document node will have been populated with elements and a load

event will have fired on its body element.)

Otherwise, if the node is an element, then setting the innerHTML DOM attribute must cause the

following algorithm to run instead:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

38 of 458 30/12/2020, 08:08

1. Invoke the HTML fragment parsing algorithm, with the element whose innerHTML attribute is

being set as the context and the string being assigned into the innerHTML attribute as the

input. Let new children be the result of this algorithm.

2. Remove the children of the element whose innerHTML attribute is being set.

3. Let target document be the ownerDocument of the Element node whose innerHTML

attribute is being set.

4. Set the ownerDocument of all the nodes in new children to the target document.

5. Append all the new children nodes to the node whose innerHTML attribute is being set,

preserving their order.

Note: script elements inserted using innerHTML do not execute when they are

inserted.

2.5.3. Dynamic markup insertion in XML

In an XML context, the document.write() method must raise an INVALID_ACCESS_ERR

exception.

On the other hand, however, the innerHTML attribute is indeed usable in an XML context.

In an XML context, the innerHTML DOM attribute on HTMLElements and HTMLDocuments, on

getting, must return a string in the form of an internal general parsed entity that is XML namespace-
well-formed, the string being an isomorphic serialisation of all of that node's child nodes, in
document order. User agents may adjust prefixes and namespace declarations in the serialisation
(and indeed might be forced to do so in some cases to obtain namespace-well-formed XML). [XML]
[XMLNS]

If any of the following cases are found in the DOM being serialised, the user agent must raise an
INVALID_STATE_ERR exception:

A DocumentType node that has an external subset public identifier or an external subset

system identifier that contains both a U+0022 QUOTATION MARK ('"') and a U+0027
APOSTROPHE ("'").

A node with a prefix or local name containing a U+003A COLON (":").

A Text node whose data contains characters that are not matched by the XML Char

production. [XML]

A CDATASection node whose data contains the string "]]>".

A Comment node whose data contains two adjacent U+002D HYPHEN-MINUS (-) characters

or ends with such a character.

A ProcessingInstruction node whose target name is the string "xml" (case

insensitively).

A ProcessingInstruction node whose target name contains a U+003A COLON (":").

A ProcessingInstruction node whose data contains the string "?>".

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

39 of 458 30/12/2020, 08:08

Note: These are the only ways to make a DOM unserialisable. The DOM enforces all
the other XML constraints; for example, trying to set an attribute with a name that
contains an equals sign (=) will raised an INVALID_CHARACTER_ERR exception.

On setting, in an XML context, the innerHTML DOM attribute on HTMLElements and

HTMLDocuments must run the following algorithm:

1. The user agent must create a new XML parser.

2. If the innerHTML attribute is being set on an element, the user agent must feed the parser

just created the string corresponding to the start tag of that element, declaring all the
namespace prefixes that are in scope on that element in the DOM, as well as declaring the
default namespace (if any) that is in scope on that element in the DOM.

3. The user agent must feed the parser just created the string being assigned into the
innerHTML attribute.

4. If the innerHTML attribute is being set on an element, the user agent must feed the parser

the string corresponding to the end tag of that element.

5. If the parser found a well-formedness error, the attribute's setter must raise a SYNTAX_ERR

exception and abort these steps.

6. The user agent must remove the children nodes of the node whose innerHTML attribute is

being set.

7. If the attribute is being set on a Document node, let new children be the children of the

document, preserving their order. Otherwise, the attribute is being set on an Element node;

let new children be the children of the the document's root element, preserving their order.

8. If the attribute is being set on a Document node, let target document be that Document

node. Otherwise, the attribute is being set on an Element node; let target document be the

ownerDocument of that Element.

9. Set the ownerDocument of all the nodes in new children to the target document.

10. Append all the new children nodes to the node whose innerHTML attribute is being set,

preserving their order.

Note: script elements inserted using innerHTML do not execute when they are

inserted.

2.6. APIs in HTML documents

For HTML documents, and for HTML elements in HTML documents, certain APIs defined in DOM3
Core become case-insensitive or case-changing, as sometimes defined in DOM3 Core, and as
summarised or required below. [DOM3CORE].

This does not apply to XML documents or to elements that are not in the HTML namespace despite
being in HTML documents.

Element.tagName, Node.nodeName, and Node.localName

These attributes return tag names in all uppercase and attribute names in all lowercase,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

40 of 458 30/12/2020, 08:08

regardless of the case with which they were created.

Document.createElement()

The canonical form of HTML markup is all-lowercase; thus, this method will lowercase the
argument before creating the requisite element. Also, the element created must be in the
HTML namespace.

Note: This doesn't apply to Document.createElementNS(). Thus, it is

possible, by passing this last method a tag name in the wrong case, to create
an element that claims to have the tag name of an element defined in this
specification, but doesn't support its interfaces, because it really has another
tag name not accessible from the DOM APIs.

Element.setAttributeNode()

When an Attr node is set on an HTML element, it must have its name lowercased before

the element is affected.

Note: This doesn't apply to Document.setAttributeNodeNS().

Element.setAttribute()

When an attribute is set on an HTML element, the name argument must be lowercased
before the element is affected.

Note: This doesn't apply to Document.setAttributeNS().

Document.getElementsByTagName() and Element.getElementsByTagName()

These methods (but not their namespaced counterparts) must compare the given argument
case-insensitively when looking at HTML elements, and case-sensitively otherwise.

Note: Thus, in an HTML document with nodes in multiple namespaces, these
methods will be both case-sensitive and case-insensitive at the same time.

Document.renameNode()

If the new namespace is the HTML namespace, then the new qualified name must be
lowercased before the rename takes place.

3. Semantics and structure of HTML elements

3.1. Introduction

This section is non-normative.

An introduction to marking up a document.

3.2. Common microsyntaxes

There are various places in HTML that accept particular data types, such as dates or numbers. This

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

41 of 458 30/12/2020, 08:08

section describes what the conformance criteria for content in those formats is, and how to parse
them.

Need to go through the whole spec and make sure all the attribute values are clearly defined
either in terms of microsyntaxes or in terms of other specs, or as "Text" or some such.

3.2.1. Common parser idioms

The space characters, for the purposes of this specification, are U+0020 SPACE, U+0009
CHARACTER TABULATION (tab), U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C
FORM FEED (FF), and U+000D CARRIAGE RETURN (CR).

Some of the micro-parsers described below follow the pattern of having an input variable that holds
the string being parsed, and having a position variable pointing at the next character to parse in
input.

For parsers based on this pattern, a step that requires the user agent to collect a sequence of
characters means that the following algorithm must be run, with characters being the set of
characters that can be collected:

1. Let input and position be the same variables as those of the same name in the algorithm that
invoked these steps.

2. Let result be the empty string.

3. While position doesn't point past the end of input and the character at position is one of the
characters, append that character to the end of result and advance position to the next
character in input.

4. Return result.

The step skip whitespace means that the user agent must collect a sequence of characters that are
space characters. The step skip Zs characters means that the user agent must collect a sequence
of characters that are in the Unicode character class Zs. In both cases, the collected characters are
not used. [UNICODE]

3.2.2. Boolean attributes

A number of attributes in HTML5 are boolean attributes. The presence of a boolean attribute on an
element represents the true value, and the absence of the attribute represents the false value.

If the attribute is present, its value must either be the empty string or the attribute's canonical name,
exactly, with no leading or trailing whitespace, and in lowercase.

3.2.3. Numbers

3.2.3.1. Unsigned integers

A string is a valid non-negative integer if it consists of one of more characters in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

The rules for parsing non-negative integers are as given in the following algorithm. When
invoked, the steps must be followed in the order given, aborting at the first step that returns a value.
This algorithm will either return zero, a positive integer, or an error. Leading spaces are ignored.
Trailing spaces and indeed any trailing garbage characters are ignored.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

42 of 458 30/12/2020, 08:08

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Skip whitespace.

5. If position is past the end of input, return an error.

6. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then
return an error.

7. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.

2. Add the value of the current character (0..9) to value.

3. Advance position to the next character.

4. If position is not past the end of input, return to the top of step 7 in the overall algorithm
(that's the step within which these substeps find themselves).

8. Return value.

3.2.3.2. Signed integers

A string is a valid integer if it consists of one of more characters in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9), optionally prefixed with a U+002D HYPHEN-MINUS ("-") character.

The rules for parsing integers are similar to the rules for non-negative integers, and are as given
in the following algorithm. When invoked, the steps must be followed in the order given, aborting at
the first step that returns a value. This algorithm will either return an integer or an error. Leading
spaces are ignored. Trailing spaces and trailing garbage characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Let sign have the value "positive".

5. Skip whitespace.

6. If position is past the end of input, return an error.

7. If the character indicated by position (the first character) is a U+002D HYPHEN-MINUS ("-")
character:

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

8. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then
return an error.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

43 of 458 30/12/2020, 08:08

9. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.

2. Add the value of the current character (0..9) to value.

3. Advance position to the next character.

4. If position is not past the end of input, return to the top of step 9 in the overall algorithm
(that's the step within which these substeps find themselves).

10. If sign is "positive", return value, otherwise return 0-value.

3.2.3.3. Real numbers

A string is a valid floating point number if it consists of one of more characters in the range
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally with a single U+002E FULL STOP
(".") character somewhere (either before these numbers, in between two numbers, or after the
numbers), all optionally prefixed with a U+002D HYPHEN-MINUS ("-") character.

The rules for parsing floating point number values are as given in the following algorithm. As
with the previous algorithms, when this one is invoked, the steps must be followed in the order
given, aborting at the first step that returns a value. This algorithm will either return a number or an
error. Leading spaces are ignored. Trailing spaces and garbage characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Let sign have the value "positive".

5. Skip whitespace.

6. If position is past the end of input, return an error.

7. If the character indicated by position (the first character) is a U+002D HYPHEN-MINUS ("-")
character:

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

8. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9) or
U+002E FULL STOP ("."), then return an error.

9. If the next character is U+002E FULL STOP ("."), but either that is the last character or the
character after that one is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9),
then return an error.

10. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.

2. Add the value of the current character (0..9) to value.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

44 of 458 30/12/2020, 08:08

3. Advance position to the next character.

4. If position is past the end of input, then if sign is "positive", return value, otherwise
return 0-value.

5. Otherwise return to the top of step 10 in the overall algorithm (that's the step within
which these substeps find themselves).

11. Otherwise, if the next character is not a U+002E FULL STOP ("."), then if sign is "positive",
return value, otherwise return 0-value.

12. The next character is a U+002E FULL STOP ("."). Advance position to the character after
that.

13. Let divisor be 1.

14. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply divisor by ten.

2. Add the value of the current character (0..9) divided by divisor, to value.

3. Advance position to the next character.

4. If position is past the end of input, then if sign is "positive", return value, otherwise
return 0-value.

5. Otherwise return to the top of step 14 in the overall algorithm (that's the step within
which these substeps find themselves).

15. Otherwise, if sign is "positive", return value, otherwise return 0-value.

3.2.3.4. Ratios

Note: The algorithms described in this section are used by the progress and meter

elements.

A valid denominator punctuation character is one of the characters from the table below. There is
a value associated with each denominator punctuation character, as shown in the table below.

Denominator Punctuation Character Value

U+0025 PERCENT SIGN % 100

U+066A ARABIC PERCENT SIGN ٪ 100

U+FE6A SMALL PERCENT SIGN ﹪ 100

U+FF05 FULLWIDTH PERCENT SIGN ％ 100

U+2030 PER MILLE SIGN ‰ 1000

U+2031 PER TEN THOUSAND SIGN ‱ 10000

The steps for finding one or two numbers of a ratio in a string are as follows:

1. If the string is empty, then return nothing and abort these steps.

2. Find a number in the string according to the algorithm below, starting at the start of the string.

3. If the sub-algorithm in step 2 returned nothing or returned an error condition, return nothing

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

45 of 458 30/12/2020, 08:08

and abort these steps.

4. Set number1 to the number returned by the sub-algorithm in step 2.

5. Starting with the character immediately after the last one examined by the sub-algorithm in
step 2, skip any characters in the string that are in the Unicode character class Zs (this might
match zero characters). [UNICODE]

6. If there are still further characters in the string, and the next character in the string is a valid
denominator punctuation character, set denominator to that character.

7. If the string contains any other characters in the range U+0030 DIGIT ZERO to U+0039
DIGIT NINE, but denominator was given a value in the step 6, return nothing and abort these
steps.

8. Otherwise, if denominator was given a value in step 6, return number1 and denominator and
abort these steps.

9. Find a number in the string again, starting immediately after the last character that was
examined by the sub-algorithm in step 2.

10. If the sub-algorithm in step 9 returned nothing or an error condition, return nothing and abort
these steps.

11. Set number2 to the number returned by the sub-algorithm in step 9.

12. If there are still further characters in the string, and the next character in the string is a valid
denominator punctuation character, return nothing and abort these steps.

13. If the string contains any other characters in the range U+0030 DIGIT ZERO to U+0039
DIGIT NINE, return nothing and abort these steps.

14. Otherwise, return number1 and number2.

The algorithm to find a number is as follows. It is given a string and a starting position, and returns
either nothing, a number, or an error condition.

1. Starting at the given starting position, ignore all characters in the given string until the first
character that is either a U+002E FULL STOP or one of the ten characters in the range
U+0030 DIGIT ZERO to U+0039 DIGIT NINE.

2. If there are no such characters, return nothing and abort these steps.

3. Starting with the character matched in step 1, collect all the consecutive characters that are
either a U+002E FULL STOP or one of the ten characters in the range U+0030 DIGIT ZERO
to U+0039 DIGIT NINE, and assign this string of one or more characters to string.

4. If string contains more than one U+002E FULL STOP character then return an error condition
and abort these steps.

5. Parse string according to the rules for parsing floating point number values, to obtain number.
This step cannot fail (string is guarenteed to be a valid floating point number).

6. Return number.

3.2.3.5. Percentages and dimensions

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

46 of 458 30/12/2020, 08:08

valid positive non-zero integers rules for parsing dimension values (only used by
height/width on img, embed, object — lengths in css pixels or percentages)

3.2.3.6. Lists of integers

A valid list of integers is a number of valid integers separated by U+002C COMMA characters,
with no other characters (e.g. no space characters). In addition, there might be restrictions on the
number of integers that can be given, or on the range of values allowed.

The rules for parsing a list of integers are as follows:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let numbers be an initially empty list of integers. This list will be the result of this algorithm.

4. If there is a character in the string input at position position, and it is either U+002C COMMA
character or a U+0020 SPACE character, then advance position to the next character in input,
or to beyond the end of the string if there are no more characters.

5. If position points to beyond the end of input, return numbers and abort.

6. If the character in the string input at position position is a U+002C COMMA character or a
U+0020 SPACE character, return to step 4.

7. Let negated be false.

8. Let value be 0.

9. Let multiple be 1.

10. Let started be false.

11. Let finished be false.

12. Let bogus be false.

13. Parser: If the character in the string input at position position is:

↪ A U+002D HYPHEN-MINUS character

Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. If started is true or if bogus is true, let negated be false.

3. Otherwise, if started is false and if bogus is false, let negated be true.

4. Let started be true.

↪ A character in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE

Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. Let n be the value of the digit, interpreted in base ten, multiplied by multiple.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

47 of 458 30/12/2020, 08:08

3. Add n to value.

4. If value is greater than zero, multiply multiple by ten.

5. Let started be true.

↪ A U+002C COMMA character

↪ A U+0020 SPACE character

Follow these substeps:

1. If started is false, return the numbers list and abort.

2. If negated is true, then negate value.

3. Append value to the numbers list.

4. Jump to step 4 in the overall set of steps.

↪ A U+002E FULL STOP character

Follow these substeps:

1. Let finished be true.

↪ Any other character

Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. Let negated be false.

3. Let bogus be true.

4. If started is true, then return the numbers list, and abort. (The value in value
is not appended to the list first; it is dropped.)

14. Advance position to the next character in input, or to beyond the end of the string if there are
no more characters.

15. If position points to a character (and not to beyond the end of input), jump to the big Parser
step above.

16. If negated is true, then negate value.

17. If started is true, then append value to the numbers list, return that list, and abort.

18. Return the numbers list and abort.

3.2.4. Dates and times

In the algorithms below, the number of days in month month of year year is: 31 if month is 1, 3, 5,
7, 8, 10, or 12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or
if year is a number divisible by 4 but not by 100; and 28 otherwise. This takes into account leap
years in the Gregorian calendar. [GREGORIAN]

3.2.4.1. Specific moments in time

A string is a valid datetime if it has four digits (representing the year), a literal hyphen, two digits
(representing the month), a literal hyphen, two digits (representing the day), optionally some spaces,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

48 of 458 30/12/2020, 08:08

either a literal T or a space, optionally some more spaces, two digits (for the hour), a colon, two
digits (the minutes), optionally the seconds (which, if included, must consist of another colon, two
digits (the integer part of the seconds), and optionally a decimal point followed by one or more digits
(for the fractional part of the seconds)), optionally some spaces, and finally either a literal Z
(indicating the time zone is UTC), or, a plus sign or a minus sign followed by two digits, a colon, and
two digits (for the sign, the hours and minutes of the timezone offset respectively); with the month-
day combination being a valid date in the given year according to the Gregorian calendar, the hour
values (h) being in the range 0 ≤ h ≤ 23, the minute values (m) in the range 0 ≤ m ≤ 59, and the
second value (s) being in the range 0 ≤ h < 60. [GREGORIAN]

The digits must be characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), the
hyphens must be a U+002D HYPHEN-MINUS characters, the T must be a U+0054 LATIN CAPITAL
LETTER T, the colons must be U+003A COLON characters, the decimal point must be a U+002E
FULL STOP, the Z must be a U+005A LATIN CAPITAL LETTER Z, the plus sign must be a U+002B
PLUS SIGN, and the minus U+002D (same as the hyphen).

The following are some examples of dates written as valid datetimes.

"0037-12-13 00:00 Z"

Midnight UTC on the birthday of Nero (the Roman Emperor).

"1979-10-14T12:00:00.001-04:00"

One millisecond after noon on October 14th 1979, in the time zone in use on the east
coast of North America during daylight saving time.

"8592-01-01 T 02:09 +02:09"

Midnight UTC on the 1st of January, 8592. The time zone associated with that time is
two hours and nine minutes ahead of UTC.

Several things are notable about these dates:

Years with fewer than four digits have to be zero-padded. The date "37-12-13" would not
be a valid date.

To unambiguously identify a moment in time prior to the introduction of the Gregorian
calendar, the date has to be first converted to the Gregorian calendar from the calendar
in use at the time (e.g. from the Julian calendar). The date of Nero's birth is the 15th of
December 37, in the Julian Calendar, which is the 13th of December 37 in the Gregorian
Calendar.

The time and timezone components are not optional.

Dates before the year 0 or after the year 9999 can't be represented as a datetime in this
version of HTML.

Time zones differ based on daylight savings time.

Note: Conformance checkers can use the algorithm below to determine if a datetime
is a valid datetime or not.

To parse a string as a datetime value, a user agent must apply the following algorithm to the
string. This will either return a time in UTC, with associated timezone information for round tripping
or display purposes, or nothing, indicating the value is not a valid datetime. If at any point the
algorithm says that it "fails", this means that it returns nothing.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

49 of 458 30/12/2020, 08:08

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is not exactly four characters long, then fail. Otherwise,
interpret the resulting sequence as a base ten integer. Let that number be the year.

4. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-
MINUS character, then fail. Otherwise, move position forwards one character.

5. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise,
interpret the resulting sequence as a base ten integer. Let that number be the month.

6. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

7. Let maxday be the number of days in month month of year year.

8. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-
MINUS character, then fail. Otherwise, move position forwards one character.

9. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise,
interpret the resulting sequence as a base ten integer. Let that number be the day.

10. If day is not a number in the range 1 ≤ month ≤ maxday, then fail.

11. Collect a sequence of characters that are either U+0054 LATIN CAPITAL LETTER T
characters or space characters. If the collected sequence is zero characters long, or if it
contains more than one U+0054 LATIN CAPITAL LETTER T character, then fail.

12. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise,
interpret the resulting sequence as a base ten integer. Let that number be the hour.

13. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

14. If position is beyond the end of input or if the character at position is not a U+003A COLON
character, then fail. Otherwise, move position forwards one character.

15. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise,
interpret the resulting sequence as a base ten integer. Let that number be the minute.

16. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

17. Let second be a string with the value "0".

18. If position is beyond the end of input, then fail.

19. If the character at position is a U+003A COLON, then:

1. Advance position to the next character in input.

2. If position is beyond the end of input, or at the last character in input, or if the next two
characters in input starting at position are not two characters both in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then fail.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

50 of 458 30/12/2020, 08:08

3. Collect a sequence of characters that are either characters in the range U+0030 DIGIT
ZERO (0) to U+0039 DIGIT NINE (9) or U+002E FULL STOP characters. If the
collected sequence has more than one U+002E FULL STOP characters, or if the last
character in the sequence is a U+002E FULL STOP character, then fail. Otherwise, let
the collected string be second instead of its previous value.

20. Interpret second as a base ten number (possibly with a fractional part). Let that number be
second instead of the string version.

21. If second is not a number in the range 0 ≤ hour < 60, then fail. (The values 60 and 61 are not
allowed: leap seconds cannot be represented by datetime values.)

22. If position is beyond the end of input, then fail.

23. Skip whitespace.

24. If the character at position is a U+005A LATIN CAPITAL LETTER Z, then:

1. Let timezone be 0.

2. Let timezone be 0.

3. Advance position to the next character in input.

25. Otherwise, if the character at position is either a U+002B PLUS SIGN ("+") or a U+002D
HYPHEN-MINUS ("-"), then:

1. If the character at position is a U+002B PLUS SIGN ("+"), let sign be "positive".
Otherwise, it's a U+002D HYPHEN-MINUS ("-"); let sign be "negative".

2. Advance position to the next character in input.

3. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail.
Otherwise, interpret the resulting sequence as a base ten integer. Let that number be
the timezone .

4. If timezone is not a number in the range 0 ≤ timezone ≤ 23, then fail.

5. If sign is "negative", then negate timezone .

6. If position is beyond the end of input or if the character at position is not a U+003A
COLON character, then fail. Otherwise, move position forwards one character.

7. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail.
Otherwise, interpret the resulting sequence as a base ten integer. Let that number be
the timezone .

8. If timezone is not a number in the range 0 ≤ timezone ≤ 59, then fail.

9. If sign is "negative", then negate timezone .

26. If position is not beyond the end of input, then fail.

27. Let time be the moment in time at year year, month month, day day, hours hour, minute
minute, second second, subtracting timezone hours and timezone minutes. That
moment in time is a moment in the UTC timezone.

hours

minutes

hours

hours hours

hours

minutes

minutes minutes

minutes

hours minutes

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

51 of 458 30/12/2020, 08:08

28. Let timezone be timezone hours and timezone minutes from UTC.

29. Return time and timezone.

3.2.4.2. Vaguer moments in time

This section defines date or time strings. There are two kinds, date or time strings in content,
and date or time strings in attributes. The only difference is in the handling of whitespace
characters.

To parse a date or time string, user agents must use the following algorithm. A date or time string is
a valid date or time string if the following algorithm, when run on the string, doesn't say the string is
invalid.

The algorithm may return nothing (in which case the string will be invalid), or it may return a date, a
time, a date and a time, or a date and a time and and a timezone. Even if the algorithm returns one
or more values, the string can still be invalid.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let results be the collection of results that are to be returned (one or more of a date, a time,
and a timezone), initially empty. If the algorithm aborts at any point, then whatever is currently
in results must be returned as the result of the algorithm.

4. For the "in content" variant: skip Zs characters; for the "in attributes" variant: skip whitespace.

5. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is empty, then the string is invalid; abort these steps.

6. Let the sequence of characters collected in the last step be s.

7. If position is past the end of input, the string is invalid; abort these steps.

8. If the character at position is not a U+003A COLON character, then:

1. If the character at position is not a U+002D HYPHEN-MINUS ("-") character either,
then the string is invalid, abort these steps.

2. If the sequence s is not exactly four digits long, then the string is invalid. (This does not
stop the algorithm, however.)

3. Interpret the sequence of characters collected in step 5 as a base ten integer, and let
that number be year.

4. Advance position past the U+002D HYPHEN-MINUS ("-") character.

5. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is empty, then the string is invalid; abort
these steps.

6. If the sequence collected in the last step is not exactly two digits long, then the string is
invalid.

7. Interpret the sequence of characters collected two steps ago as a base ten integer,
and let that number be month.

hours minutes

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

52 of 458 30/12/2020, 08:08

8. If month is not a number in the range 1 ≤ month ≤ 12, then the string is invalid, abort
these steps.

9. Let maxday be the number of days in month month of year year.

10. If position is past the end of input, or if the character at position is not a U+002D
HYPHEN-MINUS ("-") character, then the string is invalid, abort these steps.
Otherwise, advance position to the next character.

11. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is empty, then the string is invalid; abort
these steps.

12. If the sequence collected in the last step is not exactly two digits long, then the string is
invalid.

13. Interpret the sequence of characters collected two steps ago as a base ten integer,
and let that number be day.

14. If day is not a number in the range 1 ≤ day ≤ maxday, then the string is invalid, abort
these steps.

15. Add the date represented by year, month, and day to the results.

16. For the "in content" variant: skip Zs characters; for the "in attributes" variant: skip
whitespace.

17. If the character at position is a U+0054 LATIN CAPITAL LETTER T, then move position
forwards one character.

18. For the "in content" variant: skip Zs characters; for the "in attributes" variant: skip
whitespace.

19. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is empty, then the string is invalid; abort
these steps.

20. Let s be the sequence of characters collected in the last step.

9. If s is not exactly two digits long, then the string is invalid.

10. Interpret the sequence of characters collected two steps ago as a base ten integer, and let
that number be hour.

11. If hour is not a number in the range 0 ≤ hour ≤ 23, then the string is invalid, abort these steps.

12. If position is past the end of input, or if the character at position is not a U+003A COLON
character, then the string is invalid, abort these steps. Otherwise, advance position to the next
character.

13. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). If the collected sequence is empty, then the string is invalid; abort these steps.

14. If the sequence collected in the last step is not exactly two digits long, then the string is
invalid.

15. Interpret the sequence of characters collected two steps ago as a base ten integer, and let
that number be minute.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

53 of 458 30/12/2020, 08:08

16. If minute is not a number in the range 0 ≤ minute ≤ 59, then the string is invalid, abort these
steps.

17. Let second be 0. It may be changed to another value in the next step.

18. If position is not past the end of input and the character at position is a U+003A COLON
character, then:

1. Collect a sequence of characters that are either characters in the range U+0030 DIGIT
ZERO (0) to U+0039 DIGIT NINE (9) or are U+002E FULL STOP. If the collected
sequence is empty, or contains more than one U+002E FULL STOP character, then
the string is invalid; abort these steps.

2. If the first character in the sequence collected in the last step is not in the range
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then the string is invalid.

3. Interpret the sequence of characters collected two steps ago as a base ten number
(possibly with a fractional part), and let that number be second.

4. If second is not a number in the range 0 ≤ minute < 60, then the string is invalid, abort
these steps.

19. Add the time represented by hour, minute, and second to the results.

20. If results has both a date and a time, then:

1. For the "in content" variant: skip Zs characters; for the "in attributes" variant: skip
whitespace.

2. If position is past the end of input, then skip to the next step in the overall set of steps.

3. Otherwise, if the character at position is a U+005A LATIN CAPITAL LETTER Z, then:

1. Add the timezone corresponding to UTC (zero offset) to the results.

2. Advance position to the next character in input.

3. Skip to the next step in the overall set of steps.

4. Otherwise, if the character at position is either a U+002B PLUS SIGN ("+") or a
U+002D HYPHEN-MINUS ("-"), then:

1. If the character at position is a U+002B PLUS SIGN ("+"), let sign be "positive".
Otherwise, it's a U+002D HYPHEN-MINUS ("-"); let sign be "negative".

2. Advance position to the next character in input.

3. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters
long, then the string is invalid.

4. Interpret the sequence collected in the last step as a base ten number, and let
that number be timezone .

5. If timezone is not a number in the range 0 ≤ timezone ≤ 23, then the
string is invalid; abort these steps.

6. If sign is "negative", then negate timezone .

hours

hours hours

hours

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

54 of 458 30/12/2020, 08:08

7. If position is beyond the end of input or if the character at position is not a
U+003A COLON character, then the string is invalid; abort these steps.
Otherwise, move position forwards one character.

8. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters
long, then the string is invalid.

9. Interpret the sequence collected in the last step as a base ten number, and let
that number be timezone .

10. If timezone is not a number in the range 0 ≤ timezone ≤ 59, then
the string is invalid; abort these steps.

11. Add the timezone corresponding to an offset of timezone hours and
timezone minutes to the results.

12. Skip to the next step in the overall set of steps.

5. Otherwise, the string is invalid; abort these steps.

21. For the "in content" variant: skip Zs characters; for the "in attributes" variant: skip whitespace.

22. If position is not past the end of input, then the string is invalid.

23. Abort these steps (the string is parsed).

3.2.5. Time offsets

valid time offset, rules for parsing time offsets, time offset serialisation rules; in the format
"5d4h3m2s1ms" or "3m 9.2s" or "00:00:00.00" or similar.

3.2.6. Tokens

A set of space-separated tokens is a set of zero or more words separated by one or more space
characters, where words consist of any string of one or more characters, none of which are space
characters.

A string containing a set of space-separated tokens may have leading or trailing space characters.

An unordered set of unique space-separated tokens is a set of space-separated tokens where
none of the words are duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokens where none
of the words are duplicated but where the order of the tokens is meaningful.

When a user agent has to split a string on spaces, it must use the following algorithm:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let tokens be a list of tokens, initially empty.

4. Skip whitespace

5. While position is not past the end of input:

minutes

minutes minutes

hours

minutes

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

55 of 458 30/12/2020, 08:08

1. Collect a sequence of characters that are not space characters.

2. Add the string collected in the previous step to tokens.

3. Skip whitespace

6. Return tokens.

When a user agent has to remove a token from a string, it must use the following algorithm:

1. Let input be the string being modified.

2. Let token be the token being removed. It will not contain any space characters.

3. Let output be the output string, initially empty.

4. Let position be a pointer into input, initially pointing at the start of the string.

5. If position is beyond the end of input, set the string being modified to output, and abort these
steps.

6. If the character at position is a space character:

1. Append the character at position to the end of output.

2. Increment position so it points at the next character in input.

3. Return to step 5 in the overall set of steps.

7. Otherwise, the character at position is the first character of a token. Collect a sequence of
characters that are not space characters, and let that be s.

8. If s is exactly equal to token, then:

1. Skip whitespace (in input).

2. Remove any space characters currently at the end of output.

3. If position is not past the end of input, and output is not the empty string, append a
single U+0020 SPACE character at the end of output.

9. Otherwise, append s to the end of output.

10. Return to step 6 in the overall set of steps.

Note: This causes any occurrences of the token to be removed from the string, and
any spaces that were surrounding the token to be collapsed to a single space,
except at the start and end of the string, where such spaces are removed.

3.2.7. Keywords and enumerated attributes

Some attributes are defined as taking one of a finite set of keywords. Such attributes are called
enumerated attributes. The keywords are each defined to map to a particular state (several
keywords might map to the same state, in which case some of the keywords are synonyms of each
other; additionally, some of the keywords can be said to be non-conforming, and are only in the
specification for historical reasons). In addition, two default states can be given. The first is the
invalid value default, the second is the missing value default.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

56 of 458 30/12/2020, 08:08

If an enumerated attribute is specified, the attribute's value must be one of the given keywords that
are not said to be non-conforming, with no leading or trailing whitespace. The keyword may use any
mix of uppercase and lowercase letters.

When the attribute is specified, if its value case-insensitively matches one of the given keywords
then that keyword's state is the state that the attribute represents. If the attribute value matches
none of the given keywords, but the attribute has an invalid value default, then the attribute
represents that state. Otherwise, if the attribute value matches none of the keywords but there is a
missing value default state defined, then that is the state represented by the attribute. Otherwise,
there is no default, and invalid values must simply be ignored.

When the attribute is not specified, if there is a missing value default state defined, then that is the
state represented by the (missing) attribute. Otherwise, the absence of the attribute means that
there is no state represented.

Note: The empty string can be one of the keywords in some cases. For example the
contenteditable attribute has two states: true, matching the true keyword and

the empty string, false, matching false and all other keywords (it's the invalid value

default). It could further be thought of as having a third state inherit, which would be
the default when the attribute is not specified at all (the missing value default), but
for various reasons that isn't the way this specification actually defines it.

3.2.8. References

A valid hashed ID reference to an element of type type is a string consisting of a U+0023 NUMBER
SIGN (#) character followed by a string which exactly matches the value of the id attribute of an

element in the document with type type.

The rules for parsing a hashed ID reference to an element of type type are as follows:

1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if the first
such character in the string is the last character in the string, then return null and abort these
steps.

2. Let s be the string from the character immediately after the first U+0023 NUMBER SIGN
character in the string being parsed up to the end of that string.

3. Return the first element of type type that has an id or name attribute whose value case-

insensitively matches s.

3.3. Documents and document fragments

3.3.1. Semantics

Elements, attributes, and attribute values in HTML are defined (by this specification) to have certain
meanings (semantics). For example, the ol element represents an ordered list, and the lang

attribute represents the language of the content.

Authors must only use elements, attributes, and attribute values for their appropriate semantic
purposes.

For example, the following document is non-conforming, despite being syntactically correct:

<!DOCTYPE html>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

57 of 458 30/12/2020, 08:08

<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
 <table>
 <tr> <td> My favourite animal is the cat. </td> </tr>
 <tr>
 <td>
 —<a href="http://example.org/~ernest
/"><cite>Ernest</cite>,
 in an essay from 1992
 </td>
 </tr>
 </table>
 </body>
</html>

...because the data placed in the cells is clearly not tabular data. A corrected version of this
document might be:

<!DOCTYPE html>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
 <blockquote>
 <p> My favourite animal is the cat. </p>
 </blockquote>
 <p>
 —<cite>Ernest</cite>,
 in an essay from 1992
 </p>
 </body>
</html>

This next document fragment, intended to represent the heading of a corporate site, is similarly
non-conforming because the second line is not intended to be a heading of a subsection, but
merely a subheading or subtitle (a subordinate heading for the same section).

<body>
 <h1>ABC Company</h1>
 <h2>Leading the way in widget design since 1432</h2>
 ...

The header element should be used in these kinds of situations:

<body>
 <header>
 <h1>ABC Company</h1>
 <h2>Leading the way in widget design since 1432</h2>
 </header>
 ...

Through scripting and using other mechanisms, the values of attributes, text, and indeed the entire
structure of the document may change dynamically while a user agent is processing it. The
semantics of a document at an instant in time are those represented by the state of the document at
that instant in time, and the semantics of a document can therefore change over time. User agents

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

58 of 458 30/12/2020, 08:08

must update their presentation of the document as this occurs.

HTML has a progress element that describes a progress bar. If its "value" attribute is

dynamically updated by a script, the UA would update the rendering to show the progress
changing.

3.3.2. Structure

All the elements in this specification have a defined content model, which describes what nodes are
allowed inside the elements, and thus what the structure of an HTML document or fragment must
look like. Authors must only put elements inside an element if that element allows them to be there
according to its content model.

Note: As noted in the conformance and terminology sections, for the purposes of
determining if an element matches its content model or not, CDATASection nodes in

the DOM are treated as equivalent to Text nodes, and entity reference nodes are

treated as if they were expanded in place.

The space characters are always allowed between elements. User agents represent these
characters between elements in the source markup as text nodes in the DOM. Empty text nodes and
text nodes consisting of just sequences of those characters are considered inter-element
whitespace.

Inter-element whitespace, comment nodes, and processing instruction nodes must be ignored when
establishing whether an element matches its content model or not, and must be ignored when
following algorithms that define document and element semantics.

An element A is said to be preceded or followed by a second element B if A and B have the same
parent node and there are no other element nodes or text nodes (other than inter-element
whitespace) between them.

Authors must only use elements in the HTML namespace in the contexts where they are allowed, as
defined for each element. For XML compound documents, these contexts could be inside elements
from other namespaces, if those elements are defined as providing the relevant contexts.

The SVG specification defines the SVG foreignObject element as allowing foreign

namespaces to be included, thus allowing compound documents to be created by inserting
subdocument content under that element. This specification defines the XHTML html element

as being allowed where subdocument fragments are allowed in a compound document.
Together, these two definitions mean that placing an XHTML html element as a child of an

SVG foreignObject element is conforming.

3.3.3. Kinds of content

Each element in HTML falls into zero or more categories that group elements with similar
characteristics together. The following categories are used in this specification:

Metadata content
Prose content
Sectioning content
Heading content
Phrasing content
Embedded content
Form control content
Interactive content

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

59 of 458 30/12/2020, 08:08

Some elements have unique requirements and do not fit into any particular category.

3.3.3.1. Metadata content

Metadata content is content that sets up the presentation or behaviour of the rest of the content, or
that sets up the relationship of the document with other documents, or that conveys other "out of
band" information.

Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are
also metadata content.

3.3.3.2. Prose content

Most elements that are used in the body of documents and applications are categorised as prose
content.

As a general rule, elements whose content model allows any prose content should have either at
least one descendant text node that is not inter-element whitespace, or at least one descendant
element node that is embedded content. For the purposes of this requirement, del elements and

their descendants must not be counted as contributing to the ancestors of the del element.

This requirement is not a hard requirement, however, as there are many cases where an element
can be empty legitimately, for example when it is used as a placeholder which will later be filled in by
a script, or when the element is part of a template and would on most pages be filled in but on some
pages is not relevant.

3.3.3.3. Sectioning content

Sectioning content is content that defines the scope of headers, footers, and contact information.

Each sectioning content element potentially has a heading. See the section on headings and
sections for further details.

3.3.3.4. Heading content

Heading content defines the header of a section (whether explicitly marked up using sectioning
content elements, or implied by the heading content itself).

3.3.3.5. Phrasing content

Phrasing content is the text of the document, as well as elements that mark up that text at the intra-
paragraph level. Runs of phrasing content form paragraphs.

All phrasing content is also prose content. Any content model that expects prose content also
expects phrasing content.

As a general rule, elements whose content model allows any phrasing content should have either at
least one descendant text node that is not inter-element whitespace, or at least one descendant
element node that is embedded content. For the purposes of this requirement, nodes that are
descendants of del elements must not be counted as contributing to the ancestors of the del

element.

Note: Most elements that are categorised as phrasing content can only contain
elements that are themselves categorised as phrasing content, not any prose
content.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

60 of 458 30/12/2020, 08:08

Text nodes that are not inter-element whitespace are phrasing content.

3.3.3.6. Embedded content

Embedded content is content that imports another resource into the document, or content from
another vocabulary that is inserted into the document.

All embedded content is also phrasing content (and prose content). Any content model that expects
phrasing content (or prose content) also expects embedded content.

Elements that are from namespaces other than the HTML namespace and that convey content but
not metadata, are embedded content for the purposes of the content models defined in this
specification. (For example, MathML, or SVG.)

Some embedded content elements can have fallback content: content that is to be used when the
external resource cannot be used (e.g. because it is of an unsupported format). The element
definitions state what the fallback is, if any.

3.3.3.7. Interactive content

Parts of this section should eventually be moved to DOM3 Events.

Interactive content is content that is specifically intended for user interaction.

Certain elements in HTML can be activated, for instance a elements, button elements, or input

elements when their type attribute is set to radio. Activation of those elements can happen in

various (UA-defined) ways, for instance via the mouse or keyboard.

When activation is performed via some method other than clicking the pointing device, the default
action of the event that triggers the activation must, instead of being activating the element directly,
be to fire a click event on the same element.

The default action of this click event, or of the real click event if the element was activated by

clicking a pointing device, must be to fire a further DOMActivate event at the same element, whose

own default action is to go through all the elements the DOMActivate event bubbled through

(starting at the target node and going towards the Document node), looking for an element with an

activation behavior; the first element, in reverse tree order, to have one, must have its activation
behavior executed.

Note: The above doesn't happen for arbitrary synthetic events dispatched by author
script. However, the click() method can be used to make it happen

programmatically.

For certain form controls, this process is complicated further by changes that must happen around
the click event. [WF2]

Note: Most interactive elements have content models that disallow nesting
interactive elements.

3.3.4. Transparent content models

Some elements are described as transparent; they have "transparent" as their content model.
Some elements are described as semi-transparent; this means that part of their content model is

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

61 of 458 30/12/2020, 08:08

"transparent" but that is not the only part of the content model that must be satisfied.

When a content model includes a part that is "transparent", those parts must only contain content
that would still be conformant if all transparent and semi-transparent elements in the tree were
replaced, in their parent element, by the children in the "transparent" part of their content model,
retaining order.

When a transparent or semi-transparent element has no parent, then the part of its content model
that is "transparent" must instead be treated as accepting any prose content.

3.3.5. Paragraphs

A paragraph is typically a block of text with one or more sentences that discuss a particular topic, as
in typography, but can also be used for more general thematic grouping. For instance, an address is
also a paragraph, as is a part of a form, a byline, or a stanza in a poem.

Paragraphs in prose content are defined relative to what the document looks like without the ins

and del elements complicating matters. Let view be a view of the DOM that replaces all ins and

del elements in the document with their contents. Then, in view, for each run of phrasing content

uninterrupted by other types of content, in an element that accepts content other than phrasing
content, let first be the first node of the run, and let last be the last node of the run. For each run, a
paragraph exists in the original DOM from immediately before first to immediately after last.
(Paragraphs can thus span across ins and del elements.)

A paragraph is also formed by p elements.

Note: The p element can be used to wrap individual paragraphs when there would

otherwise not be any content other than phrasing content to separate the
paragraphs from each other.

In the following example, there are two paragraphs in a section. There is also a header, which
contains phrasing content that is not a paragraph. Note how the comments and intra-element
whitespace do not form paragraphs.

<section>
 <h1>Example of paragraphs</h1>
 This is the first paragraph in this example.
 <p>This is the second.</p>
 <!-- This is not a paragraph. -->
</section>

The following example takes that markup and puts ins and del elements around some of the

markup to show that the text was changed (though in this case, the changes don't really make
much sense, admittedly). Notice how this example has exactly the same paragraphs as the
previous one, despite the ins and del elements.

<section>
 <ins><h1>Example of paragraphs</h1>
 This is the first paragraph in</ins> this example.
 <p>This is the second.</p>
 <!-- This is not a paragraph. -->
</section>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

62 of 458 30/12/2020, 08:08

3.4. Global attributes

The following attributes are common to and may be specified on all HTML elements (even those not
defined in this specification):

Global attributes:

class

contenteditable

contextmenu

dir

draggable

id

irrelevant

lang

ref

registrationmark

tabindex

template

title

In addition, the following event handler content attributes may be specified on any HTML element:

Event handler content attributes:

onabort

onbeforeunload

onblur

onchange

onclick

oncontextmenu

ondblclick

ondrag

ondragend

ondragenter

ondragleave

ondragover

ondragstart

ondrop

onerror

onfocus

onkeydown

onkeypress

onkeyup

onload

onmessage

onmousedown

onmousemove

onmouseout

onmouseover

onmouseup

onmousewheel

onresize

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

63 of 458 30/12/2020, 08:08

onscroll

onselect

onsubmit

onunload

3.4.1. The id attribute

The id attribute represents its element's unique identifier. The value must be unique in the subtree

within which the element finds itself and must contain at least one character. The value must not
contain any space characters.

If the value is not the empty string, user agents must associate the element with the given value
(exactly, including any space characters) for the purposes of ID matching within the subtree the
element finds itself (e.g. for selectors in CSS or for the getElementById() method in the DOM).

Identifiers are opaque strings. Particular meanings should not be derived from the value of the id

attribute.

This specification doesn't preclude an element having multiple IDs, if other mechanisms (e.g. DOM
Core methods) can set an element's ID in a way that doesn't conflict with the id attribute.

The id DOM attribute must reflect the id content attribute.

3.4.2. The title attribute

The title attribute represents advisory information for the element, such as would be appropriate

for a tooltip. On a link, this could be the title or a description of the target resource; on an image, it
could be the image credit or a description of the image; on a paragraph, it could be a footnote or
commentary on the text; on a citation, it could be further information about the source; and so forth.
The value is text.

If this attribute is omitted from an element, then it implies that the title attribute of the nearest

ancestor HTML element with a title attribute set is also relevant to this element. Setting the

attribute overrides this, explicitly stating that the advisory information of any ancestors is not relevant
to this element. Setting the attribute to the empty string indicates that the element has no advisory
information.

If the title attribute's value contains U+000A LINE FEED (LF) characters, the content is split into

multiple lines. Each U+000A LINE FEED (LF) character represents a line break.

Some elements, such as link and dfn, define additional semantics for the title attribute beyond

the semantics described above.

The title DOM attribute must reflect the title content attribute.

3.4.3. The lang (HTML only) and xml:lang (XML only) attributes

The lang attribute specifies the primary language for the element's contents and for any of the

element's attributes that contain text. Its value must be a valid RFC 3066 language code, or the
empty string. [RFC3066]

The xml:lang attribute is defined in XML. [XML]

If these attributes are omitted from an element, then it implies that the language of this element is
the same as the language of the parent element. Setting the attribute to the empty string indicates

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

64 of 458 30/12/2020, 08:08

that the primary language is unknown.

The lang attribute may only be used on elements of HTML documents. Authors must not use the

lang attribute in XML documents.

The xml:lang attribute may only be used on elements of XML documents. Authors must not use

the xml:lang attribute in HTML documents.

To determine the language of a node, user agents must look at the nearest ancestor element
(including the element itself if the node is an element) that has an xml:lang attribute set or is an

HTML element and has a lang attribute set. That attribute specifies the language of the node.

If both the xml:lang attribute and the lang attribute are set on an element, user agents must use

the xml:lang attribute, and the lang attribute must be ignored for the purposes of determining the

element's language.

If no explicit language is given for the root element, then language information from a higher-level
protocol (such as HTTP), if any, must be used as the final fallback language. In the absence of any
language information, the default value is unknown (the empty string).

User agents may use the element's language to determine proper processing or rendering (e.g. in
the selection of appropriate fonts or pronounciations, or for dictionary selection).

The lang DOM attribute must reflect the lang content attribute.

3.4.4. The dir attribute

The dir attribute specifies the element's text directionality. The attribute is an enumerated attribute

with the keyword ltr mapping to the state ltr, and the keyword rtl mapping to the state rtl. The

attribute has no defaults.

If the attribute has the state ltr, the element's directionality is left-to-right. If the attribute has the state
rtl, the element's directionality is right-to-left. Otherwise, the element's directionality is the same as
its parent.

The processing of this attribute depends on the presentation layer. For example, CSS 2.1 defines a
mapping from this attribute to the CSS 'direction' and 'unicode-bidi' properties, and defines rendering
in terms of those properties.

The dir DOM attribute on an element must reflect the dir content attribute of that element, limited

to only known values.

The dir DOM attribute on HTMLDocument objects must reflect the dir content attribute of the

html element, if any, limited to only known values. If there is no such element, then the attribute

must return the empty string and do nothing on setting.

3.4.5. The class attribute

Every HTML element may have a class attribute specified.

The attribute, if specified, must have a value that is an unordered set of unique space-separated
tokens representing the various classes that the element belongs to.

The classes that an HTML element has assigned to it consists of all the classes returned when the
value of the class attribute is split on spaces.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

65 of 458 30/12/2020, 08:08

Note: Assigning classes to an element affects class matching in selectors in CSS,
the getElementsByClassName() method in the DOM, and other such features.

Authors may use any value in the class attribute, but are encouraged to use the values that

describe the nature of the content, rather than values that describe the desired presentation of the
content.

The className and classList DOM attributes must both reflect the class content attribute.

3.4.6. The irrelevant attribute

All elements may have the irrelevant content attribute set. The irrelevant attribute is a

boolean attribute. When specified on an element, it indicates that the element is not yet, or is no
longer, relevant. User agents should not render elements that have the irrelevant attribute

specified.

In the following skeletal example, the attribute is used to hide the Web game's main screen until
the user logs in:

 <h1>The Example Game</h1>
 <section id="login">
 <h2>Login</h2>
 <form>
 ...
 <!-- calls login() once the user's credentials have been
checked -->
 </form>
 <script>
 function login() {
 // switch screens
 document.getElementById('login').irrelevant = true;
 document.getElementById('game').irrelevant = false;
 }
 </script>
 </section>
 <section id="game" irrelevant>
 ...
 </section>

The irrelevant attribute must not be used to hide content that could legitimately be shown in

another presentation. For example, it is incorrect to use irrelevant to hide panels in a tabbed

dialog, because the tabbed interface is merely a kind of overflow presentation — showing all the
form controls in one big page with a scrollbar would be equivalent, and no less correct.

Elements in a section hidden by the irrelevant attribute are still active, e.g. scripts and form

controls in such sections still render execute and submit respectively. Only their presentation to the
user changes.

The irrelevant DOM attribute must reflect the content attribute of the same name.

3.5. Interaction

3.5.1. Activation

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

66 of 458 30/12/2020, 08:08

The click() method must fire a click event at the element, whose default action is the firing of a

further DOMActivate event at the same element, whose own default action is to go through all the

elements the DOMActivate event bubbled through (starting at the target node and going towards

the Document node), looking for an element with an activation behavior; the first element, in reverse

tree order, to have one, must have its activation behavior executed.

3.5.2. Focus

When an element is focused, key events received by the document must be targeted at that
element. There is always an element focused; in the absence of other elements being focused, the
document's root element is it.

Which element within a document currently has focus is independent of whether or not the
document itself has the system focus.

Some focusable elements might take part in sequential focus navigation.

3.5.2.1. Focus management

The focus() and blur() methods must focus and unfocus the element respectively, if the

element is focusable.

Some elements, most notably area, can correspond to more than one distinct focusable area.

When such an element is focused using the focus() method, the first such region in tree order is

the one that must be focused.

Well that clearly needs more.

The activeElement attribute must return the element in the document that has focus. If no

element specifically has focus, this must return the body element.

The hasFocus attribute must return true if the document, one of its nested browsing contexts, or

any element in the document or its browsing contexts currently has the system focus.

3.5.2.2. Sequential focus navigation

The tabindex attribute specifies the relative order of elements for the purposes of sequential focus

navigation. The name "tab index" comes from the common use of the "tab" key to navigate through
the focusable elements. The term "tabbing" refers to moving forward through the focusable
elements.

The tabindex attribute, if specified, must have a value that is a valid integer.

If the attribute is specified, it must be parsed using the rules for parsing integers. If parsing the value
returns an error, the attribute is ignored for the purposes of focus management (as if it wasn't
specified).

A positive integer or zero specifies the index of the element in the current scope's tab order.
Elements with the same index are sorted in tree order for the purposes of tabbing.

A negative integer specifies that the element should be removed from the tab order. If the element
does normally take focus, it may still be focused using other means (e.g. it could be focused by a
click).

If the attribute is absent (or invalid), then the user agent must treat the element as if it had the value

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

67 of 458 30/12/2020, 08:08

0 or the value -1, based on platform conventions.

For example, a user agent might default textarea elements to 0, and button elements to -1,

making text fields part of the tabbing cycle but buttons not.

When an element that does not normally take focus (i.e. whose default value would be -1) has the
tabindex attribute specified with a positive value, then it should be added to the tab order and

should be made focusable. When focused, the element matches the CSS :focus pseudo-class and

key events are dispatched on that element in response to keyboard input.

The tabIndex DOM attribute reflects the value of the tabIndex content attribute. If the attribute is

not present (or has an invalid value) then the DOM attribute must return the UA's default value for
that element, which will be either 0 (for elements in the tab order) or -1 (for elements not in the tab
order).

3.5.3. Scrolling elements into view

The scrollIntoView([top]) method, when called, must cause the element on which the

method was called to have the attention of the user called to it.

Note: In a speech browser, this could happen by having the current playback
position move to the start of the given element.

In visual user agents, if the argument is present and has the value false, the user agent should scroll
the element into view such that both the bottom and the top of the element are in the viewport, with
the bottom of the element aligned with the bottom of the viewport. If it isn't possible to show the
entire element in that way, or if the argument is omitted or is true, then the user agent must instead
simply align the top of the element with the top of the viewport.

Non-visual user agents may ignore the argument, or may treat it in some media-specific manner
most useful to the user.

3.6. The root element

3.6.1. The html element

Categories

None.

Contexts in which this element may be used:

As the root element of a document.
Wherever a subdocument fragment is allowed in a compound document.

Content model:

A head element followed by a body element.

Element-specific attributes:

manifest

DOM interface:

No difference from HTMLElement.

The html element represents the root of an HTML document.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

68 of 458 30/12/2020, 08:08

The manifest attribute gives the address of the document's application cache manifest, if there is

one. If the attribute is present, the attribute's value must be a valid URI (or IRI).

The manifest attribute only has an effect during the early stages of document load. Changing the

attribute dynamically thus has no effect (and thus, no DOM API is provided for this attribute).
Furthermore, as it is processed before any base elements are seen, its value is not subject to being

made relative to any base URI.

Though it has absolutely no effect and no meaning, the html element, in HTML documents, may

have an xmlns attribute specified, if, and only if, it has the exact value "http://www.w3.org

/1999/xhtml". This does not apply to XML documents.

Note: In HTML, the xmlns attribute has absolutely no effect. It is basically a talisman.

It is allowed merely to make migration to and from XHTML mildly easier. When
parsed by an HTML parser, the attribute ends up in the null namespace, not the
"http://www.w3.org/2000/xmlns/" namespace like namespace declaration

attributes in XML do.

Note: In XML, an xmlns attribute is part of the namespace declaration mechanism,

and an element cannot actually have an xmlns attribute in the null namespace

specified.

3.7. Document metadata

3.7.1. The head element

Categories

None.

Contexts in which this element may be used:

As the first element in an html element.

Content model:

One or more elements of metadata content, of which exactly one is a title element.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The head element collects the document's metadata.

3.7.2. The title element

Categories

Metadata content.

Contexts in which this element may be used:

In a head element containing no other title elements.

Content model:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

69 of 458 30/12/2020, 08:08

Text.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The title element represents the document's title or name. Authors should use titles that identify

their documents even when they are used out of context, for example in a user's history or
bookmarks, or in search results. The document's title is often different from its first header, since the
first header does not have to stand alone when taken out of context.

There must be no more than one title element per document.

The title element must not contain any elements.

Here are some examples of appropriate titles, contrasted with the top-level headers that might
be used on those same pages.

 <title>Introduction to The Mating Rituals of Bees</title>
 ...
 <h1>Introduction</h1>
 <p>This companion guide to the highly successful
 <cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the subject matter
unambiguously, while the first header assumes the reader knowns what the context is and
therefore won't wonder if the dances are Salsa or Waltz:

 <title>Dances used during bee mating rituals</title>
 ...
 <h1>The Dances</h1>

The string to use as the document's title is given by the document.title DOM attribute. User

agents should use the document's title when referring to the document in their user interface.

3.7.3. The base element

Categories

Metadata content.

Contexts in which this element may be used:

In a head element containing no other base elements.

Content model:

Empty.

Element-specific attributes:

href

target

DOM interface:

interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

70 of 458 30/12/2020, 08:08

 attribute DOMString target;
};

The base element allows authors to specify the document's base URI for the purposes of resolving

relative URIs, and the name of the default browsing context for the purposes of following hyperlinks.

There must be no more than one base element per document.

A base element must have either an href attribute, a target attribute, or both.

The href content attribute, if specified, must contain a URI (or IRI).

A base element, if it has an href attribute, must come before any other elements in the tree that

have attributes with URIs (except the html element and its manifest attribute).

User agents must use the value of the href attribute of the first base element that is both a child of

the head element and has an href attribute, if there is such an element, as the document entity's

base URI for the purposes of section 5.1.1 of RFC 3986 ("Establishing a Base URI": "Base URI
Embedded in Content"). This base URI from RFC 3986 is referred to by the algorithm given in XML
Base, which is a normative part of this specification. [RFC3986]

If the base URI given by this attribute is a relative URI, it must be resolved relative to the higher-level
base URIs (i.e. the base URI from the encapsulating entity or the URI used to retrieve the entity) to
obtain an absolute base URI. All xml:base attributes must be ignored when resolving relative URIs

in this href attribute.

Note: If there are multiple base elements with href attributes, all but the first are

ignored.

The target attribute, if specified, must contain a valid browsing context name. User agents use this

name when following hyperlinks.

A base element, if it has a target attribute, must come before any elements in the tree that

represent hyperlinks.

The href and target DOM attributes must reflect the content attributes of the same name.

3.7.4. The link element

Categories

Metadata content.

Contexts in which this element may be used:

Where metadata content is expected.
In a noscript element that is a child of a head element.

Content model:

Empty.

Element-specific attributes:

href

rel

media

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

71 of 458 30/12/2020, 08:08

hreflang

type

Also, the title attribute has special semantics on this element.

DOM interface:

interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString href;
 attribute DOMString rel;
 readonly attribute DOMTokenList relList;
 attribute DOMString media;
 attribute DOMString hreflang;
 attribute DOMString type;
};

The LinkStyle interface must also be implemented by this element, the styling

processing model defines how. [CSSOM]

The link element allows authors to link their document to other resources.

The destination of the link is given by the href attribute, which must be present and must contain a

URI (or IRI). If the href attribute is absent, then the element does not define a link.

The type of link indicated (the relationship) is given by the value of the rel attribute, which must be

present, and must have a value that is a set of space-separated tokens. The allowed values and
their meanings are defined in a later section. If the rel attribute is absent, or if the value used is not

allowed according to the definitions in this specification, then the element does not define a link.

Two categories of links can be created using the link element. Links to external resources are

links to resources that are to be used to augment the current document, and hyperlink links are
links to other documents. The link types section defines whether a particular link type is an external
resource or a hyperlink. One element can create multiple links (of which some might be external
resource links and some might be hyperlinks). User agents should process the links on a per-link
basis, not a per-element basis.

The exact behaviour for links to external resources depends on the exact relationship, as defined for
the relevant link type. Some of the attributes control whether or not the external resource is to be
applied (as defined below). For external resources that are represented in the DOM (for example,
style sheets), the DOM representation must be made available even if the resource is not applied.
(However, user agents may opt to only fetch such resources when they are needed, instead of pro-
actively downloading all the external resources that are not applied.)

Interactive user agents should provide users with a means to follow the hyperlinks created using the
link element, somewhere within their user interface. The exact interface is not defined by this

specification, but it should include the following information (obtained from the element's attributes,
again as defined below), in some form or another (possibly simplified), for each hyperlink created
with each link element in the document:

The relationship between this document and the resource (given by the rel attribute)

The title of the resource (given by the title attribute).

The URI of the resource (given by the href attribute).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

72 of 458 30/12/2020, 08:08

The language of the resource (given by the hreflang attribute).

The optimum media for the resource (given by the media attribute).

User agents may also include other information, such as the type of the resource (as given by the
type attribute).

The media attribute says which media the resource applies to. The value must be a valid media

query. [MQ]

If the link is a hyperlink then the media attribute is purely advisory, and describes for which media

the document in question was designed.

However, if the link is an external resource link, then the media attribute is prescriptive. The user

agent must only apply the external resource to views while their state match the listed media.

The default, if the media attribute is omitted, is all, meaning that by default links apply to all media.

The hreflang attribute on the link element has the same semantics as the hreflang attribute

on hyperlink elements.

The type attribute gives the MIME type of the linked resource. It is purely advisory. The value must

be a valid MIME type, optionally with parameters. [RFC2046]

For external resource links, user agents may use the type given in this attribute to decide whether or
not to consider using the resource at all. If the UA does not support the given MIME type for the
given link relationship, then the UA may opt not to download and apply the resource.

User agents must not consider the type attribute authoritative — upon fetching the resource, user

agents must not use metadata included in the link to the resource to determine its type.

If the attribute is omitted, then the UA must fetch the resource to determine its type and thus
determine if it supports (and can apply) that external resource.

If a document contains three style sheet links labelled as follows:

<link rel="stylesheet" href="A" type="text/css">
<link rel="stylesheet" href="B" type="text/plain">
<link rel="stylesheet" href="C">

...then a compliant UA that supported only CSS style sheets would fetch the A and C files, and
skip the B file (since text/plain is not the MIME type for CSS style sheets). For these two

files, it would then check the actual types returned by the UA. For those that are sent as
text/css, it would apply the styles, but for those labelled as text/plain, or any other type,

it would not.

The title attribute gives the title of the link. With one exception, it is purely advisory. The value is

text. The exception is for style sheet links, where the title attribute defines alternative style sheet

sets.

Note: The title attribute on link elements differs from the global title attribute

of most other elements in that a link without a title does not inherit the title of the
parent element: it merely has no title.

Some versions of HTTP defined a Link: header, to be processed like a series of link elements.

When processing links, those must be taken into consideration as well. For the purposes of ordering,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

73 of 458 30/12/2020, 08:08

links defined by HTTP headers must be assumed to come before any links in the document, in the
order that they were given in the HTTP entity header. Relative URIs in these headers must be
resolved according to the rules given in HTTP, not relative to base URIs set by the document (e.g.
using a base element or xml:base attributes). [RFC2616] [RFC2068]

The DOM attributes href, rel, media, hreflang, and type each must reflect the respective

content attributes of the same name.

The DOM attribute relList must reflect the rel content attribute.

The DOM attribute disabled only applies to style sheet links. When the link element defines a

style sheet link, then the disabled attribute behaves as defined for the alternative style sheets

DOM. For all other link elements it always return false and does nothing on setting.

3.7.5. The meta element

Categories

Metadata content.

Contexts in which this element may be used:

If the charset attribute is present: as the first element in a head element.

If the http-equiv attribute is present: in a head element.

If the http-equiv attribute is present: in a noscript element that is a child of a head

element.
If the name attribute is present: where metadata content is expected.

Content model:

Empty.

Element-specific attributes:

name

http-equiv

content

charset (HTML only)

DOM interface:

interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString name;
 attribute DOMString httpEquiv;
};

The meta element represents various kinds of metadata that cannot be expressed using the title,

base, link, style, and script elements.

The meta element can represent document-level metadata with the name attribute, pragma

directives with the http-equiv attribute, and the file's character encoding declaration when an

HTML document is serialised to string form (e.g. for transmission over the network or for disk
storage) with the charset attribute.

Exactly one of the name, http-equiv, and charset attributes must be specified.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

74 of 458 30/12/2020, 08:08

If either name or http-equiv is specified, then the content attribute must also be specified.

Otherwise, it must be omitted.

The charset attribute may only be specified in HTML documents, it must not be used in XML

documents. If the charset attribute is specified, the element must be the first element in the head

element of the file.

The content attribute gives the value of the document metadata or pragma directive when the

element is used for those purposes. The allowed values depend on the exact context, as described
in subsequent sections of this specification.

If a meta element has a name attribute, it sets document metadata. Document metadata is

expressed in terms of name/value pairs, the name attribute on the meta element giving the name,

and the content attribute on the same element giving the value. The name specifies what aspect of

metadata is being set; valid names and the meaning of their values are described in the following
sections. If a meta element has no content attribute, then the value part of the metadata

name/value pair is the empty string.

If a meta element has the http-equiv attribute specified, it must be either in a head element or in

a noscript element that itself is in a head element. If a meta element does not have the http-

equiv attribute specified, it must be in a head element.

The DOM attributes name and content must reflect the respective content attributes of the same

name. The DOM attribute httpEquiv must reflect the content attribute http-equiv.

3.7.5.1. Standard metadata names

This specification defines a few names for the name attribute of the meta element.

generator

The value must be a free-form string that identifies the software used to generate the
document. This value must not be used on hand-authored pages. WYSIWYG editors have
additional constraints on the value used with this metadata name.

dns

The value must be an ordered set of unique space-separated tokens, each word of which is a
host name. The list allows authors to provide a list of host names that the user is expected to
subsequently need. User agents may, according to user preferences and prevailing network
conditions, pre-emptively resolve the given DNS names (extracting the names from the value
using the rules for splitting a string on spaces), thus precaching the DNS information for those
hosts and potentially reducing the time between page loads for subsequent user interactions.
Higher priority should be given to host names given earlier in the list.

3.7.5.2. Other metadata names

Extensions to the predefined set of metadata names may be registered in the WHATWG Wiki
MetaExtensions page.

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a type. These
new names must be specified with the following information:

Keyword

The actual name being defined. The name should not be confusingly similar to any other
defined name (e.g. differing only in case).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

75 of 458 30/12/2020, 08:08

Brief description

A short description of what the metadata name's meaning is, including the format the value is
required to be in.

Link to more details

A link to a more detailed description of the metadata name's semantics and requirements. It
could be another page on the Wiki, or a link to an external page.

Synonyms

A list of other names that have exactly the same processing requirements. Authors should not
use the names defined to be synonyms, they are only intended to allow user agents to
support legacy content.

Status

One of the following:

Proposal
The name has not received wide peer review and approval. Someone has proposed it
and is using it.

Accepted
The name has received wide peer review and approval. It has a specification that
unambiguously defines how to handle pages that use the name, including when they
use it in incorrect ways.

Unendorsed
The metadata name has received wide peer review and it has been found wanting.
Existing pages are using this keyword, but new pages should avoid it. The "brief
description" and "link to more details" entries will give details of what authors should
use instead, if anything.

If a metadata name is added with the "proposal" status and found to be redundant with
existing values, it should be removed and listed as a synonym for the existing value.

Conformance checkers must use the information given on the WHATWG Wiki MetaExtensions page
to establish if a value not explicitly defined in this specification is allowed or not. When an author
uses a new type not defined by either this specification or the Wiki page, conformance checkers
should offer to add the value to the Wiki, with the details described above, with the "proposal" status.

This specification does not define how new values will get approved. It is expected that the Wiki will
have a community that addresses this.

Metadata names whose values are to be URIs must not be proposed or accepted. Links must be
represented using the link element, not the meta element.

3.7.5.3. Pragma directives

When the http-equiv attribute is specified on a meta element, the element is a pragma directive.

The http-equiv attribute is an enumerated attribute. The following table lists the keywords defined

for this attribute. The states given in the first cell of the the rows with keywords give the states to
which those keywords map.

State Keywords

Refresh refresh

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

76 of 458 30/12/2020, 08:08

State Keywords

Default style default-style

When a meta element is inserted into the document, if its http-equiv attribute is present and

represents one of the above states, then the user agent must run the algorithm appropriate for that
state, as described in the following list:

Refresh state

1. If another meta element in the Refresh state has already been successfully processed

(i.e. when it was inserted the user agent processed it and reached the last step of this
list of steps), then abort these steps.

2. If the meta element has no content attribute, or if that attribute's value is the empty

string, then abort these steps.

3. Let input be the value of the element's content attribute.

4. Let position point at the first character of input.

5. Skip whitespace.

6. Collect a sequence of characters in the range U+0030 DIGIT ZERO to U+0039 DIGIT
NINE, and parse the resulting string using the rules for parsing non-negative integers.
If the sequence of characters collected is the empty string, then no number will have
been parsed; abort these steps. Otherwise, let time be the parsed number.

7. Collect a sequence of characters in the range U+0030 DIGIT ZERO to U+0039 DIGIT
NINE and U+002E FULL STOP ("."). Ignore any collected characters.

8. Skip whitespace.

9. Let url be the address of the current page.

10. If the character in input pointed to by position is a U+003B SEMICOLON (";"), then

advance position to the next character. Otherwise, jump to the last step.

11. Skip whitespace.

12. If the character in input pointed to by position is one of U+0055 LATIN CAPITAL
LETTER U or U+0075 LATIN SMALL LETTER U, then advance position to the next
character. Otherwise, jump to the last step.

13. If the character in input pointed to by position is one of U+0052 LATIN CAPITAL
LETTER R or U+0072 LATIN SMALL LETTER R, then advance position to the next
character. Otherwise, jump to the last step.

14. If the character in input pointed to by position is one of U+004C LATIN CAPITAL
LETTER L or U+006C LATIN SMALL LETTER L, then advance position to the next
character. Otherwise, jump to the last step.

15. Skip whitespace.

16. If the character in input pointed to by position is a U+003D EQUALS SIGN ("="), then

advance position to the next character. Otherwise, jump to the last step.

17. Skip whitespace.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

77 of 458 30/12/2020, 08:08

18. Let url be equal to the substring of input from the character at position to the end of the
string.

19. Strip any trailing space characters from the end of url.

20. Strip any U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), and
U+000D CARRIAGE RETURN (CR) characters from url.

21. Resolve the url value to an absolute URI using the base URI of the meta element.

22. Set a timer so that in time seconds, if the user has not canceled the redirect, the user
agent navigates to url, with replacement enabled.

For meta elements in the Refresh state, the content attribute must have a value consisting

either of:

just a valid non-negative integer, or

a valid non-negative integer, followed by a U+003B SEMICOLON (;), followed by one

or more space characters, followed by either a U+0055 LATIN CAPITAL LETTER U or
a U+0075 LATIN SMALL LETTER U, a U+0052 LATIN CAPITAL LETTER R or a
U+0072 LATIN SMALL LETTER R, a U+004C LATIN CAPITAL LETTER L or a
U+006C LATIN SMALL LETTER L, a U+003D EQUALS SIGN (=), and then a valid

URI (or IRI).

In the former case, the integer represents a number of seconds before the page is to be
reloaded; in the latter case the integer represents a number of seconds before the page is to
be replaced by the page at the given URI.

Default style state

1. ...

3.7.5.4. Specifying the document's character encoding

The meta element may also be used to provide UAs with character encoding information for HTML

files, by setting the charset attribute to the name of a character encoding. This is called a

character encoding declaration.

The following restrictions apply to character encoding declarations:

The character encoding name given must be the name of the character encoding used to
serialise the file.

The value must be a valid character encoding name, and must be the preferred name for that
encoding. [IANACHARSET]

The attribute value must be serialised without the use of character entity references of any
kind.

If the document does not start with a BOM, and if its encoding is not explicitly given by Content-Type
metadata, then the character encoding used must be a superset of US-ASCII (specifically,
ANSI_X3.4-1968) for bytes in the range 0x09 - 0x0D, 0x20, 0x21, 0x22, 0x26, 0x27, 0x2C - 0x3F,
0x41 - 0x5A, and 0x61 - 0x7A , and, in addition, if that encoding isn't US-ASCII itself, then the
encoding must be specified using a meta element with a charset attribute.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

78 of 458 30/12/2020, 08:08

Authors should not use JIS_X0212-1990, x-JIS0208, and encodings based on EBCDIC. Authors
should not use UTF-32. Authors must not use the CESU-8, UTF-7, BOCU-1 and SCSU encodings.
[CESU8] [UTF7] [BOCU1] [SCSU]

Authors are encouraged to use UTF-8. Conformance checkers may advise against authors using
legacy encodings.

In XHTML, the XML declaration should be used for inline character encoding information, if
necessary.

3.7.6. The style element

Categories

Metadata content.
If the scoped attribute is present: prose content.

Contexts in which this element may be used:

If the scoped attribute is absent: where metadata content is expected.

If the scoped attribute is absent: in a noscript element that is a child of a head element.

If the scoped attribute is present: where prose content is expected, but before any sibling

elements other than style elements and before any text nodes other than inter-element

whitespace.

Content model:

Depends on the value of the type attribute.

Element-specific attributes:

media

type

scoped

Also, the title attribute has special semantics on this element.

DOM interface:

interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
 attribute boolean scoped;
};

The LinkStyle interface must also be implemented by this element, the styling

processing model defines how. [CSSOM]

The style element allows authors to embed style information in their documents. The style

element is one of several inputs to the styling processing model.

If the type attribute is given, it must contain a valid MIME type, optionally with parameters, that

designates a styling language. [RFC2046] If the attribute is absent, the type defaults to text/css.

[RFC2138]

When examining types to determine if they support the language, user agents must not ignore
unknown MIME parameters — types with unknown parameters must be assumed to be

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

79 of 458 30/12/2020, 08:08

unsupported.

The media attribute says which media the styles apply to. The value must be a valid media query.

[MQ] User agents must only apply the styles to views while their state match the listed media.
[DOM3VIEWS]

The default, if the media attribute is omitted, is all, meaning that by default styles apply to all

media.

The scoped attribute is a boolean attribute. If the attribute is present, then the user agent must only

apply the specified style information to the style element's parent element (if any), and that

element's child nodes. Otherwise, the specified styles must, if applied, be applied to the entire
document.

If the scoped attribute is not specified, the style element must be the child of a head element or

of a noscript element that is a child of a head element.

If the scoped attribute is specified, then the style element must be the child of a prose content

element, before any text nodes other than inter-element whitespace, and before any elements other
than other style elements.

The title attribute on style elements defines alternative style sheet sets. If the style element

has no title attribute, then it has no title; the title attribute of ancestors does not apply to the

style element.

Note: The title attribute on style elements, like the title attribute on link

elements, differs from the global title attribute in that a style block without a title

does not inherit the title of the parent element: it merely has no title.

All descendant elements must be processed, according to their semantics, before the style

element itself is evaluated. For styling languages that consist of pure text, user agents must evaluate
style elements by passing the concatenation of the contents of all the text nodes that are direct

children of the style element (not any other nodes such as comments or elements), in tree order,

to the style system. For XML-based styling languages, user agents must pass all the children nodes
of the style element to the style system.

Note: This specification does not specify a style system, but CSS is expected to be
supported by most Web browsers. [CSS21]

The media, type and scoped DOM attributes must reflect the respective content attributes of the

same name.

The DOM disabled attribute behaves as defined for the alternative style sheets DOM.

3.7.7. Styling

The link and style elements can provide styling information for the user agent to use when

rendering the document. The DOM Styling specification specifies what styling information is to be
used by the user agent and how it is to be used. [CSSOM]

The style and link elements implement the LinkStyle interface. [CSSOM]

For style elements, if the user agent does not support the specified styling language, then the

sheet attribute of the element's LinkStyle interface must return null. Similarly, link elements

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

80 of 458 30/12/2020, 08:08

that do not represent external resource links that contribute to the styling processing model (i.e. that
do not have a stylesheet keyword in their rel attribute), and link elements whose specified

resource has not yet been downloaded, or is not in a supported styling language, must have their
LinkStyle interface's sheet attribute return null.

Otherwise, the LinkStyle interface's sheet attribute must return a StyleSheet object with the

attributes implemented as follows: [CSSOM]

The content type (type DOM attribute)

The content type must be the same as the style's specified type. For style elements, this is

the same as the type content attribute's value, or text/css if that is omitted. For link

elements, this is the Content-Type metadata of the specified resource.

The location (href DOM attribute)

For link elements, the location must be the URI given by the element's href content

attribute. For style elements, there is no location.

The intended destination media for style information (media DOM attribute)

The media must be the same as the value of the element's media content attribute.

The style sheet title (title DOM attribute)

The title must be the same as the value of the element's title content attribute. If the

attribute is absent, then the style sheet does not have a title. The title is used for defining
alternative style sheet sets.

The disabled DOM attribute on link and style elements must return false and do nothing on

setting, if the sheet attribute of their LinkStyle interface is null. Otherwise, it must return the

value of the StyleSheet interface's disabled attribute on getting, and forward the new value to

that same attribute on setting.

3.8. Sections

Some elements, for example address elements, are scoped to their nearest ancestor sectioning

content. For such elements x, the elements that apply to a sectioning content element e are all the x
elements whose nearest sectioning content ancestor is e.

3.8.1. The body element

Categories

Sectioning content.

Contexts in which this element may be used:

As the second element in an html element.

Content model:

Prose content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

81 of 458 30/12/2020, 08:08

The body element represents the main content of the document.

In conforming documents, there is only one body element. The document.body DOM attribute

provides scripts with easy access to a document's body element.

Note: Some DOM operations (for example, parts of the drag and drop model) are
defined in terms of "the body element". This refers to a particular element in the
DOM, as per the definition of the term, and not any arbitrary body element.

3.8.2. The section element

Categories

Prose content.
Sectioning content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The section element represents a generic document or application section. A section, in this

context, is a thematic grouping of content, typically with a header, possibly with a footer.

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or
the numbered sections of a thesis. A Web site's home page could be split into sections for an
introduction, news items, contact information.

3.8.3. The nav element

Categories

Prose content.
Sectioning content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The nav element represents a section of a page that links to other pages or to parts within the page:

a section with navigation links.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

82 of 458 30/12/2020, 08:08

3.8.4. The article element

Categories

Prose content.
Sectioning content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The article element represents a section of a page that consists of a composition that forms an

independent part of a document, page, or site. This could be a forum post, a magazine or
newspaper article, a Web log entry, a user-submitted comment, or any other independent item of
content.

Note: An article element is "independent" in that its contents could stand alone,

for example in syndication. However, the element is still associated with its
ancestors; for instance, contact information that applies to a parent body element

still covers the article as well.

When article elements are nested, the inner article elements represent articles that are in

principle related to the contents of the outer article. For instance, a Web log entry on a site that
accepts user-submitted comments could represent the comments as article elements nested

within the article element for the Web log entry.

Author information associated with an article element (q.v. the address element) does not apply

to nested article elements.

3.8.5. The blockquote element

Categories

Prose content.
Sectioning content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

cite

DOM interface:

interface HTMLQuoteElement : HTMLElement {

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

83 of 458 30/12/2020, 08:08

 attribute DOMString cite;
};

Note: The HTMLQuoteElement interface is also used by the q element.

The blockquote element represents a section that is quoted from another source.

Content inside a blockquote must be quoted from another source, whose URI, if it has one,

should be cited in the cite attribute.

If the cite attribute is present, it must be a URI (or IRI). User agents should allow users to follow

such citation links.

If a blockquote element is preceded or followed by a paragraph that contains a single cite

element and is itself not preceded or followed by another blockquote element and does not itself

have a q element descendant, then, the citation given by that cite element gives the source of the

quotation contained in the blockquote element.

The cite DOM attribute reflects the element's cite content attribte.

Note: The best way to represent a conversation is not with the cite and

blockquote elements, but with the dialog element.

3.8.6. The aside element

Categories

Prose content.
Sectioning content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The aside element represents a section of a page that consists of content that is tangentially

related to the content around the aside element, and which could be considered separate from that

content. Such sections are often represented as sidebars in printed typography.

3.8.7. The h1, h2, h3, h4, h5, and h6 elements

Categories

Prose content.
Heading content.

Contexts in which this element may be used:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

84 of 458 30/12/2020, 08:08

Where prose content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

These elements define headers for their sections.

The semantics and meaning of these elements are defined in the section on headings and sections.

These elements have a rank given by the number in their name. The h1 element is said to have the

highest rank, the h6 element has the lowest rank, and two elements with the same name have equal

rank.

3.8.8. The header element

Categories

Prose content.
Heading content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content, including at least one descendant that is heading content, but no sectioning
content descendants, no header element descendants, and no footer element

descendants.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The header element represents the header of a section. Headers may contain more than just the

section's heading — for example it would be reasonable for the header to include version history
information.

For the purposes of document summaries, outlines, and the like, header elements are equivalent to

the highest ranked h1-h6 element descendant of the header element (the first such element if there

are multiple elements with that rank).

Other heading elements in the header element indicate subheadings or subtitles.

Here are some examples of valid headers. In each case, the emphasised text represents the
text that would be used as the header in an application extracting header data and ignoring
subheadings.

<header>
 <h1>The reality dysfunction</h1>
 <h2>Space is not the only void</h2>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

85 of 458 30/12/2020, 08:08

</header>

<header>
 <p>Welcome to...</p>
 <h1>Voidwars!</h1>
</header>

<header>
 <h1>Scalable Vector Graphics (SVG) 1.2</h1>
 <h2>W3C Working Draft 27 October 2004</h2>
 <dl>
 <dt>This version:</dt>
 <dd>http:
//www.w3.org/TR/2004/WD-SVG12-20041027/</dd>
 <dt>Previous version:</dt>
 <dd>http:
//www.w3.org/TR/2004/WD-SVG12-20040510/</dd>
 <dt>Latest version of SVG 1.2:</dt>
 <dd>http://www.w3.org
/TR/SVG12/</dd>
 <dt>Latest SVG Recommendation:</dt>
 <dd>http://www.w3.org/TR/SVG
/</dd>
 <dt>Editor:</dt>
 <dd>Dean Jackson, W3C, dean@w3.org</dd>
 <dt>Authors:</dt>
 <dd>See Author List</dd>
 </dl>
 <p class="copyright"><a href="http://www.w3.org/Consortium/Legal
/ipr-notic ...
</header>

The section on headings and sections defines how header elements are assigned to individual

sections.

The rank of a header element is the same as for an h1 element (the highest rank).

3.8.9. The footer element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content, but with no heading content descendants, no sectioning content
descendants, and no footer element descendants.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

86 of 458 30/12/2020, 08:08

The footer element represents the footer for the section it applies to. A footer typically contains

information about its section such as who wrote it, links to related documents, copyright data, and
the like.

Contact information for the section given in a footer should be marked up using the address

element.

3.8.10. The address element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content, but with no heading content descendants, no sectioning content
descendants, no footer element descendants, and no address element descendants.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The address element represents the contact information for the section it applies to.

For example, a page at the W3C Web site related to HTML might include the following contact
information:

<ADDRESS>
 Dave Raggett,
 Arnaud Le Hors,
 contact persons for the W3C HTML Activity
</ADDRESS>

The address element must not be used to represent arbitrary addresses (e.g. postal addresses),

unless those addresses are contact information for the section. (The p element is the appropriate

element for marking up such addresses.)

The address element must not contain information other than contact information.

For example, the following is non-conforming use of the address element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Typically, the address element would be included with other information in a footer element.

To determine the contact information for a sectioning element (such as a document's body element,

which would give the contact information for the page), UAs must collect all the address elements

that apply to that sectioning element and its ancestor sectioning elements. The contact information is
the collection of all the information given by those elements.

Note: Contact information for one sectioning element, e.g. an aside element, does

not apply to its ancestor elements, e.g. the page's body.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

87 of 458 30/12/2020, 08:08

3.8.11. Headings and sections

The h1-h6 elements and the header element are headings.

The first element of heading content in an element of sectioning content gives the header for that
section. Subsequent headers of equal or higher rank start new (implied) sections, headers of lower
rank start subsections that are part of the previous one.

Sectioning elements other than blockquote are always considered subsections of their nearest

ancestor element of sectioning content, regardless of what implied sections other headings may
have created. However, blockquote elements are associated with implied sections. Effectively,

blockquote elements act like sections on the inside, and act opaquely on the outside.

For the following fragment:

<body>
 <h1>Foo</h1>
 <h2>Bar</h2>
 <blockquote>
 <h3>Bla</h3>
 </blockquote>
 <p>Baz</p>
 <h2>Quux</h2>
 <section>
 <h3>Thud</h3>
 </section>
 <p>Grunt</p>
</body>

...the structure would be:

1. Foo (heading of explicit body section)

1. Bar (heading starting implied section)
1. Bla (heading of explicit blockquote section)

Baz (paragraph)
2. Quux (heading starting implied section)
3. Thud (heading of explicit section section)

Grunt (paragraph)

Notice how the blockquote nests inside an implicit section while the section does not (and

in fact, ends the earlier implicit section so that a later paragraph is back at the top level).

Sections may contain headers of any rank, but authors are strongly encouraged to either use only
h1 elements, or to use elements of the appropriate rank for the section's nesting level.

Authors are also encouraged to explictly wrap sections in elements of sectioning content, instead of
relying on the implicit sections generated by having multiple heading in one element of sectioning
content.

For example, the following is correct:

<body>
 <h4>Apples</h4>
 <p>Apples are fruit.</p>
 <section>
 <h2>Taste</h2>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

88 of 458 30/12/2020, 08:08

 <p>They taste lovely.</p>
 <h6>Sweet</h6>
 <p>Red apples are sweeter than green ones.</p>
 <h1>Color</h1>
 <p>Apples come in various colors.</p>
 </section>
</body>

However, the same document would be more clearly expressed as:

<body>
 <h1>Apples</h1>
 <p>Apples are fruit.</p>
 <section>
 <h2>Taste</h2>
 <p>They taste lovely.</p>
 <section>
 <h3>Sweet</h3>
 <p>Red apples are sweeter than green ones.</p>
 </section>
 </section>
 <section>
 <h2>Color</h2>
 <p>Apples come in various colors.</p>
 </section>
</body>

Both of the documents above are semantically identical and would produce the same outline in
compliant user agents.

3.8.11.1. Creating an outline

This section will be rewritten at some point. The algorithm likely won't change, but its description
will be dramatically simplified.

Documents can be viewed as a tree of sections, which defines how each element in the tree is
semantically related to the others, in terms of the overall section structure. This tree is related to the
document tree, but there is not a one-to-one relationship between elements in the DOM and the
document's sections.

The tree of sections should be used when generating document outlines, for example when
generating tables of contents.

To derive the tree of sections from the document tree, a hypothetical tree is used, consisting of a
view of the document tree containing only the elements of heading content and the elements of
sectioning content other than blockquote. Descendants of h1-h6, header, and blockquote

elements must be removed from this view.

The hypothetical tree must be rooted at the root element or at an element of sectioning content. In
particular, while the sections inside blockquotes do not contribute to the document's tree of

sections, blockquotes can have outlines of their own.

UAs must take this hypothetical tree (which will become the outline) and mutate it by walking it depth
first in tree order and, for each element of heading content that is not the first element of its parent

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

89 of 458 30/12/2020, 08:08

sectioning content element, inserting a new element of sectioning content, as follows:

↪ If the element is a header element, or if it is an h1-h6 node of rank equal to or higher

than the first element in the parent element of sectioning content (assuming that is also
an h1-h6 node), or if the first element of the parent element of sectioning content is an

element of sectioning content:

Insert the new element of sectioning content as the immediately following sibling of the
parent element of sectioning content, and move all the elements from the current
element of heading content up to the end of the parent element of sectioning content into
the new element of sectioning content.

↪ Otherwise:

Move the current heading element, and all subsequent siblings up to but excluding the
next element of sectioning content, header element, or h1-h6 of equal or higher rank,

whichever comes first, into the new element of sectioning content, then insert the new
element of sectioning content where the current header was.

The outline is then the resulting hypothetical tree. The ranks of the headers become irrelevant at this
point: each element of sectioning content in the hypothetical tree contains either no or one heading
element child. If there is one, then it gives the section's heading, of there isn't, the section has no
heading.

Sections are nested as in the hypothetical tree. If a sectioning element is a child of another, that
means it is a subsection of that other section.

When creating an interactive table of contents, entries should jump the user to the relevant section
element, if it was a real element in the original document, or to the heading, if the section element
was one of those created during the above process.

Selecting the first section of the document therefore always takes the user to the top of the
document, regardless of where the first header in the body is to be found.

The hypothetical tree (before mutations) could be generated by creating a
TreeWalker with the following NodeFilter (described here as an anonymous

ECMAScript function). [DOMTR] [ECMA262]

function (n) {
 // This implementation only knows about HTML elements.
 // An implementation that supports other languages might be
 // different.

 // Reject anything that isn't an element.
 if (n.nodeType != Node.ELEMENT_NODE)
 return NodeFilter.FILTER_REJECT;

 // Skip any descendants of headings.
 if ((n.parentNode && n.parentNode.namespaceURI ==
'http://www.w3.org/1999/xhtml') &&
 (n.parentNode.localName == 'h1' || n.parentNode.localName
== 'h2' ||
 n.parentNode.localName == 'h3' || n.parentNode.localName
== 'h4' ||
 n.parentNode.localName == 'h5' || n.parentNode.localName
== 'h6' ||

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

90 of 458 30/12/2020, 08:08

 n.parentNode.localName == 'header'))
 return NodeFilter.FILTER_REJECT;

 // Skip any blockquotes.
 if ((n.namespaceURI == 'http://www.w3.org/1999/xhtml') &&
 (n.localName == 'blockquote'))
 return NodeFilter.FILTER_REJECT;

 // Accept HTML elements in the list given in the prose above.
 if ((n.namespaceURI == 'http://www.w3.org/1999/xhtml') &&
 (n.localName == 'body' || /*n.localName == 'blockquote'
||*/
 n.localName == 'section' || n.localName == 'nav' ||
 n.localName == 'article' || n.localName == 'aside' ||
 n.localName == 'h1' || n.localName == 'h2' ||
 n.localName == 'h3' || n.localName == 'h4' ||
 n.localName == 'h5' || n.localName == 'h6' ||
 n.localName == 'header'))
 return NodeFilter.FILTER_ACCEPT;

 // Skip the rest.
 return NodeFilter.FILTER_SKIP;
}

3.8.11.2. Determining which heading and section applies to a particular node

This section will be rewritten at some point. The algorithm likely won't change, but its description
will be dramatically simplified.

Given a particular node, user agents must use the following algorithm, in the given order, to
determine which heading and section the node is most closely associated with. The processing of
this algorithm must stop as soon as the associated section and heading are established (even if they
are established to be nothing).

1. If the node has an ancestor that is a header element, then the associated heading is the

most distant such ancestor. The associated section is that header's associated section (i.e.

repeat this algorithm for that header).

2. If the node has an ancestor that is an h1-h6 element, then the associated heading is the most

distant such ancestor. The associated section is that heading's section (i.e. repeat this
algorithm for that heading element).

3. If the node is an h1-h6 element or a header element, then the associated heading is the

element itself. The UA must then generate the hypothetical section tree described in the
previous section, rooted at the nearest section ancestor (or the root element if there is no
such ancestor). If the parent of the heading in that hypothetical tree is an element in the real
document tree, then that element is the associated section. Otherwise, there is no associated
section element.

4. If the node is an element of sectioning content, then the associated section is itself. The UA
must then generate the hypothetical section tree described in the previous section, rooted at
the section itself. If the section element, in that hypothetical tree, has a child element that is

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

91 of 458 30/12/2020, 08:08

an h1-h6 element or a header element, then that element is the associated heading.

Otherwise, there is no associated heading element.

5. If the node is a footer or address element, then the associated section is the nearest

ancestor element of sectioning content, if there is one. The node's associated heading is the
same as that element of sectioning content's associated heading (i.e. repeat this algorithm for
that element of sectioning content). If there is no ancestor element of sectioning content, the
element has no associated section nor an associated heading.

6. Otherwise, the node is just a normal node, and the document has to be examined more
closely to determine its section and heading. Create a view rooted at the nearest ancestor
element of sectioning content (or the root element if there is none) that has just h1-h6

elements, header elements, the node itself, and elements of sectioning content other than

blockquote elements. (Descendants of any of the nodes in this view can be ignored, as can

any node later in the tree than the node in question, as the algorithm below merely walks
backwards up this view.)

7. Let n be an iterator for this view, initialised at the node in question.

8. Let c be the current best candidate heading, initially null, and initially not used. It is used when
top-level heading candidates are to be searched for (see below).

9. Repeat these steps (which effectively goes backwards through the node's previous siblings)
until an answer is found:

1. If n points to a node with no previous sibling, and c is null, then return the node's
parent node as the answer. If the node has no parent node, return null as the answer.

2. Otherwise, if n points to a node with no previous sibling, return c as the answer.
3. Adjust n so that it points to the previous sibling of the current position.
4. If n is pointing at an h1 or header element, then return that element as the answer.

5. If n is pointing at an h2-h6 element, and heading candidates are not being searched

for, then return that element as the answer.
6. Otherwise, if n is pointing at an h2-h6 element, and either c is still null, or c is a

heading of lower rank than this one, then set c to be this element, and continue going
backwards through the previous siblings.

7. If n is pointing at an element of sectioning content, then from this point on top-level
heading candidates are being searched for. (Specifically, we are looking for the nearest
top-level header for the current section.) Continue going backwards through the
previous siblings.

10. If the answer from the previous step (the loop) is null, which can only happen if the node has
no preceeding headings and is not contained in an element of sectioning content, then there
is no associated heading and no associated section.

11. Otherwise, if the answer from the earlier loop step is an element of sectioning content, then
the associated section is that element and the associated heading is that element of
sectioning content's associated heading (i.e. repeat this algorithm for that section).

12. Otherwise, if the answer from that same earlier step is an h1-h6 element or a header

element, then the associated heading is that element and the associated section is that
heading element's associated section (i.e. repeat this algorithm for that heading).

Note: Not all nodes have an associated header or section. For example, if a section
is implied, as when multiple headers are found in one element of sectioning content,
then a node in that section has an anonymous associated section (its section is not

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

92 of 458 30/12/2020, 08:08

represented by a real element), and the algorithm above does not associate that
node with any particular element of sectioning content.

For the following fragment:

<body>
 <h1>X</h1>
 <h2>X</h2>
 <blockquote>
 <h3>X</h3>
 </blockquote>
 <p id="a">X</p>
 <h4>Text Node A</h4>
 <section>
 <h5>X</h5>
 </section>
 <p>Text Node B</p>
</body>

The associations are as follows (not all associations are shown):

Node Associated heading Associated section

<body> <h1> <body>

<h1> <h1> <body>

<h2> <h2> None.

<blockquote> <h2> None.

<h3> <h3> <blockquote>

<p id="a"> <h2> None.

Text Node A <h4> None.

Text Node B <h1> <body>

3.8.11.3. Distinguishing site-wide headers from page headers

Given the hypothetical section tree, but ignoring any sections created for nav and aside elements,

and any of their descendants, if the root of the tree is the body element's section, and it has only a

single subsection which is created by an article element, then the header of the body element

should be assumed to be a site-wide header, and the header of the article element should be

assumed to be the page's header.

If a page starts with a heading that is common to the whole site, the document must be authored
such that, in the document's hypothetical section tree, ignoring any sections created for nav and

aside elements and any of their descendants, the root of the tree is the body element's section, its

heading is the site-wide heading, the body element has just one subsection, that subsection is

created by an article element, and that article's header is the page heading.

If a page does not contain a site-wide heading, then the page must be authored such that, in the
document's hypothetical section tree, ignoring any sections created for nav and aside elements

and any of their descendants, either the body element has no subsections, or it has more than one

subsection, or it has a single subsection but that subsection is not created by an article element.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

93 of 458 30/12/2020, 08:08

Note: Conceptually, a site is thus a document with many articles — when those
articles are split into many pages, the heading of the original single page becomes
the heading of the site, repeated on every page.

3.9. Prose

3.9.1. The p element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The p element represents a paragraph.

The following examples are conforming HTML fragments:

<p>The little kitten gently seated himself on a piece of
carpet. Later in his life, this would be referred to as the time
the
cat sat on the mat.</p>

<fieldset>
 <legend>Personal information</legend>
 <p>
 <label>Name: <input name="n"></label>
 <label><input name="anon" type="checkbox"> Hide from other
users</label>
 </p>
 <p><label>Address: <textarea name="a"></textarea></label></p>
</fieldset>

<p>There was once an example from Femley,

Whose markup was of dubious quality.

The validator complained,

So the author was pained,

To move the error from the markup to the rhyming.</p>

The p element should not be used when a more specific element is more appropriate.

The following example is technically correct:

<section>
 <!-- ... -->

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

94 of 458 30/12/2020, 08:08

 <p>Last modified: 2001-04-23</p>
 <p>Author: fred@example.com</p>
</section>

However, it would be better marked-up as:

<section>
 <!-- ... -->
 <footer>Last modified: 2001-04-23</footer>
 <address>Author: fred@example.com</address>
</section>

Or:

<section>
 <!-- ... -->
 <footer>
 <p>Last modified: 2001-04-23</p>
 <address>Author: fred@example.com</address>
 </footer>
</section>

3.9.2. The hr element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Empty.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The hr element represents a paragraph-level thematic break, e.g. a scene change in a story, or a

transition to another topic within a section of a reference book.

3.9.3. The br element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Empty.

Element-specific attributes:

None.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

95 of 458 30/12/2020, 08:08

DOM interface:

No difference from HTMLElement.

The br element represents a line break.

br elements must be empty. Any content inside br elements must not be considered part of the

surrounding text.

br elements must only be used for line breaks that are actually part of the content, as in poems or

addresses.

The following example is correct usage of the br element:

<p>P. Sherman

42 Wallaby Way

Sydney</p>

br elements must not be used for separating thematic groups in a paragraph.

The following examples are non-conforming, as they abuse the br element:

<p><a ...>34 comments.

<a ...>Add a comment.<a></p>

<p>Name: <input name="name">

Address: <input name="address"></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</p>
<p><a ...>Add a comment.<a></p>

<p>Name: <input name="name"></p>
<p>Address: <input name="address"></p>

If a paragraph consists of nothing but a single br element, it represents a placeholder blank line

(e.g. as in a template). Such blank lines must not be used for presentation purposes.

3.9.4. The dialog element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Zero or more pairs of dt and dd elements.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The dialog element represents a conversation.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

96 of 458 30/12/2020, 08:08

Each part of the conversation must have an explicit talker (or speaker) given by a dt element, and a

discourse (or quote) given by a dd element.

This example demonstrates this using an extract from Abbot and Costello's famous sketch,
Who's on first:

<dialog>
 <dt> Costello
 <dd> Look, you gotta first baseman?
 <dt> Abbott
 <dd> Certainly.
 <dt> Costello
 <dd> Who's playing first?
 <dt> Abbott
 <dd> That's right.
 <dt> Costello
 <dd> When you pay off the first baseman every month, who gets the
money?
 <dt> Abbott
 <dd> Every dollar of it.
</dialog>

Note: Text in a dt element in a dialog element is implicitly the source of the text

given in the following dd element, and the contents of the dd element are implicitly a

quote from that speaker. There is thus no need to include cite, q, or blockquote

elements in this markup. Indeed, a q element inside a dd element in a conversation

would actually imply the people talking were themselves quoting someone else. See
the cite, q, and blockquote elements for other ways to cite or quote.

3.10. Preformatted text

3.10.1. The pre element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The pre element represents a block of preformatted text, in which structure is represented by

typographic conventions rather than by elements.

Some examples of cases where the pre element could be used:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

97 of 458 30/12/2020, 08:08

Including an e-mail, with paragraphs indicated by blank lines, lists indicated by lines prefixed
with a bullet, and so on.

Including fragments of computer code, with structure indicated according to the conventions
of that language.

Displaying ASCII art.

To represent a block of computer code, the pre element can be used with a code element; to

represent a block of computer output the pre element can be used with a samp element. Similarly,

the kbd element can be used within a pre element to indicate text that the user is to enter.

In the following snippet, a sample of computer code is presented.

<p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {
 this.element = element;
 this.canClose = canClose;
 this.closeHandler = function () { if (closeHandler)
closeHandler() };
}</code></pre>

In the following snippet, samp and kbd elements are mixed in the contents of a pre element to

show a session of Zork I.

<pre><samp>You are in an open field west of a big white house with
a boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

The following shows a contemporary poem that uses the pre element to preserve its unusual

formatting, which forms an intrinsic part of the poem itself.

<pre> maxling

it is with a heart
 heavy

that i admit loss of a feline
 so loved

a friend lost to the
 unknown
 (night)

~cdr 11dec07</pre>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

98 of 458 30/12/2020, 08:08

3.11. Lists

3.11.1. The ol element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Zero or more li elements.

Element-specific attributes:

start

DOM interface:

interface HTMLOListElement : HTMLElement {
 attribute long start;
};

The ol element represents an ordered list of items (which are represented by li elements).

The start attribute, if present, must be a valid integer giving the ordinal value of the first list item.

If the start attribute is present, user agents must parse it as an integer, in order to determine the

attribute's value. The default value, used if the attribute is missing or if the value cannot be
converted to a number according to the referenced algorithm, is 1.

The items of the list are the li element child nodes of the ol element, in tree order.

The first item in the list has the ordinal value given by the ol element's start attribute, unless that

li element has a value attribute with a value that can be successfully parsed, in which case it has

the ordinal value given by that value attribute.

Each subsequent item in the list has the ordinal value given by its value attribute, if it has one, or, if

it doesn't, the ordinal value of the previous item, plus one.

The start DOM attribute must reflect the value of the start content attribute.

3.11.2. The ul element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Zero or more li elements.

Element-specific attributes:

None.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

99 of 458 30/12/2020, 08:08

DOM interface:

No difference from HTMLElement.

The ul element represents an unordered list of items (which are represented by li elements).

The items of the list are the li element child nodes of the ul element.

3.11.3. The li element

Categories

None.

Contexts in which this element may be used:

Inside ol elements.

Inside ul elements.

Inside menu elements.

Content model:

When the element is a child of a menu element: phrasing content.

Otherwise: prose content.

Element-specific attributes:

If the element is a child of an ol element: value

If the element is not the child of an ol element: None.

DOM interface:

interface HTMLLIElement : HTMLElement {
 attribute long value;
};

The li element represents a list item. If its parent element is an ol, ul, or menu element, then the

element is an item of the parent element's list, as defined for those elements. Otherwise, the list item
has no defined list-related relationship to any other li element.

The value attribute, if present, must be a valid integer giving the ordinal value of the first list item.

If the value attribute is present, user agents must parse it as an integer, in order to determine the

attribute's value. If the attribute's value cannot be converted to a number, the attribute must be
treated as if it was absent. The attribute has no default value.

The value attribute is processed relative to the element's parent ol element (q.v.), if there is one. If

there is not, the attribute has no effect.

The value DOM attribute must reflect the value of the value content attribute.

3.11.4. The dl element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

100 of 458 30/12/2020, 08:08

Content model:

Zero or more groups each consisting of one or more dt elements followed by one or mode

dd elements.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The dl element introduces an unordered association list consisting of zero or more name-value

groups (a description list). Each group must consist of one or more names (dt elements) followed by

one or more values (dd elements).

Name-value groups may be terms and definitions, metadata topics and values, or any other groups
of name-value data.

The following are all conforming HTML fragments.

In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").

<dl>
 <dt> Authors
 <dd> John
 <dd> Luke
 <dt> Editor
 <dd> Frank
</dl>

In the following example, one definition is linked to two terms.

<dl>
 <dt lang="en-US"> <dfn>color</dfn> </dt>
 <dt lang="en-GB"> <dfn>colour</dfn> </dt>
 <dd> A sensation which (in humans) derives from the ability of
 the fine structure of the eye to distinguish three differently
 filtered analyses of a view. </dd>
</dl>

The following example illustrates the use of the dl element to mark up metadata of sorts. At the

end of the example, one group has two metadata labels ("Authors" and "Editors") and two
values ("Robert Rothman" and "Daniel Jackson").

<dl>
 <dt> Last modified time </dt>
 <dd> 2004-12-23T23:33Z </dd>
 <dt> Recommended update interval </dt>
 <dd> 60s </dd>
 <dt> Authors </dt>
 <dt> Editors </dt>
 <dd> Robert Rothman </dd>
 <dd> Daniel Jackson </dd>
</dl>

If a dl element is empty, it contains no groups.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

101 of 458 30/12/2020, 08:08

If a dl element contains non-whitespace text nodes, or elements other than dt and dd, then those

elements or text nodes do not form part of any groups in that dl, and the document is non-

conforming.

If a dl element contains only dt elements, then it consists of one group with names but no values,

and the document is non-conforming.

If a dl element contains only dd elements, then it consists of one group with values but no names,

and the document is non-conforming.

Note: The dl element is inappropriate for marking up dialogue, since dialogue is

ordered (each speaker/line pair comes after the next). For an example of how to mark
up dialogue, see the dialog element.

3.11.5. The dt element

Categories

None.

Contexts in which this element may be used:

Before dd or dt elements inside dl elements.

Before a dd element inside a dialog element.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The dt element represents the term, or name, part of a term-description group in a description list

(dl element), and the talker, or speaker, part of a talker-discourse pair in a conversation (dialog

element).

Note: The dt element itself, when used in a dl element, does not indicate that its

contents are a term being defined, but this can be indicated using the dfn element.

3.11.6. The dd element

Categories

None.

Contexts in which this element may be used:

After dt or dd elements inside dl elements.

After a dt element inside a dialog element.

Content model:

Prose content.

Element-specific attributes:

None.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

102 of 458 30/12/2020, 08:08

DOM interface:

No difference from HTMLElement.

The dd element represents the description, definition, or value, part of a term-description group in a

description list (dl element), and the discourse, or quote, part in a conversation (dialog element).

3.12. Phrase elements

3.12.1. The a element

Categories

Phrasing content.
Interactive content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content, but there must be no interactive content descendant.

Element-specific attributes:

href

target

ping

rel

media

hreflang

type

DOM interface:

interface HTMLAnchorElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
 attribute DOMString ping;
 attribute DOMString rel;
 readonly attribute DOMTokenList relList;
 attribute DOMString media;
 attribute DOMString hreflang;
 attribute DOMString type;
};

The Command interface must also be implemented by this element.

If the a element has an href attribute, then it represents a hyperlink.

If the a element has no href attribute, then the element is a placeholder for where a link might

otherwise have been placed, if it had been relevant.

The target, ping, rel, media, hreflang, and type attributes must be omitted if the href

attribute is not present.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

103 of 458 30/12/2020, 08:08

If a site uses a consistent navigation toolbar on every page, then the link that would normally
link to the page itself could be marked up using an a element:

<nav>

 Home
 News
 <a>Examples
 Legal

</nav>

Interactive user agents should allow users to follow hyperlinks created using the a element. The

href, target and ping attributes decide how the link is followed. The rel, media, hreflang,

and type attributes may be used to indicate to the user the likely nature of the target resource

before the user follows the link.

The activation behavior of a elements that represent hyperlinks is to run the following steps:

1. If the DOMActivate event in question is not trusted (i.e. a click() method call was the

reason for the event being dispatched), and the a element's target attribute is ... then

raise an INVALID_ACCESS_ERR exception and abort these steps.

2. If the target of the DOMActivate event is an img element with an ismap attribute specified,

then server-side image map processing must be performed, as follows:

1. If the DOMActivate event was dispatched as the result of a real pointing-device-

triggered click event on the img element, then let x be the distance in CSS pixels

from the left edge of the image to the location of the click, and let y be the distance in
CSS pixels from the top edge of the image to the location of the click. Otherwise, let x
and y be zero.

2. Let the hyperlink suffix be a U+003F QUESTION MARK character, the value of x
expressed as a base-ten integer using ASCII digits (U+0030 DIGIT ZERO to U+0039
DIGIT NINE), a U+002C COMMA character, and the value of y expressed as a base-
ten integer using ASCII digits.

3. Finally, the user agent must follow the hyperlink defined by the a element. If the steps above

defined a hyperlink suffix, then take that into account when following the hyperlink.

Note: One way that a user agent can enable users to follow hyperlinks is by allowing
a elements to be clicked, or focussed and activated by the keyboard. This will cause

the aforementioned activation behavior to be invoked.

The DOM attributes href, ping, target, rel, media, hreflang, and type, must each reflect

the respective content attributes of the same name.

The DOM attribute relList must reflect the rel content attribute.

3.12.2. The q element

Categories

Phrasing content.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

104 of 458 30/12/2020, 08:08

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

cite

DOM interface:

The q element uses the HTMLQuoteElement interface.

The q element represents a part of a paragraph quoted from another source.

Content inside a q element must be quoted from another source, whose URI, if it has one, should be

cited in the cite attribute.

If the cite attribute is present, it must be a URI (or IRI). User agents should allow users to follow

such citation links.

If a q element is contained (directly or indirectly) in a paragraph that contains a single cite element

and has no other q element descendants, then, the citation given by that cite element gives the

source of the quotation contained in the q element.

3.12.3. The cite element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The cite element represents a citation: the source, or reference, for a quote or statement made in

the document.

Note: A citation is not a quote (for which the q element is appropriate).

This is incorrect usage:

<p><cite>This is wrong!</cite>, said Ian.</p>

This is the correct way to do it:

<p><q>This is correct!</q>, said <cite>Ian</cite>.</p>

This is also wrong, because the title and the name are not references or citations:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

105 of 458 30/12/2020, 08:08

<p>My favourite book is <cite>The Reality Dysfunction</cite>
by <cite>Peter F. Hamilton</cite>.</p>

This is correct, because even though the source is not quoted, it is cited:

<p>According to <cite>the Wikipedia article on
HTML</cite>, HTML is defined in formal specifications that were
developed and published throughout the 1990s.</p>

Note: The cite element can apply to blockquote and q elements in certain cases

described in the definitions of those elements.

3.12.4. The em element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The em element represents stress emphasis of its contents.

The level of emphasis that a particlar piece of content has is given by its number of ancestor em

elements.

The placement of emphasis changes the meaning of the sentence. The element thus forms an
integral part of the content. The precise way in which emphasis is used in this way depends on the
language.

These examples show how changing the emphasis changes the meaning. First, a general
statement of fact, with no emphasis:

<p>Cats are cute animals.</p>

By emphasising the first word, the statement implies that the kind of animal under discussion is
in question (maybe someone is asserting that dogs are cute):

<p>Cats are cute animals.</p>

Moving the emphasis to the verb, one highlights that the truth of the entire sentence is in
question (maybe someone is saying cats are not cute):

<p>Cats are cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone
suggested cats were mean animals):

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

106 of 458 30/12/2020, 08:08

<p>Cats are cute animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this might
emphasise the last word:

<p>Cats are cute animals.</p>

By emphasising the entire sentence, it becomes clear that the speaker is fighting hard to get
the point across. This kind of emphasis also typically affects the punctuation, hence the
exclamation mark here.

<p>Cats are cute animals!</p>

Anger mixed with emphasising the cuteness could lead to markup such as:

<p>Cats are cute animals!</p>

3.12.5. The strong element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The strong element represents strong importance for its contents.

The relative level of importance of a piece of content is given by its number of ancestor strong

elements; each strong element increases the importance of its contents.

Changing the importance of a piece of text with the strong element does not change the meaning

of the sentence.

Here is an example of a warning notice in a game, with the various parts marked up according
to how important they are:

<p>Warning. This dungeon is dangerous.
Avoid the ducks. Take any gold you find.
Do not take any of the diamonds,
they are explosive and will destroy anything within
ten meters. You have been warned.</p>

3.12.6. The small element

Categories

Phrasing content.

Contexts in which this element may be used:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

107 of 458 30/12/2020, 08:08

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The small element represents small print (part of a document often describing legal restrictions,

such as copyrights or other disadvantages), or other side comments.

Note: The small element does not "de-emphasise" or lower the importance of text

emphasised by the em element or marked as important with the strong element.

In this example the footer contains contact information and a copyright.

<footer>
 <address>
 For more details, contact
 John Smith.
 </address>
 <p><small>© copyright 2038 Example Corp.</small></p>
</footer>

In this second example, the small element is used for a side comment.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

In this last example, the small element is marked as being important small print.

<p><small>Continued use of this service will result in a
kiss.</small></p>

3.12.7. The m element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

108 of 458 30/12/2020, 08:08

This section has a large number of outstanding comments and will likely be rewritten or removed
from the spec.

The m element represents a run of text marked or highlighted.

In the following snippet, a paragraph of text refers to a specific part of a code fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin
 i := <m>1.1</m>;
end.</code></pre>

Another example of the m element is highlighting parts of a document that are matching some

search string. If someone looked at a document, and the server knew that the user was
searching for the word "kitten", then the server might return the document with one paragraph
modified as follows:

<p>I also have some <m>kitten</m>s who are visiting me
these days. They're really cute. I think they like my garden!</p>

3.12.8. The dfn element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content, but there must be no descendant dfn elements.

Element-specific attributes:

None, but the title attribute has special semantics on this element.

DOM interface:

No difference from HTMLElement.

The dfn element represents the defining instance of a term. The paragraph, description list group,

or section that contains the dfn element contains the definition for the term given by the contents of

the dfn element.

Defining term: If the dfn element has a title attribute, then the exact value of that attribute is the

term being defined. Otherwise, if it contains exactly one element child node and no child text nodes,
and that child element is an abbr element with a title attribute, then the exact value of that

attribute is the term being defined. Otherwise, it is the exact textContent of the dfn element that

gives the term being defined.

If the title attribute of the dfn element is present, then it must only contain the term being

defined.

There must only be one dfn element per document for each term defined (i.e. there must not be any

duplicate terms).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

109 of 458 30/12/2020, 08:08

Note: The title attribute of ancestor elements does not affect dfn elements.

The dfn element enables automatic cross-references. Specifically, any span, abbr, code, var,

samp, or i element that has a non-empty title attribute whose value exactly equals the term of a

dfn element in the same document, or which has no title attribute but whose textContent

exactly equals the term of a dfn element in the document, and that has no interactive elements or

dfn elements either as ancestors or descendants, and has no other elements as ancestors that are

themselves matching these conditions, should be presented in such a way that the user can jump
from the element to the first dfn element giving the defining instance of that term.

In the following fragment, the term "GDO" is first defined in the first paragraph, then used in the
second. A compliant UA could provide a link from the abbr element in the second paragraph to

the dfn element in the first.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

3.12.9. The abbr element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None, but the title attribute has special semantics on this element.

DOM interface:

No difference from HTMLElement.

The abbr element represents an abbreviation or acronym. The title attribute should be used to

provide an expansion of the abbreviation. If present, the attribute must only contain an expansion of
the abbreviation.

The paragraph below contains an abbreviation marked up with the abbr element.

<p>The <abbr title="Web Hypertext Application Technology
Working Group">WHATWG</abbr> is a loose unofficial collaboration of
Web browser manufacturers and interested parties who wish to
develop
new technologies designed to allow authors to write and deploy
Applications over the World Wide Web.</p>

The title attribute may be omitted if there is a dfn element in the document whose defining term

is the abbreviation (the textContent of the abbr element).

In the example below, the word "Zat" is used as an abbreviation in the second paragraph. The

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

110 of 458 30/12/2020, 08:08

abbreviation is defined in the first, so the explanatory title attribute has been omitted.

Because of the way dfn elements are defined, the second abbr element in this example would

be connected (in some UA-specific way) to the first.

<p>The <dfn><abbr>Zat</abbr></dfn>, short for Zat'ni'catel, is a
weapon.</p>
<p>Jack used a <abbr>Zat</abbr> to make the boxes of evidence
disappear.</p>

3.12.10. The time element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

datetime

DOM interface:

interface HTMLTimeElement : HTMLElement {
 attribute DOMString dateTime;
 readonly attribute DOMTimeStamp date;
 readonly attribute DOMTimeStamp time;
 readonly attribute DOMTimeStamp timezone;
};

The time element represents a date and/or a time.

The datetime attribute, if present, must contain a date or time string that identifies the date or time

being specified.

If the datetime attribute is not present, then the date or time must be specified in the content of the

element, such that parsing the element's textContent according to the rules for parsing date or

time strings in content successfully extracts a date or time.

The dateTime DOM attribute must reflect the datetime content attribute.

User agents, to obtain the date, time, and timezone represented by a time element, must follow

these steps:

1. If the datetime attribute is present, then parse it according to the rules for parsing date or

time strings in attributes, and let the result be result.

2. Otherwise, parse the element's textContent according to the rules for parsing date or time

strings in content, and let the result be result.

3. If result is empty (because the parsing failed), then the date is unknown, the time is unknown,
and the timezone is unknown.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

111 of 458 30/12/2020, 08:08

4. Otherwise: if result contains a date, then that is the date; if result contains a time, then that is
the time; and if result contains a timezone, then the timezone is the element's timezone. (A
timezone can only be present if both a date and a time are also present.)

The date DOM attribute must return null if the date is unknown, and otherwise must return the time

corresponding to midnight UTC (i.e. the first second) of the given date.

The time DOM attribute must return null if the time is unknown, and otherwise must return the time

corresponding to the given time of 1970-01-01, with the timezone UTC.

The timezone DOM attribute must return null if the timezone is unknown, and otherwise must

return the time corresponding to 1970-01-01 00:00 UTC in the given timezone, with the timezone set
to UTC (i.e. the time corresponding to 1970-01-01 at 00:00 UTC plus the offset corresponding to the
timezone).

In the following snippet:

<p>Our first date was <time datetime="2006-09-23">a
saturday</time>.</p>

...the time element's date attribute would have the value 1,158,969,600,000ms, and the time

and timezone attributes would return null.

In the following snippet:

<p>We stopped talking at <time datetime="2006-09-24 05:00 -7">5am
the next morning</time>.</p>

...the time element's date attribute would have the value 1,159,056,000,000ms, the time

attribute would have the value 18,000,000ms, and the timezone attribute would return

-25,200,000ms. To obtain the actual time, the three attributes can be added together, obtaining
1,159,048,800,000, which is the specified date and time in UTC.

Finally, in the following snippet:

<p>Many people get up at <time>08:00</time>.</p>

...the time element's date attribute would have the value null, the time attribute would have

the value 28,800,000ms, and the timezone attribute would return null.

These APIs may be suboptimal. Comments on making them more useful to JS authors are
welcome. The primary use cases for these elements are for marking up publication dates e.g. in
blog entries, and for marking event dates in hCalendar markup. Thus the DOM APIs are likely to
be used as ways to generate interactive calendar widgets or some such.

3.12.11. The progress element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

112 of 458 30/12/2020, 08:08

Element-specific attributes:

value

max

DOM interface:

interface HTMLProgressElement : HTMLElement {
 attribute float value;
 attribute float max;
 readonly attribute float position;
};

The progress element represents the completion progress of a task. The progress is either

indeterminate, indicating that progress is being made but that it is not clear how much more work
remains to be done before the task is complete (e.g. because the task is waiting for a remote host to
respond), or the progress is a number in the range zero to a maximum, giving the fraction of work
that has so far been completed.

There are two attributes that determine the current task completion represented by the element.

The value attribute specifies how much of the task has been completed, and the max attribute

specifies how much work the task requires in total. The units are arbitrary and not specified.

Instead of using the attributes, authors are recommended to simply include the current value and the
maximum value inline as text inside the element.

Here is a snippet of a Web application that shows the progress of some automated task:

<section>
 <h2>Task Progress</h2>
 <p><label>Progress: <progress>0%
</progress></p>
 <script>
 var progressBar = document.getElementById('p');
 function updateProgress(newValue) {
 progressBar.textContent = newValue;
 }
 </script>
</section>

(The updateProgress() method in this example would be called by some other code on the

page to update the actual progress bar as the task progressed.)

Author requirements: The max and value attributes, when present, must have values that are

valid floating point numbers. The max attribute, if present, must have a value greater than zero. The

value attribute, if present, must have a value equal to or greater than zero, and less than or equal

to the value of the max attribute, if present.

User agent requirements: User agents must parse the max and value attributes' values according

to the rules for parsing floating point number values.

If the value attribute is omitted, then user agents must also parse the textContent of the

progress element in question using the steps for finding one or two numbers of a ratio in a string.

These steps will return nothing, one number, one number with a denominator punctuation character,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

113 of 458 30/12/2020, 08:08

or two numbers.

Using the results of this processing, user agents must determine whether the progress bar is an
indeterminate progress bar, or whether it is a determinate progress bar, and in the latter case, what
its current and maximum values are, all as follows:

1. If the max attribute is omitted, and the value is omitted, and the results of parsing the

textContent was nothing, then the progress bar is an indeterminate progress bar. Abort

these steps.

2. Otherwise, it is a determinate progress bar.

3. If the max attribute is included, then, if a value could be parsed out of it, then the maximum

value is that value.

4. Otherwise, if the max attribute is absent but the value attribute is present, or, if the max

attribute is present but no value could be parsed from it, then the maximum is 1.

5. Otherwise, if neither attribute is included, then, if the textContent contained one number

with an associated denominator punctuation character, then the maximum value is the value
associated with that denominator punctuation character; otherwise, if the textContent

contained two numbers, the maximum value is the higher of the two values; otherwise, the
maximum value is 1.

6. If the value attribute is present on the element and a value could be parsed out of it, that

value is the current value of the progress bar. Otherwise, if the attribute is present but no
value could be parsed from it, the current value is zero.

7. Otherwise if the value attribute is absent and the max attribute is present, then, if the

textContent was parsed and found to contain just one number, with no associated

denominator punctuation character, then the current value is that number. Otherwise, if the
value attribute is absent and the max attribute is present then the current value is zero.

8. Otherwise, if neither attribute is present, then the current value is the lower of the one or two
numbers that were found in the textContent of the element.

9. If the maximum value is less than or equal to zero, then it is reset to 1.

10. If the current value is less than zero, then it is reset to zero.

11. Finally, if the current value is greater than the maximum value, then the current value is reset
to the maximum value.

UA requirements for showing the progress bar: When representing a progress element to the

user, the UA should indicate whether it is a determinate or indeterminate progress bar, and in the
former case, should indicate the relative position of the current value relative to the maximum value.

The max and value DOM attributes must reflect the elements' content attributes of the same name.

When the relevant content attributes are absent, the DOM attributes must return zero. The value
parsed from the textContent never affects the DOM values.

Would be cool to have the value DOM attribute update the textContent in-line...

If the progress bar is an indeterminate progress bar, then the position DOM attribute must return

-1. Otherwise, it must return the result of dividing the current value by the maximum value.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

114 of 458 30/12/2020, 08:08

3.12.12. The meter element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

value

min

low

high

max

optimum

DOM interface:

interface HTMLMeterElement : HTMLElement {
 attribute long value;
 attribute long min;
 attribute long max;
 attribute long low;
 attribute long high;
 attribute long optimum;
};

The meter element represents a scalar measurement within a known range, or a fractional value;

for example disk usage, the relevance of a query result, or the fraction of a voting population to have
selected a particular candidate.

This is also known as a gauge.

Note: The meter element should not be used to indicate progress (as in a progress

bar). For that role, HTML provides a separate progress element.

Note: The meter element also does not represent a scalar value of arbitrary range —

for example, it would be wrong to use this to report a weight, or height, unless there
is a known maximum value.

There are six attributes that determine the semantics of the gauge represented by the element.

The min attribute specifies the lower bound of the range, and the max attribute specifies the upper

bound. The value attribute specifies the value to have the gauge indicate as the "measured" value.

The other three attributes can be used to segment the gauge's range into "low", "medium", and
"high" parts, and to indicate which part of the gauge is the "optimum" part. The low attribute

specifies the range that is considered to be the "low" part, and the high attribute specifies the range

that is considered to be the "high" part. The optimum attribute gives the position that is "optimum"; if

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

115 of 458 30/12/2020, 08:08

that is higher than the "high" value then this indicates that the higher the value, the better; if it's lower
than the "low" mark then it indicates that lower values are better, and naturally if it is in between then
it indicates that neither high nor low values are good.

Authoring requirements: The recommended way of giving the value is to include it as contents of
the element, either as two numbers (the higher number represents the maximum, the other number
the current value), or as a percentage or similar (using one of the characters such as "%"), or as a
fraction.

The value, min, low, high, max, and optimum attributes are all optional. When present, they

must have values that are valid floating point numbers.

The following examples all represent a measurement of three quarters (of the maximum of
whatever is being measured):

<meter>75%</meter>
<meter>750‰</meter>
<meter>3/4</meter>
<meter>6 blocks used (out of 8 total)</meter>
<meter>max: 100; current: 75</meter>
<meter><object data="graph75.png">0.75</object></meter>
<meter min="0" max="100" value="75"></meter>

The following example is incorrect use of the element, because it doesn't give a range (and
since the default maximum is 1, both of the gauges would end up looking maxed out):

<p>The grapefruit pie had a radius of <meter>12cm</meter>
and a height of <meter>2cm</meter>.</p> <!-- BAD! -->

Instead, one would either not include the meter element, or use the meter element with a
defined range to give the dimensions in context compared to other pies:

<p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>
</dl>

There is no explicit way to specify units in the meter element, but the units may be specified in the

title attribute in freeform text.

The example above could be extended to mention the units:

<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12
title="centimeters">12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2
title="centimeters">2cm</meter>
</dl>

User agent requirements: User agents must parse the min, max, value, low, high, and

optimum attributes using the rules for parsing floating point number values.

If the value attribute has been omitted, the user agent must also process the textContent of the

element according to the steps for finding one or two numbers of a ratio in a string. These steps will

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

116 of 458 30/12/2020, 08:08

return nothing, one number, one number with a denominator punctuation character, or two numbers.

User agents must then use all these numbers to obtain values for six points on the gauge, as
follows. (The order in which these are evaluated is important, as some of the values refer to earlier
ones.)

The minimum value

If the min attribute is specified and a value could be parsed out of it, then the minimum value

is that value. Otherwise, the minimum value is zero.

The maximum value

If the max attribute is specified and a value could be parsed out of it, the maximum value is

that value.

Otherwise, if the max attribute is specified but no value could be parsed out of it, or if it was

not specified, but either or both of the min or value attributes were specified, then the

maximum value is 1.

Otherwise, none of the max, min, and value attributes were specified. If the result of

processing the textContent of the element was either nothing or just one number with no

denominator punctuation character, then the maximum value is 1; if the result was one
number but it had an associated denominator punctuation character, then the maximum value
is the value associated with that denominator punctuation character; and finally, if there were
two numbers parsed out of the textContent, then the maximum is the higher of those two

numbers.

If the above machinations result in a maximum value less than the minimum value, then the
maximum value is actually the same as the minimum value.

The actual value

If the value attribute is specified and a value could be parsed out of it, then that value is the

actual value.

If the value attribute is not specified but the max attribute is specified and the result of

processing the textContent of the element was one number with no associated

denominator punctuation character, then that number is the actual value.

If neither of the value and max attributes are specified, then, if the result of processing the

textContent of the element was one number (with or without an associated denominator

punctuation character), then that is the actual value, and if the result of processing the
textContent of the element was two numbers, then the actual value is the lower of the two

numbers found.

Otherwise, if none of the above apply, the actual value is zero.

If the above procedure results in an actual value less than the minimum value, then the actual
value is actually the same as the minimum value.

If, on the other hand, the result is an actual value greater than the maximum value, then the
actual value is the maximum value.

The low boundary

If the low attribute is specified and a value could be parsed out of it, then the low boundary is

that value. Otherwise, the low boundary is the same as the minimum value.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

117 of 458 30/12/2020, 08:08

If the above results in a low boundary that is less than the minimum value, the low boundary
is the minimum value.

The high boundary

If the high attribute is specified and a value could be parsed out of it, then the high boundary

is that value. Otherwise, the high boundary is the same as the maximum value.

If the above results in a high boundary that is higher than the maximum value, the high
boundary is the maximum value.

The optimum point

If the optimum attribute is specified and a value could be parsed out of it, then the optimum

point is that value. Otherwise, the optimum point is the midpoint between the minimum value
and the maximum value.

If the optimum point is then less than the minimum value, then the optimum point is actually
the same as the minimum value. Similarly, if the optimum point is greater than the maximum
value, then it is actually the maximum value instead.

All of which should result in the following inequalities all being true:

minimum value ≤ actual value ≤ maximum value
minimum value ≤ low boundary ≤ high boundary ≤ maximum value
minimum value ≤ optimum point ≤ maximum value

UA requirements for regions of the gauge: If the optimum point is equal to the low boundary or
the high boundary, or anywhere in between them, then the region between the low and high
boundaries of the gauge must be treated as the optimum region, and the low and high parts, if any,
must be treated as suboptimal. Otherwise, if the optimum point is less than the low boundary, then
the region between the minimum value and the low boundary must be treated as the optimum
region, the region between the low boundary and the high boundary must be treated as a suboptimal
region, and the region between the high boundary and the maximum value must be treated as an
even less good region. Finally, if the optimum point is higher than the high boundary, then the
situation is reversed; the region between the high boundary and the maximum value must be treated
as the optimum region, the region between the high boundary and the low boundary must be treated
as a suboptimal region, and the remaining region between the low boundary and the minimum value
must be treated as an even less good region.

UA requirements for showing the gauge: When representing a meter element to the user, the

UA should indicate the relative position of the actual value to the minimum and maximum values,
and the relationship between the actual value and the three regions of the gauge.

The following markup:

<h3>Suggested groups</h3>
<menu type="toolbar">
 Hide suggested
groups
</menu>

 <p><a href="/group/comp.infosystems.www.authoring.stylesheets
/view">comp.infosystems.www.authoring.stylesheets -
 <a href="/group/comp.infosystems.www.authoring.stylesheets
/subscribe">join</p>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

118 of 458 30/12/2020, 08:08

 <p>Group description: Layout/presentation on the
WWW.</p>
 <p><meter value="0.5">Moderate activity,</meter> Usenet, 618
subscribers</p>

 <p><a href="/group/netscape.public.mozilla.xpinstall
/view">netscape.public.mozilla.xpinstall -
 <a href="/group/netscape.public.mozilla.xpinstall
/subscribe">join</p>
 <p>Group description: Mozilla XPInstall discussion.
</p>
 <p><meter value="0.25">Low activity,</meter> Usenet, 22
subscribers</p>

 <p><a href="/group/mozilla.dev.general
/view">mozilla.dev.general -
 join</p>
 <p><meter value="0.25">Low activity,</meter> Usenet, 66
subscribers</p>

Might be rendered as follows:

With the <meter> elements rendered as inline green bars of varying lengths.

User agents may combine the value of the title attribute and the other attributes to provide

context-sensitive help or inline text detailing the actual values.

For example, the following snippet:

<meter min=0 max=60 value=23.2 title=seconds></meter>

...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of 60." on
one line and "seconds" on a second line.

The min, max, value, low, high, and optimum DOM attributes must reflect the elements' content

attributes of the same name. When the relevant content attributes are absent, the DOM attributes
must return zero. The value parsed from the textContent never affects the DOM values.

Would be cool to have the value DOM attribute update the textContent in-line...

3.12.13. The code element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

119 of 458 30/12/2020, 08:08

Element-specific attributes:

None, but the title attribute has special semantics on this element when used with the

dfn element.

DOM interface:

No difference from HTMLElement.

The code element represents a fragment of computer code. This could be an XML element name, a

filename, a computer program, or any other string that a computer would recognise.

Although there is no formal way to indicate the language of computer code being marked up,
authors who wish to mark code elements with the language used, e.g. so that syntax highlighting

scripts can use the right rules, may do so by adding a class prefixed with "language-" to the

element.

The following example shows how a block of code could be marked up using the pre and code

elements.

<pre><code class="language-pascal">var i: Integer;
begin
 i := 1;
end.</code></pre>

A class is used in that example to indicate the language used.

Note: See the pre element for more detais.

3.12.14. The var element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None, but the title attribute has special semantics on this element when used with the

dfn element.

DOM interface:

No difference from HTMLElement.

The var element represents a variable. This could be an actual variable in a mathematical

expression or programming context, or it could just be a term used as a placeholder in prose.

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at least <var>n</var>
flavours of ice cream to be available for purchase!</p>

3.12.15. The samp element

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

120 of 458 30/12/2020, 08:08

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None, but the title attribute has special semantics on this element when used with the

dfn element.

DOM interface:

No difference from HTMLElement.

The samp element represents (sample) output from a program or computing system.

Note: See the pre and kbd elements for more detais.

This example shows the samp element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

This second example shows a block of sample output. Nested samp and kbd elements allow

for the styling of specific elements of the sample output using a style sheet.

<pre><samp><samp class="prompt">jdoe@mowmow:~$</samp> <kbd>ssh
demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on
pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-
reslog-v6.189 #1 SMP Tue Feb 1 11:22:36 PST 2005 i686 unknown

<samp class="prompt">jdoe@demo:~$</samp> <samp
class="cursor">_</samp></samp></pre>

3.12.16. The kbd element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

121 of 458 30/12/2020, 08:08

No difference from HTMLElement.

The kbd element represents user input (typically keyboard input, although it may also be used to

represent other input, such as voice commands).

When the kbd element is nested inside a samp element, it represents the input as it was echoed by

the system.

When the kbd element contains a samp element, it represents input based on system output, for

example invoking a menu item.

When the kbd element is nested inside another kbd element, it represents an actual key or other

single unit of input as appropriate for the input mechanism.

Here the kbd element is used to indicate keys to press:

<p>To make George eat an apple, press <kbd><kbd>Shift</kbd>+
<kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer kbd element

marks up a block of input, with the inner kbd elements representing each individual step of the

input, and the samp elements inside them indicating that the steps are input based on

something being displayed by the system, in this case menu labels:

<p>To make George eat an apple, select
 <kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...
</samp></kbd></kbd>
</p>

3.12.17. The sub and sup elements

Categories

Phrasing content.

Contexts in which these elements may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The sup element represents a superscript and the sub element represents a subscript.

These elements must only be used to mark up typographical conventions with specific meanings,
not for typographical presentation for presentation's sake. For example, it would be inappropriate for
the sub and sup elements to be used in the name of the LaTeX document preparation system. In

general, authors should only use these elements if the absence of those elements would change the
meaning of the content.

When the sub element is used inside a var element, it represents the subscript that identifies the

variable in a family of variables.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

122 of 458 30/12/2020, 08:08

<p>The coordinate of the <var>i</var>th point is
(<var>x_{<var>i</var>}</var>, <var>y_{<var>i</var>}
</var>).
For example, the 10th point has coordinate
(<var>x₁₀</var>, <var>y₁₀</var>).</p>

In certain languages, superscripts are part of the typographical conventions for some abbreviations.

<p>The most beautiful women are
<abbr>M^{lle}</abbr> Gwendoline and
<abbr>M^{me}</abbr> Denise.</p>

Mathematical expressions often use subscripts and superscripts.

<var>E</var>=<var>m</var><var>c</var>²

f(<var>x</var>, <var>n</var>) = log₄<var>x</var>
^{<var>n</var>}

3.12.18. The span element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None, but the title attribute has special semantics on this element when used with the

dfn element.

DOM interface:

No difference from HTMLElement.

The span element doesn't mean anything on its own, but can be useful when used together with

other attributes, e.g. class, lang, or dir, or when used in conjunction with the dfn element.

3.12.19. The i element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None, but the title attribute has special semantics on this element when used with the

dfn element.

DOM interface:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

123 of 458 30/12/2020, 08:08

No difference from HTMLElement.

The i element represents a span of text in an alternate voice or mood, or otherwise offset from the

normal prose, such as a taxonomic designation, a technical term, an idiomatic phrase from another
language, a thought, a ship name, or some other prose whose typical typographic presentation is
italicized.

Terms in languages different from the main text should be annotated with lang attributes

(xml:lang in XML).

The examples below show uses of the i element:

<p>The <i>felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the
air.</p>

In the following example, a dream sequence is marked up using i elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

The i element should be used as a last resort when no other element is more appropriate. In

particular, citations should use the cite element, defining instances of terms should use the dfn

element, stress emphasis should use the em element, importance should be denoted with the

strong element, quotes should be marked up with the q element, and small print should use the

small element.

Note: Style sheets can be used to format i elements, just like any other element can

be restyled. Thus, it is not the case that content in i elements will necessarily be

italicised.

3.12.20. The b element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

124 of 458 30/12/2020, 08:08

The b element represents a span of text to be stylistically offset from the normal prose without

conveying any extra importance, such as key words in a document abstract, product names in a
review, or other spans of text whose typical typographic presentation is boldened.

The following example shows a use of the b element to highlight key words without marking

them up as important:

<p>The frobonitor and barbinator components are
fried.</p>

The following would be incorrect usage:

<p>WARNING! Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strong, not b.

In the following example, objects in a text adventure are highlighted as being special by use of
the b element.

<p>You enter a small room. Your sword glows
brighter. A rat scurries past the corner wall.</p>

Another case where the b element is appropriate is in marking up the lede (or lead) sentence or

paragraph. The following example shows how a BBC article about kittens adopting a rabbit as
their own could be marked up using HTML5 elements:

<article>
 <h2>Kittens 'adopted' by pet rabbit</h2>
 <p>Six abandoned kittens have found an unexpected new
 mother figure — a pet rabbit.</p>
 <p>Veterinary nurse Melanie Humble took the three-week-old
 kittens to her Aberdeen home.</p>
[...]

The b element should be used as a last resort when no other element is more appropriate. In

particular, headers should use the h1 to h6 elements, stress emphasis should use the em element,

importance should be denoted with the strong element, and text marked or highlighted should use

the m element.

Note: Style sheets can be used to format b elements, just like any other element can

be restyled. Thus, it is not the case that content in b elements will necessarily be

boldened.

3.12.21. The bdo element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Phrasing content.

Element-specific attributes:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

125 of 458 30/12/2020, 08:08

None, but the dir global attribute has special requirements on this element.

DOM interface:

No difference from HTMLElement.

The bdo element allows authors to override the Unicode bidi algorithm by explicitly specifying a

direction override. [BIDI]

Authors must specify the dir attribute on this element, with the value ltr to specify a left-to-right

override and with the value rtl to specify a right-to-left override.

If the element has the dir attribute set to the exact value ltr, then for the purposes of the bidi

algorithm, the user agent must act as if there was a U+202D LEFT-TO-RIGHT OVERRIDE character
at the start of the element, and a U+202C POP DIRECTIONAL FORMATTING at the end of the
element.

If the element has the dir attribute set to the exact value rtl, then for the purposes of the bidi

algorithm, the user agent must act as if there was a U+202E RIGHT-TO-LEFT OVERRIDE character
at the start of the element, and a U+202C POP DIRECTIONAL FORMATTING at the end of the
element.

The requirements on handling the bdo element for the bidi algorithm may be implemented indirectly

through the style layer. For example, an HTML+CSS user agent should implement these
requirements by implementing the CSS unicode-bidi property. [CSS21]

3.13. Edits

The ins and del elements represent edits to the document.

Since the ins and del elements do not affect paragraphing, it is possible, in some

cases where paragraphs are implied (without explicit p elements), for an ins or del

element to span both an entire paragraph or other non-phrasing content elements
and part of another paragraph.

For example:

<section>
 <ins>
 <p>
 This is a paragraph that was inserted.
 </p>
 This is another paragraph whose first sentence was inserted
 at the same time as the paragraph above.
 </ins>
 This is a second sentence, which was there all along.
</section>

By only wrapping some paragraphs in p elements, one can even get the end of one

paragraph, a whole second paragraph, and the start of a third paragraph to be
covered by the same ins or del element (though this is very confusing, and not

considered good practice):

<section>
 This is the first paragraph. <ins>This sentence was

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

126 of 458 30/12/2020, 08:08

 inserted.
 <p>This second paragraph was inserted.</p>
 This sentence was inserted too.</ins> This is the
 third paragraph in this example.</p>
</section>

However, due to the way implied paragraphs are defined, it is not possible to mark
up the end of one paragraph and the start of the very next one using the same ins or

del element. You instead have to use one (or two) p element(s) and two ins or del

elements:

For example:

<section>
 <p>This is the first paragraph. This sentence was
 deleted.</p>
 <p>This sentence was deleted too. That
 sentence needed a separate element.</p>
</section>

Partly because of the confusion described above, authors are strongly
recommended to always mark up all paragraphs with the p element, and to not have

any ins or del elements that cross across any implied paragraphs.

3.13.1. The ins element

Categories

When the element only contains phrasing content: phrasing content.
Otherwise: prose content.

Contexts in which this element may be used:

When the element only contains phrasing content: where phrasing content is expected.
Otherwise: where prose content is expected.

Content model:

Transparent.

Element-specific attributes:

cite

datetime

DOM interface:

Uses the HTMLModElement interface.

The ins element represents an addition to the document.

The following represents the addition of a single paragraph:

<aside>
 <ins>
 <p> I like fruit. </p>
 </ins>
</aside>

As does this, because everything in the aside element here counts as phrasing content and

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

127 of 458 30/12/2020, 08:08

therefore there is just one paragraph:

<aside>
 <ins>
 Apples are tasty.
 </ins>
 <ins>
 So are pears.
 </ins>
</aside>

ins elements should not cross implied paragraph boundaries.

The following example represents the addition of two paragraphs, the second of which was
inserted in two parts. The first ins element in this example thus crosses a paragraph boundary,

which is considered poor form.

<aside>
 <ins datetime="2005-03-16T00:00Z">
 <p> I like fruit. </p>
 Apples are tasty.
 </ins>
 <ins datetime="2007-12-19T00:00Z">
 So are pears.
 </ins>
</aside>

Here is a better way of marking this up. It uses more elements, but none of the elements cross
implied paragraph boundaries.

<aside>
 <ins datetime="2005-03-16T00:00Z">
 <p> I like fruit. </p>
 </ins>
 <ins datetime="2005-03-16T00:00Z">
 Apples are tasty.
 </ins>
 <ins datetime="2007-12-19T00:00Z">
 So are pears.
 </ins>
</aside>

3.13.2. The del element

Categories

When the element only contains phrasing content: phrasing content.
Otherwise: prose content.

Contexts in which this element may be used:

When the element only contains phrasing content: where phrasing content is expected.
Otherwise: where prose content is expected.

Content model:

Transparent.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

128 of 458 30/12/2020, 08:08

Element-specific attributes:

cite

datetime

DOM interface:

Uses the HTMLModElement interface.

The del element represents a removal from the document.

del elements should not cross implied paragraph boundaries.

3.13.3. Attributes common to ins and del elements

The cite attribute may be used to specify a URI that explains the change. When that document is

long, for instance the minutes of a meeting, authors are encouraged to include a fragment identifier
pointing to the specific part of that document that discusses the change.

If the cite attribute is present, it must be a URI (or IRI) that explains the change. User agents

should allow users to follow such citation links.

The datetime attribute may be used to specify the time and date of the change.

If present, the datetime attribute must be a valid datetime value.

User agents must parse the datetime attribute according to the parse a string as a datetime value

algorithm. If that doesn't return a time, then the modification has no associated timestamp (the value
is non-conforming; it is not a valid datetime). Otherwise, the modification is marked as having been
made at the given datetime. User agents should use the associated timezone information to
determine which timezone to present the given datetime in.

The ins and del elements must implement the HTMLModElement interface:

interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

The cite DOM attribute must reflect the element's >cite content attribute. The dateTime DOM

attribute must reflect the element's datetime content attribute.

3.14. Embedded content

3.14.1. The figure element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Either one legend element followed by prose content.

Or: Prose content followed by one legend element.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

129 of 458 30/12/2020, 08:08

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The figure element represents some prose content with a caption.

The first legend element child of the element, if any, represents the caption of the figure

element's contents. If there is no child legend element, then there is no caption.

The remainder of the element's contents, if any, represents the captioned content.

3.14.2. The img element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

Empty.

Element-specific attributes:

alt

src

usemap

ismap

width

height

DOM interface:

interface HTMLImageElement : HTMLElement {
 attribute DOMString alt;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute boolean isMap;
 attribute long width;
 attribute long height;
 readonly attribute boolean complete;
};

Note: An instance of HTMLImageElement can be obtained using the Image

constructor.

An img element represents an image.

The image given by the src attribute is the embedded content, and the value of the alt attribute is

the img element's fallback content.

Authoring requirements: The src attribute must be present, and must contain a URI (or IRI).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

130 of 458 30/12/2020, 08:08

Should we restrict the URI to pointing to an image? What's an image? Is PDF an image? (Safari
supports PDFs in elements.) How about SVG? (Opera supports those). WMFs? XPMs?
HTML?

The requirements for the alt attribute depend on what the image is intended to represent:

A phrase or paragraph with an alternative graphical representation

Sometimes something can be more clearly stated in graphical form, for example as a
flowchart, a diagram, a graph, or a simple map showing directions. In such cases, an image
can be given using the img element, but the lesser textual version must still be given, so that

users who are unable to view the image (e.g. because they have a very slow connection, or
because they are using a text-only browser, or because they are listening to the page being
read out by a hands-free automobile voice Web browser, or simply because they are blind)
are still able to understand the message being conveyed.

The text must be given in the alt attribute, and must convey the same message as the the

image specified in the src attribute.

In the following example we have a flowchart in image form, with text in the alt attribute

rephrasing the flowchart in prose form:

<p>In the common case, the data handled by the tokenisation
stage
comes from the network, but it can also come from script.</p>
<p><img src="images/parsing-model-overview.png" alt="The
network
passes data to the Tokeniser stage, which passes data to the
Tree
Construction stage. From there, data goes to both the DOM and
to
Script Execution. Script Execution is linked to the DOM, and,
using
document.write(), passes data to the Tokeniser."></p>

Here's another example, showing a good solution and a bad solution to the problem of
including an image in a description.

First, here's the good solution. This sample shows how the alternative text should just be
what you would have put in the prose if the image had never existed.

<!-- This is the correct way to do things. -->
<p>
 You are standing in an open field west of a house.
<img src="house.jpeg" alt="The house is white, with a boarded

front door.">
 There is a small mailbox here.
</p>

Second, here's the bad solution. In this incorrect way of doing things, the alternative text
is simply a description of the image, instead of a textual replacement for the image. It's
bad because when the image isn't shown, the text doesn't flow as well as in the first
example.

<!-- This is the wrong way to do things. -->

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

131 of 458 30/12/2020, 08:08

<p>
 You are standing in an open field west of a house.
 <img src="house.jpeg" alt="A white house, with a boarded
front door.">
 There is a small mailbox here.
</p>

It is important to realise that the alternative text is a replacement for the image, not a
description of the image.

Icons: a short phrase or label with an alternative graphical representation

A document can contain information in iconic form. The icon is intended to help users of
visual browsers to recognise features at a glance.

In some cases, the icon is supplemental to a text label conveying the same meaning. In those
cases, the alt attribute must be present but must be empty.

Here the icons are next to text that conveys the same meaning, so they have an empty
alt attribute:

<nav>
 <p>
Help</p>
 <p><img src="/icons/configuration.png"
alt="">
 Configuration Tools</p>
</nav>

In other cases, the icon has no text next to it describing what it means; the icon is supposed
to be self-explanatory. In those cases, an equivalent textual label must be given in the alt

attribute.

Here, posts on a news site are labelled with an icon indicating their topic.

<body>
 <article>
 <header>
 <h1>Ratatouille wins <i>Best Movie of the Year</i>
award</h1>
 <p></p>
 </header>
 <p>Pixar has won yet another <i>Best Movie of the Year</i>
award,
 making this its 8th win in the last 12 years.</p>
 </article>
 <article>
 <header>
 <h1>Latest TWiT episode is online</h1>
 <p></p>
 </header>
 <p>The latest TWiT episode has been posted, in which we hear
 several tech news stories as well as learning much more
about the
 iPhone. This week, the panelists compare how reflective
their

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

132 of 458 30/12/2020, 08:08

 iPhones' Apple logos are.</p>
 </article>
</body>

Many pages include logos, insignia, flags, or emblems, which stand for a particular entity
such as a company, organisation, project, band, software package, country, or some such.

If the logo is being used to represent the entity, the alt attribute must contain the name of

the entity being represented by the logo. The alt attribute must not contain text like the word

"logo", as it is not the fact that it is a logo that is being conveyed, it's the entity itself.

If the logo is being used next to the name of the entity that it represents, then the logo is
supplemental, and its alt attribute must instead be empty.

If the logo is merely used as decorative material (as branding, or, for example, as a side
image in an article that mentions the entity to which the logo belongs), then the entry below
on purely decorative images applies. If the logo is actually being discussed, then it is being
used as a phrase or paragraph (the description of the logo) with an alternative graphical
representation (the logo itself), and the first entry above applies.

In the following snippets, all four of the above cases are present. First, we see a logo
used to represent a company:

<h1></h1>

Next, we see a paragraph which uses a logo right next to the company name, and so
doesn't have any alternative text:

<article>
 <h2>News</h2>
 <p>We have recently been looking at buying the <img
src="alpha.gif"
 alt=""> ΑΒΓ company, a small Greek company
 specialising in our type of product.</p>

In this third snippet, we have a logo being used in an aside, as part of the larger article
discussing the acquisition:

<aside><p></p></aside>
 <p>The ΑΒΓ company has had a good quarter, and our
 pie chart studies of their accounts suggest a much bigger
blue slice
 than its green and orange slices, which is always a good
sign.</p>
</article>

Finally, we have an opinion piece talking about a logo, and the logo is therefore
described in detail in the alternative text.

<p>Consider for a moment their logo:</p>

<p><img src="/images/logo" alt="It consists of a green circle
with a
green question mark centered inside it."></p>

<p>How unoriginal can you get? I mean, oooooh, a question

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

133 of 458 30/12/2020, 08:08

mark, how
revolutionary, how utterly ground-breaking,
I'm
sure everyone will rush to adopt those specifications now!
They could
at least have tried for some sort of, I don't know, sequence
of
rounded squares with varying shades of green and bold white
outlines,
at least that would look good on the cover of a blue book.</p>

This example shows how the alternative text should be written such that if the image isn't
available, and the text is used instead, the text flows seamlessly into the surrounding
text, as if the image had never been there in the first place.

A graphical representation of some of the surrounding text

In many cases, the image is actually just supplementary, and its presence merely reinforces
the surrounding text. In these cases, the alt attribute must be present but its value must be

the empty string.

A flowchart that repeats the previous paragraph in graphical form:

<p>The network passes data to the Tokeniser stage, which
passes data to the Tree Construction stage. From there, data
goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokeniser.</p>
<p></p>

A graph that repeats the previous paragraph in graphical form:

<p>According to a study covering several billion pages,
about 62% of documents on the Web in 2007 triggered the Quirks
rendering mode of Web browsers, about 30% triggered the Almost
Standards mode, and about 9% triggered the Standards mode.</p>
<p></p>

In general, an image falls into this category if removing the image doesn't make the page any
less useful, but including the image makes it a lot easier for users of visual browsers to
understand the concept.

A purely decorative image that doesn't add any information but is still specific to the
surrounding content

In some cases, the image isn't discussed by the surrounding text, but it has some relevance.
Such images are decorative, but still form part of the content. In these cases, the alt

attribute must be present but its value must be the empty string.

Examples where the image is purely decorative despite being relevant would include
things like a photo of the Black Rock City landscape in a blog post about an event at
Burning Man, or an image of a painting inspired by a poem, on a page reciting that
poem. The following snippet shows an example of the latter case (only the first verse is
included in this snippet):

<h1>The Lady of Shalott</h1>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

134 of 458 30/12/2020, 08:08

<p></p>
<p>On either side the river lie

Long fields of barley and of rye,

That clothe the wold and meet the sky;

And through the field the road run by

To many-tower'd Camelot;

And up and down the people go,

Gazing where the lilies blow

Round an island there below,

The island of Shalott.</p>

In general, if an image is decorative but isn't especially page-specific, for example an image
that forms part of a site-wide design scheme, the image should be specified in the site's CSS,
not in the markup of the document.

A key part of the content that doesn't have an obvious textual alternative

In certain rare cases, the image is simply a critical part of the content, and there might even
be no alternative text available. This could be the case, for instance, in a photo gallery, where
a user has uploaded 3000 photos from a vacation trip, without providing any descriptions of
the images. The images are the whole point of the pages containing them.

In such cases, the alt attribute may be omitted, but the alt attribute should be included,

with a useful value, if at all possible. If an image is a key part of the content, the alt attribute

must not be specified with an empty value.

A photo on a photo-sharing site:

<figure>

 <legend>Bubbles traveled everywhere with us.</legend>
</figure>

A screenshot in a gallery of screenshots for a new OS:

<figure>

 <legend>Screenshot of a KDE desktop.</legend>
</figure>

In both cases, though, it would be better if a detailed description of the important parts of
the image were included.

Sometimes there simply is no text that can do justice to an image. For example, there is little
that can be said to usefully describe a Rorschach inkblot test.

<figure>

 <legend>A black outline of the first of the ten cards
 in the Rorschach inkblot test.</legend>
</figure>

Note that the following would be a very bad use of alternative text:

<!-- This example is wrong. Do not copy it. -->
<figure>
 <img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

135 of 458 30/12/2020, 08:08

 of the first of the ten cards in the Rorschach inkblot test.">
 <legend>A black outline of the first of the ten cards
 in the Rorschach inkblot test.</legend>
</figure>

Including the caption in the alternative text like this isn't useful because it effectively
duplicates the caption for users who don't have images, taunting them twice yet not helping
them any more than if they had only read or heard the caption once.

Since some users cannot use images at all (e.g. because they have a very slow connection,
or because they are using a text-only browser, or because they are listening to the page
being read out by a hands-free automobile voice Web browser, or simply because they are
blind), the alt attribute should only be omitted when no alternative text is available and none

can be made available, e.g. on automated image gallery sites.

An image in an e-mail or document intended for a specific person who is known to be able to
view images

When an image is included in a communication (such as an HTML e-mail) aimed at someone
who is known to be able to view images, the alt attribute may be omitted. However, even in

such cases it is stongly recommended that alternative text be included (as appropriate
according to the kind of image involved, as described in the above entries), so that the e-mail
is still usable should the user use a mail client that does not support images, or should the
e-mail be forwarded on to other users whose abilities might not include easily seeing images.

The img must not be used as a layout tool. In particular, img elements should not be used to display

fully transparent images, as they rarely convey meaning and rarely add anything useful to the
document.

There has been some suggestion that the longdesc attribute from HTML4, or some other

mechanism that is more powerful than alt="", should be included. This has not yet been

considered.

User agent requirements: When the alt attribute is present and its value is the empty string, the

image supplements the surrounding content. In such cases, the image may be omitted without
affecting the meaning of the document.

When the alt attribute is present and its value is not the empty string, the image is a graphical

equivalent of the string given in the alt attribute. In such cases, the image may be replaced in the

rendering by the string given in the attribute without significantly affecting the meaning of the
document.

When the alt attribute is missing, the image represents a key part of the content. Non-visual user

agents should apply image analysis heuristics to help the user make sense of the image.

The alt attribute does not represent advisory information. User agents must not present the

contents of the alt attribute in the same way as content of the title attribute.

If the src attribute is omitted, the image represents whatever string is given by the element's alt

attribute, if any, or nothing, if that attribute is empty or absent.

When the src attribute is set, the user agent must immediately begin to download the specified

resource, unless the user agent cannot support images, or its support for images has been disabled.

The download of the image must delay the load event.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

136 of 458 30/12/2020, 08:08

⚠Warning! This, unfortunately, can be used to perform a rudimentary port scan of the user's
local network (especially in conjunction with scripting, though scripting isn't actually
necessary to carry out such an attack). User agents may implement cross-origin access
control policies that mitigate this attack.

Once the download has completed, if the image is a valid image, the user agent must fire a load

event on the img element. If the download fails or it completes but the image is not a valid or

supported image, the user agent must fire an error event on the img element.

The remote server's response metadata (e.g. an HTTP 404 status code, or associated Content-Type
headers) must be ignored when determining whether the resource obtained is a valid image or not.

Note: This allows servers to return images with error responses.

User agents must not support non-image resources with the img element.

The usemap attribute, if present, can indicate that the image has an associated image map.

The ismap attribute, when used on an element that is a descendant of an a element with an href

attribute, indicates by its presence that the element provides access to a server-side image map.
This affects how events are handled on the corresponding a element.

The ismap attribute is a boolean attribute. The attribute must not be specified on an element that

does not have an ancestor a element with an href attribute.

The img element supports dimension attributes.

The DOM attributes alt, src, useMap, and isMap each must reflect the respective content

attributes of the same name.

The DOM attributes height and width must return the rendered height and width of the image, in

CSS pixels, if the image is being rendered, and is being rendered to a visual medium, or 0
otherwise. [CSS21]

The DOM attribute complete must return true if the user agent has downloaded the image

specified in the src attribute, and it is a valid image, and false otherwise.

3.14.3. The iframe element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

Text that conforms to the requirements given in the prose.

Element-specific attributes:

src

DOM interface:

interface HTMLIFrameElement : HTMLElement {
 attribute DOMString src;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

137 of 458 30/12/2020, 08:08

};

Objects implementing the HTMLIFrameElement interface must also implement the

EmbeddingElement interface defined in the Window Object specification. [WINDOW]

The iframe element introduces a new nested browsing context.

The src attribute, if present, must be a URI (or IRI) to a page that the nested browsing context is to

contain. When the browsing context is created, if the attribute is present, the user agent must
navigate this browsing context to the given URI, with replacement enabled. If the user navigates
away from this page, the iframe's corresponding Window object will reference new Document

objects, but the src attribute will not change.

Whenever the src attribute is set, the nested browsing context must be navigated to the given URI.

If the src attribute is not set when the element is created, the browsing context will remain at the

initial about:blank page.

When content loads in an iframe, after any load events are fired within the content itself, the user

agent must fire a load event at the iframe element. When content fails to load (e.g. due to a

network error), then the user agent must fire an error event at the element instead.

When there is an active parser in the iframe, and when anything in the iframe that is delaying the

load event in the iframe's browsing context, the iframe must delay the load event.

Note: If, during the handling of the load event, the browsing context in the iframe is

again navigated, that will further delay the load event.

An iframe element never has fallback content, as it will always create a nested browsing context,

regardless of whether the specified initial contents are successfully used.

Descendants of iframe elements represent nothing. (In legacy user agents that do not support

iframe elements, the contents would be parsed as markup that could act as fallback content.)

The content model of iframe elements is text, except that the text must be such that ... anyone

have any bright ideas?

Note: The HTML parser treats markup inside iframe elements as text.

The DOM attribute src must reflect the content attribute of the same name.

3.14.4. The embed element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

Empty.

Element-specific attributes:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

138 of 458 30/12/2020, 08:08

src

type

width

height

Any other attribute that has no namespace (see prose).

DOM interface:

interface HTMLEmbedElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString type;
 attribute long width;
 attribute long height;
};

Depending on the type of content instantiated by the embed element, the node may also

support other interfaces.

The embed element represents an integration point for an external (typically non-HTML) application

or interactive content.

The src attribute gives the address of the resource being embedded. The attribute must be present

and contain a URI (or IRI).

If the src attribute is missing, then the embed element must be ignored.

When the src attribute is set, user agents are expected to find an appropriate handler for the

specified resource, based on the content's type, and hand that handler the content of the resource. If
the handler supports a scriptable interface, the HTMLEmbedElement object representing the

element should expose that interfaces.

The download of the resource must delay the load event.

The user agent should pass the names and values of all the attributes of the embed element that

have no namespace to the handler used. Any (namespace-less) attribute may be specified on the
embed element.

Note: This specification does not define a mechanism for interacting with third-party
handlers, as it is expected to be user-agent-specific. Some UAs might opt to support
a plugin mechanism such as the Netscape Plugin API; others may use remote
content convertors or have built-in support for certain types. [NPAPI]

The embed element has no fallback content. If the user agent can't display the specified resource,

e.g. because the given type is not supported, then the user agent must use a default handler for the
content. (This default could be as simple as saying "Unsupported Format", of course.)

The type attribute, if present, gives the MIME type of the linked resource. The value must be a valid

MIME type, optionally with parameters. [RFC2046]

The type of the content being embedded is defined as follows:

1. If the element has a type attribute, then the value of the type attribute is the content's type.

2. Otherwise, if the specified resource has explicit Content-Type metadata, then that is the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

139 of 458 30/12/2020, 08:08

content's type.

3. Otherwise, the content has no type and there can be no appropriate handler for it.

Should we instead say that the content-sniffing that we're going to define for top-level browsing
contexts should apply here?

Should we require the type attribute to match the server information?

We should say that 404s, etc, don't affect whether the resource is used or not. Not sure how to
say it here though.

Browsers should take extreme care when interacting with external content intended for third-party
renderers. When third-party software is run with the same privileges as the user agent itself,
vulnerabilities in the third-party software become as dangerous as those in the user agent.

The embed element supports dimension attributes.

The DOM attributes src and type each must reflect the respective content attributes of the same

name.

3.14.5. The object element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

Zero or more param elements, then, transparent.

Element-specific attributes:

data

type

usemap

width

height

DOM interface:

interface HTMLObjectElement : HTMLElement {
 attribute DOMString data;
 attribute DOMString type;
 attribute DOMString useMap;
 attribute long width;
 attribute long height;
};

Objects implementing the HTMLObjectElement interface must also implement the

EmbeddingElement interface defined in the Window Object specification. [WINDOW]

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

140 of 458 30/12/2020, 08:08

Depending on the type of content instantiated by the object element, the node may also

support other interfaces.

The object element can represent an external resource, which, depending on the type of the

resource, will either be treated as an image, as a nested browsing context, or as an external
resource to be processed by a third-party software package.

The data attribute, if present, specifies the address of the resource. If present, the attribute must be

a URI (or IRI).

The type attribute, if present, specifies the type of the resource. If present, the attribute must be a

valid MIME type, optionally with parameters. [RFC2046]

One or both of the data and type attributes must be present.

Whenever the data attribute changes, or, if the data attribute is not present, whenever the type

attribute changes, the user agent must run the following steps to determine what the object

element represents:

1. If the data attribute is present, then:

1. Begin a load for the resource.

The download of the resource must delay the load event.

2. If the resource is not yet available (e.g. because the resource was not available in the
cache, so that loading the resource required making a request over the network), then
jump to step 3 in the overall set of steps (fallback). When the resource becomes
available, or if the load fails, restart this algorithm from this step. Resources can load
incrementally; user agents may opt to consider a resource "available" whenever
enough data has been obtained to begin processing the resource.

3. If the load failed (e.g. DNS error), fire an error event at the element, then jump to

step 3 in the overall set of steps (fallback).

4. Determine the resource type, as follows:

This says to trust the type. Should we instead use the same mechanism as for
browsing contexts?

↪ If the resource has associated Content-Type metadata

The type is the type specified in the resource's Content-Type metadata.

↪ Otherwise, if the type attribute is present

The type is the type specified in the type attribute.

↪ Otherwise, there is no explicit type information

The type is the sniffed type of the resource.

5. Handle the content as given by the first of the following cases that matches:

↪ If the resource requires a special handler (e.g. a plugin)

The user agent should find an appropriate handler for the specified
resource, based on the resource type found in the previous step, and pass

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

141 of 458 30/12/2020, 08:08

the content of the resource to that handler. If the handler supports a
scriptable interface, the HTMLObjectElement object representing the

element should expose that interface. The handler is not a nested browsing
context. If no appropriate handler can be found, then jump to step 3 in the
overall set of steps (fallback).

The user agent should pass the names and values of all the parameters
given by param elements that are children of the object element to the

handler used.

Note: This specification does not define a mechanism for
interacting with third-party handlers, as it is expected to be
user-agent-specific. Some UAs might opt to support a plugin
mechanism such as the Netscape Plugin API; others may use
remote content convertors or have built-in support for certain
types. [NPAPI]

this doesn't completely duplicate the navigation section, since it handles
<param>, etc, but surely some work should be done to work with it

↪ If the type of the resource is an XML MIME type

↪ If the type of the resource is HTML

↪ If the type of the resource does not start with "image/"

The object element must be associated with a nested browsing context, if

it does not already have one. The element's nested browsing context must
then be navigated to the given resource, with replacement enabled. (The
data attribute of the object element doesn't get updated if the browsing

context gets further navigated to other locations.)

navigation might end up treating it as something else, because it can do
sniffing. how should we handle that?

↪ If the resource is a supported image format, and support for images has not
been disabled

The object element represents the specified image. The image is not a

nested browsing context.

shouldn't we use the image-sniffing stuff here?

↪ Otherwise

The object element represents the specified image, but the image cannot

be shown. Jump to step 3 below in the overall set of steps (fallback).

6. The element's contents are not part of what the object element represents.

7. Once the resource is completely loaded, fire a load event at the element.

2. If the data attribute is absent but the type attribute is present, and if the user agent can find

a handler suitable according to the value of the type attribute, then that handler should be

used. If the handler supports a scriptable interface, the HTMLObjectElement object

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

142 of 458 30/12/2020, 08:08

representing the element should expose that interface. The handler is not a nested browsing
context. If no suitable handler can be found, jump to the next step (fallback).

3. (Fallback.) The object element doesn't represent anything except what the element's

contents represent, ignoring any leading param element children. This is the element's

fallback content.

In the absence of other factors (such as style sheets), user agents must show the user what the
object element represents. Thus, the contents of object elements act as fallback content, to be

used only when referenced resources can't be shown (e.g. because it returned a 404 error). This
allows multiple object elements to be nested inside each other, targeting multiple user agents with

different capabilities, with the user agent picking the best one it supports.

The usemap attribute, if present while the object element represents an image, can indicate that

the object has an associated image map. The attribute must be ignored if the object element

doesn't represent an image.

The object element supports dimension attributes.

The DOM attributes data, type, and useMap each must reflect the respective content attributes of

the same name.

3.14.6. The param element

Categories

None.

Contexts in which this element may be used:

As a child of an object element, before any prose content.

Content model:

Empty.

Element-specific attributes:

name

value

DOM interface:

interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString value;
};

The param element defines parameters for handlers invoked by object elements.

The name attribute gives the name of the parameter.

The value attribute gives the value of the parameter.

Both attributes must be present. They may have any value.

If both attributes are present, and if the parent element of the param is an object element, then the

element defines a parameter with the given name/value pair.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

143 of 458 30/12/2020, 08:08

The DOM attributes name and value must both reflect the respective content attributes of the same

name.

3.14.7. The video element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

If the element has a src attribute: transparent.

If the element does not have a src attribute: one or more source elements, then,

transparent.

Element-specific attributes:

src

poster

autoplay

start

loopstart

loopend

end

playcount

controls

width

height

DOM interface:

interface HTMLVideoElement : HTMLMediaElement {
 attribute long width;
 attribute long height;
 readonly attribute unsigned long videoWidth;
 readonly attribute unsigned long videoHeight;
 attribute DOMString poster;
};

A video element represents a video or movie.

Content may be provided inside the video element. User agents should not show this content to the

user; it is intended for older Web browsers which do not support video, so that legacy video plugins

can be tried, or to show text to the users of these older browser informing them of how to access the
video contents.

Note: In particular, this content is not fallback content intended to address
accessibility concerns. To make video content accessible to the blind, deaf, and
those with other physical or cognitive disabilities, authors are expected to provide
alternative media streams and/or to embed accessibility aids (such as caption or
subtitle tracks) into their media streams.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

144 of 458 30/12/2020, 08:08

The video element is a media element whose media data is ostensibly video data, possibly with

associated audio data.

The src, autoplay, start, loopstart, loopend, end, playcount, and controls attributes

are the attributes common to all media elements.

The video element supports dimension attributes.

The poster attribute gives the address of an image file that the user agent can show while no video

data is available. The attribute, if present, must contain a URI (or IRI).

The poster DOM attribute must reflect the poster content attribute.

The videoWidth DOM attribute must return the native width of the video in CSS pixels. The

videoHeight DOM attribute must return the native height of the video in CSS pixels. In the

absence of resolution information defining the mapping of pixels in the video to physical dimensions,
user agents may assume that one pixel in the video corresponds to one CSS pixel. If no video data
is available, then the attributes must return 0.

When no video data is available (the element's networkState attribute is either EMPTY, LOADING,

or LOADED_METADATA), video elements represent either the image given by the poster attribute,

or nothing.

When a video element is actively playing, it represents the frame of video at the continuously

increasing "current" position. When the current playback position changes such that the last frame
rendered is no longer the frame corresponding to the current playback position in the video, the new
frame must be rendered. Similarly, any audio associated with the video must, if played, be played
synchronised with the current playback position, at the specified volume with the specified mute
state.

When a video element is paused, the element represents the frame of video corresponding to the

current playback position, or, if that is not available yet (e.g. because the video is seeking or
buffering), the last rendered frame of video.

When a video element is neither actively playing nor paused (e.g. when seeking or stalled), the

element represents the last frame of the video to have been rendered.

Note: Which frame in a video stream corresponds to a particular playback position is
defined by the video stream's format.

Video content should be rendered inside the element's playback area such that the video content is
shown centered in the playback area at the largest possible size that fits completely within it, with
the video content's aspect ratio being preserved. Thus, if the aspect ratio of the playback area does
not match the aspect ratio of the video, the video will be shown letterboxed. Areas of the element's
playback area that do not contain the video represent nothing.

In addition to the above, the user agent may provide messages to the user (such as "buffering", "no
video loaded", "error", or more detailed information) by overlaying text or icons on the video or other
areas of the element's playback area, or in another appropriate manner.

User agents that cannot render the video may instead make the element represent a link to an
external video playback utility or to the video data itself.

User agents should provide controls to enable or disable the display of closed captions associated
with the video stream, though such features should, again, not interfere with the page's normal

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

145 of 458 30/12/2020, 08:08

rendering.

User agents may allow users to view the video content in manners more suitable to the user (e.g.
full-screen or in an independent resizable window). As for the other user interface features, controls
to enable this should not interfere with the page's normal rendering unless the user agent is
exposing a user interface. In such an independent context, however, user agents may make full user
interfaces visible, with, e.g., play, pause, seeking, and volume controls, even if the controls

attribute is absent.

User agents may allow video playback to affect system features that could interfere with the user's
experience; for example, user agents could disable screensavers while video playback is in
progress.

⚠Warning! User agents should not provide a public API to cause videos to be shown full-
screen. A script, combined with a carefully crafted video file, could trick the user into
thinking a system-modal dialog had been shown, and prompt the user for a password. There
is also the danger of "mere" annoyance, with pages launching full-screen videos when links
are clicked or pages navigated. Instead, user-agent specific interface features may be
provided to easily allow the user to obtain a full-screen playback mode.

3.14.7.1. Video and audio codecs for video elements

User agents may support any video and audio codecs and container formats.

It would be helpful for interoperability if all browsers could support the same codecs. However,
there are no known codecs that satisfy all the current players: we need a codec that is known to
not require per-unit or per-distributor licensing, that is compatible with the open source
development model, that is of sufficient quality as to be usable, and that is not an additional
submarine patent risk for large companies. This is an ongoing issue and this section will be
updated once more information is available.

Note: Certain user agents might support no codecs at all, e.g. text browsers running
over SSH connections.

3.14.8. The audio element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

If the element has a src attribute: transparent.

If the element does not have a src attribute: one or more source elements, then,

transparent.

Element-specific attributes:

src

autoplay

start

loopstart

loopend

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

146 of 458 30/12/2020, 08:08

end

playcount

controls

DOM interface:

interface HTMLAudioElement : HTMLMediaElement {
 // no members
};

An audio element represents a sound or audio stream.

Content may be provided inside the audio element. User agents should not show this content to the

user; it is intended for older Web browsers which do not support audio, so that legacy audio plugins

can be tried, or to show text to the users of these older browser informing them of how to access the
audio contents.

Note: In particular, this content is not fallback content intended to address
accessibility concerns. To make audio content accessible to the deaf or to those with
other physical or cognitive disabilities, authors are expected to provide alternative
media streams and/or to embed accessibility aids (such as transcriptions) into their
media streams.

The audio element is a media element whose media data is ostensibly audio data.

The src, autoplay, start, loopstart, loopend, end, playcount, and controls attributes

are the attributes common to all media elements.

When an audio element is actively playing, it must have its audio data played synchronised with the

current playback position, at the specified volume with the specified mute state.

When an audio element is not actively playing, audio must not play for the element.

3.14.8.1. Audio codecs for audio elements

User agents may support any audio codecs and container formats.

User agents must support the WAVE container format with audio encoded using the PCM format.

3.14.9. Media elements

Media elements implement the following interface:

interface HTMLMediaElement : HTMLElement {

 // error state
 readonly attribute MediaError error;

 // network state
 attribute DOMString src;
 readonly attribute DOMString currentSrc;
 const unsigned short EMPTY = 0;
 const unsigned short LOADING = 1;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

147 of 458 30/12/2020, 08:08

 const unsigned short LOADED_METADATA = 2;
 const unsigned short LOADED_FIRST_FRAME = 3;
 const unsigned short LOADED = 4;
 readonly attribute unsigned short networkState;
 readonly attribute float bufferingRate;
 readonly attribute TimeRanges buffered;
 void load();

 // ready state
 const unsigned short DATA_UNAVAILABLE = 0;
 const unsigned short CAN_SHOW_CURRENT_FRAME = 1;
 const unsigned short CAN_PLAY = 2;
 const unsigned short CAN_PLAY_THROUGH = 3;
 readonly attribute unsigned short readyState;
 readonly attribute boolean seeking;

 // playback state
 attribute float currentTime;
 readonly attribute float duration;
 readonly attribute boolean paused;
 attribute float defaultPlaybackRate;
 attribute float playbackRate;
 readonly attribute TimeRanges played;
 readonly attribute TimeRanges seekable;
 readonly attribute boolean ended;
 attribute boolean autoplay;
 void play();
 void pause();

 // looping
 attribute float start;
 attribute float end;
 attribute float loopStart;
 attribute float loopEnd;
 attribute unsigned long playCount;
 attribute unsigned long currentLoop;

 // cue ranges
 void addCueRange(in DOMString className, in float start, in float
end, in boolean pauseOnExit, in VoidCallback enterCallback, in
VoidCallback exitCallback);
 void removeCueRanges(in DOMString className);

 // controls
 attribute boolean controls;
 attribute float volume;
 attribute boolean muted;
};

The media element attributes, src, autoplay, start, loopstart, loopend, end, playcount,

and controls, apply to all media elements. They are defined in this section.

Media elements are used to present audio data, or video and audio data, to the user. This is referred

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

148 of 458 30/12/2020, 08:08

to as media data in this section, since this section applies equally to media elements for audio or for
video. The term media resource is used to refer to the complete set of media data, e.g. the
complete video file, or complete audio file.

3.14.9.1. Error codes

All media elements have an associated error status, which records the last error the element
encountered since the load() method was last invoked. The error attribute, on getting, must

return the MediaError object created for this last error, or null if there has not been an error.

interface MediaError {
 const unsigned short MEDIA_ERR_ABORTED = 1;
 const unsigned short MEDIA_ERR_NETWORK = 2;
 const unsigned short MEDIA_ERR_DECODE = 3;
 readonly attribute unsigned short code;
};

The code attribute of a MediaError object must return the code for the error, which must be one of

the following:

MEDIA_ERR_ABORTED (numeric value 1)

The download of the media resource was aborted by the user agent at the user's request.

MEDIA_ERR_NETWORK (numeric value 2)

A network error of some description caused the user agent to stop downloading the media
resource.

MEDIA_ERR_DECODE (numeric value 3)

An error of some description occurred while decoding the media resource.

3.14.9.2. Location of the media resource

The src content attribute on media elements gives the address of the media resource (video, audio)

to show. The attribute, if present, must contain a URI (or IRI).

If the src attribute of a media element that is already in a document and whose networkState is

in the EMPTY state is added, changed, or removed, the user agent must implicitly invoke the load()

method on the media element as soon as all other scripts have finished executing. Any exceptions
raised must be ignored.

Note: If a src attribute is specified, the resource it specifies is the media resource

that will be used. Otherwise, the resource specified by the first suitable source

element child of the media element is the one used.

The src DOM attribute on media elements must reflect the content attribute of the same name.

To pick a media resource for a media element, a user agent must use the following steps:

1. If the media element has a src, then the address given in that attribute is the address of the

media resource; jump to the last step.

2. Otherwise, let candidate be the first source element child in the media element, or null if

there is no such child.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

149 of 458 30/12/2020, 08:08

3. If either:

candidate is null, or

the candidate element has no src attribute, or

the candidate element has a type attribute and that attribute's value, when parsed as

a MIME type, does not represent a type that the user agent can render (including any
codecs described by the codec parameter), or [RFC2046] [RFC4281]

the candidate element has a media attribute and that attribute's value, when

processed according to the rules for media queries, does not match the current
environment, [MQ]

...then the candidate is not suitable; go to the next step.

Otherwise, the address given in that candidate element's src attribute is the address of the

media resource; jump to the last step.

4. Let candidate be the next source element child in the media element, or null if there are no

more such children.

5. If candidate is not null, return to step 3.

6. There is no media resource. Abort these steps.

7. Let the address of the chosen media resource be the one that was found before jumping to
this step.

Note: A source element with no src attribute is assumed to be the last source

element — any source elements after it are ignored (and are invalid).

The currentSrc DOM attribute must return the empty string if the media element's

networkState has the value EMPTY, and the absolute URL of the chosen media resource

otherwise.

3.14.9.3. Network states

As media elements interact with the network, they go through several states. The networkState

attribute, on getting, must return the current network state of the element, which must be one of the
following values:

EMPTY (numeric value 0)

The element has not yet been initialised. All attributes are in their initial states.

LOADING (numeric value 1)

The element has picked a media resource (the chosen media resource is available from the
currentSrc attribute), but none of the metadata has yet been obtained and therefore all the

other attributes are still in their initial states.

LOADED_METADATA (numeric value 2)

Enough of the resource has been obtained that the metadata attributes are initialized (e.g. the
length is known). The API will no longer raise exceptions when used.

LOADED_FIRST_FRAME (numeric value 3)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

150 of 458 30/12/2020, 08:08

Actual media data has been obtained. In the case of video, this specifically means that a
frame of video is available and can be shown.

LOADED (numeric value 4)

The entire media resource has been obtained and is available to the user agent locally.
Network connectivity could be lost without affecting the media playback.

The algorithm for the load() method defined below describes exactly when the networkState

attribute changes value.

3.14.9.4. Loading the media resource

All media elements have a begun flag, which must begin in the false state, a loaded-first-frame
flag, which must begin in the false state, and an autoplaying flag, which must begin in the true
state.

When the load() method on a media element is invoked, the user agent must run the following

steps. Note that this algorithm might get aborted, e.g. if the load() method itself is invoked again.

1. Any already-running instance of this algorithm for this element must be aborted. If those
method calls have not yet returned, they must finish the step they are on, and then
immediately return.

2. If the element's begun flag is true, then the begun flag must be set to false, the error

attribute must be set to a new MediaError object whose code attribute is set to

MEDIA_ERR_ABORTED, and the user agent must synchronously fire a progress event called

abort at the media element.

3. The error attribute must be set to null, the loaded-first-frame flag must be set to false, and

the autoplaying flag must be set to true.

4. The playbackRate attribute must be set to the value of the defaultPlaybackRate

attribute.

5. If the media element's networkState is not set to EMPTY, then the following substeps must

be followed:

1. The networkState attribute must be set to EMPTY.

2. If readyState is not set to DATA_UNAVAILABLE, it must be set to that state.

3. If the paused attribute is false, it must be set to true.

4. If seeking is true, it must be set to false.

5. The current playback position must be set to 0.

6. The currentLoop DOM attribute must be set to 0.

7. The user agent must synchronously fire a simple event called emptied at the media

element.

6. The user agent must pick a media resource for the media element. If that fails, the method
must raise an INVALID_STATE_ERR exception, and abort these steps.

7. The networkState attribute must be set to LOADING.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

151 of 458 30/12/2020, 08:08

8. Note: The currentSrc attribute starts returning the new value.

9. The user agent must then set the begun flag to true and fire a progress event called begin at

the media element.

10. The method must return, but these steps must continue.

11. Note: Playback of any previously playing media resource for this element
stops.

12. If a download is in progress for the media element, the user agent should stop the download.

13. The user agent must then begin to download the chosen media resource. The rate of the
download may be throttled, however, in response to user preferences (including throttling it to
zero until the user indicates that the download can start), or to balance the download with
other connections sharing the same bandwidth.

14. While the download is progressing, the user agent must fire a progress event called
progress at the element every 350ms (±200ms) or for every byte received, whichever is

least frequent.

If at any point the user agent has received no data for more than about three seconds, the
user agent must fire a progress event called stalled at the element.

User agents may allow users to selectively block or slow media data downloads. When a
media element's download has been blocked, the user agent must act as if it was stalled (as
opposed to acting as if the connection was closed).

The user agent may use whatever means necessary to download the resource (within the
constraints put forward by this and other specifications); for example, reconnecting to the
server in the face of network errors, using HTTP partial range requests, or switching to a
streaming protocol. The user agent must only consider a resource erroneous if it has given up
trying to download it.

↪ If the media data cannot be downloaded at all, due to network errors, causing the
user agent to give up trying to download the resource

DNS errors and HTTP 4xx and 5xx errors (and equivalents in other protocols)
must cause the user agent to execute the following steps. User agents may also
follow these steps in response to other network errors of similar severity.

1. The user agent should cancel the download.

2. The error attribute must be set to a new MediaError object whose code

attribute is set to MEDIA_ERR_NETWORK.

3. The begun flag must be set to false and the user agent must fire a progress
event called error at the media element.

4. The element's networkState attribute must be switched to the EMPTY

value and the user agent must fire a simple event called emptied at the

element.

5. These steps must be aborted.

↪ If the media data can be downloaded but is in an unsupported format, or can

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

152 of 458 30/12/2020, 08:08

otherwise not be rendered at all

The server returning a file of the wrong kind (e.g. one that that turns out to not be
pure audio when the media element is an audio element), or the file using

unsupported codecs for all the data, must cause the user agent to execute the
following steps. User agents may also execute these steps in response to other
codec-related fatal errors, such as the file requiring more resources to process
than the user agent can provide in real time.

1. The user agent should cancel the download.

2. The error attribute must be set to a new MediaError object whose code

attribute is set to MEDIA_ERR_DECODE.

3. The begun flag must be set to false and the user agent must fire a progress
event called error at the media element.

4. The element's networkState attribute must be switched to the EMPTY

value and the user agent must fire a simple event called emptied at the

element.

5. These steps must be aborted.

↪ If the media data download is aborted by the user

The download is aborted by the user, e.g. because the user navigated the
browsing context to another page, the user agent must execute the following
steps. These steps are not followed if the load() method itself is reinvoked, as

the steps above handle that particular kind of abort.

1. The user agent should cancel the download.

2. The error attribute must be set to a new MediaError object whose code

attribute is set to MEDIA_ERR_ABORT.

3. The begun flag must be set to false and the user agent must fire a progress
event called abort at the media element.

4. If the media element's networkState attribute has the value LOADING,

the element's networkState attribute must be switched to the EMPTY

value and the user agent must fire a simple event called emptied at the

element. (If the networkState attribute has a value greater than

LOADING, then this doesn't happen; the available data, if any, will be

playable.)

5. These steps must be aborted.

↪ If the media data can be downloaded but has non-fatal errors or uses, in part,
codecs that are unsupported, preventing the user agent from rendering the
content completely correctly but not preventing playback altogether

The server returning data that is partially usable but cannot be optimally rendered
must cause the user agent to execute the following steps.

1. Should we fire a 'warning' event? Set the 'error' flag to
'MEDIA_ERR_SUBOPTIMAL' or something?

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

153 of 458 30/12/2020, 08:08

↪ Once enough of the media data has been downloaded to determine the duration of
the media resource, its dimensions, and other metadata

The user agent must follow these substeps:

1. The current playback position must be set to the effective start.

2. The networkState attribute must be set to LOADED_METADATA.

3. Note: A number of attributes, including duration, buffered,

and played, become available.

4. Note: The user agent will fire a simple event called
durationchange at the element at this point.

5. The user agent must fire a simple event called loadedmetadata at the

element.

↪ Once enough of the media data has been downloaded to enable the user agent to
display the frame at the effective start of the media resource

The user agent must follow these substeps:

1. The networkState attribute must be set to LOADED_FIRST_FRAME.

2. The readyState attribute must change to CAN_SHOW_CURRENT_FRAME.

3. The loaded-first-frame flag must be set to true.

4. The user agent must fire a simple event called loadedfirstframe at the

element.

5. The user agent must fire a simple event called canshowcurrentframe at

the element.

When the user agent has completed the download of the entire media resource, it must move
on to the next step.

15. If the download completes without errors, the begun flag must be set to false, the
networkState attribute must be set to LOADED, and the user agent must fire a progress

event called load at the element.

If a media element whose networkState has the value EMPTY is inserted into a document, user

agents must implicitly invoke the load() method on the media element as soon as all other scripts

have finished executing. Any exceptions raised must be ignored.

The bufferingRate attribute must return the average number of bits received per second for the

current download over the past few seconds. If there is no download in progress, the attribute must
return 0.

The buffered attribute must return a static normalised TimeRanges object that represents the

ranges of the media resource, if any, that the user agent has downloaded, at the time the attribute is
evaluated.

Note: Typically this will be a single range anchored at the zero point, but if, e.g. the
user agent uses HTTP range requests in response to seeking, then there could be

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

154 of 458 30/12/2020, 08:08

multiple ranges.

3.14.9.5. Offsets into the media resource

The duration attribute must return the length of the media resource, in seconds. If no media data

is available, then the attributes must return 0. If media data is available but the length is not known,
the attribute must return the Not-a-Number (NaN) value. If the media resource is known to be
unbounded (e.g. a streaming radio), then the attribute must return the positive Infinity value.

When the length of the media resource changes (e.g. from being unknown to known, or from
indeterminate to known, or from a previously established length to a new length) the user agent
must, once any running scripts have finished, fire a simple event called durationchange at the

media element.

Media elements have a current playback position, which must initially be zero. The current
position is a time.

The currentTime attribute must, on getting, return the current playback position, expressed in

seconds. On setting, the user agent must seek to the new value (which might raise an exception).

The start content attribute gives the offset into the media resource at which playback is to begin.

The default value is the default start position of the media resource, or 0 if not enough media data
has been obtained yet to determine the default start position or if the resource doesn't specify a
default start position.

The effective start is the smaller of the start DOM attribute and the end of the media resource.

The loopstart content attribute gives the offset into the media resource at which playback is to

begin when looping a clip. The default value of the loopstart content attribute is the value of the

start DOM attribute.

The effective loop start is the smaller of the loopStart DOM attribute and the end of the media

resource.

The loopend content attribute gives an offset into the media resource at which playback is to jump

back to the loopstart, when looping the clip. The default value of the loopend content attribute is

the value of the end DOM attribute.

The effective loop end is the greater of the start, loopStart, and loopEnd DOM attributes,

except if that is greater than the end of the media resource, in which case that's its value.

The end content attribute gives an offset into the media resource at which playback is to end. The

default value is infinity.

The effective end is the greater of the start, loopStart, and end DOM attributes, except if that

is greater than the end of the media resource, in which case that's its value.

The start, loopstart, loopend, and end attributes must, if specified, contain value time offsets.

To get the time values they represent, user agents must use the rules for parsing time offsets.

The start, loopStart, loopEnd, and end DOM attributes must reflect the start, loopstart,

loopend, and end content attributes on the media element respectively.

The playcount content attribute gives the number of times to play the clip. The default value is 1.

The playCount DOM attribute must reflect the playcount content attribute on the media element.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

155 of 458 30/12/2020, 08:08

The value must be limited to only positive non-zero numbers.

The currentLoop attribute must initially have the value 0. It gives the index of the current loop. It is

changed during playback as described below.

When any of the start, loopStart, loopEnd, end, and playCount DOM attributes change

value (either through content attribute mutations reflecting into the DOM attribute, or direct mutations
of the DOM attribute), the user agent must apply the following steps:

1. If the playCount DOM attribute's value is less than or equal to the currentLoop DOM

attribute's value, then the currentLoop DOM attribute's value must be set to playCount-1

(which will make the current loop the last loop).

2. If the media element's networkState is in the EMPTY state or the LOADING state, then the

user agent must at this point abort these steps.

3. If the currentLoop is zero, and the current playback position is before the effective start, the

user agent must seek to the effective start.

4. If the currentLoop is greater than zero, and the current playback position is before the

effective loop start, the user agent must seek to the effective loop start.

5. If the currentLoop is less than playCount-1, and the current playback position is after the

effective loop end, the user agent must seek to the effective loop start, and increase
currentLoop by 1.

6. If the currentLoop is equal to playCount-1, and the current playback position is after the

effective end, the user agent must seek to the effective end and then the looping will end.

3.14.9.6. The ready states

Media elements have a ready state, which describes to what degree they are ready to be rendered
at the current playback position. The possible values are as follows; the ready state of a media
element at any particular time is the greatest value describing the state of the element:

DATA_UNAVAILABLE (numeric value 0)

No data for the current playback position is available. Media elements whose networkState

attribute is less than LOADED_FIRST_FRAME are always in the DATA_UNAVAILABLE state.

CAN_SHOW_CURRENT_FRAME (numeric value 1)

Data for the immediate current playback position is available, but not enough data is available
that the user agent could successfully advance the current playback position at all without
immediately reverting to the DATA_UNAVAILABLE state. In video, this corresponds to the

user agent having data from the current frame, but not the next frame. In audio, this
corresponds to the user agent only having audio up to the current playback position, but no
further.

CAN_PLAY (numeric value 2)

Data for the immediate current playback position is available, as well as enough data for the
user agent to advance the current playback position at least a little without immediately
reverting to the DATA_UNAVAILABLE state. In video, this corresponds to the user agent

having data for the current frame and the next frame. In audio, this corresponds ot the user
agent having data beyond the current playback position.

CAN_PLAY_THROUGH (numeric value 3)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

156 of 458 30/12/2020, 08:08

Data for the immediate current playback position is available, as well as enough data for the
user agent to advance the current playback position at least a little without immediately
reverting to the DATA_UNAVAILABLE state, and, in addition, the user agent estimates that

data is being downloaded at a rate where the current playback position, if it were to advance
at the rate given by the defaultPlaybackRate attribute, would not overtake the available

data before playback reaches the effective end of the media resource on the last loop.

When the ready state of a media element whose networkState is not EMPTY changes, the user

agent must follow the steps given below:

↪ If the new ready state is DATA_UNAVAILABLE

The user agent must fire a simple event called dataunavailable at the element.

↪ If the new ready state is CAN_SHOW_CURRENT_FRAME

If the element's loaded-first-frame flag is true, the user agent must fire a simple event
called canshowcurrentframe event.

Note: The first time the networkState attribute switches to this value, the

loaded-first-frame flag is false, and the event is fired by the algorithm
described above for the load() method, in conjunction with other steps.

↪ If the new ready state is CAN_PLAY

The user agent must fire a simple event called canplay.

↪ If the new ready state is CAN_PLAY_THROUGH

The user agent must fire a simple event called canplaythrough event. If the

autoplaying flag is true, and the paused attribute is true, and the media element has an

autoplay attribute specified, then the user agent must also set the paused attribute to

false and fire a simple event called play.

Note: It is possible for the ready state of a media element to jump between these
states discontinuously. For example, the state of a media element whose leaded-
first-frame flag is false can jump straight from DATA_UNAVAILABLE to

CAN_PLAY_THROUGH without passing through the CAN_SHOW_CURRENT_FRAME and

CAN_PLAY states, and thus without firing the canshowcurrentframe and canplay

events. The only state that is guarenteed to be reached is the
CAN_SHOW_CURRENT_FRAME state, which is reached as part of the load() method's

processing.

The readyState DOM attribute must, on getting, return the value described above that describes

the current ready state of the media element.

The autoplay attribute is a boolean attribute. When present, the algorithm described herein will

cause the user agent to automatically begin playback of the media resource as soon as it can do so
without stopping.

The autoplay DOM attribute must reflect the content attribute of the same name.

3.14.9.7. Playing the media resource

The paused attribute represents whether the media element is paused or not. The attribute must

initially be true.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

157 of 458 30/12/2020, 08:08

A media element is said to be actively playing when its paused attribute is false, the readyState

attribute is either CAN_PLAY or CAN_PLAY_THROUGH, the element has not ended playback,

playback has not stopped due to errors, and the element has not paused for user interaction.

A media element is said to have ended playback when the element's networkState attribute is

LOADED_METADATA or greater, the current playback position is equal to the effective end of the

media resource, and the currentLoop attribute is equal to playCount-1.

A media element is said to have stopped due to errors when the element's networkState

attribute is LOADED_METADATA or greater, and the user agent encounters a non-fatal error during

the processing of the media data, and due to that error, is not able to play the content at the current
playback position.

A media element is said to have paused for user interaction when its paused attribute is false, the

readyState attribute is either CAN_PLAY or CAN_PLAY_THROUGH and the user agent has reached

a point in the media resource where the user has to make a selection for the resource to continue.

It is possible for a media element to have both ended playback and paused for user interaction at
the same time.

When a media element is actively playing and its owner Document is an active document, its

current playback position must increase monotonically at playbackRate units of media time per

unit time of wall clock time. If this value is not 1, the user agent may apply pitch adjustments to any
audio component of the media resource.

Media resources might be internally scripted or interactive. Thus, a media element could play in a
non-linear fashion. If this happens, the user agent must act as if the algorithm for seeking was used
whenever the current playback position changes in a discontinuous fashion (so that the relevant
events fire).

When a media element that is actively playing stops playing because its readyState attribute

changes to a value lower than CAN_PLAY, without the element having ended playback, or playback

having stopped due to errors, or playback having paused for user interaction, the user agent must
fire a simple event called timeupdate at the element, and then must fire a simple event called

waiting at the element.

When a media element that is actively playing stops playing because it has paused for user
interaction, the user agent must fire a simple event called timeupdate at the element.

When currentLoop is less than playCount-1 and the current playback position reaches the

effective loop end, then the user agent must seek to the effective loop start, increase currentLoop

by 1, and fire a simple event called timeupdate.

When currentLoop is equal to the playCount-1 and the current playback position reaches the

effective end, then the user agent must follow these steps:

1. The user agent must stop playback.

2. Note: The ended attribute becomes true.

3. The user agent must fire a simple event called timeupdate at the element.

4. The user agent must fire a simple event called ended at the element.

The defaultPlaybackRate attribute gives the desired speed at which the media resource is to

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

158 of 458 30/12/2020, 08:08

play, as a multiple of its intrinsic speed. The attribute is mutable, but on setting, if the new value is
0.0, a NOT_SUPPORTED_ERR exception must be raised instead of the value being changed. It must

initially have the value 1.0.

The playbackRate attribute gives the speed at which the media resource plays, as a multiple of its

intrinsic speed. If it is not equal to the defaultPlaybackRate, then the implication is that the user

is using a feature such as fast forward or slow motion playback. The attribute is mutable, but on
setting, if the new value is 0.0, a NOT_SUPPORTED_ERR exception must be raised instead of the

value being changed. Otherwise, the playback must change speed (if the element is actively
playing). It must initially have the value 1.0.

When the defaultPlaybackRate or playbackRate attributes change value (either by being set

by script or by being changed directly by the user agent, e.g. in response to user control) the user
agent must, once any running scripts have finished, fire a simple event called ratechange at the

media element.

When the play() method on a media element is invoked, the user agent must run the following

steps.

1. If the media element's networkState attribute has the value EMPTY, then the user agent

must invoke the load() method and wait for it to return. If that raises an exception, that

exception must be reraised by the play() method.

2. If the playback has ended, then the user agent must set currentLoop to zero and seek to

the effective start.

3. The playbackRate attribute must be set to the value of the defaultPlaybackRate

attribute.

4. If the media element's paused attribute is true, it must be set to false.

5. The media element's autoplaying flag must be set to false.

6. The method must then return.

Note: If the second step above involved a seek, the user agent will fire a simple event
called timeupdate at the media element.

Note: If the third step above caused the playbackRate attribute to change value, the

user agent will fire a simple event called ratechange at the media element.

Note: If the fourth step above changed the value of paused, the user agent must fire

a simple event called play at the media element.

When the pause() method is invoked, the user agent must run the following steps:

1. If the media element's networkState attribute has the value EMPTY, then the user agent

must invoke the load() method and wait for it to return. If that raises an exception, that

exception must be reraised by the pause() method.

2. If the media element's paused attribute is false, it must be set to true.

3. The media element's autoplaying flag must be set to false.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

159 of 458 30/12/2020, 08:08

4. The method must then return.

5. If the second step above changed the value of paused, the user agent must first fire a simple

event called timeupdate at the element, and then fire a simple event called pause at the

element.

When a media element is removed from a Document, the user agent must act as if the pause()

method had been invoked.

Media elements that are actively playing while not in a Document must not play any video, but

should play any audio component. Media elements must not stop playing just because all references
to them have been removed; only once a media element to which no references exist has reached a
point where no further audio remains to be played for that element (e.g. because the element is
paused or because the end of the clip has been reached) may the element be garbage collected.

Note: If the media element's ownerDocument stops being an active document, then

the playback will stop until the document is active again.

The ended attribute must return true if the media element has ended playback, and false otherwise.

The played attribute must return a static normalised TimeRanges object that represents the

ranges of the media resource, if any, that the user agent has so far rendered, at the time the attribute
is evaluated.

3.14.9.8. Seeking

The seeking attribute must initially have the value false.

When the user agent is required to seek to a particular new playback position in the media resource,
it means that the user agent must run the following steps:

1. If the media element's networkState is less than LOADED_METADATA, then the user agent

must raise an INVALID_STATE_ERR exception (if the seek was in response to a DOM

method call or setting of a DOM attribute), and abort these steps.

2. If currentLoop is 0, let min be the effective start. Otherwise, let it be the effective loop start.

3. If currentLoop is equal to the value of playCount, let max be the effective end.

Otherwise, let it be the effective loop end.

4. If the new playback position is more than max, let it be max.

5. If the new playback position is less than min, let it be min.

6. If the (possibly now changed) new playback position is not in one of the ranges given in the
seekable attribute, then the user agent must raise an INDEX_SIZE_ERR exception (if the

seek was in response to a DOM method call or setting of a DOM attribute), and abort these
steps.

7. The current playback position must be set to the given new playback position.

8. The seeking DOM attribute must be set to true.

9. The user agent must fire a simple event called timeupdate at the element.

10. As soon as the user agent has established whether or not the media data for the new

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

160 of 458 30/12/2020, 08:08

playback position is available, and, if it is, decoded enough data to play back that position, the
seeking DOM attribute must be set to false.

The seekable attribute must return a static normalised TimeRanges object that represents the

ranges of the media resource, if any, that the user agent is able to seek to, at the time the attribute is
evaluated, notwithstanding the looping attributes (i.e. the effective start and effective end, etc, don't
affect the seeking attribute).

Note: If the user agent can seek to anywhere in the media resource, e.g. because it a
simple movie file and the user agent and the server support HTTP Range requests,
then the attribute would return an object with one range, whose start is the time of
the first frame (typically zero), and whose end is the same as the time of the first
frame plus the duration attribute's value (which would equal the time of the last

frame).

3.14.9.9. Cue ranges

Media elements have a set of cue ranges. Each cue range is made up of the following information:

A class name

A group of related ranges can be given the same class name so that they can all be removed
at the same time.

A start time

An end time

The actual time range, using the same timeline as the media resource itself.

A "pause" boolean

A flag indicating whether to pause playback on exit.

An "enter" callback

A callback that is called when the current playback position enters the range.

An "exit" callback

A callback that is called when the current playback position exits the range.

An "active" boolean

A flag indicating whether the range is active or not.

The addCueRange(className, start, end, pauseOnExit, enterCallback,

exitCallback) method must, when called, add a cue range to the media element, that cue range

having the class name className, the start time start (in seconds), the end time end (in seconds),
the "pause" boolean with the same value as pauseOnExit, the "enter" callback enterCallback, the
"exit" callback exitCallback, and an "active" boolean that is true if the current playback position is
equal to or greater than the start time and less than the end time, and false otherwise.

The removeCueRanges(className) method must, when called, remove all the cue ranges of the

media element which have the class name className.

When the current playback position of a media element changes (e.g. due to playback or seeking),
the user agent must run the following steps. If the current playback position changes while the steps
are running, then the user agent must wait for the steps to complete, and then must immediately
rerun the steps. (These steps are thus run as often as possible or needed — if one iteration takes a
long time, this can cause certain ranges to be skipped over as the user agent rushes ahead to

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

161 of 458 30/12/2020, 08:08

"catch up".)

1. Let current ranges be an ordered list of cue ranges, initialised to contain all the cue ranges of
the media element whose start times are less than or equal to the current playback position
and whose end times are greater than the current playback position, in the order they were
added to the element.

2. Let other ranges be an ordered list of cue ranges, initialised to contain all the cue ranges of
the media element that are not present in current ranges, in the order they were added to the
element.

3. If none of the cue ranges in current ranges have their "active" boolean set to "false" (inactive)
and none of the cue ranges in other ranges have their "active" boolean set to "true" (active),
then abort these steps.

4. If the time was reached through the usual monotonic increase of the current playback position
during normal playback, the user agent must then fire a simple event called timeupdate at

the element. (In the other cases, such as explicit seeks, relevant events get fired as part of
the overall process of changing the current playback position.)

5. If the time was reached through the usual monotonic increase of the current playback position
during normal playback, and there are cue ranges in other ranges that have both their "active"
boolean and their "pause" boolean set to "true", then immediately act as if the element's
pause() method had been invoked. (In the other cases, such as explicit seeks, playback is

not paused by exiting a cue range, even if that cue range has its "pause" boolean set to
"true".)

6. Invoke all the non-null "exit" callbacks for all of the cue ranges in other ranges that have their
"active" boolean set to "true" (active), in list order.

7. Invoke all the non-null "enter" callbacks for all of the cue ranges in current ranges that have
their "active" boolean set to "false" (inactive), in list order.

8. Set the "active" boolean of all the cue ranges in the current ranges list to "true" (active), and
the "active" boolean of all the cue ranges in the other ranges list to "false" (inactive).

Invoking a callback (an object implementing the VoidCallback interface) means calling its

handleEvent() method.

interface VoidCallback {
 void handleEvent();
};

The handleEvent method of objects implementing the VoidCallback interface is the entrypoint

for the callback represented by the object.

In the ECMAScript DOM binding, the ECMAScript native Function type must implement the

VoidCallback interface such that invoking the handleEvent() method of that interface on the

object from another language binding invokes the function itself. In the ECMAScript binding itself,
however, the handleEvent() method of the interface is not directly accessible on Function

objects. Such functions, when invoked, must be called at the scope of the browsing context.

3.14.9.10. User interface

The controls attribute is a boolean attribute. If the attribute is present, or if scripting is disabled,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

162 of 458 30/12/2020, 08:08

then the user agent should expose a user interface to the user. This user interface should include
features to begin playback, pause playback, seek to an arbitrary position in the content (if the
content supports arbitrary seeking), change the volume, and show the media content in manners
more suitable to the user (e.g. full-screen video or in an independent resizable window). Other
controls may also be made available.

If the attribute is absent, then the user agent should avoid making a user interface available that
could conflict with an author-provided user interface. User agents may make the following features
available, however, even when the attribute is absent:

User agents may provide controls to affect playback of the media resource (e.g. play, pause,
seeking, and volume controls), but such features should not interfere with the page's normal
rendering. For example, such features could be exposed in the media element's context menu.

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for muting or
changing the volume of the audio, and for seeking), user interface features exposed by the user
agent must be implemented in terms of the DOM API described above, so that, e.g., all the same
events fire.

The controls DOM attribute must reflect the content attribute of the same name.

The volume attribute must return the playback volume of any audio portions of the media element,

in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume must be 0.5, but user agents may
remember the last set value across sessions, on a per-site basis or otherwise, so the volume may
start at other values. On setting, if the new value is in the range 0.0 to 1.0 inclusive, the attribute
must be set to the new value and the playback volume must be correspondingly adjusted as soon as
possible after setting the attribute, with 0.0 being silent, and 1.0 being the loudest setting, values in
between increasing in loudness. The range need not be linear. The loudest setting may be lower
than the system's loudest possible setting; for example the user could have set a maximum volume.
If the new value is outside the range 0.0 to 1.0 inclusive, then, on setting, an INDEX_SIZE_ERR

exception must be raised instead.

The muted attribute must return true if the audio channels are muted and false otherwise. On

setting, the attribute must be set to the new value; if the new value is true, audio playback for this
media resource must then be muted, and if false, audio playback must then be enabled.

Whenever either the muted or volume attributes are changed, after any running scripts have

finished executing, the user agent must fire a simple event called volumechange at the media

element.

3.14.9.11. Time range

Objects implementing the TimeRanges interface represent a list of ranges (periods) of time.

interface TimeRanges {
 readonly attribute unsigned long length;
 float start(in unsigned long index);
 float end(in unsigned long index);
};

The length DOM attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range represented

by the object, in seconds measured from the start of the timeline that the object covers.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

163 of 458 30/12/2020, 08:08

The end(index) method must return the position of the end of the indexth range represented by

the object, in seconds measured from the start of the timeline that the object covers.

These methods must raise INDEX_SIZE_ERR exceptions if called with an index argument greater

than or equal to the number of ranges represented by the object.

When a TimeRanges object is said to be a normalised TimeRanges object, the ranges it

represents must obey the following criteria:

The start of a range must be greater than the end of all earlier ranges.

The start of a range must be less than the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, and don't touch (adjacent
ranges are folded into one bigger range).

The timelines used by the objects returned by the buffered, seekable and played DOM

attributes of media elements must be the same as that element's media resource's timeline.

3.14.9.12. Event summary

The following events fire on media elements as part of the processing model described above:

Event name Interface Dispatched when... Preconditions

begin ProgressEvent

[PROGRESS]

The user agent begins
fetching the media data,
synchronously during the
load() method call.

networkState equals

LOADING

progress ProgressEvent

[PROGRESS]

The user agent is
fetching media data.

networkState is more than

EMPTY and less than LOADED

loadedmetadata Event The user agent is
fetching media data, and
the media resource's
metadata has just been
received.

networkState equals

LOADED_METADATA

loadedfirstframe Event The user agent is
fetching media data, and
the media resource's first
frame has just been
received.

networkState equals

LOADED_FIRST_FRAME

load ProgressEvent

[PROGRESS]

The user agent finishes
downloading the entire
media resource.

networkState equals

LOADED

abort ProgressEvent

[PROGRESS]

The user agent stops
fetching the media data
before it is completely
downloaded. This can be
fired synchronously
during the load()

method call.

error is an object with the

code MEDIA_ERR_ABORTED.

networkState equals either

EMPTY or LOADED, depending

on when the download was
aborted.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

164 of 458 30/12/2020, 08:08

Event name Interface Dispatched when... Preconditions

error ProgressEvent

[PROGRESS]

An error occurs while
fetching the media data.

error is an object with the

code
MEDIA_ERR_NETWORK_ERROR

or higher. networkState

equals either EMPTY or

LOADED, depending on when

the download was aborted.

emptied Event A media element whose
networkState was

previously not in the
EMPTY state has just

switched to that state
(either because of a fatal
error during load that's
about to be reported, or
because the load()

method was reinvoked, in
which case it is fired
synchronously during the
load() method call).

networkState is EMPTY; all

the DOM attributes are in their
initial states.

stalled ProgressEvent The user agent is trying
to fetch media data, but
data is unexpectedly not
forthcoming.

play Event Playback has begun.
Fired after the play

method has returned.

paused is newly false.

pause Event Playback has been
paused. Fired after the
pause method has

returned.

paused is newly true.

waiting Event Playback has stopped
because the next frame
is not available, but the
user agent expects that
frame to become
available in due course.

readyState is either

DATA_UNAVAILABLE or

CAN_SHOW_CURRENT_FRAME

and paused is false. Either

seeking is true, or the current

playback position is not
contained in any of the ranges
in buffered. It is possible for

playback to stop for two other
reasons without paused being

false, but those two reasons
do not fire this event: maybe
playback ended, or playback
stopped due to errors.

timeupdate Event The current playback
position changed in an
interesting way, for

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

165 of 458 30/12/2020, 08:08

Event name Interface Dispatched when... Preconditions

example discontinuously.

ended Event Playback has stopped
because the end of the
media resource was
reached.

currentTime equals the

effective end; ended is true.

dataunavailable Event The user agent cannot
render the data at the
current playback position
because data for the
current frame is not
immediately available.

The readyState attribute is

newly equal to
DATA_UNAVAILABLE.

canshowcurrentframe Event The user agent cannot
render the data after the
current playback position
because data for the next
frame is not immediately
available.

The readyState attribute is

newly equal to
CAN_SHOW_CURRENT_FRAME

canplay Event The user agent can
resume playback of the
media data, but
estimates that if playback
were to be started now,
the media resource could
not be rendered at the
current playback rate up
to its end without having
to stop for further
buffering of content.

The readyState attribute is

newly equal to CAN_PLAY.

canplaythrough Event The user agent estimates
that if playback were to
be started now, the
media resource could be
rendered at the current
playback rate all the way
to its end without having
to stop for further
buffering.

The readyState attribute is

newly equal to
CAN_PLAY_THROUGH.

ratechange Event Either the
defaultPlaybackRate

or the playbackRate

attribute has just been
updated.

durationchange Event The duration attribute

has just been updated.

volumechange Event Either the volume

attribute or the muted

attribute has changed.
Fired after the relevant
attribute's setter has

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

166 of 458 30/12/2020, 08:08

Event name Interface Dispatched when... Preconditions

returned.

3.14.9.13. Security and privacy considerations

Talk about making sure interactive media files (e.g. SVG) don't have access to the container
DOM (XSS potential); talk about not exposing any sensitive data like metadata from tracks in the
media files (intranet snooping risk)

3.14.10. The source element

Categories

None.

Contexts in which this element may be used:

As a child of a media element, before any prose content.

Content model:

Empty.

Element-specific attributes:

src

type

media

DOM interface:

interface HTMLSourceElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString type;
 attribute DOMString media;
};

The source element allows authors to specify multiple media resources for media elements.

The src attribute gives the address of the media resource. The value must be a URI (or IRI). This

attribute must be present.

The type attribute gives the type of the media resource, to help the user agent determine if it can

play this media resource before downloading it. Its value must be a MIME type. The codecs

parameter may be specified and might be necessary to specify exactly how the resource is encoded.
[RFC2046] [RFC4281]

The following list shows some examples of how to use the codecs= MIME parameter in the

type attribute.

H.264 Simple baseline profile video (main and extended video compatible) level 3 and
Low-Complexity AAC audio in MP4 container

<source src="video.mp4" type="video/mp4; codecs="
avc1.42E01E, mp4a.40.2"">

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity AAC

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

167 of 458 30/12/2020, 08:08

audio in MP4 container

<source src="video.mp4" type="video/mp4; codecs="
avc1.58A01E, mp4a.40.2"">

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container

<source src="video.mp4" type="video/mp4; codecs="
avc1.4D401E, mp4a.40.2"">

H.264 "High" profile video (incompatible with main, baseline, or extended profiles) level
3 and Low-Complexity AAC audio in MP4 container

<source src="video.mp4" type="video/mp4; codecs="
avc1.64001E, mp4a.40.2"">

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4
container

<source src="video.mp4" type="video/mp4; codecs="
mp4v.20.8, mp4a.40.2"">

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in MP4
container

<source src="video.mp4" type="video/mp4; codecs="
mp4v.20.240, mp4a.40.2"">

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container

<source src="video.3gp" type="video/3gpp; codecs="
mp4v.20.8, samr"">

Theora video and Vorbis audio in Ogg container

<source src="video.ogv" type="video/ogg; codecs="theora,
vorbis"">

Theora video and Speex audio in Ogg container

<source src="video.ogv" type="video/ogg; codecs="theora,
speex"">

Vorbis audio alone in Ogg container

<source src="audio.oga" type="audio/ogg; codecs=vorbis">

Speex audio alone in Ogg container

<source src="audio.oga" type="audio/ogg; codecs=speex">

Flac audio alone in Ogg container

<source src="audio.oga" type="audio/ogg; codecs=flac">

Dirac video and Vorbis audio in Ogg container

<source src="video.ogv" type="video/ogg; codecs="dirac,
vorbis"">

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

168 of 458 30/12/2020, 08:08

Theora video and Vorbis audio in Matroska container

<source src="video.mkv" type="video/x-matroska; codecs="
theora, vorbis"">

The media attribute gives the intended media type of the media resource, to help the user agent

determine if this media resource is useful to the user before downloading it. Its value must be a valid
media query. [MQ]

Either the type attribute, the media attribute or both, must be specified, unless this is the last

source element child of the parent element.

If a source element is inserted into a media element that is already in a document and whose

networkState is in the EMPTY state, the user agent must implicitly invoke the load() method on

the media element as soon as all other scripts have finished executing. Any exceptions raised must
be ignored.

The DOM attributes src, type, and media must reflect the respective content attributes of the

same name.

3.14.11. The canvas element

Categories

Embedded content.

Contexts in which this element may be used:

Where embedded content is expected.

Content model:

Transparent.

Element-specific attributes:

width

height

DOM interface:

interface HTMLCanvasElement : HTMLElement {
 attribute unsigned long width;
 attribute unsigned long height;

 DOMString toDataURL();
 DOMString toDataURL(in DOMString type);

 DOMObject getContext(in DOMString contextId);
};

The canvas element represents a resolution-dependent bitmap canvas, which can be used for

rendering graphs, game graphics, or other visual images on the fly.

Authors should not use the canvas element in a document when a more suitable element is

available. For example, it is inappropriate to use a canvas element to render a page heading: if the

desired presentation of the heading is graphically intense, it should be marked up using appropriate
elements (typically h1) and then styled using CSS and supporting technologies such as XBL.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

169 of 458 30/12/2020, 08:08

When authors use the canvas element, they should also provide content that, when presented to

the user, conveys essentially the same function or purpose as the bitmap canvas. This content may
be placed as content of the canvas element. The contents of the canvas element, if any, are the

element's fallback content.

In interactive visual media with scripting enabled, the canvas element is an embedded element with
a dynamically created image.

In non-interactive, static, visual media, if the canvas element has been previously painted on (e.g. if

the page was viewed in an interactive visual medium and is now being printed, or if some script that
ran during the page layout process painted on the element), then the canvas element must be

treated as embedded content with the current image and size. Otherwise, the element's fallback
content must be used instead.

In non-visual media, and in visual media with scripting disabled, the canvas element's fallback

content must be used instead.

The canvas element has two attributes to control the size of the coordinate space: width and

height. These attributes, when specified, must have values that are valid non-negative integers.

The rules for parsing non-negative integers must be used to obtain their numeric values. If an
attribute is missing, or if parsing its value returns an error, then the default value must be used
instead. The width attribute defaults to 300, and the height attribute defaults to 150.

The intrinsic dimensions of the canvas element equal the size of the coordinate space, with the

numbers interpreted in CSS pixels. However, the element can be sized arbitrarily by a style sheet.
During rendering, the image is scaled to fit this layout size.

The size of the coordinate space does not necessarily represent the size of the actual bitmap that
the user agent will use internally or during rendering. On high-definition displays, for instance, the
user agent may internally use a bitmap with two device pixels per unit in the coordinate space, so
that the rendering remains at high quality throughout.

The canvas must initially be fully transparent black.

Whenever the width and height attributes are set (whether to a new value or to the previous

value), the bitmap and any associated contexts must be cleared back to their initial state and
reinitialised with the newly specified coordinate space dimensions.

The width and height DOM attributes must reflect the content attributes of the same name.

Only one square appears to be drawn in the following example:

 // canvas is a reference to a <canvas> element
 var context = canvas.getContext('2d');
 context.fillRect(0,0,50,50);
 canvas.setAttribute('width', '300'); // clears the canvas
 context.fillRect(0,100,50,50);
 canvas.width = canvas.width; // clears the canvas
 context.fillRect(100,0,50,50); // only this square remains

To draw on the canvas, authors must first obtain a reference to a context using the
getContext(contextId) method of the canvas element.

This specification only defines one context, with the name "2d". If getContext() is called with that

exact string for tis contextId argument, then the UA must return a reference to an object

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

170 of 458 30/12/2020, 08:08

implementing CanvasRenderingContext2D. Other specifications may define their own contexts,

which would return different objects.

Vendors may also define experimental contexts using the syntax vendorname-context, for

example, moz-3d.

When the UA is passed an empty string or a string specifying a context that it does not support, then
it must return null. String comparisons must be literal and case-sensitive.

Note: A future version of this specification will probably define a 3d context

(probably based on the OpenGL ES API).

The toDataURL() method must, when called with no arguments, return a data: URI containing a

representation of the image as a PNG file. [PNG].

The toDataURL(type) method (when called with one or more arguments) must return a data:

URI containing a representation of the image in the format given by type. The possible values are
MIME types with no parameters, for example image/png, image/jpeg, or even maybe

image/svg+xml if the implementation actually keeps enough information to reliably render an SVG

image from the canvas.

Only support for image/png is required. User agents may support other types. If the user agent

does not support the requested type, it must return the image using the PNG format.

User agents must convert the provided type to lower case before establishing if they support that
type and before creating the data: URI.

Note: When trying to use types other than image/png, authors can check if the

image was really returned in the requested format by checking to see if the returned
string starts with one the exact strings "data:image/png," or "data:image/png;".

If it does, the image is PNG, and thus the requested type was not supported.

Arguments other than the type must be ignored, and must not cause the user agent to raise an
exception (as would normally occur if a method was called with the wrong number of arguments). A
future version of this specification will probably allow extra parameters to be passed to
toDataURL() to allow authors to more carefully control compression settings, image metadata, etc.

Security: To prevent information leakage, the toDataURL() and getImageData() methods

should raise a security exception if the canvas has ever had an image painted on it whose origin is
different from that of the script calling the method.

3.14.11.1. The 2D context

When the getContext() method of a canvas element is invoked with 2d as the argument, a

CanvasRenderingContext2D object is returned.

There is only one CanvasRenderingContext2D object per canvas, so calling the getContext()

method with the 2d argument a second time must return the same object.

The 2D context represents a flat cartesian surface whose origin (0,0) is at the top left corner, with the
coordinate space having x values increasing when going right, and y values increasing when going
down.

interface CanvasRenderingContext2D {

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

171 of 458 30/12/2020, 08:08

 // back-reference to the canvas
 readonly attribute HTMLCanvasElement canvas;

 // state
 void save(); // push state on state stack
 void restore(); // pop state stack and restore state

 // transformations (default transform is the identity matrix)
 void scale(in float x, in float y);
 void rotate(in float angle);
 void translate(in float x, in float y);
 void transform(in float m11, in float m12, in float m21, in float
m22, in float dx, in float dy);
 void setTransform(in float m11, in float m12, in float m21, in
float m22, in float dx, in float dy);

 // compositing
 attribute float globalAlpha; // (default 1.0)
 attribute DOMString globalCompositeOperation; // (default
source-over)

 // colors and styles
 attribute DOMObject strokeStyle; // (default black)
 attribute DOMObject fillStyle; // (default black)

CanvasGradient createLinearGradient(in float x0, in float y0, in
float x1, in float y1);

CanvasGradient createRadialGradient(in float x0, in float y0, in
float r0, in float x1, in float y1, in float r1);

CanvasPattern createPattern(in HTMLImageElement image, DOMString
repetition);

CanvasPattern createPattern(in HTMLCanvasElement image, DOMString
repetition);

 // line caps/joins
 attribute float lineWidth; // (default 1)
 attribute DOMString lineCap; // "butt", "round", "square"
(default "butt")
 attribute DOMString lineJoin; // "round", "bevel", "miter"
(default "miter")
 attribute float miterLimit; // (default 10)

 // shadows
 attribute float shadowOffsetX; // (default 0)
 attribute float shadowOffsetY; // (default 0)
 attribute float shadowBlur; // (default 0)
 attribute DOMString shadowColor; // (default transparent
black)

 // rects
 void clearRect(in float x, in float y, in float w, in float h);
 void fillRect(in float x, in float y, in float w, in float h);

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

172 of 458 30/12/2020, 08:08

 void strokeRect(in float x, in float y, in float w, in float h);

 // path API
 void beginPath();
 void closePath();
 void moveTo(in float x, in float y);
 void lineTo(in float x, in float y);
 void quadraticCurveTo(in float cpx, in float cpy, in float x, in
float y);
 void bezierCurveTo(in float cp1x, in float cp1y, in float cp2x, in
float cp2y, in float x, in float y);
 void arcTo(in float x1, in float y1, in float x2, in float y2, in
float radius);
 void rect(in float x, in float y, in float w, in float h);
 void arc(in float x, in float y, in float radius, in float
startAngle, in float endAngle, in boolean anticlockwise);
 void fill();
 void stroke();
 void clip();
 boolean isPointInPath(in float x, in float y);

 // drawing images
 void drawImage(in HTMLImageElement image, in float dx, in float
dy);
 void drawImage(in HTMLImageElement image, in float dx, in float dy,
in float dw, in float dh);
 void drawImage(in HTMLImageElement image, in float sx, in float sy,
in float sw, in float sh, in float dx, in float dy, in float dw, in
float dh);
 void drawImage(in HTMLCanvasElement image, in float dx, in float
dy);
 void drawImage(in HTMLCanvasElement image, in float dx, in float
dy, in float dw, in float dh);
 void drawImage(in HTMLCanvasElement image, in float sx, in float
sy, in float sw, in float sh, in float dx, in float dy, in float dw,
in float dh);

 // pixel manipulation
ImageData getImageData(in float sx, in float sy, in float sw, in

float sh);
 void putImageData(in ImageData image, in float dx, in float dy);

 // drawing text is not supported in this version of the API
 // (there is no way to predict what metrics the fonts will have,
 // which makes fonts very hard to use for painting)

};

interface CanvasGradient {
 // opaque object
 void addColorStop(in float offset, in DOMString color);
};

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

173 of 458 30/12/2020, 08:08

interface CanvasPattern {
 // opaque object
};

interface ImageData {
 readonly attribute long int width;
 readonly attribute long int height;
 readonly attribute int[] data;
};

The canvas attribute must return the canvas element that the context paints on.

3.14.11.1.1. Tඐඍ උඉඖඞඉඛ ඛගඉගඍ

Each context maintains a stack of drawing states. Drawing states consist of:

The current transformation matrix.
The current clip region.
The current values of the following attributes: strokeStyle, fillStyle, globalAlpha,
lineWidth, lineCap, lineJoin, miterLimit, shadowOffsetX, shadowOffsetY,
shadowBlur, shadowColor, globalCompositeOperation.

Note: The current path and the current bitmap are not part of the drawing state. The
current path is persistent, and can only be reset using the beginPath() method.

The current bitmap is a property of the canvas, not the context.

The save() method must push a copy of the current drawing state onto the drawing state stack.

The restore() method must pop the top entry in the drawing state stack, and reset the drawing

state it describes. If there is no saved state, the method must do nothing.

3.14.11.1.2. Tකඉඖඛඎ඗කඕඉගඑ඗ඖඛ

The transformation matrix is applied to all drawing operations prior to their being rendered. It is also
applied when creating the clip region.

When the context is created, the transformation matrix must initially be the identity transform. It may
then be adjusted using the transformation methods.

The transformation matrix can become infinite, at which point nothing is drawn anymore.

The transformations must be performed in reverse order. For instance, if a scale transformation that
doubles the width is applied, followed by a rotation transformation that rotates drawing operations by
a quarter turn, and a rectangle twice as wide as it is tall is then drawn on the canvas, the actual
result will be a square.

The scale(x, y) method must add the scaling transformation described by the arguments to the

transformation matrix. The x argument represents the scale factor in the horizontal direction and the
y argument represents the scale factor in the vertical direction. The factors are multiples. If either
argument is Infinity the transformation matrix must be marked as infinite instead of the method
throwing an exception.

The rotate(angle) method must add the rotation transformation described by the argument to

the transformation matrix. The angle argument represents a clockwise rotation angle expressed in

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

174 of 458 30/12/2020, 08:08

radians.

The translate(x, y) method must add the translation transformation described by the

arguments to the transformation matrix. The x argument represents the translation distance in the
horizontal direction and the y argument represents the translation distance in the vertical direction.
The arguments are in coordinate space units. If either argument is Infinity the transformation matrix
must be marked as infinite instead of the method throwing an exception.

The transform(m11, m12, m21, m22, dx, dy) method must multiply the current

transformation matrix with the matrix described by:

m11 m21 dx

m12 m22 dy

0 0 1

If any of the arguments are Infinity the transformation matrix must be marked as infinite instead of
the method throwing an exception.

The setTransform(m11, m12, m21, m22, dx, dy) method must reset the current transform

to the identity matrix, and then invoke the transform(m11, m12, m21, m22, dx, dy) method

with the same arguments. If any of the arguments are Infinity the transformation matrix must be
marked as infinite instead of the method throwing an exception.

3.14.11.1.3. C඗ඕ඘඗ඛඑගඑඖඏ

All drawing operations are affected by the global compositing attributes, globalAlpha and

globalCompositeOperation.

The globalAlpha attribute gives an alpha value that is applied to shapes and images before they

are composited onto the canvas. The value must be in the range from 0.0 (fully transparent) to 1.0
(no additional transparency). If an attempt is made to set the attribute to a value outside this range,
the attribute must retain its previous value. When the context is created, the globalAlpha attribute

must initially have the value 1.0.

The globalCompositeOperation attribute sets how shapes and images are drawn onto the

existing bitmap, once they have had globalAlpha and the current transformation matrix applied. It

must be set to a value from the following list. In the descriptions below, the source image, A, is the
shape or image being rendered, and the destination image, B, is the current state of the bitmap.

source-atop

A atop B. Display the source image wherever both images are opaque. Display the
destination image wherever the destination image is opaque but the source image is
transparent. Display transparency elsewhere.

source-in

A in B. Display the source image wherever both the source image and destination image are
opaque. Display transparency elsewhere.

source-out

A out B. Display the source image wherever the source image is opaque and the destination
image is transparent. Display transparency elsewhere.

source-over (default)

A over B. Display the source image wherever the source image is opaque. Display the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

175 of 458 30/12/2020, 08:08

destination image elsewhere.

destination-atop

B atop A. Same as source-atop but using the destination image instead of the source

image and vice versa.

destination-in

B in A. Same as source-in but using the destination image instead of the source image and

vice versa.

destination-out

B out A. Same as source-out but using the destination image instead of the source image

and vice versa.

destination-over

B over A. Same as source-over but using the destination image instead of the source

image and vice versa.

lighter

A plus B. Display the sum of the source image and destination image, with color values
approaching 1 as a limit.

copy

A (B is ignored). Display the source image instead of the destination image.

xor

A xor B. Exclusive OR of the source image and destination image.

vendorName-operationName

Vendor-specific extensions to the list of composition operators should use this syntax.

These values are all case-sensitive — they must be used exactly as shown. User agents must only
recognise values that exactly match the values given above.

The operators in the above list must be treated as described by the Porter-Duff operator given at the
start of their description (e.g. A over B). [PORTERDUFF]

On setting, if the user agent does not recognise the specified value, it must be ignored, leaving the
value of globalCompositeOperation unaffected.

When the context is created, the globalCompositeOperation attribute must initially have the

value source-over.

3.14.11.1.4. C඗ඔ඗කඛ ඉඖඌ ඛගඡඔඍඛ

The strokeStyle attribute represents the color or style to use for the lines around shapes, and the

fillStyle attribute represents the color or style to use inside the shapes.

Both attributes can be either strings, CanvasGradients, or CanvasPatterns. On setting, strings

must be parsed as CSS <color> values and the color assigned, and CanvasGradient and

CanvasPattern objects must be assigned themselves. [CSS3COLOR] If the value is a string but is

not a valid color, or is neither a string, a CanvasGradient, nor a CanvasPattern, then it must be

ignored, and the attribute must retain its previous value.

On getting, if the value is a color, then: if it has alpha equal to 1.0, then the color must be returned as
a lowercase six-digit hex value, prefixed with a "#" character (U+0023 NUMBER SIGN), with the first

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

176 of 458 30/12/2020, 08:08

two digits representing the red component, the next two digits representing the green component,
and the last two digits representing the blue component, the digits being in the range 0-9 a-f
(U+0030 to U+0039 and U+0061 to U+0066). If the value has alpha less than 1.0, then the value
must instead be returned in the CSS rgba() functional-notation format: the literal string rgba

(U+0072 U+0067 U+0062 U+0061) followed by a U+0028 LEFT PARENTHESIS, a base-ten integer
in the range 0-255 representing the red component (using digits 0-9, U+0030 to U+0039, in the
shortest form possible), a literal U+002C COMMA and U+0020 SPACE, an integer for the green
component, a comma and a space, an integer for the blue component, another comma and space, a
U+0030 DIGIT ZERO, a U+002E FULL STOP (representing the decimal point), one or more digits in
the range 0-9 (U+0030 to U+0039) representing the fractional part of the alpha value, and finally a
U+0029 RIGHT PARENTHESIS.

Otherwise, if it is not a color but a CanvasGradient or CanvasPattern, then the respective

object must be returned. (Such objects are opaque and therefore only useful for assigning to other
attributes or for comparison to other gradients or patterns.)

When the context is created, the strokeStyle and fillStyle attributes must initially have the

string value #000000.

There are two types of gradients, linear gradients and radial gradients, both represented by objects
implementing the opaque CanvasGradient interface.

Once a gradient has been created (see below), stops are placed along it to define how the colors
are distributed along the gradient. The color of the gradient at each stop is the color specified for that
stop. Between each such stop, the colors and the alpha component must be linearly interpolated
over the RGBA space without premultiplying the alpha value to find the color to use at that offset.
Before the first stop, the color must be the color of the first stop. After the last stop, the color must be
the color of the last stop. When there are no stops, the gradient is transparent black.

The addColorStop(offset, color) method on the CanvasGradient interface adds a new

stop to a gradient. If the offset is less than 0 or greater than 1 then an INDEX_SIZE_ERR exception

must be raised. If the color cannot be parsed as a CSS color, then a SYNTAX_ERR exception must

be raised. Otherwise, the gradient must have a new stop placed, at offset offset relative to the whole
gradient, and with the color obtained by parsing color as a CSS <color> value. If multiple stops are
added at the same offset on a gradient, they must be placed in the order added, with the first one
closest to the start of the gradient, and each subsequent one infinitesimally further along towards the
end point (in effect causing all but the first and last stop added at each point to be ignored).

The createLinearGradient(x0, y0, x1, y1) method takes four arguments, representing

the start point (x0, y0) and end point (x1, y1) of the gradient, in coordinate space units, and must
return a linear CanvasGradient initialised with that line.

Linear gradients must be rendered such that at and before the starting point on the canvas the color
at offset 0 is used, that at and after the ending point the color at offset 1 is used, and that all points
on a line perpendicular to the line that crosses the start and end points have the color at the point
where those two lines cross (with the colors coming from the interpolation described above).

If x = x and y = y , then the linear gradient must paint nothing.

The createRadialGradient(x0, y0, r0, x1, y1, r1) method takes six arguments, the

first three representing the start circle with origin (x0, y0) and radius r0, and the last three
representing the end circle with origin (x1, y1) and radius r1. The values are in coordinate space
units. The method must return a radial CanvasGradient initialised with those two circles. If either

of r0 or r1 are negative, an INDEX_SIZE_ERR exception must be raised.

0 1 0 1

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

177 of 458 30/12/2020, 08:08

Radial gradients must be rendered by following these steps:

1. Let x(ω) = (x -x)ω + x

Let y(ω) = (y -y)ω + y

Let r(ω) = (r -r)ω + r

Let the color at ω be the color of the gradient at offset 0.0 for all values of ω less than 0.0, the
color at offset 1.0 for all values of ω greater than 1.0, and the color at the given offset for
values of ω in the range 0.0 ≤ ω ≤ 1.0

2. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and
ending with the value of ω nearest to negative infinity, draw the circumference of the circle
with radius r(ω) at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of
the canvas that have not yet been painted on by earlier circles in this step for this rendering of
the gradient.

If x = x and y = y and r = r , then the radial gradient must paint nothing.

Note: This effectively creates a cone, touched by the two circles defined in the
creation of the gradient, with the part of the cone before the start circle (0.0) using
the color of the first offset, the part of the cone after the end circle (1.0) using the
color of the last offset, and areas outside the cone untouched by the gradient
(transparent black).

Gradients must only be painted where the relevant stroking or filling effects requires that they be
drawn.

Support for actually painting gradients is optional. Instead of painting the gradients, user agents may
instead just paint the first stop's color. However, createLinearGradient() and

createRadialGradient() must always return objects when passed valid arguments.

Patterns are represented by objects implementing the opaque CanvasPattern interface.

To create objects of this type, the createPattern(image, repetition) method is used. The

first argument gives the image to use as the pattern (either an HTMLImageElement or an

HTMLCanvasElement). Modifying this image after calling the createPattern() method must not

affect the pattern. The second argument must be a string with one of the following values: repeat,

repeat-x, repeat-y, no-repeat. If the empty string or null is specified, repeat must be

assumed. If an unrecognised value is given, then the user agent must raise a SYNTAX_ERR

exception. User agents must recognise the four values described above exactly (e.g. they must not
do case folding). The method must return a CanvasPattern object suitably initialised.

The image argument must be an instance of an HTMLImageElement or HTMLCanvasElement. If

the image is of the wrong type, the implementation must raise a TYPE_MISMATCH_ERR exception. If

the image argument is an HTMLImageElement object whose complete attribute is false, then the

implementation must raise an INVALID_STATE_ERR exception.

Patterns must be painted so that the top left of the first image is anchored at the origin of the
coordinate space, and images are then repeated horizontally to the left and right (if the repeat-x

string was specified) or vertically up and down (if the repeat-y string was specified) or in all four

directions all over the canvas (if the repeat string was specified). The images are not be scaled by

this process; one CSS pixel of the image must be painted on one coordinate space unit. Of course,
patterns must only actually painted where the stroking or filling effect requires that they be drawn,

1 0 0

1 0 0

1 0 0

0 1 0 1 0 1

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

178 of 458 30/12/2020, 08:08

and are affected by the current transformation matrix.

Support for patterns is optional. If the user agent doesn't support patterns, then createPattern()

must return null.

3.14.11.1.5. Lඑඖඍ ඛගඡඔඍඛ

The lineWidth attribute gives the default width of lines, in coordinate space units. On setting, zero

and negative values must be ignored, leaving the value unchanged.

When the context is created, the lineWidth attribute must initially have the value 1.0.

The lineCap attribute defines the type of endings that UAs shall place on the end of lines. The

three valid values are butt, round, and square. The butt value means that the end of each line

is a flat edge perpendicular to the direction of the line. The round value means that a semi-circle

with the diameter equal to the width of the line is then added on to the end of the line. The square

value means that at the end of each line is a rectangle with the length of the line width and the width
of half the line width, placed flat against the edge perpendicular to the direction of the line. On
setting, any other value than the literal strings butt, round, and square must be ignored, leaving

the value unchanged.

When the context is created, the lineCap attribute must initially have the value butt.

The lineJoin attribute defines the type of corners that that UAs will place where two lines meet.

The three valid values are round, bevel, and miter.

On setting, any other value than the literal strings round, bevel and miter must be ignored,

leaving the value unchanged.

When the context is created, the lineJoin attribute must initially have the value miter.

The round value means that a filled arc connecting the corners on the outside of the join, with the

diameter equal to the line width, and the origin at the point where the inside edges of the lines touch,
must be rendered at joins. The bevel value means that a filled triangle connecting those two

corners with a straight line, the third point of the triangle being the point where the lines touch on the
inside of the join, must be rendered at joins. The miter value means that a filled four- or five-sided

polygon must be placed at the join, with two of the lines being the perpendicular edges of the joining
lines, and the other two being continuations of the outside edges of the two joining lines, as long as
required to intersect without going over the miter limit.

The miter length is the distance from the point where the lines touch on the inside of the join to the
intersection of the line edges on the outside of the join. The miter limit ratio is the maximum allowed
ratio of the miter length to the line width. If the miter limit would be exceeded, then a fifth line must
be added to the polygon, connecting the two outside lines, such that the distance from the inside
point of the join to the point in the middle of this fifth line is the maximum allowed value for the miter
length.

The miter limit ratio can be explicitly set using the miterLimit attribute. On setting, zero and

negative values must be ignored, leaving the value unchanged.

When the context is created, the miterLimit attribute must initially have the value 10.0.

3.14.11.1.6. Sඐඉඌ඗ඟඛ

All drawing operations are affected by the four global shadow attributes. Shadows form part of the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

179 of 458 30/12/2020, 08:08

source image during composition.

The shadowColor attribute sets the color of the shadow.

When the context is created, the shadowColor attribute initially must be fully-transparent black.

The shadowOffsetX and shadowOffsetY attributes specify the distance that the shadow will be

offset in the positive horizontal and positive vertical distance respectively. Their values are in
coordinate space units.

When the context is created, the shadow offset attributes initially have the value 0.

The shadowBlur attribute specifies the number of coordinate space units that the blurring is to

cover. On setting, negative numbers must be ignored, leaving the attribute unmodified.

When the context is created, the shadowBlur attribute must initially have the value 0.

Support for shadows is optional. When they are supported, then, when shadows are drawn, they
must be rendered using the specified color, offset, and blur radius.

3.14.11.1.7. Sඑඕ඘ඔඍ ඛඐඉ඘ඍඛ (කඍඋගඉඖඏඔඍඛ)

There are three methods that immediately draw rectangles to the bitmap. They each take four
arguments; the first two give the x and y coordinates of the top left of the rectangle, and the second
two give the width and height of the rectangle, respectively.

Shapes are painted without affecting the current path, and are subject to transformations, shadow
effects, global alpha, clipping paths, and global composition operators.

Negative values for width and height must cause the implementation to raise an INDEX_SIZE_ERR

exception.

The clearRect() method must clear the pixels in the specified rectangle to a fully transparent

black, erasing any previous image. If either height or width are zero, this method has no effect.

The fillRect() method must paint the specified rectangular area using the fillStyle. If either

height or width are zero, this method has no effect.

The strokeRect() method must draw stroke the path that would be created for the outline of a

rectangle of the specified size using the strokeStyle, lineWidth, lineJoin, and (if

appropriate) miterLimit attributes. If both height and width are zero, this method has no effect,

since there is no path to stroke (it's a point). If only one of the two is zero, then the method will draw
a line instead (the path for the outline is just a straight line along the non-zero dimension).

3.14.11.1.8. C඗ඕ඘ඔඍච ඛඐඉ඘ඍඛ (඘ඉගඐඛ)

The context always has a current path. There is only one current path, it is not part of the drawing
state.

A path has a list of zero or more subpaths. Each subpath consists of a list of one or more points,
connected by straight or curved lines, and a flag indicating whether the subpath is closed or not. A
closed subpath is one where the last point of the subpath is connected to the first point of the
subpath by a straight line. Subpaths with fewer than two points are ignored when painting the path.

Initially, the context's path must have zero subpaths.

The beginPath() method must empty the list of subpaths so that the context once again has zero

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

180 of 458 30/12/2020, 08:08

subpaths.

The moveTo(x, y) method must create a new subpath with the specified point as its first (and

only) point.

The closePath() method must do nothing if the context has no subpaths. Otherwise, it must mark

the last subpath as closed, create a new subpath whose first point is the same as the previous
subpath's first point, and finally add this new subpath to the path. (If the last subpath had more than
one point in its list of points, then this is equivalent to adding a straight line connecting the last point
back to the first point, thus "closing" the shape, and then repeating the last moveTo() call.)

New points and the lines connecting them are added to subpaths using the methods described
below. In all cases, the methods only modify the last subpath in the context's paths.

The lineTo(x, y) method must do nothing if the context has no subpaths. Otherwise, it must

connect the last point in the subpath to the given point (x, y) using a straight line, and must then add
the given point (x, y) to the subpath.

The quadraticCurveTo(cpx, cpy, x, y) method must do nothing if the context has no

subpaths. Otherwise it must connect the last point in the subpath to the given point (x, y) by a
quadratic curve with control point (cpx, cpy), and must then add the given point (x, y) to the subpath.

The bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) method must do nothing if the

context has no subpaths. Otherwise, it must connect the last point in the subpath to the given point
(x, y) using a bezier curve with control points (cp1x, cp1y) and (cp2x, cp2y). Then, it must add the
point (x, y) to the subpath.

The arcTo(x1, y1, x2, y2, radius) method must do nothing if the context has no subpaths.

If the context does have a subpath, then the behaviour depends on the arguments and the last point
in the subpath.

Let the point (x0, y0) be the last point in the subpath. Let The Arc be the shortest arc given by
circumference of the circle that has one point tangent to the line defined by the points (x0, y0) and
(x1, y1), another point tangent to the line defined by the points (x1, y1) and (x2, y2), and that has
radius radius. The points at which this circle touches these two lines are called the start and end
tangent points respectively.

If the point (x2, y2) is on the line defined by the points (x0, y0) and (x1, y1) then the method must do
nothing, as no arc would satisfy the above constraints.

Otherwise, the method must connect the point (x0, y0) to the start tangent point by a straight line,
then connect the start tangent point to the end tangent point by The Arc, and finally add the start and
end tangent points to the subpath.

Negative or zero values for radius must cause the implementation to raise an INDEX_SIZE_ERR

exception.

The arc(x, y, radius, startAngle, endAngle, anticlockwise) method draws an arc.

If the context has any subpaths, then the method must add a straight line from the last point in the
subpath to the start point of the arc. In any case, it must draw the arc between the start point of the
arc and the end point of the arc, and add the start and end points of the arc to the subpath. The arc
and its start and end points are defined as follows:

Consider a circle that has its origin at (x, y) and that has radius radius. The points at startAngle and
endAngle along the circle's circumference, measured in radians clockwise from the positive x-axis,
are the start and end points respectively. The arc is the path along the circumference of this circle

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

181 of 458 30/12/2020, 08:08

from the start point to the end point, going anti-clockwise if the anticlockwise argument is true, and
clockwise otherwise.

Negative or zero values for radius must cause the implementation to raise an INDEX_SIZE_ERR

exception.

The rect(x, y, w, h) method must create a new subpath containing just the four points (x, y),

(x+w, y), (x+w, y+h), (x, y+h), with those four points connected by straight lines, and must then mark
the subpath as closed. It must then create a new subpath with the point (x, y) as the only point in the
subpath.

Negative values for w and h must cause the implementation to raise an INDEX_SIZE_ERR

exception.

The fill() method must fill each subpath of the current path in turn, using fillStyle, and using

the non-zero winding number rule. Open subpaths must be implicitly closed when being filled
(without affecting the actual subpaths).

The stroke() method must stroke each subpath of the current path in turn, using the

strokeStyle, lineWidth, lineJoin, and (if appropriate) miterLimit attributes.

Paths, when filled or stroked, must be painted without affecting the current path, and must be
subject to transformations, shadow effects, global alpha, clipping paths, and global composition
operators.

Note: The transformation is applied to the path when it is drawn, not when the path is
constructed. Thus, a single path can be constructed and then drawn according to
different transformations without recreating the path.

The clip() method must create a new clipping path by calculating the intersection of the current

clipping path and the area described by the current path (after applying the current transformation),
using the non-zero winding number rule. Open subpaths must be implicitly closed when computing
the clipping path, without affecting the actual subpaths.

When the context is created, the initial clipping path is the rectangle with the top left corner at (0,0)
and the width and height of the coordinate space.

The isPointInPath(x, y) method must return true if the point given by the x and y coordinates

passed to the method, when treated as coordinates in the canvas' coordinate space unaffected by
the current transformation, is within the area of the canvas that would be filled if the current path was
to be filled; and must return false otherwise.

3.14.11.1.9. Iඕඉඏඍඛ

To draw images onto the canvas, the drawImage method can be used.

This method is overloaded with three variants: drawImage(image, dx, dy),

drawImage(image, dx, dy, dw, dh), and drawImage(image, sx, sy, sw, sh, dx,

dy, dw, dh). (Actually it is overloaded with six; each of those three can take either an

HTMLImageElement or an HTMLCanvasElement for the image argument.) If not specified, the dw

and dh arguments default to the values of sw and sh, interpreted such that one CSS pixel in the
image is treated as one unit in the canvas coordinate space. If the sx, sy, sw, and sh arguments are
omitted, they default to 0, 0, the image's intrinsic width in image pixels, and the image's intrinsic
height in image pixels, respectively.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

182 of 458 30/12/2020, 08:08

The image argument must be an instance of an HTMLImageElement or HTMLCanvasElement. If

the image is of the wrong type, the implementation must raise a TYPE_MISMATCH_ERR exception. If

one of the sy, sw, sw, and sh arguments is outside the size of the image, or if one of the dw and dh
arguments is negative, the implementation must raise an INDEX_SIZE_ERR exception. If the image

argument is an HTMLImageElement object whose complete attribute is false, then the

implementation must raise an INVALID_STATE_ERR exception.

When drawImage() is invoked, the specified region of the image specified by the source rectangle

(sx, sy, sw, sh) must be painted on the region of the canvas specified by the destination rectangle
(dx, dy, dw, dh).

Images are painted without affecting the current path, and are subject to transformations, shadow
effects, global alpha, clipping paths, and global composition operators.

3.14.11.1.10. Pඑචඍඔ ඕඉඖඑ඘ඝඔඉගඑ඗ඖ

The getImageData(sx, sy, sw, sh) method must return an ImageData object representing

the underlying pixel data for the area of the canvas denoted by the rectangle which has one corner
at the (sx, sy) coordinate, and that has width sw and height sh. Pixels outside the canvas must be
returned as transparent black. Pixels must be returned as non-premultiplied alpha values.

ImageData objects must be initialised so that their height attribute is set to h, the number of rows

in the image data, their width attribute is set to w, the number of physical device pixels per row in

the image data, and the data attribute is initialised to an array of h×w×4 integers. The pixels must

be represented in this array in left-to-right order, row by row, starting at the top left, with each pixel's
red, green, blue, and alpha components being given in that order. Each component of each device
pixel represented in this array must be in the range 0..255, representing the 8 bit value for that
component. At least one pixel must be returned.

Note: The width and height (w and h) might be different than the sw and sh
arguments to the function, e.g. if the canvas is backed by a high-resolution bitmap.

If the getImageData(sx, sy, sw, sh) method is called with either the sw or sh arguments set

to zero or negative values, the method must raise an INDEX_SIZE_ERR exception.

The putImageData(image, dx, dy) method must take the given ImageData structure, and

draw it at the specified location dx,dy in the canvas coordinate space, mapping each pixel
represented by the ImageData structure into one device pixel.

If the first argument to the method is not an object whose [[Class]] property is ImageData, but all of

the following conditions are true, then the method must treat the first argument as if it was an
ImageData object (and thus not raise the TYPE_MISMATCH_ERR exception):

The method's first argument is an object with width and height attributes with integer

values and a data attribute whose value is an integer array.

The ImageData object's width is greater than zero.

The ImageData object's height is greater than zero.

The ImageData object's width multiplied by its height multiplied by 4 is equal to the

number of entries in the ImageData object's data array.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

183 of 458 30/12/2020, 08:08

The ImageData object's data array only contains entries that are in the range 0 to 255

inclusive.

The handling of pixel rounding when the specified coordinates do not exactly map to the device
coordinate space is not defined by this specification, except that the following must result in no
visible changes to the rendering:

context.putImageData(context.getImageData(x, y, w, h), x, y);

...for any value of x and y. In other words, while user agents may round the arguments of the two
methods so that they map to device pixel boundaries, any rounding performed must be performed
consistently for both the getImageData() and putImageData() operations.

The current transformation matrix must not affect the getImageData() and putImageData()

methods.

The data returned by getImageData() is at the resolution of the canvas backing store, which

is likely to not be one device pixel to each CSS pixel if the display used is a high resolution
display. Thus, while one could create an ImageData object, one would net necessarily know

what resolution the canvas expected (how many pixels the canvas wants to paint over one
coordinate space unit pixel).

In the following example, the script first obtains the size of the canvas backing store, and then
generates a few new ImageData objects which can be used.

 // canvas is a reference to a <canvas> element
 // (note: this example uses JavaScript 1.7 features)
 var context = canvas.getContext('2d');
 var backingStore = context.getImageData(0, 0, canvas.width,
canvas.height);
 var actualWidth = backingStore.width;
 var actualHeight = backingStore.height;

 function CreateImageData(w, h) {
 return {
 height: h,
 width: w,
 data: [i for (i in function (n) { for (let i = 0; i < n; i +=
1) yield 0 }(w*h*4))]
 };
 }

 // create some plasma
 var plasma = CreateImageData(actualWidth, actualHeight);
 FillPlasma(plasma, 'green'); // green plasma

 // create a cloud
 var could = CreateImageData(actualWidth, actualHeight);
 FillCloud(cloud, actualWidth/2, actualHeight/2); // put a cloud
in the middle

 // paint them on top of each other
 context.putImageData(plasma, 0, 0);
 context.putImageData(cloud, 0, 0);

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

184 of 458 30/12/2020, 08:08

 function FillPlasma(data) { ... }
 function FillCload(data, x, y) { ... }

3.14.11.1.11. Dකඉඟඑඖඏ ඕ඗ඌඍඔ

When a shape or image is painted, user agents must follow these steps, in the order given (or act as
if they do):

1. If the current transformation matrix is infinite, then do nothing. Abort these steps.

2. The coordinates are transformed by the current transformation matrix.

3. The shape or image is rendered, creating image A, as described in the previous sections. For
shapes, the current fill, stroke, and line styles must be honoured.

4. The shadow is rendered from image A, using the current shadow styles, creating image B.

5. Image A is composited over image B creating the source image.

6. The source image has its alpha adjusted by globalAlpha.

7. Within the clip region (as affected by the current transformation matrix), the source image is
composited over the current canvas bitmap using the current composition operator.

3.14.12. The map element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

None, but the id global attribute has special requirements on this element.

DOM interface:

interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 readonly attribute HTMLCollection images;
};

The map element, in conjuction with any area element descendants, defines an image map.

There must always be an id attribute present on map elements.

The areas attribute must return an HTMLCollection rooted at the map element, whose filter

matches only area elements.

The images attribute must return an HTMLCollection rooted at the Document node, whose filter

matches only img and object elements that are associated with this map element according to the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

185 of 458 30/12/2020, 08:08

image map processing model.

3.14.13. The area element

Categories

Phrasing content.

Contexts in which this element may be used:

Where phrasing content is expected, but only if there is a map element ancestor.

Content model:

Empty.

Element-specific attributes:

alt

coords

shape

href

target

ping

rel

media

hreflang

type

DOM interface:

interface HTMLAreaElement : HTMLElement {
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString shape;
 attribute DOMString href;
 attribute DOMString target;
 attribute DOMString ping;
 attribute DOMString rel;
 readonly attribute DOMTokenList relList;
 attribute DOMString media;
 attribute DOMString hreflang;
 attribute DOMString type;
};

The area element represents either a hyperlink with some text and a corresponding area on an

image map, or a dead area on an image map.

If the area element has an href attribute, then the area element represents a hyperlink; the alt

attribute, which must then be present, specifies the text.

However, if the area element has no href attribute, then the area represented by the element

cannot be selected, and the alt attribute must be omitted.

In both cases, the shape and coords attributes specify the area.

The shape attribute is an enumerated attribute. The following table lists the keywords defined for

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

186 of 458 30/12/2020, 08:08

this attribute. The states given in the first cell of the the rows with keywords give the states to which
those keywords map. Some of the keywords are non-conforming, as noted in the last column.

State Keywords Notes

Circle state circ Non-conforming

circle

Default state default

Polygon state poly

polygon Non-conforming

Rectangle state rect

rectangle Non-conforming

The attribute may be ommited. The missing value default is the rectangle state.

The coords attribute must, if specified, contain a valid list of integers. This attribute gives the

coordinates for the shape described by the shape attribute. The processing for this attribute is

described as part of the image map processing model.

In the circle state, area elements must have a coords attribute present, with three integers, the last

of which must be non-negative. The first integer must be the distance in CSS pixels from the left
edge of the image to the center of the circle, the second integer must be the distance in CSS pixels
from the top edge of the image to the center of the circle, and the third integer must be the radius of
the circle, again in CSS pixels.

In the default state state, area elements must not have a coords attribute.

In the polygon state, area elements must have a coords attribute with at least six integers, and the

number of integers must be even. Each pair of integers must represent a coordinate given as the
distances from the left and the top of the image in CSS pixels respectively, and all the coordinates
together must represent the points of the polygon, in order.

In the rectangle state, area elements must have a coords attribute with exactly four integers, the

first of which must be less than the third, and the second of which must be less than the fourth. The
four points must represent, respectively, the distance from the left edge of the image to the top left
side of the rectangle, the distance from the top edge to the top side, the distance from the left edge
to the right side, and the distance from the top edge to the bottom side, all in CSS pixels.

When user agents allow users to follow hyperlinks created using the area element, as described in

the next section, the href, target and ping attributes decide how the link is followed. The rel,

media, hreflang, and type attributes may be used to indicate to the user the likely nature of the

target resource before the user follows the link.

The target, ping, rel, media, hreflang, and type attributes must be omitted if the href

attribute is not present.

The activation behavior of area elements is to run the following steps:

1. If the DOMActivate event in question is not trusted (i.e. a click() method call was the

reason for the event being dispatched), and the area element's target attribute is ...

then raise an INVALID_ACCESS_ERR exception.

2. Otherwise, the user agent must follow the hyperlink defined by the area element, if any.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

187 of 458 30/12/2020, 08:08

Note: One way that a user agent can enable users to follow hyperlinks is by allowing
area elements to be clicked, or focussed and activated by the keyboard. This will

cause the aforementioned activation behavior to be invoked.

The DOM attributes alt, coords, shape, href, target, ping, rel, media, hreflang, and

type, each must reflect the respective content attributes of the same name.

The DOM attribute relList must reflect the rel content attribute.

3.14.14. Image maps

An image map allows geometric areas on an image to be associated with hyperlinks.

An image, in the form of an img element or an object element representing an image, may be

associated with an image map (in the form of a map element) by specifying a usemap attribute on

the img or object element. The usemap attribute, if specified, must be a valid hashed ID reference

to a map element.

If an img element or an object element representing an image has a usemap attribute specified,

user agents must process it as follows:

1. First, rules for parsing a hashed ID reference to a map element must be followed. This will

return either an element (the map) or null.

2. If that returned null, then abort these steps. The image is not associated with an image map
after all.

3. Otherwise, the user agent must collect all the area elements that are descendants of the

map. Let those be the areas.

Having obtained the list of area elements that form the image map (the areas), interactive user

agents must process the list in one of two ways.

If the user agent intends to show the text that the img element represents, then it must use the

following steps.

Note: In user agents that do not support images, or that have images disabled,
object elements cannot represent images, and thus this section never applies (the

fallback content is shown instead). The following steps therefore only apply to img

elements.

1. Remove all the area elements in areas that have no href attribute.

2. Remove all the area elements in areas that have no alt attribute, or whose alt attribute's

value is the empty string, if there is another area element in areas with the same value in the

href attribute and with a non-empty alt attribute.

3. Each remaining area element in areas represents a hyperlink. Those hyperlinks should all be

made available to the user in a manner associated with the text of the img or input element.

In this context, user agents may represent area and img elements with no specified alt

attributes, or whose alt attributes are the empty string or some other non-visible text, in a

user-agent-defined fashion intended to indicate the lack of suitable author-provided text.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

188 of 458 30/12/2020, 08:08

If the user agent intends to show the image and allow interaction with the image to select hyperlinks,
then the image must be associated with a set of layered shapes, taken from the area elements in

areas, in reverse tree order (so the last specified area element in the map is the bottom-most

shape, and the first element in the map, in tree order, is the top-most shape).

Each area element in areas must be processed as follows to obtain a shape to layer onto the

image:

1. Find the state that the element's shape attribute represents.

2. Use the rules for parsing a list of integers to parse the element's coords attribute, if it is

present, and let the result be the coords list. If the attribute is absent, let the coords list be the
empty list.

3. If the number of items in the coords list is less than the minimum number given for the area

element's current state, as per the following table, then the shape is empty; abort these steps.

State Minimum number of items

Circle state 3

Default state 0

Polygon state 6

Rectangle state 4

4. Check for excess items in the coords list as per the entry in the following list corresponding to
the shape attribute's state:

↪ Circle state

Drop any items in the list beyond the third.

↪ Default state

Drop all items in the list.

↪ Polygon state

Drop the last item if there's an odd number of items.

↪ Rectangle state

Drop any items in the list beyond the fourth.

5. If the shape attribute represents the rectangle state, and the first number in the list is

numerically less than the third number in the list, then swap those two numbers around.

6. If the shape attribute represents the rectangle state, and the second number in the list is

numerically less than the fourth number in the list, then swap those two numbers around.

7. If the shape attribute represents the circle state, and the third number in the list is less than

or equal to zero, then the shape is empty; abort these steps.

8. Now, the shape represented by the element is the one described for the entry in the list below
corresponding to the state of the shape attribute:

↪ Circle state

Let x be the first number in coords, y be the second number, and r be the third
number.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

189 of 458 30/12/2020, 08:08

The shape is a circle whose center is x CSS pixels from the left edge of the image
and x CSS pixels from the top edge of the image, and whose radius is r pixels.

↪ Default state

The shape is a rectangle that exactly covers the entire image.

↪ Polygon state

Let x be the (2i)th entry in coords, and y be the (2i+1)th entry in coords (the first
entry in coords being the one with index 0).

Let the coordinates be (x , y), interpreted in CSS pixels measured from the top left
of the image, for all integer values of i from 0 to (N/2)-1, where N is the number of
items in coords.

The shape is a polygon whose vertices are given by the coordinates, and whose
interior is established using the even-odd rule. [GRAPHICS]

↪ Rectangle state

Let x1 be the first number in coords, y1 be the second number, x2 be the third
number, and y2 be the fourth number.

The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1)
and whose bottom right corner is given by the coordinate (x2, y2), those
coordinates being interpreted as CSS pixels from the top left corner of the image.

For historical reasons, the coordinates must be interpreted relative to the displayed image,
even if it stretched using CSS or the image element's width and height attributes.

Mouse clicks on an image associated with a set of layered shapes per the above algorithm must be
dispatched to the top-most shape covering the point that the pointing device indicated (if any), and
then, must be dispatched again (with a new Event object) to the image element itself. User agents

may also allow individual area elements representing hyperlinks to be selected and activated (e.g.

using a keyboard); events from this are not also propagated to the image.

Note: Because a map element (and its area elements) can be associated with

multiple img and object elements, it is possible for an area element to correspond

to multiple focusable areas of the document.

Image maps are live; if the DOM is mutated, then the user agent must act as if it had rerun the
algorithms for image maps.

3.14.15. Dimension attributes

The width and height attributes on img, embed, object, and video elements may be specified

to give the dimensions of the visual content of the element (the width and height respectively,
relative to the nominal direction of the output medium), in CSS pixels. The attributes, if specified,
must have values that are valid positive non-zero integers.

The specified dimensions given may differ from the dimensions specified in the resource itself, since
the resource may have a resolution that differs from the CSS pixel resolution. (On screens, CSS
pixels have a resolution of 96ppi, but in general the CSS pixel resolution depends on the reading
distance.) If both attributes are specified, then the ratio of the specified width to the specified height
must be the same as the ratio of the logical width to the logical height in the resource. The two
attributes must be omitted if the resource in question does not have both a logical width and a logical

i i

i i

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

190 of 458 30/12/2020, 08:08

height.

To parse the attributes, user agents must use the rules for parsing dimension values. This will return
either an integer length, a percentage value, or nothing. The user agent requirements for processing
the values obtained from parsing these attributes are described in the rendering section. If one of
these attributes, when parsing, returns no value, it must be treated, for the purposes of those
requirements, as if it was not specified.

The width and height DOM attributes on the embed, object, and video elements must reflect

the content attributes of the same name.

3.15. Tabular data

3.15.1. The table element

Categories

Prose content.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

In this order: optionally a caption element, followed by either zero or more colgroup

elements, followed optionally by a thead element, followed optionally by a tfoot element,

followed by either zero or more tbody elements or one or more tr elements, followed

optionally by a tfoot element (but there can only be one tfoot element child in total).

Element-specific attributes:

None.

DOM interface:

interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 HTMLElement createCaption();
 void deleteCaption();
 attribute HTMLTableSectionElement tHead;
 HTMLElement createTHead();
 void deleteTHead();
 attribute HTMLTableSectionElement tFoot;
 HTMLElement createTFoot();
 void deleteTFoot();
 readonly attribute HTMLCollection tBodies;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index);
 void deleteRow(in long index);
};

The table element represents data with more than one dimension (a table).

we need some editorial text on how layout tables are bad practice and non-conforming

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

191 of 458 30/12/2020, 08:08

The children of a table element must be, in order:

1. Zero or one caption elements.

2. Zero or more colgroup elements.

3. Zero or one thead elements.

4. Zero or one tfoot elements, if the last element in the table is not a tfoot element.

5. Either:

Zero or more tbody elements, or

One or more tr elements.

6. Zero or one tfoot element, if there are no other tfoot elements in the table.

The table element takes part in the table model.

The caption DOM attribute must return, on getting, the first caption element child of the table

element. On setting, if the new value is a caption element, the first caption element child of the

table element, if any, must be removed, and the new value must be inserted as the first node of the

table element. If the new value is not a caption element, then a HIERARCHY_REQUEST_ERR

DOM exception must be raised instead.

The createCaption() method must return the first caption element child of the table element,

if any; otherwise a new caption element must be created, inserted as the first node of the table

element, and then returned.

The deleteCaption() method must remove the first caption element child of the table

element, if any.

The tHead DOM attribute must return, on getting, the first thead element child of the table

element. On setting, if the new value is a thead element, the first thead element child of the table

element, if any, must be removed, and the new value must be inserted immediately before the first
element in the table element that is neither a caption element nor a colgroup element, if any,

or at the end of the table otherwise. If the new value is not a thead element, then a

HIERARCHY_REQUEST_ERR DOM exception must be raised instead.

The createTHead() method must return the first thead element child of the table element, if

any; otherwise a new thead element must be created and inserted immediately before the first

element in the table element that is neither a caption element nor a colgroup element, if any,

or at the end of the table otherwise, and then that new element must be returned.

The deleteTHead() method must remove the first thead element child of the table element, if

any.

The tFoot DOM attribute must return, on getting, the first tfoot element child of the table

element. On setting, if the new value is a tfoot element, the first tfoot element child of the table

element, if any, must be removed, and the new value must be inserted immediately before the first
element in the table element that is neither a caption element, a colgroup element, nor a

thead element, if any, or at the end of the table if there are no such elements. If the new value is not

a tfoot element, then a HIERARCHY_REQUEST_ERR DOM exception must be raised instead.

The createTFoot() method must return the first tfoot element child of the table element, if

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

192 of 458 30/12/2020, 08:08

any; otherwise a new tfoot element must be created and inserted immediately before the first

element in the table element that is neither a caption element, a colgroup element, nor a

thead element, if any, or at the end of the table if there are no such elements, and then that new

element must be returned.

The deleteTFoot() method must remove the first tfoot element child of the table element, if

any.

The tBodies attribute must return an HTMLCollection rooted at the table node, whose filter

matches only tbody elements that are children of the table element.

The rows attribute must return an HTMLCollection rooted at the table node, whose filter

matches only tr elements that are either children of the table element, or children of thead,

tbody, or tfoot elements that are themselves children of the table element. The elements in the

collection must be ordered such that those elements whose parent is a thead are included first, in

tree order, followed by those elements whose parent is either a table or tbody element, again in

tree order, followed finally by those elements whose parent is a tfoot element, still in tree order.

The behaviour of the insertRow(index) method depends on the state of the table. When it is

called, the method must act as required by the first item in the following list of conditions that
describes the state of the table and the index argument:

↪ If index is less than -1 or greater than the number of elements in rows collection:

The method must raise an INDEX_SIZE_ERR exception.

↪ If the rows collection has zero elements in it, and the table has no tbody elements in it:

The method must create a tbody element, then create a tr element, then append the

tr element to the tbody element, then append the tbody element to the table

element, and finally return the tr element.

↪ If the rows collection has zero elements in it:

The method must create a tr element, append it to the last tbody element in the table,

and return the tr element.

↪ If index is equal to -1 or equal to the number of items in rows collection:

The method must create a tr element, and append it to the parent of the last tr element

in the rows collection. Then, the newly created tr element must be returned.

↪ Otherwise:

The method must create a tr element, insert it immediately before the indexth tr

element in the rows collection, in the same parent, and finally must return the newly

created tr element.

The deleteRow(index) method must remove the indexth element in the rows collection from its

parent. If index is less than zero or greater than or equal to the number of elements in the rows

collection, the method must instead raise an INDEX_SIZE_ERR exception.

3.15.2. The caption element

Categories

None.

Contexts in which this element may be used:

As the first element child of a table element.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

193 of 458 30/12/2020, 08:08

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The caption element represents the title of the table that is its parent, if it has a parent and that is

a table element.

The caption element takes part in the table model.

3.15.3. The colgroup element

Categories

None.

Contexts in which this element may be used:

As a child of a table element, after any caption elements and before any thead,

tbody, tfoot, and tr elements.

Content model:

Zero or more col elements.

Element-specific attributes:

span

DOM interface:

interface HTMLTableColElement : HTMLElement {
 attribute unsigned long span;
};

The colgroup element represents a group of one or more columns in the table that is its parent, if

it has a parent and that is a table element.

If the colgroup element contains no col elements, then the element may have a span content

attribute specified, whose value must be a valid non-negative integer greater than zero. Its default
value, which must be used if parsing the attribute as a non-negative integer returns either an error or
zero, is 1.

The colgroup element and its span attribute take part in the table model.

The span DOM attribute must reflect the content attribute of the same name, with the exception that

on setting, if the new value is 0, then an INDEX_SIZE_ERR exception must be raised.

3.15.4. The col element

Categories

None.

Contexts in which this element may be used:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

194 of 458 30/12/2020, 08:08

As a child of a colgroup element that doesn't have a span attribute.

Content model:

Empty.

Element-specific attributes:

span

DOM interface:

HTMLTableColElement, same as for colgroup elements. This interface defines one

member, span.

If a col element has a parent and that is a colgroup element that itself has a parent that is a

table element, then the col element represents one or more columns in the column group

represented by that colgroup.

The element may have a span content attribute specified, whose value must be a valid non-

negative integer greater than zero. Its default value, which must be used if parsing the attribute as a
non-negative integer returns either an error or zero, is 1.

The col element and its span attribute take part in the table model.

The span DOM attribute must reflect the content attribute of the same name, with the exception that

on setting, if the new value is 0, then an INDEX_SIZE_ERR exception must be raised.

3.15.5. The tbody element

Categories

None.

Contexts in which this element may be used:

As a child of a table element, after any caption, colgroup, and thead elements, but

only if there are no tr elements that are children of the table element.

Content model:

One or more tr elements

Element-specific attributes:

None.

DOM interface:

interface HTMLTableSectionElement : HTMLElement {
 readonly attribute HTMLCollection rows;

HTMLElement insertRow(in long index);
 void deleteRow(in long index);
};

The HTMLTableSectionElement interface is also used for thead and tfoot elements.

The tbody element represents a block of rows that consist of a body of data for the parent table

element, if the tbody element has a parent and it is a table.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

195 of 458 30/12/2020, 08:08

The tbody element takes part in the table model.

The rows attribute must return an HTMLCollection rooted at the element, whose filter matches

only tr elements that are children of the element.

The insertRow(index) method must, when invoked on an element table section, act as follows:

If index is less than -1 or greater than the number of elements in the rows collection, the method

must raise an INDEX_SIZE_ERR exception.

If index is equal to -1 or equal to the number of items in the rows collection, the method must create

a tr element, append it to the element table section, and return the newly created tr element.

Otherwise, the method must create a tr element, insert it as a child of the table section element,

immediately before the indexth tr element in the rows collection, and finally must return the newly

created tr element.

The deleteRow(index) method must remove the indexth element in the rows collection from its

parent. If index is less than zero or greater than or equal to the number of elements in the rows

collection, the method must instead raise an INDEX_SIZE_ERR exception.

3.15.6. The thead element

Categories

None.

Contexts in which this element may be used:

As a child of a table element, after any caption, and colgroup elements and before

any tbody, tfoot, and tr elements, but only if there are no other thead elements that

are children of the table element.

Content model:

One or more tr elements

Element-specific attributes:

None.

DOM interface:

HTMLTableSectionElement, as defined for tbody elements.

The thead element represents the block of rows that consist of the column labels (headers) for the

parent table element, if the thead element has a parent and it is a table.

The thead element takes part in the table model.

3.15.7. The tfoot element

Categories

None.

Contexts in which this element may be used:

As a child of a table element, after any caption, colgroup, and thead elements and

before any tbody and tr elements, but only if there are no other tfoot elements that are

children of the table element.

As a child of a table element, after any caption, colgroup, thead, tbody, and tr

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

196 of 458 30/12/2020, 08:08

elements, but only if there are no other tfoot elements that are children of the table

element.

Content model:

One or more tr elements

Element-specific attributes:

None.

DOM interface:

HTMLTableSectionElement, as defined for tbody elements.

The tfoot element represents the block of rows that consist of the column summaries (footers) for

the parent table element, if the tfoot element has a parent and it is a table.

The tfoot element takes part in the table model.

3.15.8. The tr element

Categories

None.

Contexts in which this element may be used:

As a child of a thead element.

As a child of a tbody element.

As a child of a tfoot element.

As a child of a table element, after any caption, colgroup, and thead elements, but

only if there are no tbody elements that are children of the table element.

Content model:

One or more td or th elements

Element-specific attributes:

None.

DOM interface:

interface HTMLTableRowElement : HTMLElement {
 readonly attribute long rowIndex;
 readonly attribute long sectionRowIndex;
 readonly attribute HTMLCollection cells;

HTMLElement insertCell(in long index);
 void deleteCell(in long index);
};

The tr element represents a row of cells in a table.

The tr element takes part in the table model.

The rowIndex element must, if the element has a parent table element, or a parent tbody,

thead, or tfoot element and a grandparent table element, return the index of the tr element in

that table element's rows collection. If there is no such table element, then the attribute must

return 0.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

197 of 458 30/12/2020, 08:08

The sectionRowIndex DOM attribute must, if the element has a parent table, tbody, thead, or

tfoot element, return the index of the tr element in the parent element's rows collection (for

tables, that's the rows collection; for table sections, that's the rows collection). If there is no such

parent element, then the attribute must return 0.

The cells attribute must return an HTMLCollection rooted at the tr element, whose filter

matches only td and th elements that are children of the tr element.

The insertCell(index) method must act as follows:

If index is less than -1 or greater than the number of elements in the cells collection, the method

must raise an INDEX_SIZE_ERR exception.

If index is equal to -1 or equal to the number of items in cells collection, the method must create a

td element, append it to the tr element, and return the newly created td element.

Otherwise, the method must create a td element, insert it as a child of the tr element, immediately

before the indexth td or th element in the cells collection, and finally must return the newly

created td element.

The deleteCell(index) method must remove the indexth element in the cells collection from

its parent. If index is less than zero or greater than or equal to the number of elements in the cells

collection, the method must instead raise an INDEX_SIZE_ERR exception.

3.15.9. The td element

Categories

None.

Contexts in which this element may be used:

As a child of a tr element.

Content model:

Prose content.

Element-specific attributes:

colspan

rowspan

DOM interface:

interface HTMLTableCellElement : HTMLElement {
 attribute long colSpan;
 attribute long rowSpan;
 readonly attribute long cellIndex;
};

The td element represents a data cell in a table.

The td element may have a colspan content attribute specified, whose value must be a valid non-

negative integer greater than zero. Its default value, which must be used if parsing the attribute as a
non-negative integer returns either an error or zero, is 1.

The td element may also have a rowspan content attribute specified, whose value must be a valid

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

198 of 458 30/12/2020, 08:08

non-negative integer. Its default value, which must be used if parsing the attribute as a non-negative
integer returns an error, is also 1.

The td element and its colspan and rowspan attributes take part in the table model.

The colspan DOM attribute must reflect the content attribute of the same name, with the exception

that on setting, if the new value is 0, then an INDEX_SIZE_ERR exception must be raised.

The rowspan DOM attribute must reflect the content attribute of the same name.

The cellIndex DOM attribute must, if the element has a parent tr element, return the index of the

cell's element in the parent element's cells collection. If there is no such parent element, then the

attribute must return 0.

There has been some suggestion that the headers attribute from HTML4, or some other

mechanism that is more powerful than scope="", should be included. This has not yet been

considered.

3.15.10. The th element

Categories

None.

Contexts in which this element may be used:

As a child of a tr element.

Content model:

Phrasing content.

Element-specific attributes:

colspan

rowspan

scope

DOM interface:

interface HTMLTableHeaderCellElement : HTMLTableCellElement {
 attribute DOMString scope;
};

The th element represents a header cell in a table.

The th element may have a colspan content attribute specified, whose value must be a valid non-

negative integer greater than zero. Its default value, which must be used if parsing the attribute as a
non-negative integer returns either an error or zero, is 1.

The th element may also have a rowspan content attribute specified, whose value must be a valid

non-negative integer. Its default value, which must be used if parsing the attribute as a non-negative
integer returns an error, is also 1.

The th element may have a scope content attribute specified. The scope attribute is an

enumerated attribute with five states, four of which have explicit keywords:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

199 of 458 30/12/2020, 08:08

The row keyword, which maps to the row state

The row state means the header cell applies to all the remaining cells in the row.

The col keyword, which maps to the column state

The column state means the header cell applies to all the remaining cells in the column.

The rowgroup keyword, which maps to the row group state

The row group state means the header cell applies to all the remaining cells in the row group.

The colgroup keyword, which maps to the column group state

The column group state means the header cell applies to all the remaining cells in the column
group.

The auto state

The auto state makes the header cell apply to a set of cells selected based on context.

The scope attribute's missing value default is the auto state.

The exact effect of these values is described in detail in the algorithm for assigning header cells to
data cells, which user agents must apply to determine the relationships between data cells and
header cells.

The th element and its colspan, rowspan, and scope attributes take part in the table model.

The scope DOM attribute must reflect the content attribute of the same name.

The HTMLTableHeaderCellElement interface inherits from the HTMLTableCellElement

interface and therefore also has the DOM attributes defined above in the td section.

3.15.11. Processing model

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x, y). The grid
is finite, and is either empty or has one or more slots. If the grid has one or more slots, then the x
coordinates are always in the range 1 ≤ x ≤ x , and the y coordinates are always in the range
1 ≤ y ≤ y . If one or both of x and y are zero, then the table is empty (has no slots). Tables
correspond to table elements.

A cell is a set of slots anchored at a slot (cell , cell), and with a particular width and height such that
the cell covers all the slots with coordinates (x, y) where cell ≤ x < cell +width and
cell ≤ y < cell +height. Cell can either be data cells or header cells. Data cells correspond to td

elements, and have zero or more associated header cells. Header cells correspond to th elements.

A row is a complete set of slots from x=1 to x=x , for a particular value of y. Rows correspond to
tr elements.

A column is a complete set of slots from y=1 to y=y , for a particular value of x. Columns can
correspond to col elements, but in the absense of col elements are implied.

A row group is a set of rows anchored at a slot (1, group) with a particular height such that the row
group covers all the slots with coordinates (x, y) where 1 ≤ x < x and group ≤ y < group +height.
Row groups correspond to tbody, thead, and tfoot elements. Not every row is necessarily in a

row group.

A column group is a set of columns anchored at a slot (group , 1) with a particular width such that

max

max max max

x y

x x

y y

max

max

y

max y y

x

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

200 of 458 30/12/2020, 08:08

the column group covers all the slots with coordinates (x, y) where group ≤ x < group +width and
1 ≤ y < y . Column groups correspond to colgroup elements. Not every column is necessarily in

a column group.

Row groups cannot overlap each other. Similarly, column groups cannot overlap each other.

A cell cannot cover slots that are from two or more row groups. It is, however, possible for a cell to
be in multiple column groups. All the slots that form part of one cell are part of zero or one row
groups and zero or more column groups.

In addition to cells, columns, rows, row groups, and column groups, tables can have a caption

element associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by table elements and their

descendants. Documents must not have table model errors.

3.15.11.1. Forming a table

To determine which elements correspond to which slots in a table associated with a table element,

to determine the dimensions of the table (x and y), and to determine if there are any table
model errors, user agents must use the following algorithm:

1. Let x be zero.

2. Let y be zero.

3. Let the table be the table represented by the table element. The x and y variables

give the table's extent. The table is initially empty.

4. If the table element has no table children, then return the table (which will be empty), and

abort these steps.

5. Let the current element be the first element child of the table element.

If a step in this algorithm ever requires the current element to be advanced to the next child of
the table when there is no such next child, then the algorithm must be aborted at that point

and the algorithm must return the table.

6. While the current element is not one of the following elements, advance the current element
to the next child of the table:

caption
colgroup
thead
tbody
tfoot
tr

7. If the current element is a caption, then that is the caption element associated with the

table. Otherwise, it has no associated caption element.

8. If the current element is a caption, then while the current element is not one of the following

elements, advance the current element to the next child of the table:

colgroup
thead
tbody
tfoot

x x

max

max max

max

max

max max

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

201 of 458 30/12/2020, 08:08

tr

(Otherwise, the current element will already be one of those elements.)

9. If the current element is a colgroup, follow these substeps:

1. Column groups. Process the current element according to the appropriate one of the
following two cases:

↪ If the current element has any col element children

Follow these steps:

1. Let x have the value x +1.

2. Let the current column be the first col element child of the

colgroup element.

3. Columns. If the current column col element has a span attribute,

then parse its value using the rules for parsing non-negative
integers.

If the result of parsing the value is not an error or zero, then let span
be that value.

Otherwise, if the col element has no span attribute, or if trying to

parse the attribute's value resulted in an error, then let span be 1.

4. Increase x by span.

5. Let the last span columns in the table correspond to the current
column col element.

6. If current column is not the last col element child of the colgroup

element, then let the current column be the next col element child

of the colgroup element, and return to the third step of this

innermost group of steps (columns).

7. Let all the last columns in the table from x=x to x=x form a
new column group, anchored at the slot (x , 1), with width x -
x -1, corresponding to the colgroup element.

↪ If the current element has no col element children

1. If the colgroup element has a span attribute, then parse its value

using the rules for parsing non-negative integers.

If the result of parsing the value is not an error or zero, then let span
be that value.

Otherwise, if the colgroup element has no span attribute, or if

trying to parse the attribute's value resulted in an error, then let span
be 1.

2. Increase x by span.

3. Let the last span columns in the table form a new column group,
anchored at the slot (x -span+1, 1), with width span,

start max

max

start max

start max

start

max

max

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

202 of 458 30/12/2020, 08:08

corresponding to the colgroup element.

2. Advance the current element to the next child of the table.

3. While the current element is not one of the following elements, advance the current
element to the next child of the table:

colgroup
thead
tbody
tfoot
tr

4. If the current element is a colgroup element, jump to step 1 in these substeps

(column groups).

10. Let y be zero. When the algorithm is aborted, if y does not equal y , then that is
a table model error.

11. Let the list of downward-growing cells be an empty list.

12. Rows. While the current element is not one of the following elements, advance the current
element to the next child of the table:

thead
tbody
tfoot
tr

13. If the current element is a tr, then run the algorithm for processing rows (defined below),

then return to the previous step (rows).

14. Otherwise, run the algorithm for ending a row group.

15. Let y have the value y +1.

16. For each tr element that is a child of the current element, in tree order, run the algorithm for

processing rows (defined below).

17. If y ≥ y , then let all the last rows in the table from y=y to y=y form a new row
group, anchored at the slot with coordinate (1, y), with height y -y +1, corresponding
to the current element.

18. Run the algorithm for ending a row group again.

19. Return to step 12 (rows).

The algorithm for ending a row group, which is invoked by the set of steps above when starting
and ending a block of rows, is:

1. If y is less than y , then this is a table model error.

2. While y is less than y , follow these steps:

1. Increase y by 1.

2. Run the algorithm for growing downward-growing cells.

3. Empty the list of downward-growing cells.

current current max

start max

max start start max

start max start

current max

current max

current

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

203 of 458 30/12/2020, 08:08

The algorithm for processing rows, which is invoked by the set of steps above for processing tr

elements, is:

1. Increase y by 1.

2. Run the algorithm for growing downward-growing cells.

3. Let x be 1.

4. If the tr element being processed contains no td or th elements, then abort this set of steps

and return to the algorithm above.

5. Let current cell be the first td or th element in the tr element being processed.

6. Cells. While x is less than or equal to x and the slot with coordinate (x , y)
already has a cell assigned to it, increase x by 1.

7. If x is greater than x , increase x by 1 (which will make them equal).

8. If the current cell has a colspan attribute, then parse that attribute's value, and let colspan

be the result.

If parsing that value failed, or returned zero, or if the attribute is absent, then let colspan be 1,
instead.

9. If the current cell has a rowspan attribute, then parse that attribute's value, and let rowspan

be the result.

If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

10. If rowspan is zero, then let cell grows downward be true, and set rowspan to 1. Otherwise, let
cell grows downward be false.

11. If x < x +colspan-1, then let x be x +colspan-1.

12. If y < y +rowspan-1, then let y be y +rowspan-1.

13. Let the slots with coordinates (x, y) such that x ≤ x < x +colspan and
y ≤ y < y +rowspan be covered by a new cell c, anchored at (x , y),
which has width colspan and height rowspan, corresponding to the current cell element.

If the current cell element is a th element, let this new cell c be a header cell; otherwise, let it

be a data cell. To establish what header cells apply to a data cell, use the algorithm for
assigning header cells to data cells described in the next section.

If any of the slots involved already had a cell covering them, then this is a table model error.
Those slots now have two cells overlapping.

14. If cell grows downward is true, then add the tuple {c, x , colspan} to the list of downward-
growing cells.

15. Increase x by colspan.

16. If current cell is the last td or th element in the tr element being processed, then abort this

set of steps and return to the algorithm above.

17. Let current cell be the next td or th element in the tr element being processed.

current

current

current max current current

current

current max max

max current max current

max current max current

current current

current current current current

current

current

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

204 of 458 30/12/2020, 08:08

18. Return to step 5 (cells).

The algorithm for growing downward-growing cells, used when adding a new row, is as follows:

1. If the list of downward-growing cells is empty, do nothing. Abort these steps; return to the step
that invoked this algorithm.

2. Otherwise, if y is less than y , then increase y by 1 (this will make it equal to
y).

3. For each {cell, cell , width} tuple in the list of downward-growing cells, extend the cell cell so
that it also covers the slots with coordinates (x, y), where cell ≤ x < cell +width-1.

If, after establishing which elements correspond to which slots, there exists a column in the table
containing only slots that do not have a cell anchored to them, then this is a table model error.

3.15.11.2. Forming relationships between data cells and header cells

Each data cell can be assigned zero or more header cells. The algorithm for assigning header
cells to data cells is as follows.

For each header cell in the table, in tree order:

1. Let (header , header) be the coordinate of the slot to which the header cell is anchored.

2. Examine the scope attribute of the th element corresponding to the header cell, and, based

on its state, apply the appropriate substep:

↪ If it is in the row state

Assign the header cell to any data cells anchored at slots with coordinates (data ,
data) where header < data ≤ x and data = header .

↪ If it is in the column state

Assign the header cell to any data cells anchored at slots with coordinates (data ,
data) where data = header and header < data ≤ y .

↪ If it is in the row group state

If the header cell is not in a row group, then don't assign the header cell to any
data cells.

Otherwise, let (1, group) be the slot at which the row group is anchored, let height
be the number of rows in the row group, and assign the header cell to any data
cells anchored at slots with coordinates (data , data) where
header ≤ data ≤ x and header ≤ data < group +height.

↪ If it is in the column group state

If the header cell is not in a column group, then don't assign the header cell to any
data cells.

Otherwise, let (group , 1) be the slot at which the column group is anchored, let
width be the number of columns in the column group, and assign the header cell
to any data cells anchored at slots with coordinates (data , data) where
header ≤ data < group +width and header ≤ data ≤ y .

↪ Otherwise, it is in the auto state

If the header cell is not in the first row of the table, or not in the first cell of a row,

max current max

current

x

current x x

x y

x

y x x max y y

x

y x x y y max

y

x y

x x max y y y

x

x y

x x x y y max

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

205 of 458 30/12/2020, 08:08

then don't assign the header cell to any data cells.

Otherwise, if the header cell is in the first row of the table, assign the header cell
to any data cells anchored at slots with coordinates (data , data) where
data = header and header < data ≤ y .

Otherwise, the header cell is in the first column of the table; assign the header cell
to any data cells anchored at slots with coordinates (data , data) where
header < data ≤ x and data = header .

3.16. Forms

This section will contain definitions of the form element and so forth.

This section will be a rewrite of the HTML4 Forms and Web Forms 2.0 specifications, with
hopefully no normative changes.

3.16.1. The form element

3.16.2. The fieldset element

3.16.3. The input element

3.16.4. The button element

3.16.5. The label element

3.16.6. The select element

3.16.7. The datalist element

3.16.8. The optgroup element

3.16.9. The option element

3.16.10. The textarea element

3.16.11. The output element

3.16.12. Processing model

See WF2 for now

3.16.12.1. Form submission

See WF2 for now

3.17. Scripting

x y

x x y y max

x y

x x max y y

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

206 of 458 30/12/2020, 08:08

3.17.1. The script element

Categories

Metadata content.
Phrasing content.

Contexts in which this element may be used:

Where metadata content is expected.
Where phrasing content is expected.

Content model:

If there is no src attribute, depends on the value of the type attribute.

If there is a src attribute, the element must be empty.

Element-specific attributes:

src

async

defer

type

DOM interface:

interface HTMLScriptElement : HTMLElement {
 attribute DOMString src;
 attribute boolean async;
 attribute boolean defer;
 attribute DOMString type;
 attribute DOMString text;
};

The script element allows authors to include dynamic script in their documents.

When the src attribute is set, the script element refers to an external file. The value of the

attribute must be a URI (or IRI).

If the src attribute is not set, then the script is given by the contents of the element.

The language of the script may be given by the type attribute. If the attribute is present, its value

must be a valid MIME type, optionally with parameters. [RFC2046]

The async and defer attributes are boolean attributes that indicate how the script should be

executed.

There are three possible modes that can be selected using these attributes. If the async attribute is

present, then the script will be executed asynchronously, as soon as it is available. If the async

attribute is not present but the defer attribute is present, then the script is executed when the page

has finished parsing. If neither attribute is present, then the script is downloaded and executed
immediately, before the user agent continues parsing the page. The exact processing details for
these attributes is described below.

The defer attribute may be specified even if the async attribute is specified, to cause legacy Web

browsers that only support defer (and not async) to fall back to the defer behavior instead of the

synchronous blocking behavior that is the default.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

207 of 458 30/12/2020, 08:08

Changing the src, type, async, and defer attributes dynamically has no direct effect; these

attribute are only used at specific times described below (namely, when the element is inserted into
the document).

script elements have three associated pieces of metadata. The first is a flag indicating whether or

not the script block has been "already executed". Initially, script elements must have this flag

unset (script blocks, when created, are not "already executed"). When a script element is cloned,

the "already executed" flag, if set, must be propagated to the clone when it is created. The second is
a flag indicating whether the element was "parser-inserted". This flag is set by the HTML parser
and is used to handle document.write() calls. The third piece of metadata is the script's type. It

is determined when the script is run, based on the attributes on the element at that time.

Running a script: when a script block is inserted into a document, the user agent must act as
follows:

1. If the script element has a type attribute but its value is the empty string, or if the script

element has no type attribute but it has a language attribute, and that attribute's value is

the empty string, let the script's type for this script element be "text/javascript".

Otherwise, if the script element has a type attribute, let the script's type for this script

element be the value of that attribute.

Otherwise, if the element has a language attribute, let the script's type for this script

element be the concatenation of the string "text/" followed by the value of the language

attribute.

2. If scripting is disabled, or if the Document has designMode enabled, or if the script

element was created by an XML parser that itself was created as part of the processing of the
innerHTML attribute's setter, or if the user agent does not support the scripting language

given by the script's type for this script element, or if the script element has its "already

executed" flag set, then the user agent must abort these steps at this point. The script is not
executed.

3. The user agent must set the element's "already executed" flag.

4. If the element has a src attribute, then a load for the specified content must be started.

Note: Later, once the load has completed, the user agent will have to complete
the steps described below.

For performance reasons, user agents may start loading the script as soon as the attribute is
set, instead, in the hope that the element will be inserted into the document. Either way, once
the element is inserted into the document, the load must have started. If the UA performs
such prefetching, but the element is never inserted in the document, or the src attribute is

dynamically changed, then the user agent will not execute the script, and the load will have
been effectively wasted.

5. Then, the first of the following options that describes the situation must be followed:

↪ If the document is still being parsed, and the element has a defer attribute, and

the element does not have an async attribute

The element must be added to the end of the list of scripts that will execute when
the document has finished parsing. The user agent must begin the next set of
steps when the script is ready. This isn't compatible with IE for inline deferred

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

208 of 458 30/12/2020, 08:08

scripts, but then what IE does is pretty hard to pin down exactly. Do we want to
keep this like it is? Be more compatible?

↪ If the element has an async attribute and a src attribute

The element must be added to the end of the list of scripts that will execute
asynchronously. The user agent must jump to the next set of steps once the script
is ready.

↪ If the element has an async attribute but no src attribute, and the list of scripts

that will execute asynchronously is not empty

The element must be added to the end of the list of scripts that will execute
asynchronously.

↪ If the element has a src attribute and has been flagged as "parser-inserted"

The element is the script that will execute as soon as the parser resumes. (There
can only be one such script at a time.)

↪ If the element has a src attribute

The element must be added to the end of the list of scripts that will execute as
soon as possible. The user agent must jump to the next set of steps when the
script is ready.

↪ Otherwise

The user agent must immediately execute the script, even if other scripts are
already executing.

When a script completes loading: If a script whose element was added to one of the lists
mentioned above completes loading while the document is still being parsed, then the parser
handles it. Otherwise, when a script completes loading, the UA must run the following steps as soon
as as any other scripts that may be executing have finished executing:

↪ If the script's element was added to the list of scripts that will execute when the
document has finished parsing:

1. If the script's element is not the first element in the list, then do nothing yet. Stop
going through these steps.

2. Otherwise, execute the script (that is, the script associated with the first element in
the list).

3. Remove the script's element from the list (i.e. shift out the first entry in the list).

4. If there are any more entries in the list, and if the script associated with the
element that is now the first in the list is already loaded, then jump back to step
two to execute it.

↪ If the script's element was added to the list of scripts that will execute asynchronously:

1. If the script is not the first element in the list, then do nothing yet. Stop going
through these steps.

2. Execute the script (the script associated with the first element in the list).

3. Remove the script's element from the list (i.e. shift out the first entry in the list).

4. If there are any more scripts in the list, and the element now at the head of the list
had no src attribute when it was added to the list, or had one, but its associated

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

209 of 458 30/12/2020, 08:08

script has finished loading, then jump back to step two to execute the script
associated with this element.

↪ If the script's element was added to the list of scripts that will execute as soon as
possible:

1. Execute the script.

2. Remove the script's element from the list.

↪ If the script is the script that will execute as soon as the parser resumes:

The script will be handled when the parser resumes (amazingly enough).

The download of an external script must delay the load event.

Executing a script block: If the load resulted in an error (for example a DNS error, or an HTTP 404
error), then executing the script must just consist of firing an error event at the element.

If the load was successful, then first the user agent must fire a load event at the element, and then,

if scripting is enabled, and the Document does not have designMode enabled, and the Document

is the active document in its browsing context, the user agent must execute the script:

If the script is from an external file, then that file must be used as the file to execute.

If the script is inline, then, for scripting languages that consist of pure text, user agents must use the
value of the DOM text attribute (defined below) as the script to execute, and for XML-based

scripting languages, user agents must use all the child nodes of the script element as the script to

execute.

In any case, the user agent must execute the script according to the semantics defined by the
language associated with the script's type (see the scripting languages section below).

Scripts must be executed in the scope of the browsing context of the element's Document.

Note: The element's attributes' values might have changed between when the
element was inserted into the document and when the script has finished loading, as
may its other attributes; similarly, the element itself might have been taken back out
of the DOM, or had other changes made. These changes do not in any way affect the
above steps; only the values of the attributes at the time the script element is first

inserted into the document matter.

The DOM attributes src, type, async, and defer, each must reflect the respective content

attributes of the same name.

The DOM attribute text must return a concatenation of the contents of all the text nodes that are

direct children of the script element (ignoring any other nodes such as comments or elements), in

tree order. On setting, it must act the same way as the textContent DOM attribute.

3.17.1.1. Scripting languages

A user agent is said to support the scripting language if the script's type matches the MIME type
of a scripting language that the user agent implements.

The following lists some MIME types and the languages to which they refer:

text/javascript

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

210 of 458 30/12/2020, 08:08

ECMAScript. [ECMA262]

text/javascript;e4x=1

ECMAScript with ECMAScript for XML. [ECMA357]

User agents may support other MIME types and other languages.

When examining types to determine if they support the language, user agents must not ignore
unknown MIME parameters — types with unknown parameters must be assumed to be
unsupported.

3.17.2. The noscript element

Categories

Metadata content.
Phrasing content.

Contexts in which this element may be used:

In a head element of an HTML document, if there are no ancestor noscript elements.

Where phrasing content is expected in HTML documents, if there are no ancestor
noscript elements.

Content model:

When scripting is disabled, in a head element: in any order, zero or more link elements,

zero or more style elements, and zero or more meta elements.

When scripting is disabled, not in a head element: transparent, but there must be no

noscript element descendants.

When scripting is enabled: text that conforms to the requirements given in the prose.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The noscript element does not represent anything. It is used to present different markup to user

agents that support scripting and those that don't support scripting, by affecting how the document is
parsed.

The noscript element must not be used in XML documents.

When used in HTML documents, the allowed content model depends on whether scripting is
enabled or not, and whether the element is in a head element or not.

In a head element, if scripting is disabled, then the content model of a noscript element must

contain only link, style, and meta elements. If scripting is enabled, then the content model of a

noscript element is text, except that invoking the HTML fragment parsing algorithm with the

noscript element as the context and the text contents as the input must result in a list of nodes

that consists only of link, style, and meta elements.

Outside of head elements, if scripting is disabled, then the content model of a noscript element is

transparent, with the additional restriction that a noscript element must not have a noscript

element as an ancestor (that is, noscript can't be nested).

Outside of head elements, if scripting is enabled, then the content model of a noscript element is

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

211 of 458 30/12/2020, 08:08

text, except that the text must be such that running the following algorithm results in a conforming
document with no noscript elements and no script elements, and such that no step in the

algorithm causes an HTML parser to flag a parse error:

1. Remove every script element from the document.

2. Make a list of every noscript element in the document. For every noscript element in

that list, perform the following steps:
1. Let the parent element be the parent element of the noscript element.

2. Take all the children of the parent element that come before the noscript element,

and call these elements the before children.
3. Take all the children of the parent element that come after the noscript element, and

call these elements the after children.
4. Let s be the concatenation of all the text node children of the noscript element.

5. Set the innerHTML attribute of the parent element to the value of s. (This, as a side-

effect, causes the noscript element to be removed from the document.)

6. Insert the before children at the start of the parent element, preserving their original
relative order.

7. Insert the after children at the end of the parent element, preserving their original
relative order.

The noscript element has no other requirements. In particular, children of the noscript element

are not exempt from form submission, scripting, and so forth, even when scripting is enabled.

Note: All these contortions are required because, for historical reasons, the
noscript element causes the HTML parser to act differently based on whether

scripting is enabled or not. The element is not allowed in XML, because in XML the
parser is not affected by such state, and thus the element would not have the desired
effect.

3.17.3. The event-source element

Categories

Metadata content.
Phrasing content.

Contexts in which this element may be used:

Where metadata content is expected.
Where phrasing content is expected.

Content model:

Empty.

Element-specific attributes:

src

DOM interface:

interface HTMLEventSourceElement : HTMLElement {
 attribute DOMString src;
};

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

212 of 458 30/12/2020, 08:08

The event-source element represents a target for events generated by a remote server.

The src attribute, if specified, must give a URI (or IRI) pointing to a resource that uses the

application/x-dom-event-stream format.

When the element is inserted into the document, if it has the src attribute specified, the user agent

must act as if the addEventSource() method on the event-source element had been invoked

with the URI resulting from resolving the src attribute's value to an absolute URI.

While the element is in a document, if its src attribute is mutated, the user agent must act as if first

the removeEventSource() method on the event-source element had been invoked with the

URI resulting from resolving the old value of the attribute to an absolute URI, and then as if the
addEventSource() method on the element had been invoked with the URI resulting from

resolving the new value of the src attribute to an absolute URI.

When the element is removed from the document, if it has the src attribute specified, or, when the

src attribute is about to be removed, the user agent must act as if the removeEventSource()

method on the event-source element had been invoked with the URI resulting from resolving the

src attribute's value to an absolute URI.

There can be more than one event-source element per document, but authors should take care

to avoid opening multiple connections to the same server as HTTP recommends a limit to the
number of simultaneous connections that a user agent can open per server.

The src DOM attribute must reflect the content attribute of the same name.

3.18. Interactive elements

3.18.1. The details element

Categories

Prose element.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

One legend element followed by prose content.

Element-specific attributes:

open

DOM interface:

interface HTMLDetailsElement : HTMLElement {
 attribute boolean open;
};

The details element represents additional information or controls which the user can obtain on

demand.

The first element child of a details element, if it is a legend element, represents the summary of

the details.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

213 of 458 30/12/2020, 08:08

If the first element is not a legend element, the UA should provide its own legend (e.g. "Details").

The open content attribute is a boolean attribute. If present, it indicates that the details should be

shown to the user. If the attribute is absent, the details should not be shown.

If the attribute is removed, then the details should be hidden. If the attribute is added, the details
should be shown.

The user should be able to request that the details be shown or hidden.

The open attribute must reflect the open content attribute.

Rendering will be described in the Rendering section in due course. Basically CSS :open and
:closed match the element, it's a block-level element by default, and when it matches :closed it
renders as if it had an XBL binding attached to it whose template was just
<template>▶<content includes="legend:first-child">Details</content>
</template>, and when it's :open it acts as if it had an XBL binding attached to it whose

template was just <template>▼<content includes="legend:first-

child">Details</content><content/></template> or some such.

Clicking the legend would make it open/close (and would change the content attribute). Question:
Do we want the content attribute to reflect the actual state like this? I think we do, the DOM not
reflecting state has been a pain in the neck before. But is it semantically ok?

3.18.2. The datagrid element

Categories

Prose element.
Interactive element.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Either: Nothing.
Or: Prose content, but where the first element child node, if any, is not a table element.

Or: A single table element.

Or: A single select element.

Or: A single datalist element.

Element-specific attributes:

multiple

disabled

DOM interface:

interface HTMLDataGridElement : HTMLElement {
 attribute DataGridDataProvider data;
 readonly attribute DataGridSelection selection;
 attribute boolean multiple;
 attribute boolean disabled;
 void updateEverything();

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

214 of 458 30/12/2020, 08:08

 void updateRowsChanged(in RowSpecification row, in unsigned
long count);
 void updateRowsInserted(in RowSpecification row, in unsigned
long count);
 void updateRowsRemoved(in RowSpecification row, in unsigned
long count);
 void updateRowChanged(in RowSpecification row);
 void updateColumnChanged(in unsigned long column);
 void updateCellChanged(in RowSpecification row, in unsigned
long column);
};

One possible thing to be added is a way to detect when a row/selection has been deleted,
activated, etc, by the user (delete key, enter key, etc).

This element is defined as interactive, which means it can't contain other interactive elements,
despite the fact that we expect it to work with other interactive elements e.g. checkboxes and
input fields. It should be called something like a Leaf Interactive Element or something, which
counts for ancestors looking in and not descendants looking out.

The datagrid element represents an interactive representation of tree, list, or tabular data.

The data being presented can come either from the content, as elements given as children of the
datagrid element, or from a scripted data provider given by the data DOM attribute.

The multiple and disabled attributes are boolean attributes. Their effects are described in the

processing model sections below.

The multiple and disabled DOM attributes must reflect the multiple and disabled content

attributes respectively.

3.18.2.1. The datagrid data model

This section is non-normative.

In the datagrid data model, data is structured as a set of rows representing a tree, each row being

split into a number of columns. The columns are always present in the data model, although
individual columns may be hidden in the presentation.

Each row can have child rows. Child rows may be hidden or shown, by closing or opening
(respectively) the parent row.

Rows are referred to by the path along the tree that one would take to reach the row, using zero-
based indices. Thus, the first row of a list is row "0", the second row is row "1"; the first child row of
the first row is row "0,0", the second child row of the first row is row "0,1"; the fourth child of the
seventh child of the third child of the tenth row is "9,2,6,3", etc.

The columns can have captions. Those captions are not considered a row in their own right, they are
obtained separately.

Selection of data in a datagrid operates at the row level. If the multiple attribute is present,

multiple rows can be selected at once, otherwise the user can only select one row at a time.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

215 of 458 30/12/2020, 08:08

The datagrid element can be disabled entirely by setting the disabled attribute.

Columns, rows, and cells can each have specific flags, known as classes, applied to them by the
data provider. These classes affect the functionality of the datagrid element, and are also passed

to the style system. They are similar in concept to the class attribute, except that they are not

specified on elements but are given by scripted data providers.

3.18.2.2. How rows are identified

The chains of numbers that give a row's path, or identifier, are represented by objects that
implement the RowSpecification interface.

interface RowSpecification {
 // binding-specific interface
};

In ECMAScript, two classes of objects are said to implement this interface: Numbers representing
non-negative integers, and homogeneous arrays of Numbers representing non-negative integers.
Thus, [1,0,9] is a RowSpecification, as is 1 on its own. However, [1,0.2,9] is not a

RowSpecification object, since its second value is not an integer.

User agents must always represent RowSpecifications in ECMAScript by using arrays, even if

the path only has one number.

The root of the tree is represented by the empty path; in ECMAScript, this is the empty array ([]).

Only the getRowCount() and GetChildAtPosition() methods ever get called with the empty

path.

3.18.2.3. The data provider interface

The conformance criteria in this section apply to any implementation of the
DataGridDataProvider, including (and most commonly) the content author's implementation(s).

// To be implemented by Web authors as a JS object
interface DataGridDataProvider {
 void initialize(in HTMLDataGridElement datagrid);
 unsigned long getRowCount(in RowSpecification row);
 unsigned long getChildAtPosition(in RowSpecification parentRow, in
unsigned long position);
 unsigned long getColumnCount();
 DOMString getCaptionText(in unsigned long column);
 void getCaptionClasses(in unsigned long column, in DOMTokenList
classes);
 DOMString getRowImage(in RowSpecification row);

HTMLMenuElement getRowMenu(in RowSpecification row);
 void getRowClasses(in RowSpecification row, in DOMTokenList
classes);
 DOMString getCellData(in RowSpecification row, in unsigned long
column);
 void getCellClasses(in RowSpecification row, in unsigned long
column, in DOMTokenList classes);
 void toggleColumnSortState(in unsigned long column);
 void setCellCheckedState(in RowSpecification row, in unsigned long

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

216 of 458 30/12/2020, 08:08

column, in long state);
 void cycleCell(in RowSpecification row, in unsigned long column);
 void editCell(in RowSpecification row, in unsigned long column, in
DOMString data);
};

The DataGridDataProvider interface represents the interface that objects must implement to be

used as custom data views for datagrid elements.

Not all the methods are required. The minimum number of methods that must be implemented in a
useful view is two: the getRowCount() and getCellData() methods.

Once the object is written, it must be hooked up to the datagrid using the data DOM attribute.

The following methods may be usefully implemented:

initialize(datagrid)

Called by the datagrid element (the one given by the datagrid argument) after it has first

populated itself. This would typically be used to set the initial selection of the datagrid

element when it is first loaded. The data provider could also use this method call to register a
select event handler on the datagrid in order to monitor selection changes.

getRowCount(row)

Must return the number of rows that are children of the specified row, including rows that are
off-screen. If row is empty, then the number of rows at the top level must be returned. If the
value that this method would return for a given row changes, the relevant update methods on
the datagrid must be called first. Otherwise, this method must always return the same

number. For a list (as opposed to a tree), this method must return 0 whenever it is called with
a row identifier that is not empty.

getChildAtPosition(parentRow, position)

Must return the index of the row that is a child of parentRow and that is to be positioned as
the positionth row under parentRow when rendering the children of parentRow. If parentRow
is empty, then position refers to the positionth row at the top level of the data grid. May be
omitted if the rows are always to be sorted in the natural order. (The natural order is the one
where the method always returns position.) For a given parentRow, this method must never
return the same value for different values of position. The returned value x must be in the
range 0 ≤ x < n, where n is the value returned by getRowCount(parentRow).

getColumnCount()

Must return the number of columns currently in the data model (including columns that might
be hidden). May be omitted if there is only one column. If the value that this method would
return changes, the datagrid's updateEverything() method must be called.

getCaptionText(column)

Must return the caption, or label, for column column. May be omitted if the columns have no
captions. If the value that this method would return changes, the datagrid's

updateColumnChanged() method must be called with the appropriate column index.

getCaptionClasses(column, classes)

Must add the classes that apply to column column to the classes object. May be omitted if the
columns have no special classes. If the classes that this method would add changes, the
datagrid's updateColumnChanged() method must be called with the appropriate column

index. Some classes have predefined meanings.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

217 of 458 30/12/2020, 08:08

getRowImage(row)

Must return a URI to an image that represents row row, or the empty string if there is no
applicable image. May be omitted if no rows have associated images. If the value that this
method would return changes, the datagrid's update methods must be called to update the

row in question.

getRowMenu(row)

Must return an HTMLMenuElement object that is to be used as a context menu for row row,

or null if there is no particular context menu. May be omitted if none of the rows have a
special context menu. As this method is called immediately before showing the menu in
question, no precautions need to be taken if the return value of this method changes.

getRowClasses(row, classes)

Must add the classes that apply to row row to the classes object. May be omitted if the rows
have no special classes. If the classes that this method would add changes, the datagrid's

update methods must be called to update the row in question. Some classes have predefined
meanings.

getCellData(row, column)

Must return the value of the cell on row row in column column. For text cells, this must be the
text to show for that cell. For progress bar cells, this must be either a floating point number in
the range 0.0 to 1.0 (converted to a string representation), indicating the fraction of the
progress bar to show as full (1.0 meaning complete), or the empty string, indicating an
indeterminate progress bar. If the value that this method would return changes, the
datagrid's update methods must be called to update the rows that changed. If only one cell

changed, the updateCellChanged() method may be used.

getCellClasses(row, column, classes)

Must add the classes that apply to the cell on row row in column column to the classes object.
May be omitted if the cells have no special classes. If the classes that this method would add
changes, the datagrid's update methods must be called to update the rows or cells in

question. Some classes have predefined meanings.

toggleColumnSortState(column)

Called by the datagrid when the user tries to sort the data using a particular column

column. The data provider must update its state so that the GetChildAtPosition()

method returns the new order, and the classes of the columns returned by
getCaptionClasses() represent the new sort status. There is no need to tell the

datagrid that it the data has changed, as the datagrid automatically assumes that the

entire data model will need updating.

setCellCheckedState(row, column, state)

Called by the datagrid when the user changes the state of a checkbox cell on row row,

column column. The checkbox should be toggled to the state given by state, which is a
positive integer (1) if the checkbox is to be checked, zero (0) if it is to be unchecked, and a
negative number (-1) if it is to be set to the indeterminate state. There is no need to tell the
datagrid that the cell has changed, as the datagrid automatically assumes that the given

cell will need updating.

cycleCell(row, column)

Called by the datagrid when the user changes the state of a cyclable cell on row row,

column column. The data provider should change the state of the cell to the new state, as
appropriate. There is no need to tell the datagrid that the cell has changed, as the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

218 of 458 30/12/2020, 08:08

datagrid automatically assumes that the given cell will need updating.

editCell(row, column, data)

Called by the datagrid when the user edits the cell on row row, column column. The new

value of the cell is given by data. The data provider should update the cell accordingly. There
is no need to tell the datagrid that the cell has changed, as the datagrid automatically

assumes that the given cell will need updating.

The following classes (for rows, columns, and cells) may be usefully used in conjunction with this
interface:

Class name Applies
to

Description

checked Cells The cell has a checkbox and it is checked. (The cyclable and

progress classes override this, though.)

cyclable Cells The cell can be cycled through multiple values. (The progress

class overrides this, though.)

editable Cells The cell can be edited. (The cyclable, progress, checked,

unchecked and indeterminate classes override this, though.)

header Rows The row is a heading, not a data row.

indeterminate Cells The cell has a checkbox, and it can be set to an indeterminate
state. If neither the checked nor unchecked classes are present,

then the checkbox is in that state, too. (The cyclable and

progress classes override this, though.)

initially-

hidden

Columns The column will not be shown when the datagrid is initially

rendered. If this class is not present on the column when the
datagrid is initially rendered, the column will be visible if space

allows.

initially-

closed

Rows The row will be closed when the datagrid is initially rendered. If

neither this class nor the initially-open class is present on the

row when the datagrid is initially rendered, the initial state will

depend on platform conventions.

initially-open Rows The row will be opened when the datagrid is initially rendered. If

neither this class nor the initially-closed class is present on

the row when the datagrid is initially rendered, the initial state will

depend on platform conventions.

progress Cells The cell is a progress bar.

reversed Columns If the cell is sorted, the sort direction is descending, instead of
ascending.

selectable-

separator

Rows The row is a normal, selectable, data row, except that instead of
having data, it only has a separator. (The header and separator

classes override this, though.)

separator Rows The row is a separator row, not a data row. (The header class

overrides this, though.)

sortable Columns The data can be sorted by this column.

sorted Columns The data is sorted by this column. Unless the reversed class is

also present, the sort direction is ascending.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

219 of 458 30/12/2020, 08:08

unchecked Cells The cell has a checkbox and, unless the checked class is present

as well, it is unchecked. (The cyclable and progress classes

override this, though.)

3.18.2.4. The default data provider

The user agent must supply a default data provider for the case where the datagrid's data

attribute is null. It must act as described in this section.

The behaviour of the default data provider depends on the nature of the first element child of the
datagrid.

↪ While the first element child is a table element

getRowCount(row): The number of rows returned by the default data provider for the

root of the tree (when row is empty) must be the total number of tr elements that are

children of tbody elements that are children of the table, if there are any such child

tbody elements. If there are no such tbody elements then the number of rows returned

for the root must be the number of tr elements that are children of the table.

When row is not empty, the number of rows returned must be zero.

Note: The table-based default data provider cannot represent a tree.

Note: Rows in thead elements do not contribute to the number of rows

returned, although they do affect the columns and column captions. Rows
in tfoot elements are ignored completely by this algorithm.

getChildAtPosition(row, i): The default data provider must return the mapping

appropriate to the current sort order.

getColumnCount(): The number of columns returned must be the number of td

element children in the first tr element child of the first tbody element child of the

table, if there are any such tbody elements. If there are no such tbody elements,

then it must be the number of td element children in the first tr element child of the

table, if any, or otherwise 1. If the number that would be returned by these rules is 0,

then 1 must be returned instead.

getCaptionText(i): If the table has no thead element child, or if its first thead

element child has no tr element child, the default data provider must return the empty

string for all captions. Otherwise, the value of the textContent attribute of the ith th

element child of the first tr element child of the first thead element child of the table

element must be returned. If there is no such th element, the empty string must be

returned.

getCaptionClasses(i, classes): If the table has no thead element child, or if

its first thead element child has no tr element child, the default data provider must not

add any classes for any of the captions. Otherwise, each class in the class attribute of

the ith th element child of the first tr element child of the first thead element child of

the table element must be added to the classes. If there is no such th element, no

classes must be added. The user agent must then:

1. Remove the sorted and reversed classes.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

220 of 458 30/12/2020, 08:08

2. If the table element has a class attribute that includes the sortable class,

add the sortable class.

3. If the column is the one currently being used to sort the data, add the sorted

class.

4. If the column is the one currently being used to sort the data, and it is sorted in
descending order, add the reversed class as well.

The various row- and cell- related methods operate relative to a particular element, the
element of the row or cell specified by their arguments.

For rows: Since the default data provider for a table always returns 0 as the number of

children for any row other than the root, the path to the row passed to these methods will
always consist of a single number. In the prose below, this number is referred to as i.

If the table has tbody element children, the element for the ith row is the ith tr

element that is a child of a tbody element that is a child of the table element. If the

table does not have tbody element children, then the element for the ith real row is the

ith tr element that is a child of the table element.

For cells: Given a row and its element, the row's ith cell's element is the ith td element

child of the row element.

Note: The colspan and rowspan attributes are ignored by this algorithm.

getRowImage(i): If the row's first cell's element has an img element child, then the

URI of the row's image is the URI of the first img element child of the row's first cell's

element. Otherwise, the URI of the row's image is the empty string.

getRowMenu(i): If the row's first cell's element has a menu element child, then the

row's menu is the first menu element child of the row's first cell's element. Otherwise, the

row has no menu.

getRowClasses(i, classes): The default data provider must never add a class to

the row's classes.

toggleColumnSortState(i): If the data is already being sorted on the given column,

then the user agent must change the current sort mapping to be the inverse of the
current sort mapping; if the sort order was ascending before, it is now descending,
otherwise it is now ascending. Otherwise, if the current sort column is another column, or
the data model is currently not sorted, the user agent must create a new mapping, which
maps rows in the data model to rows in the DOM so that the rows in the data model are
sorted by the specified column, in ascending order. (Which sort comparison operator to
use is left up to the UA to decide.)

When the sort mapping is changed, the values returned by the
getChildAtPosition() method for the default data provider will change

appropriately.

getCellData(i, j), getCellClasses(i, j, classes),

getCellCheckedState(i, j, state), cycleCell(i, j), and editCell(i,

j, data): See the common definitions below.

The data provider must call the datagrid's update methods appropriately whenever the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

221 of 458 30/12/2020, 08:08

descendants of the datagrid mutate. For example, if a tr is removed, then the

updateRowsRemoved() methods would probably need to be invoked, and any change

to a cell or its descendants must cause the cell to be updated. If the table element

stops being the first child of the datagrid, then the data provider must call the

updateEverything() method on the datagrid. Any change to a cell that is in the

column that the data provider is currently using as its sort column must also cause the
sort to be reperformed, with a call to updateEverything() if the change did affect the

sort order.

↪ While the first element child is a select or datalist element

The default data provider must return 1 for the column count, the empty string for the
column's caption, and must not add any classes to the column's classes.

For the rows, assume the existence of a node filter view of the descendants of the first
element child of the datagrid element (the select or datalist element), that skips

all nodes other than optgroup and option elements, as well as any descendents of

any option elements.

Given a path row, the corresponding element is the one obtained by drilling into the view,
taking the child given by the path each time.

Given the following XML markup:

<datagrid>
 <select>
 <!-- the options and optgroups have had their labels and
values removed
 to make the underlying structure clearer -->
 <optgroup>
 <option/>
 <option/>
 </optgroup>
 <optgroup>
 <option/>
 <optgroup id="a">
 <option/>
 <option/>
 <bogus/>
 <option id="b"/>
 </optgroup>
 <option/>
 </optgroup>
 </select>
</datagrid>

The path "1,1,2" would select the element with ID "b". In the filtered view, the text
nodes, comment nodes, and bogus elements are ignored; so for instance, the
element with ID "a" (path "1,1") has only 3 child nodes in the view.

getRowCount(row) must drill through the view to find the element corresponding to the

method's argument, and return the number of child nodes in the filtered view that the
corresponding element has. (If the row is empty, the corresponding element is the
select element at the root of the filtered view.)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

222 of 458 30/12/2020, 08:08

getChildAtPosition(row, position) must return position. (The

select/datalist default data provider does not support sorting the data grid.)

getRowImage(i) must return the empty string, getRowMenu(i) must return null.

getRowClasses(row, classes) must add the classes from the following list to

classes when their condition is met:

If the row's corresponding element is an optgroup element: header

If the row's corresponding element contains other elements that are also in the
view, and the element's class attribute contains the closed class: initially-

closed

If the row's corresponding element contains other elements that are also in the
view, and the element's class attribute contains the open class: initially-

open

The getCellData(row, cell) method must return the value of the label attribute if

the row's corresponding element is an optgroup element, otherwise, if the row's

corresponding element is an optionelement, its label attribute if it has one, otherwise

the value of its textContent DOM attribute.

The getCellClasses(row, cell, classes) method must add no classes.

autoselect some rows when initialised, reflect the selection in the select, reflect the
multiple attribute somehow.

The data provider must call the datagrid's update methods appropriately whenever the

descendants of the datagrid mutate.

↪ While the first element child is another element

The default data provider must return 1 for the column count, the empty string for the
column's caption, and must not add any classes to the column's classes.

For the rows, assume the existence of a node filter view of the descendants of the
datagrid that skips all nodes other than li, h1-h6, and hr elements, and skips any

descendants of menu elements.

Given this view, each element in the view represents a row in the data model. The
element corresponding to a path row is the one obtained by drilling into the view, taking
the child given by the path each time. The element of the row of a particular method call
is the element given by drilling into the view along the path given by the method's
arguments.

getRowCount(row) must return the number of child elements in this view for the given

row, or the number of elements at the root of the view if the row is empty.

In the following example, the elements are identified by the paths given by their child
text nodes:

<datagrid>

 row 0

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

223 of 458 30/12/2020, 08:08

 row 1

 row 1,0

 row 2

</datagrid>

In this example, only the li elements actually appear in the data grid; the ol

element does not affect the data grid's processing model.

getChildAtPosition(row, position) must return position. (The generic default

data provider does not support sorting the data grid.)

getRowImage(i) must return the URI of the image given by the first img element

descendant (in the real DOM) of the row's element, that is not also a descendant of
another element in the filtered view that is a descendant of the row's element.

In the following example, the row with path "1,0" returns "http://example.com/a" as
its image URI, and the other rows (including the row with path "1") return the empty
string:

<datagrid>

 row 0
 row 1

 row 1,0

 row 2

</datagrid>

getRowMenu(i) must return the first menu element descendant (in the real DOM) of the

row's element, that is not also a descendant of another element in the filtered view that is
a decsendant of the row's element. (This is analogous to the image case above.)

getRowClasses(i, classes) must add the classes from the following list to classes

when their condition is met:

If the row's element contains other elements that are also in the view, and the
element's class attribute contains the closed class: initially-closed

If the row's element contains other elements that are also in the view, and the
element's class attribute contains the open class: initially-open

If the row's element is an h1-h6 element: header

If the row's element is an hr element: separator

The getCellData(i, j), getCellClasses(i, j, classes),

getCellCheckedState(i, j, state), cycleCell(i, j), and editCell(i,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

224 of 458 30/12/2020, 08:08

j, data) methods must act as described in the common definitions below, treating the

row's element as being the cell's element.

selection handling?

The data provider must call the datagrid's update methods appropriately whenever the

descendants of the datagrid mutate.

↪ Otherwise, while there is no element child

The data provider must return 0 for the number of rows, 1 for the number of columns, the
empty string for the first column's caption, and must add no classes when asked for that
column's classes. If the datagrid's child list changes such that there is a first element

child, then the data provider must call the updateEverything() method on the

datagrid.

3.18.2.4.1. C඗ඕඕ඗ඖ ඌඍඎඉඝඔග ඌඉගඉ ඘ක඗ඞඑඌඍක ඕඍගඐ඗ඌ ඌඍඎඑඖඑගඑ඗ඖඛ ඎ඗ක උඍඔඔඛ

These definitions are used for the cell-specific methods of the default data providers (other than in
the select/datalist case). How they behave is based on the contents of an element that

represents the cell given by their first two arguments. Which element that is is defined in the
previous section.

Cyclable cells

If the first element child of a cell's element is a select element that has a no multiple

attribute and has at least one option element descendent, then the cell acts as a cyclable

cell.

The "current" option element is the selected option element, or the first option element if

none is selected.

The getCellData() method must return the textContent of the current option element

(the label attribute is ignored in this context as the optgroups are not displayed).

The getCellClasses() method must add the cyclable class and then all the classes of

the current option element.

The cycleCell() method must change the selection of the select element such that the

next option element after the current option element is the only one that is selected (in

tree order). If the current option element is the last option element descendent of the

select, then the first option element descendent must be selected instead.

The setCellCheckedState() and editCell() methods must do nothing.

Progress bar cells

If the first element child of a cell's element is a progress element, then the cell acts as a

progress bar cell.

The getCellData() method must return the value returned by the progress element's

position DOM attribute.

The getCellClasses() method must add the progress class.

The setCellCheckedState(), cycleCell(), and editCell() methods must do

nothing.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

225 of 458 30/12/2020, 08:08

Checkbox cells

If the first element child of a cell's element is an input element that has a type attribute with

the value checkbox, then the cell acts as a check box cell.

The getCellData() method must return the textContent of the cell element.

The getCellClasses() method must add the checked class if the input element is

checked, and the unchecked class otherwise.

The setCellCheckedState() method must set the input element's checkbox state to

checked if the method's third argument is 1, and to unchecked otherwise.

The cycleCell() and editCell() methods must do nothing.

Editable cells

If the first element child of a cell's element is an input element that has a type attribute with

the value text or that has no type attribute at all, then the cell acts as an editable cell.

The getCellData() method must return the value of the input element.

The getCellClasses() method must add the editable class.

The editCell() method must set the input element's value DOM attribute to the value of

the third argument to the method.

The setCellCheckedState() and cycleCell() methods must do nothing.

3.18.2.5. Populating the datagrid element

A datagrid must be disabled until its end tag has been parsed (in the case of a datagrid

element in the original document markup) or until it has been inserted into the document (in the case
of a dynamically created element). After that point, the element must fire a single load event at

itself, which doesn't bubble and cannot be canceled.

The end-tag parsing thing should be moved to the parsing section.

The datagrid must then populate itself using the data provided by the data provider assigned to

the data DOM attribute. After the view is populated (using the methods described below), the

datagrid must invoke the initialize() method on the data provider specified by the data

attribute, passing itself (the HTMLDataGridElement object) as the only argument.

When the data attribute is null, the datagrid must use the default data provider described in the

previous section.

To obtain data from the data provider, the element must invoke methods on the data provider object
in the following ways:

To determine the total number of columns

Invoke the getColumnCount() method with no arguments. The return value is the number

of columns. If the return value is zero or negative, not an integer, or simply not a numeric
type, or if the method is not defined, then 1 must be used instead.

To get the captions to use for the columns

Invoke the getCaptionText() method with the index of the column in question. The index i

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

226 of 458 30/12/2020, 08:08

must be in the range 0 ≤ i < N, where N is the total number of columns. The return value is
the string to use when referring to that column. If the method returns null or the empty string,
the column has no caption. If the method is not defined, then none of the columns have any
captions.

To establish what classes apply to a column

Invoke the getCaptionClasses() method with the index of the column in question, and an

object implementing the DOMTokenList interface, associated with an anonymous empty

string. The index i must be in the range 0 ≤ i < N, where N is the total number of columns. The
tokens contained in the string underlying DOMTokenList object when the method returns

represent the classes that apply to the given column. If the method is not defined, no classes
apply to the column.

To establish whether a column should be initially included in the visible columns

Check whether the initially-hidden class applies to the column. If it does, then the

column should not be initially included; if it does not, then the column should be initially
included.

To establish whether the data can be sorted relative to a particular column

Check whether the sortable class applies to the column. If it does, then the user should be

able to ask the UA to display the data sorted by that column; if it does not, then the user
agent must not allow the user to ask for the data to be sorted by that column.

To establish if a column is a sorted column

If the user agent can handle multiple columns being marked as sorted simultaneously: Check
whether the sorted class applies to the column. If it does, then that column is the sorted

column, otherwise it is not.
If the user agent can only handle one column being marked as sorted at a time: Check each
column in turn, starting with the first one, to see whether the sorted class applies to that

column. The first column that has that class, if any, is the sorted column. If none of the
columns have that class, there is no sorted column.

To establish the sort direction of a sorted column

Check whether the reversed class applies to the column. If it does, then the sort direction is

descending (down; first rows have the highest values), otherwise it is ascending (up; first
rows have the lowest values).

To determine the total number of rows

Determine the number of rows for the root of the data grid, and determine the number of child
rows for each open row. The total number of rows is the sum of all these numbers.

To determine the number of rows for the root of the data grid

Invoke the getRowCount() method with a RowSpecification object representing the

empty path as its only argument. The return value is the number of rows at the top level of the
data grid. If the return value of the method is negative, not an integer, or simply not a numeric
type, or if the method is not defined, then zero must be used instead.

To determine the number of child rows for a row

Invoke the getRowCount() method with a RowSpecification object representing the

path to the row in question. The return value is the number of child rows for the given row. If
the return value of the method is negative, not an integer, or simply not a numeric type, or if
the method is not defined, then zero must be used instead.

To determine what order to render rows in

Invoke the getChildAtPosition() method with a RowSpecification object

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

227 of 458 30/12/2020, 08:08

representing the path to the parent of the rows that are being rendered as the first argument,
and the position that is being rendered as the second argument. The return value is the index
of the row to render in that position.

If the rows are:

1. Row "0"

1. Row "0,0"

2. Row "0,1"

2. Row "1"

1. Row "1,0"

2. Row "1,1"

...and the getChildAtPosition() method is implemented as follows:

function getChildAtPosition(parent, child) {
 // always return the reverse order
 return getRowCount(parent)-child-1;
}

...then the rendering would actually be:

1. Row "1"

1. Row "1,1"

2. Row "1,0"

2. Row "0"

1. Row "0,1"

2. Row "0,0"

If the return value of the method is negative, larger than the number of rows that the
getRowCount() method reported for that parent, not an integer, or simply not a numeric

type, then the entire data grid should be disabled. Similarly, if the method returns the same
value for two or more different values for the second argument (with the same first argument,
and assuming that the data grid hasn't had relevant update methods invoked in the
meantime), then the data grid should be disabled. Instead of disabling the data grid, the user
agent may act as if the getChildAtPosition() method was not defined on the data

provider (thus disabling sorting for that data grid, but still letting the user interact with the
data). If the method is not defined, then the return value must be assumed to be the same as
the second argument (an indentity transform; the data is rendered in its natural order).

To establish what classes apply to a row

Invoke the getRowClasses() method with a RowSpecification object representing the

row in question, and a DOMTokenList associated with an empty string. The tokens

contained in the DOMTokenList object's underlying string when the method returns

represent the classes that apply to the row in question. If the method is not defined, no
classes apply to the row.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

228 of 458 30/12/2020, 08:08

To establish whether a row is a data row or a special row

Examine the classes that apply to the row. If the header class applies to the row, then it is

not a data row, it is a subheading. The data from the first cell of the row is the text of the
subheading, the rest of the cells must be ignored. Otherwise, if the separator class applies

to the row, then in the place of the row, a separator should be shown. Otherwise, if the
selectable-separator class applies to the row, then the row should be a data row, but

represented as a separator. (The difference between a separator and a selectable-

separator is that the former is not an item that can be actually selected, whereas the

second can be selected and thus has a context menu that applies to it, and so forth.) For both
kinds of separator rows, the data of the rows' cells must all be ignored. If none of those three
classes apply then the row is a simple data row.

To establish whether a row is openable

Determine the number of child rows for that row. If there are one or more child rows, then the
row is openable.

To establish whether a row should be initially open or closed

If the row is openable, examine the classes that apply to the row. If the initially-open

class applies to the row, then it should be initially open. Otherwise, if the initially-

closed class applies to the row, then it must be initially closed. Otherwise, if neither class

applies to the row, or if the row is not openable, then the initial state of the row is entirely up to
the UA.

To obtain a URI to an image representing a row

Invoke the getRowImage() method with a RowSpecification object representing the row

in question. The return value is a string representing a URI (or IRI) to an image. Relative URIs
must be interpreted relative to the datagrid's base URI. If the method returns the empty

string, null, or if the method is not defined, then the row has no associated image.

To obtain a context menu appropriate for a particular row

Invoke the getRowMenu() method with a RowSpecification object representing the row

in question. The return value is a reference to an object implementing the
HTMLMenuElement interface, i.e. a menu element DOM node. (This element must then be

interpreted as described in the section on context menus to obtain the actual context menu to
use.) If the method returns something that is not an HTMLMenuElement, or if the method is

not defined, then the row has no associated context menu. User agents may provide their
own default context menu, and may add items to the author-provided context menu. For
example, such a menu could allow the user to change the presentation of the datagrid

element.

To establish the value of a particular cell

Invoke the getCellData() method with the first argument being a RowSpecification

object representing the row of the cell in question and the second argument being the index
of the cell's column. The second argument must be a non-negative integer less than the total
number of columns. The return value is the value of the cell. If the return value is null or the
empty string, or if the method is not defined, then the cell has no data. (For progress bar cells,
the cell's value must be further interpreted, as described below.)

To establish what classes apply to a cell

Invoke the getCellClasses() method with the first argument being a

RowSpecification object representing the row of the cell in question, the second

argument being the index of the cell's column, and the third being an object implementing the
DOMTokenList interface, associated with an empty string. The second argument must be a

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

229 of 458 30/12/2020, 08:08

non-negative integer less than the total number of columns. The tokens contained in the
DOMTokenList object's underlying string when the method returns represent the classes

that apply to that cell. If the method is not defined, no classes apply to the cell.

To establish how the type of a cell

Examine the classes that apply to the cell. If the progress class applies to the cell, it is a

progress bar. Otherwise, if the cyclable class applies to the cell, it is a cycling cell whose

value can be cycled between multiple states. Otherwise, none of these classes apply, and the
cell is a simple text cell.

To establish the value of a progress bar cell

If the value x of the cell is a string that can be converted to a floating-point number in the
range 0.0 ≤ x ≤ 1.0, then the progress bar has that value (0.0 means no progress, 1.0 means
complete). Otherwise, the progress bar is an indeterminate progress bar.

To establish how a simple text cell should be presented

Check whether one of the checked, unchecked, or indeterminate classes applies to the

cell. If any of these are present, then the cell has a checkbox, otherwise none are present and
the cell does not have a checkbox. If the cell has no checkbox, check whether the editable

class applies to the cell. If it does, then the cell value is editable, otherwise the cell value is
static.

To establish the state of a cell's checkbox, if it has one

Check whether the checked class applies to the cell. If it does, the cell is checked.

Otherwise, check whether the unchecked class applies to the cell. If it does, the cell is

unchecked. Otherwise, the indeterminate class appplies to the cell and the cell's

checkbox is in an indeterminate state. When the indeterminate class appplies to the cell,

the checkbox is a tristate checkbox, and the user can set it to the indeterminate state.
Otherwise, only the checked and/or unchecked classes apply to the cell, and the cell can

only be toggled betwen those two states.

If the data provider ever raises an exception while the datagrid is invoking one of its methods, the

datagrid must act, for the purposes of that particular method call, as if the relevant method had

not been defined.

A RowSpecification object p with n path components passed to a method of the data provider

must fulfill the constraint 0 ≤ p < m-1 for all integer values of i in the range 0 ≤ i < n-1, where m is the
value that was last returned by the getRowCount() method when it was passed the

RowSpecification object q with i-1 items, where p = q for all integer values of i in the range

0 ≤ i < n-1, with any changes implied by the update methods taken into account.

The data model is considered stable: user agents may assume that subsequent calls to the data
provider methods will return the same data, until one of the update methods is called on the
datagrid element. If a user agent is returned inconsistent data, for example if the number of rows

returned by getRowCount() varies in ways that do not match the calls made to the update

methods, the user agent may disable the datagrid. User agents that do not disable the datagrid

in inconsistent cases must honour the most recently returned values.

User agents may cache returned values so that the data provider is never asked for data that could
contradict earlier data. User agents must not cache the return value of the getRowMenu method.

The exact algorithm used to populate the data grid is not defined here, since it will differ based on
the presentation used. However, the behaviour of user agents must be consistent with the
descriptions above. For example, it would be non-conformant for a user agent to make cells have

i

i i

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

230 of 458 30/12/2020, 08:08

both a checkbox and be editable, as the descriptions above state that cells that have a checkbox
cannot be edited.

3.18.2.6. Updating the datagrid

Whenever the data attribute is set to a new value, the datagrid must clear the current selection,

remove all the displayed rows, and plan to repopulate itself using the information from the new data
provider at the earliest opportunity.

There are a number of update methods that can be invoked on the datagrid element to cause it to

refresh itself in slightly less drastic ways:

When the updateEverything() method is called, the user agent must repopulate the entire

datagrid. If the number of rows decreased, the selection must be updated appropriately. If the

number of rows increased, the new rows should be left unselected.

When the updateRowsChanged(row, count) method is called, the user agent must refresh the

rendering of the rows starting from the row specified by row, and including the count next siblings of
the row (or as many next siblings as it has, if that is less than count), including all descendant rows.

When the updateRowsInserted(row, count) method is called, the user agent must assume

that count new rows have been inserted, such that the first new row is indentified by row. The user
agent must update its rendering and the selection accordingly. The new rows should not be
selected.

When the updateRowsRemoved(row, count) method is called, the user agent must assume

that count rows have been removed starting from the row that used to be identifier by row. The user
agent must update its rendering and the selection accordingly.

The updateRowChanged(row) method must be exactly equivalent to calling

updateRowsChanged(row, 1).

When the updateColumnChanged(column) method is called, the user agent must refresh the

rendering of the specified column column, for all rows.

When the updateCellChanged(row, column) method is called, the user agent must refresh

the rendering of the cell on row row, in column column.

Any effects the update methods have on the datagrid's selection is not considered a change to

the selection, and must therefore not fire the select event.

These update methods should only be called by the data provider, or code acting on behalf of the
data provider. In particular, calling the updateRowsInserted() and updateRowsRemoved()

methods without actually inserting or removing rows from the data provider is likely to result in
inconsistent renderings, and the user agent is likely to disable the data grid.

3.18.2.7. Requirements for interactive user agents

This section only applies to interactive user agents.

If the datagrid element has a disabled attribute, then the user agent must disable the

datagrid, preventing the user from interacting with it. The datagrid element should still continue

to update itself when the data provider signals changes to the data, though. Obviously, conformance
requirements stating that datagrid elements must react to users in particular ways do not apply

when one is disabled.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

231 of 458 30/12/2020, 08:08

If a row is openable, then the user should be able to toggle its open/closed state. When a row's
open/closed state changes, the user agent must update the rendering to match the new state.

If a cell is a cell whose value can be cycled between multiple states, then the user must be able to
activate the cell to cycle its value. When the user activates this "cycling" behaviour of a cell, then the
datagrid must invoke the data provider's cycleCell() method, with a RowSpecification

object representing the cell's row as the first argument and the cell's column index as the second.
The datagrid must act as if the datagrid's updateCellChanged() method had been invoked

with those same arguments immediately before the provider's method was invoked.

When a cell has a checkbox, the user must be able to set the checkbox's state. When the user
changes the state of a checkbox in such a cell, the datagrid must invoke the data provider's

setCellCheckedState() method, with a RowSpecification object representing the cell's row

as the first argument, the cell's column index as the second, and the checkbox's new state as the
third. The state should be represented by the number 1 if the new state is checked, 0 if the new
state is unchecked, and -1 if the new state is indeterminate (which must only be possible if the cell
has the indeterminate class set). The datagrid must act as if the datagrid's

updateCellChanged() method had been invoked, specifying the same cell, immediately before

the provider's method was invoked.

If a cell is editable, the user must be able to edit the data for that cell, and doing so must cause the
user agent to invoke the editCell() method of the data provider with three arguments: a

RowSpecification object representing the cell's row, the cell's column's index, and the new text

entered by the user. The user agent must act as if the updateCellChanged() method had been

invoked, with the same row and column specified, immediately before the provider's method was
invoked.

3.18.2.8. The selection

This section only applies to interactive user agents. For other user agents, the selection attribute

must return null.

interface DataGridSelection {
 readonly attribute unsigned long length;

RowSpecification item(in unsigned long index);
 boolean isSelected(in RowSpecification row);
 void setSelected(in RowSpecification row, in boolean selected);

 void selectAll();
 void invert();
 void clear();
};

Each datagrid element must keep track of which rows are currently selected. Initially no rows are

selected, but this can be changed via the methods described in this section.

The selection of a datagrid is represented by its selection DOM attribute, which must be a

DataGridSelection object.

DataGridSelection objects represent the rows in the selection. In the selection the rows must be

ordered in the natural order of the data provider (and not, e.g., the rendered order). Rows that are
not rendered because one of their ancestors is closed must share the same selection state as their
nearest rendered ancestor. Such rows are not considered part of the selection for the purposes of

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

232 of 458 30/12/2020, 08:08

iterating over the selection.

Note: This selection API doesn't allow for hidden rows to be selected because it is
trivial to create a data provider that has infinite depth, which would then require the
selection to be infinite if every row, including every hidden row, was selected.

The length attribute must return the number of rows currently present in the selection. The

item(index) method must return the indexth row in the selection. If the argument is out of range

(less than zero or greater than the number of selected rows minus one), then it must raise an
INDEX_SIZE_ERR exception. [DOM3CORE]

The isSelected() method must return the selected state of the row specified by its argument. If

the specified row exists and is selected, it must return true, otherwise it must return false.

The setSelected() method takes two arguments, row and selected. When invoked, it must set

the selection state of row row to selected if selected is true, and unselected if it is false. If row is not
a row in the data grid, the method must raise an INDEX_SIZE_ERR exception. If the specified row is

not rendered because one of its ancestors is closed, the method must do nothing.

The selectAll() method must mark all the rows in the data grid as selected. After a call to

selectAll(), the length attribute will return the number of rows in the data grid, not counting

children of closed rows.

The invert() method must cause all the rows in the selection that were marked as selected to

now be marked as not selected, and vice versa.

The clear() method must mark all the rows in the data grid to be marked as not selected. After a

call to clear(), the length attribute will return zero.

If the datagrid element has a multiple attribute, then the user must be able to select any

number of rows (zero or more). If the attribute is not present, then the user must only be able to
select a single row at a time, and selecting another one must unselect all the other rows.

Note: This only applies to the user. Scripts can select multiple rows even when the
multiple attribute is absent.

Whenever the selection of a datagrid changes, whether due to the user interacting with the

element, or as a result of calls to methods of the selection object, a select event that bubbles

but is not cancelable must be fired on the datagrid element. If changes are made to the selection

via calls to the object's methods during the execution of a script, then the select events must be

coalesced into one, which must then be fired when the script execution has completed.

Note: The DataGridSelection interface has no relation to the Selection interface.

3.18.2.9. Columns and captions

This section only applies to interactive user agents.

Each datagrid element must keep track of which columns are currently being rendered. User

agents should initially show all the columns except those with the initially-hidden class, but

may allow users to hide or show columns. User agents should initially display the columns in the
order given by the data provider, but may allow this order to be changed by the user.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

233 of 458 30/12/2020, 08:08

If columns are not being used, as might be the case if the data grid is being presented in an icon
view, or if an overview of data is being read in an aural context, then the text of the first column of
each row should be used to represent the row.

If none of the columns have any captions (i.e. if the data provider does not provide a
getCaptionText() method), then user agents may avoid showing the column headers at all. This

may prevent the user from performing actions on the columns (such as reordering them, changing
the sort column, and so on).

Note: Whatever the order used for rendering, and irrespective of what columns are
being shown or hidden, the "first column" as referred to in this specification is
always the column with index zero, and the "last column" is always the column with
the index one less than the value returned by the getColumnCount() method of the

data provider.

If a column is sortable, then the user must be able to invoke it to sort the data. When the user does
so, then the datagrid must invoke the data provider's toggleColumnSortState() method, with

the column's index as the only argument. The datagrid must then act as if the datagrid's

updateEverything() method had been invoked.

3.18.3. The command element

Categories

Metadata content.
Phrasing content.

Contexts in which this element may be used:

Where metadata content is expected.
Where phrasing content is expected.

Content model:

Empty.

Element-specific attributes:

type

label

icon

hidden

disabled

checked

radiogroup

default

Also, the title attribute has special semantics on this element.

DOM interface:

interface HTMLCommandElement : HTMLElement {
 attribute DOMString type;
 attribute DOMString label;
 attribute DOMString icon;
 attribute boolean hidden;
 attribute boolean disabled;
 attribute boolean checked;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

234 of 458 30/12/2020, 08:08

 attribute DOMString radiogroup;
 attribute boolean default;
 void click(); // shadows HTMLElement.click()
};

The Command interface must also be implemented by this element.

The command element represents a command that the user can invoke.

The type attribute indicates the kind of command: either a normal command with an associated

action, or a state or option that can be toggled, or a selection of one item from a list of items.

The attribute's value must be either "command", "checkbox", or "radio", denoting each of these

three types of commands respectively. The attribute may also be omitted if the element is to
represent the first of these types, a simple command.

The label attribute gives the name of the command, as shown to the user.

The title attribute gives a hint describing the command, which might be shown to the user to help

him.

The icon attribute gives a picture that represents the command. If the attribute is specified, the

attribute's value must contain a URI (or IRI).

The hidden attribute is a boolean attribute that, if present, indicates that the command is not

relevant and is to be hidden.

The disabled attribute is a boolean attribute that, if present, indicates that the command is not

available in the current state.

Note: The distinction between Disabled State and Hidden State is subtle. A command
should be Disabled if, in the same context, it could be enabled if only certain aspects
of the situation were changed. A command should be marked as Hidden if, in that
situation, the command will never be enabled. For example, in the context menu for a
water faucet, the command "open" might be Disabled if the faucet is already open,
but the command "eat" would be marked Hidden since the faucet could never be
eaten.

The checked attribute is a boolean attribute that, if present, indicates that the command is selected.

The radiogroup attribute gives the name of the group of commands that will be toggled when the

command itself is toggled, for commands whose type attribute has the value "radio". The scope of

the name is the child list of the parent element.

If the command element is used when generating a context menu, then the default attribute

indicates, if present, that the command is the one that would have been invoked if the user had
directly activated the menu's subject instead of using its context menu. The default attribute is a

boolean attribute.

Need an example that shows an element that, if double-clicked, invokes an action, but that
also has a context menu, showing the various command attributes off, and that has a default

command.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

235 of 458 30/12/2020, 08:08

The type, label, icon, hidden, disabled, checked, radiogroup, and default DOM

attributes must reflect their respective namesake content attributes.

The click() method's behaviour depends on the value of the type attribute of the element, as

follows:

↪ If the type attribute has the value checkbox

If the element has a checked attribute, the UA must remove that attribute. Otherwise,

the UA must add a checked attribute, with the literal value checked. The UA must then

fire a click event at the element.

↪ If the type attribute has the value radio

If the element has a parent, then the UA must walk the list of child nodes of that parent
element, and for each node that is a command element, if that element has a

radiogroup attribute whose value exactly matches the current element's (treating

missing radiogroup attributes as if they were the empty string), and has a checked

attribute, must remove that attribute and fire a click event at the element.

Then, the element's checked attribute attribute must be set to the literal value checked

and a click event must be fired at the element.

↪ Otherwise

The UA must fire a click event at the element.

Note: Firing a synthetic click event at the element does not cause any of the

actions described above to happen.

should change all the above so it actually is just trigged by a click event, then we could remove
the shadowing click() method and rely on actual events.

Need to define the command="" attribute

Note: command elements are not rendered unless they form part of a menu.

3.18.4. The menu element

Categories

Prose content.
If there is a menu element ancestor: phrasing content.

Contexts in which this element may be used:

Where prose content is expected.
If there is a menu element ancestor: where phrasing content is expected.

Content model:

Either: Zero or more li elements.

Or: Phrasing content.

Element-specific attributes:

type

label

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

236 of 458 30/12/2020, 08:08

autosubmit

DOM interface:

interface HTMLMenuElement : HTMLElement {
 attribute DOMString type;
 attribute DOMString label;
 attribute boolean autosubmit;
};

The menu element represents a list of commands.

The type attribute is an enumerated attribute indicating the kind of menu being declared. The

attribute has three states. The context keyword maps to the context menu state, in which the

element is declaring a context menu. The toolbar keyword maps to the tool bar state, in which the

element is declaraing a tool bar. The attribute may also be omitted. The missing value default is the
list state, which indicates that the element is merely a list of commands that is neither declaring a
context menu nor defining a tool bar.

If a menu element's type attribute is in the context menu state, then the element represents the

commands of a context menu, and the user can only interact with the commands if that context
menu is activated.

If a menu element's type attribute is in the tool bar state, then the element represents a list of active

commands that the user can immediately interact with.

If a menu element's type attribute is in the list state, then the element either represents an

unordered list of items (each represented by an li element), each of which represents a command

that the user may perform or activate, or, if the element has no li element children, prose content

describing available commands.

The label attribute gives the label of the menu. It is used by user agents to display nested menus

in the UI. For example, a context menu containing another menu would use the nested menu's
label attribute for the submenu's menu label.

The autosubmit attribute is a boolean attribute that, if present, indicates that selections made to

form controls in this menu are to result in the control's form being immediately submitted.

If a change event bubbles through a menu element, then, in addition to any other default action that

that event might have, the UA must act as if the following was an additional default action for that
event: if (when it comes time to execute the default action) the menu element has an autosubmit

attribute, and the target of the event is an input element, and that element has a type attribute

whose value is either radio or checkbox, and the input element in question has a non-null form

DOM attribute, then the UA must invoke the submit() method of the form element indicated by

that DOM attribute.

3.18.4.1. Introduction

This section is non-normative.

...

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

237 of 458 30/12/2020, 08:08

3.18.4.2. Building menus and tool bars

A menu (or tool bar) consists of a list of zero or more of the following components:

Commands, which can be marked as default commands
Separators
Other menus (which allows the list to be nested)

The list corresponding to a particular menu element is built by iterating over its child nodes. For each

child node in tree order, the required behaviour depends on what the node is, as follows:

↪ An element that defines a command

Append the command to the menu. If the element is a command element with a default

attribute, mark the command as being a default command.

↪ An hr element

↪ An option element that has a value attribute set to the empty string, and has a

disabled attribute, and whose textContent consists of a string of one or more

hyphens (U+002D HYPHEN-MINUS)

Append a separator to the menu.

↪ An li element

Iterate over the children of the li element.

↪ A menu element with no label attribute

↪ A select element

Append a separator to the menu, then iterate over the children of the menu or select

element, then append another separator.

↪ A menu element with a label attribute

↪ An optgroup element

Append a submenu to the menu, using the value of the element's label attribute as the

label of the menu. The submenu must be constructed by taking the element and creating
a new menu for it using the complete process described in this section.

↪ Any other node

Ignore the node.

Once all the nodes have been processed as described above, the user agent must the post-process
the menu as follows:

1. Any menu item with no label, or whose label is the empty string, must be removed.

2. Any sequence of two or more separators in a row must be collapsed to a single separator.

3. Any separator at the start or end of the menu must be removed.

3.18.4.3. Context menus

The contextmenu attribute gives the element's context menu. The value must be the ID of a menu

element in the DOM. If the node that would be obtained by the invoking the getElementById()

method using the attribute's value as the only argument is null or not a menu element, then the

element has no assigned context menu. Otherwise, the element's assigned context menu is the
element so identified.

When an element's context menu is requested (e.g. by the user right-clicking the element, or

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

238 of 458 30/12/2020, 08:08

pressing a context menu key), the UA must fire a contextmenu event on the element for which the

menu was requested.

Note: Typically, therefore, the firing of the contextmenu event will be the default

action of a mouseup or keyup event. The exact sequence of events is UA-dependent,

as it will vary based on platform conventions.

The default action of the contextmenu event depends on whether the element has a context menu

assigned (using the contextmenu attribute) or not. If it does not, the default action must be for the

user agent to show its default context menu, if it has one.

If the element does have a context menu assigned, then the user agent must fire a show event on

the relevant menu element.

The default action of this event is that the user agent must show a context menu built from the menu

element.

The user agent may also provide access to its default context menu, if any, with the context menu
shown. For example, it could merge the menu items from the two menus together, or provide the
page's context menu as a submenu of the default menu.

If the user dismisses the menu without making a selection, nothing in particular happens.

If the user selects a menu item that represents a command, then the UA must invoke that
command's Action.

Context menus must not, while being shown, reflect changes in the DOM; they are constructed as
the default action of the show event and must remain like that until dismissed.

User agents may provide means for bypassing the context menu processing model, ensuring that
the user can always access the UA's default context menus. For example, the user agent could
handle right-clicks that have the Shift key depressed in such a way that it does not fire the
contextmenu event and instead always shows the default context menu.

The contextMenu attribute must reflect the contextmenu content attribute.

3.18.4.4. Toolbars

Toolbars are a kind of menu that is always visible.

When a menu element has a type attribute with the value toolbar, then the user agent must build

the menu for that menu element and render it in the document in a position appropriate for that menu

element.

The user agent must reflect changes made to the menu's DOM immediately in the UI.

3.18.5. Commands

A command is the abstraction behind menu items, buttons, and links. Once a command is defined,
other parts of the interface can refer to the same command, allowing many access points to a single
feature to share aspects such as the disabled state.

Commands are defined to have the following facets:

Type

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

239 of 458 30/12/2020, 08:08

The kind of command: "command", meaning it is a normal command; "radio", meaning that
triggering the command will, amongst other things, set the Checked State to true (and
probably uncheck some other commands); or "checkbox", meaning that triggering the
command will, amongst other things, toggle the value of the Checked State.

ID

The name of the command, for referring to the command from the markup or from script. If a
command has no ID, it is an anonymous command.

Label

The name of the command as seen by the user.

Hint

A helpful or descriptive string that can be shown to the user.

Icon

A graphical image that represents the action.

Hidden State

Whether the command is hidden or not (basically, whether it should be shown in menus).

Disabled State

Whether the command can be triggered or not. If the Hidden State is true (hidden) then the
Disabled State will be true (disabled) regardless.

Checked State

Whether the command is checked or not.

Action

The actual effect that triggering the command will have. This could be a scripted event
handler, a URI to which to navigate, or a form submission.

Triggers

The list of elements that can trigger the command. The element defining a command is
always in the list of elements that can trigger the command. For anonymous commands, only
the element defining the command is on the list, since other elements have no way to refer to
it.

Commands are represented by elements in the DOM. Any element that can define a command also
implements the Command interface:

interface Command {
 readonly attribute DOMString commandType;
 readonly attribute DOMString id;
 readonly attribute DOMString label;
 readonly attribute DOMString title;
 readonly attribute DOMString icon;
 readonly attribute boolean hidden;
 readonly attribute boolean disabled;
 readonly attribute boolean checked;
 void click();
 readonly attribute HTMLCollection triggers;
 readonly attribute Command command;
};

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

240 of 458 30/12/2020, 08:08

The Command interface is implemented by any element capable of defining a command. (If an

element can define a command, its definition will list this interface explicitly.) All the attributes of the
Command interface are read-only. Elements implementing this interface may implement other

interfaces that have attributes with identical names but that are mutable; in bindings that simply
flatten all supported interfaces on the object, the mutable attributes must shadow the readonly
attributes defined in the Command interface.

The commandType attribute must return a string whose value is either "command", "radio", or

"checked", depending on whether the Type of the command defined by the element is "command",

"radio", or "checked" respectively. If the element does not define a command, it must return null.

The id attribute must return the command's ID, or null if the element does not define a command or

defines an anonymous command. This attribute will be shadowed by the id DOM attribute on the

HTMLElement interface.

The label attribute must return the command's Label, or null if the element does not define a

command or does not specify a Label. This attribute will be shadowed by the label DOM attribute

on option and command elements.

The title attribute must return the command's Hint, or null if the element does not define a

command or does not specify a Hint. This attribute will be shadowed by the title DOM attribute on

the HTMLElement interface.

The icon attribute must return an absolute URI to the command's Icon. If the element does not

specify an icon, or if the element does not define a command, then the attribute must return null.
This attribute will be shadowed by the icon DOM attribute on command elements.

The hidden attribute must return true if the command's Hidden State is that the command is

hidden, and false if it is that the command is not hidden. If the element does not define a command,
the attribute must return false. This attribute will be shadowed by the hidden DOM attribute on

command elements.

The disabled attribute must return true if the command's Disabled State is that the command is

disabled, and false if the command is not disabled. This attribute is not affected by the command's
Hidden State. If the element does not define a command, the attribute must return false. This
attribute will be shadowed by the disabled attribute on button, input, option, and command

elements.

The checked attribute must return true if the command's Checked State is that the command is

checked, and false if it is that the command is not checked. If the element does not define a
command, the attribute must return false. This attribute will be shadowed by the checked attribute

on input and command elements.

The click() method must trigger the Action for the command. If the element does not define a

command, this method must do nothing. This method will be shadowed by the click() method on

HTML elements, and is included only for completeness.

The triggers attribute must return a list containing the elements that can trigger the command (the

command's Triggers). The list must be live. While the element does not define a command, the list
must be empty.

The commands attribute of the document's HTMLDocument interface must return an

HTMLCollection rooted at the Document node, whose filter matches only elements that define

commands and have IDs.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

241 of 458 30/12/2020, 08:08

The following elements can define commands: a, button, input, option, command.

3.18.5.1. Using the a element to define a command

An a element with an href attribute defines a command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is present and

not empty. Otherwise the command is an anonymous command.

The Label of the command is the string given by the element's textContent DOM attribute.

The Hint of the command is the value of the title attribute of the a element. If the attribute is not

present, the Hint is the empty string.

The Icon of the command is the absolute URI of the first image in the element. Specifically, in a
depth-first search of the children of the element, the first element that is img element with a src

attribute is the one that is used as the image. The URI must be taken from the element's src

attribute. Relative URIs must be resolved relative to the base URI of the image element. If no image
is found, then the Icon facet is left blank.

The Hidden State and Disabled State facets of the command are always false. (The command is
always enabled.)

The Checked State of the command is always false. (The command is never checked.)

The Action of the command is to fire a click event at the element.

3.18.5.2. Using the button element to define a command

A button element always defines a command.

The Type, ID, Label, Hint, Icon, Hidden State, Checked State, and Action facets of the command are
determined as for a elements (see the previous section).

The Disabled State of the command mirrors the disabled state of the button. Typically this is given
by the element's disabled attribute, but certain button types become disabled at other times too

(for example, the move-up button type is disabled when it would have no effect).

3.18.5.3. Using the input element to define a command

An input element whose type attribute is one of submit, reset, button, radio, checkbox,

move-up, move-down, add, and remove defines a command.

The Type of the command is "radio" if the type attribute has the value radio, "checkbox" if the

type attribute has the value checkbox, and "command" otherwise.

The ID of the command is the value of the id attribute of the element, if the attribute is present and

not empty. Otherwise the command is an anonymous command.

The Label of the command depends on the Type of the command:

If the Type is "command", then it is the string given by the value attribute, if any, and a UA-

dependent value that the UA uses to label the button itself if the attribute is absent.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

242 of 458 30/12/2020, 08:08

Otherwise, the Type is "radio" or "checkbox". If the element has a label element associated with it,

the textContent of the first such element is the Label (in DOM terms, this the string given by

element.labels[0].textContent). Otherwise, the value of the value attribute, if present, is

the Label. Otherwise, the Label is the empty string.

The Hint of the command is the value of the title attribute of the input element. If the attribute is

not present, the Hint is the empty string.

There is no Icon for the command.

The Hidden State of the command is always false. (The command is never hidden.)

The Disabled State of the command mirrors the disabled state of the control. Typically this is given
by the element's disabled attribute, but certain input types become disabled at other times too (for

example, the move-up input type is disabled when it would have no effect).

The Checked State of the command is true if the command is of Type "radio" or "checkbox" and the
element has a checked attribute, and false otherwise.

The Action of the command is to fire a click event at the element.

3.18.5.4. Using the option element to define a command

An option element with an ancestor select element and either no value attribute or a value

attribute that is not the empty string defines a command.

The Type of the command is "radio" if the option's nearest ancestor select element has no

multiple attribute, and "checkbox" if it does.

The ID of the command is the value of the id attribute of the element, if the attribute is present and

not empty. Otherwise the command is an anonymous command.

The Label of the command is the value of the option element's label attribute, if there is one, or

the value of the option element's textContent DOM attribute if it doesn't.

The Hint of the command is the string given by the element's title attribute, if any, and the empty

string if the attribute is absent.

There is no Icon for the command.

The Hidden State of the command is always false. (The command is never hidden.)

The Disabled State of the command is true (disabled) if the element has a disabled attribute, and

false otherwise.

The Checked State of the command is true (checked) if the element's selected DOM attribute is

true, and false otherwise.

The Action of the command depends on its Type. If the command is of Type "radio" then this must
set the selected DOM attribute of the option element to true, otherwise it must toggle the state of

the selected DOM attribute (set it to true if it is false and vice versa). Then a change event must

be fired on the option element's nearest ancestor select element (if there is one), as if the

selection had been changed directly.

3.18.5.5. Using the command element to define a command

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

243 of 458 30/12/2020, 08:08

A command element defines a command.

The Type of the command is "radio" if the command's type attribute is "radio", "checkbox" if the

attribute's value is "checkbox", and "command" otherwise.

The ID of the command is the value of the id attribute of the element, if the attribute is present and

not empty. Otherwise the command is an anonymous command.

The Label of the command is the value of the element's label attribute, if there is one, or the empty

string if it doesn't.

The Hint of the command is the string given by the element's title attribute, if any, and the empty

string if the attribute is absent.

The Icon for the command is the absolute URI resulting from resolving the value of the element's
icon attribute as a URI relative to the element's base URI. If the element has no icon attribute then

the command has no Icon.

The Hidden State of the command is true (hidden) if the element has a hidden attribute, and false

otherwise.

The Disabled State of the command is true (disabled) if the element has either a disabled attribute

or a hidden attribute (or both), and false otherwise.

The Checked State of the command is true (checked) if the element has a checked attribute, and

false otherwise.

The Action of the command is to invoke the behaviour described in the definition of the click()

method of the HTMLCommandElement interface.

3.19. Data Templates

3.19.1. Introduction

...examples...

3.19.2. The datatemplate element

Categories

Metadata content.
Prose content.

Contexts in which this element may be used:

As the root element of an XML document.
Where metadata content is expected.
Where prose content is expected.

Content model:

Zero or more rule elements.

Element-specific attributes:

None.

DOM interface:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

244 of 458 30/12/2020, 08:08

No difference from HTMLElement.

The datatemplate element brings together the various rules that form a data template. The

element doesn't itself do anything exciting.

3.19.3. The rule element

Categories

None.

Contexts in which this element may be used:

As a child of a datatemplate element.

Content model:

Anything, regardless of the children's required contexts (but see prose).

Element-specific attributes:

condition

mode

DOM interface:

interface HTMLRuleElement : HTMLElement {
 attribute DOMString condition;
 attribute DOMString mode;
 readonly attribute DOMTokenString modeList;
};

The rule element represents a template of content that is to be used for elements when updating

an element's generated content.

The condition attribute, if specified, must contain a valid selector. It specifies which nodes in the

data tree will have the condition's template applied. [SELECTORS]

If the condition attribute is not specified, then the condition applies to all elements, text nodes,

CDATA nodes, and processing instructions.

The mode attribute, if specified, must have a value that is an unordered set of unique space-

separated tokens representing the various modes for which the rule applies. When, and only when,
the mode attribute is omitted, the rule applies if and only if the mode is the empty string. A mode is

invoked by the nest element; for the first node (the root node) of the data tree, the mode is the

empty string.

The contents of rule elements form a template, and may be anything that, when the parent

datatemplate is applied to some conforming data, results in a conforming DOM tree.

The condition DOM attribute must reflect the condition content attribute.

The mode and modeList DOM attributes must reflect the mode content attribute.

3.19.4. The nest element

Categories

None.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

245 of 458 30/12/2020, 08:08

Contexts in which this element may be used:

As a child of a descendant of a rule element, regardless of the element's content model.

Content model:

Empty.

Element-specific attributes:

filter

mode

DOM interface:

interface HTMLNestElement : HTMLElement {
 attribute DOMString filter;
 attribute DOMString mode;
};

The nest element represents a point in a template where the user agent should recurse and start

inserting the children of the data node that matches the rule in which the nest element finds itself.

The filter attribute, if specified, must contain a valid selector. It specifies which of the child nodes

in the data tree will be examined for further processing at this point. [SELECTORS]

If the filter attribute is not specified, then all elements, text nodes, CDATA nodes, and processing

instructions are processed.

The mode attribute, if specified, must have a value that is a word token consisting of one or more

characters, none of which are space characters. It gives the mode which will be in effect when
looking at the rules in the data template.

The filter DOM attribute must reflect the filter content attribute.

The mode DOM attribute must reflect the mode content attribute.

3.19.5. Global attributes for data templates

The template attribute may be added to an element to indicate that the template processing model

is to be applied to that element.

The template attribute, when specified, must be a URI to an XML or HTML document, or a

fragment identifier pointing at another part of the document. If there is a fragment identifier present,
then the element with that ID in the target document must be a datatemplate element, otherwise,

the root element must be a datatemplate element.

The template DOM attribute must reflect the template content attribute.

The ref attribute may be specified on any element on which the template attribute is specified. If

it is specified, it must be a URI to an XML or HTML document, or a fragment identifier pointing at
another part of the document.

When an element has a template attribute but no ref attribute, the element may, instead of its

usual content model, have a single element of any kind. That element is then used as the root node
of the data for the template.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

246 of 458 30/12/2020, 08:08

The ref DOM attribute must reflect the ref content attribute.

The registrationmark attribute may be specified on any element that is a descendant of a rule

element, except nest elements. Its value may be any string, including the empty string (which is the

value that is assumed if the attribute is omitted). This attribute performs a role similar to registration
marks in printing presses: when the generated content is regenerated, elements with the same
registrationmark are lined up. This allows the author to disambiguate how elements should be

moved around when generated content is regenerated in the face of changes to the data tree.

The registrationMark DOM attribute must reflect the registrationmark content attribute.

3.19.6. Processing model

3.19.6.1. The originalContent DOM attribute

The originalContent is set to a DocumentFragment to hold the original children of an element

that has been replaced by content generated for a data template. Initially, it must be null. Its value is
set when the template attribute is set to a usable value, and is unset when the attribute is

removed.

Note: The originalContent DOM attribute can thus be used as an indicator of

whether a template is currently being applied, just as the templateElement DOM

attribute can.

3.19.6.2. The template attribute

Setting: When an HTML element without a template attribute has its template attribute set, the

user agent must fetch the specified file and parse it (without a browsing context, and with scripting
disabled) to obtain a DOM. If the URI is the same as the URI of the current document, then the
current document's DOM must be assumed to be that parsed DOM. While this loading and parsing
is in progress, the element is said to be busy loading the template rules or data.

If the resource specified by the template attribute is not the current document and does not have

an XML MIME type, or if an XML parse error is found while parsing the resource, then the resource
cannot be successfully parsed, and the user agent must jump to the failed to parse steps below.

Once the DOM in question has been parsed, assuming that it indeed can be parsed and does so
successfully, the user agent must wait for no scripts to be executing, and as soon as that opportunity
arises, run the following algorithm:

1. If the template attribute's value has a fragment identifier, and, in the DOM in question, it

identifies a datatemplate element, then set the templateElement DOM attribute to that

element.

Otherwise, if the template attribute value does not have a fragment identifier, and the root

element of the DOM in question is a datatemplate element, then set the

templateElement DOM attribute to that element.

Otherwise, jump to the failed to parse steps below.

2. Create a new DocumentFragment and move all the nodes that are children of the element

to that DocumentFragment object. Set the originalContent DOM attribute on the

element to this new DocumentFragment object.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

247 of 458 30/12/2020, 08:08

3. Jump to the steps below for updating the generated content.

If the resource has failed to parse, the user agent must fire a simple event with the name error at

the element on which the template attribute was found.

Unsetting: When an HTML element with a template attribute has its template attribute removed

or dynamically changed from one value to another, the user agent must run the following algorithm:

1. Set the templateElement DOM attribute to null.

2. If the originalContent DOM attribute of the element is not null, run these substeps:

1. Remove all the nodes that are children of the element.

2. Append the nodes in the originalContent DocumentFragment to the element.

3. Set originalContent to null.

(If the originalContent DOM attribute of the element is null, then either there was an error

loading or parsing the previous template, or the previous template never finished loading; in
either case, there is nothing to undo.)

3. If the template attribute was changed (as opposed to simply removed), then act as if it was

now set to its new value (fetching the specified page, etc, as described above).

The templateElement DOM attribute is updated by the above algorithm to point to the currently

active datatemplate element. Initially, the attribute must have the value null.

3.19.6.3. The ref attribute

Setting: When an HTML element without a ref attribute has its ref attribute set, the user agent

must fetch the specified file and parse it (without a browsing context, and with scripting disabled) to
obtain a DOM. If the URI is the same as the URI of the current document, then the current
document's DOM is assumed to be that parsed DOM. While this loading and parsing is in progress,
the element is said to be busy loading the template rules or data.

If the resource specified by the ref attribute is not the current document and does not have an XML

MIME type, or if an XML parse error is found while parsing the resource, then the resource cannot
be successfully parsed, and the user agent must jump to the failed to parse steps below.

Once the DOM in question has been parsed, assuming that it indeed can be parsed and does so
successfully, the user agent must wait for no scripts to be executing, and as soon as that opportunity
arises, run the following algorithm:

1. If the ref attribute value does not have a fragment identifier, then set the refNode DOM

attribute to the Document node of that DOM.

Otherwise, if the ref attribute's value has a fragment identifier, and, in the DOM in question,

that fragment identifier identifies an element, then set the refNode DOM attribute to that

element.

Otherwise, jump to the failed to parse steps below.

2. Jump to the steps below for updating the generated content.

If the resource has failed to parse, the user agent must fire a simple event with the name error at

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

248 of 458 30/12/2020, 08:08

the element on which the ref attribute was found, and must then jump to the steps below for

updating the generated content (the contents of the element will be used instead of the specified
resource).

Unsetting: When an HTML element with a ref attribute has its ref attribute removed or

dynamically changed from one value to another, the user agent must run the following algorithm:

1. Set the refNode DOM attribute to null.

2. If the ref attribute was changed (as opposed to simply removed), then act as if it was now

set to its new value (fetching the specified page, etc, as described above). Otherwise, jump to
the steps below for updating the generated content.

The refNode DOM attribute is updated by the above algorithm to point to the current data tree, if

one is specified explicitly. If it is null, then the data tree is given by the originalContent DOM

attribute, unless that is also null, in which case no template is currently being applied. Initially, the
attribute must have the value null.

3.19.6.4. The NodeDataTemplate interface

All objects that implement the Node interface must also implement the NodeDataTemplate

interface, whose members must be accessible using binding-specific casting mechanisms.

interface NodeDataTemplate {
 readonly attribute Node dataNode;
};

The dataNode DOM attribute returns the node for which this node was generated. It must initially

be null. It is set on the nodes that form the content generated during the algorithm for updating the
generated content of elements that are using the data template feature.

3.19.6.5. Mutations

An element with a non-null templateElement is said to be a data tree user of the node identified

by the element's refNode attribute, as well as all of that node's children, or, if that attribute is null, of

the node identified by the element's originalContent, as well as all that node's children.

Nodes that have one or more data tree users associated with them (as per the previous paragraph)
are themselves termed data tree component nodes.

Whenever a data tree component node changes its name or value, or has one of its attributes
change name or value, or has an attribute added or removed, or has a child added or removed, the
user agent must update the generated content of all of that node's data tree users.

An element with a non-null templateElement is also said to be a template tree user of the node

identified by the element's templateElement attribute, as well as all of that node's children.

Nodes that have one or more template tree users associated with them (as per the previous
paragraph) are themselves termed template tree component nodes.

Whenever a template tree component node changes its name or value, or has one of its attributes
change name or value, or has an attribute added or removed, or has a child added or removed, the
user agent must update the generated content of all of that node's template tree users.

Note: In other words, user agents update the content generated from a template

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

249 of 458 30/12/2020, 08:08

whenever either the backing data changes or the template itself changes.

3.19.6.6. Updating the generated content

When the user agent is to update the generated content of an element that uses a template, the
user agent must run the following steps:

1. Let destination be the element whose generated content is being updated.

2. If the destination element is busy loading the template rules or data, then abort these steps.
Either the steps will be invoked again once the loading has completed, or the loading will fail
and the generated content will be removed at that point.

3. Let template tree be the element given by destination's templateElement DOM attribute. If

it is null, then abort these steps. There are no rules to apply.

4. Let data tree be the node given by destination's refNode DOM attribute. If it is null, then let

data tree be the node given by the originalContent DOM node.

5. Let existing nodes be a set of ordered lists of nodes, each list being identified by a tuple
consisting of a node, a node type and name, and a registration mark (a string).

6. For each node node that is a descendant of destination, if any, add node to the list identified
by the tuple given by: node's dataNode DOM attribute; the node's node type and, if it's an

element, its qualified name (that is, its namespace and local name), or, if it's a processing
instruction, its target name, and the value of the node's registrationmark attribute, if it

has one, or the empty string otherwise.

7. Remove all the child nodes of destination, so that its child node list is empty.

8. Run the Levenberg data node algorithm (described below) using destination as the
destination node, data tree as the source node, template tree as the rule container, the empty
string as the mode, and the existing nodes lists as the lists of existing nodes.

The Levenberg algorithm consists of two algorithms that invoke each other recursively, the
Levenberg data node algorithm and the Levenberg template node algorithm. These algorithms use
the data structures initialised by the set of steps described above.

The Levenberg data node algorithm is as follows. It is always invoked with three DOM nodes, one
string, and a set of lists as arguments: the destination node, the source node, the rule container, the
mode string, and the existing nodes lists respectively.

1. Let condition be the first rule element child of the rule container element, or null if there

aren't any.

2. If condition is null, follow these substeps:

1. If the source node is an element, then, for each child child node of the source node
element, in tree order, invoke the Levenberg data node algorithm recursively, with
destination node, child node, rule container, the empty string, and existing nodes lists
as the five arguments respectively.

2. Abort the current instance of the Levenberg data node algorithm, returning to whatever
algorithm invoked it.

3. Let matches be a boolean with the value true.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

250 of 458 30/12/2020, 08:08

4. If the condition element has a mode attribute, but the value of that attribute is not a mode

match for the current mode string, then let matches be false.

5. If the condition element has a condition attribute, and the attribute's value, when evaluated

as a selector, does not match the current source node, then let matches be false.

6. If matches is true, then follow these substeps:

1. For each child child node of the condition element, in tree order, invoke the Levenberg
template node algorithm recursively, with the five arguments being destination node,
source node, rule container, child node, and existing nodes lists respectively.

2. Abort the current instance of the Levenberg data node algorithm, returning to whatever
algorithm invoked it.

7. Let condition be the next rule element that is a child of the rule container element, after the

condition element itself, or null if there are no more rule elements.

8. Jump to step 2 in this set of steps.

The Levenberg template node algorithm is as follows. It is always invoked with four DOM nodes
and a set of lists as arguments: the destination node, the source node, the rule container, the
template node, and the existing nodes lists respectively.

1. If template node is a comment node, abort the current instance of the Levenberg template
node algorithm, returning to whatever algorithm invoked it.

2. If template node is a nest element, then run these substeps:

1. If source node is not an element, then abort the current instance of the Levenberg
template node algorithm, returning to whatever algorithm invoked it.

2. If the template node has a mode attribute, then let mode be the value of that attribute;

otherwise, let mode be the empty string.

3. Let child node be the first child of the source node element, or null if source node has
no children.

4. If child node is null, abort the current instance of the Levenberg template node
algorithm, returning to whatever algorithm invoked it.

5. If the template node element has a filter attribute, and the attribute's value, when

evaluated as a selector, matches child node, then invoke the Levenberg data node
algorithm recursively, with destination node, child node, rule container, mode, and
existing nodes lists as the five arguments respectively.

6. Let child node be child node's next sibling, or null if child node was the last node of
source node.

7. Return to step 4 in this set of substeps.

3. If template node is an element, and that element has a registrationmark attribute, then

let registration mark have the value of that attribute. Otherwise, let registration mark be the
empty string.

4. If there is a list in the existing nodes lists corresponding to the tuple (source node, the node
type and name of template node, registration mark), and that list is not empty, then run the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

251 of 458 30/12/2020, 08:08

following substeps. (For an element node, the name of the node is its qualified tag name, i.e.
its namespace and local name. For a processing instruction, its name is the target. For other
types of nodes, there is no name.)

1. Let new node be the first node in that list.

2. Remove new node from that list.

3. If new node is an element, remove all the child nodes of new node, so that its child
node list is empty.

Otherwise, if there is no matching list, or there was, but it is now empty, then run these steps
instead:

1. Let new node be a shallow clone of template node.

2. Let new node's dataNode DOM attribute be source node.

5. If new node is an element, run these substeps:

1. For each attribute on new node, if an attribute with the same qualified name is not
present on template node, remove that attribute.

2. For each attribute attribute on template node, run these substeps:

1. Let expanded be the result of passing the value of attribute to the text
expansion algorithm for templates along with source node.

2. If an attribute with the same qualified name as attribute is already present on
new node, then: if its value is different from expanded, replace its value with
expanded.

3. Otherwise, if there is no attribute with the same qualified name as attribute on
new node, then add an attribute with the same namespace, prefix, and local
name as attribute, with its value set to expanded's.

Otherwise, the new node is a text node, CDATA block, or PI. Run these substeps instead:

1. Let expanded be the result of passing the node value of template node (the content of
the text node, CDATA block, or PI) to the text expansion algorithm for templates along
with source node.

2. If the value of the new node is different from expanded, then set the value of new node
to expanded.

6. Append new node to destination.

7. If template node is an element, then, for each child child node of the template node element,
in tree order, invoke the Levenberg template node algorithm recursively, with the five
arguments being new child, source node, rule container, child node, and existing nodes lists
respectively.

Define: evaluated as a selector

Define: text expansion algorithm for templates

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

252 of 458 30/12/2020, 08:08

3.20. Miscellaneous elements

3.20.1. The legend element

Categories

None.

Contexts in which this element may be used:

As the first child of a fieldset element.

As the first child of a details element.

As a child of a figure element, if there are no other legend element children of that

element.

Content model:

Phrasing content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The legend element represents a title or explanatory caption for the rest of the contents of the

legend element's parent element.

3.20.2. The div element

Categories

None.

Contexts in which this element may be used:

Where prose content is expected.

Content model:

Prose content.

Element-specific attributes:

None.

DOM interface:

No difference from HTMLElement.

The div element represents nothing at all. It can be used with the class, lang/xml:lang, and

title attributes to mark up semantics common to a group of consecutive elements.

Allowing div elements to contain phrasing content makes it easy for authors to abuse div, using

it with the class="" attribute to the point of not having any other elements in the markup. This is

a disaster from an accessibility point of view, and it would be nice if we could somehow make
such pages non-compliant without preventing people from using divs as the extension

mechanism that they are, to handle things the spec can't otherwise do (like making new widgets).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

253 of 458 30/12/2020, 08:08

4. Web browsers

This section describes features that apply most directly to Web browsers. Having said that, unless
specified elsewhere, the requirements defined in this section do apply to all user agents, whether
they are Web browsers or not.

4.1. Browsing contexts

A browsing context is a collection of one or more Document objects, and one or more views.

At any one time, one of the Documents in a browsing context is the active document. The

collection of Documents is the browsing context's session history.

A view is a user agent interface tied to a particular media used for the presentation of Document

objects in some media. A view may be interactive. Each view is represented by an AbstractView

object. Each view belongs to a browsing context. [DOM2VIEWS]

Note: The document attribute of an AbstractView object representing a view gives

the Document object of the view's browsing context's active document.

[DOM2VIEWS]

Note: Events that use the UIEvent interface are related to a specific view (the view in

which the event happened); the AbstractView of that view is given in the event

object's view attribute. [DOM3EVENTS]

Note: A typical Web browser has one obvious view per browsing context: the
browser's window (screen media). If a page is printed, however, a second view
becomes evident, that of the print media. The two views always share the same
underlying Document, but they have a different presentation of that document. A

speech browser also establishes a browsing context, one with a view in the speech
media.

Note: A Document does not necessarily have a browsing context associated with it.

In particular, data mining tools are likely to never instantiate browsing contexts.

The main view through which a user primarily interacts with a user agent is the default view.

Note: The default view of a Document is given by the defaultView attribute on the

Document object's DocumentView interface. [DOM3VIEWS]

When a browsing context is first created, it must be created with a single Document in its session

history, whose address is about:blank, which is marked as being an HTML documents. The

Document must have a single child html node, which itself has a single child body node. If the

browsing context is created specifically to be immediately navigated, then that initial navigation will
have replacement enabled.

4.1.1. Nested browsing contexts

Certain elements (for example, iframe elements) can instantiate further browsing contexts. These

are called nested browsing contexts. If a browsing context P has an element in one of its

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

254 of 458 30/12/2020, 08:08

Documents D that nests another browsing context C inside it, then P is said to be the parent

browsing context of C, C is said to be a child browsing context of P, and C is said to be nested
through D.

The browsing context with no parent browsing context is the top-level browsing context of all the
browsing contexts nested within it (either directly or indirectly through other nested browsing
contexts).

A Document is said to be fully active when it is the active document of its browsing context, and

either its browsing context is a top-level browsing context, or the Document through which that

browsing context is nested is itself fully active.

Because they are nested through an element, child browsing contexts are always tied to a specific
Document in their parent browsing context. User agents must not allow the user to interact with

child browsing contexts of elements that are in Documents that are not themselves fully active.

4.1.2. Auxiliary browsing contexts

It is possible to create new browsing contexts that are related to a top level browsing context without
being nested through an element. Such browsing contexts are called auxiliary browsing contexts.
Auxiliary browsing contexts are always top-level browsing contexts.

An auxiliary browsing context has an opener browsing context, which is the browsing context from
which the auxiliary browsing context was created, and it has a furthest ancestor browsing
context, which is the top-level browsing context of the opener browsing context when the auxiliary
browsing context was created.

The opener DOM attribute on the Window object must return the Window object of the browsing

context from which the current browsing context was created (its opener browsing context), if there
is one and it is still available.

4.1.3. Secondary browsing contexts

User agents may support secondary browsing contexts, which are browsing contexts that form
part of the user agent's interface, apart from the main content area.

4.1.4. Threads

Each browsing context is defined as having a list of zero or more directly reachable browsing
contexts. These are:

All the browsing context's child browsing contexts.

The browsing context's parent browsing context.

All the browsing contexts that have the browsing context as their opener browsing context.

The browsing context's opener browsing context.

The transitive closure of all the browsing contexts that are directly reachable browsing contexts
consists of a unit of related browsing contexts.

All the executable code in a unit of related browsing contexts must execute on a single conceptual
thread. The dispatch of events fired by the user agent (e.g. in response to user actions or network
activity) and the execution of any scripts associated with timers must be serialised so that for each
unit of related browsing contexts there is only one script being executed at a time.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

255 of 458 30/12/2020, 08:08

4.1.5. Browsing context names

Browsing contexts can have a browsing context name. By default, a browsing context has no
name (its name is not set).

A valid browsing context name is any string that does not start with a U+005F LOW LINE
character, or, a string that case-insensitively matches one of: _self, _parent, or _top. (Names

starting with an underscore are reserved for special keywords.)

The rules for chosing a browsing context given a browsing context name are as follows. The
rules assume that they are being applied in the context of a browsing context.

1. If the given browsing context name is the empty string or _self, then the chosen browsing

context must be the current one.

2. If the given browsing context name is _parent, then the chosen browsing context must be

the parent browsing context of the current one, unless there isn't one, in which case the
chosen browsing context must be the current browsing context.

3. If the given browsing context name is _top, then the chosen browsing context must be the

most top-level browsing context of the current one.

4. If the given browsing context name is not _blank and there exists a browsing context whose

name is the same as the given browsing context name, and one of the following is true:

Either the origin of that browsing context's active document is the same as the origin of
the current browsing context's active document,

Or that browsing context is an auxiliary browsing context and its opener browsing
context is either the current browsing context or a browsing context that the user agent
considers is closely enough related to the current browsing context,

Or that browsing context is not a top-level browsing context, and the origin of the active
document of the parent browsing context of that browsing context is the same as the
origin of the current browsing context's active document,

...and the user agent determines that the two browsing contexts are related enough that it is
ok if they reach each other, then that browsing context must be the chosen one. If there are
multiple matching browsing contexts, the user agent should select one in some arbitrary
consistent manner, such as the most recently opened, most recently focused, or more closely
related.

5. Otherwise, a new browsing context is being requested, and what happens depends on the
user agent's configuration and/or abilities:

If the user agent has been configured such that in this instance it will create a new
browsing context

A new auxiliary browsing context must be created, with the opener browsing context
being the current one. If the given browsing context name is not _blank, then the new

auxiliary browsing context's name must be the given browsing context name
(otherwise, it has no name). The chosen browsing context must be this new browsing
context. If it is immediately navigated, then the navigation will be done with
replacement enabled.

If the user agent has been configured such that in this instance it will reuse the current
browsing context

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

256 of 458 30/12/2020, 08:08

The chosen browsing context is the current browsing context.

If the user agent has been configured such that in this instance it will not find a
browsing context

There must not be a chosen browsing context.

4.2. The default view

The AbstractView object of default views must also implement the Window object.

interface Window {
 // the current browsing context
 readonly attribute Window window;
 readonly attribute Window self;
 attribute DOMString name;
 readonly attribute Location location;
 readonly attribute History history;
 readonly attribute UndoManager undoManager;

Selection getSelection();

 // the user agent
 readonly attribute ClientInformation navigator;
 readonly attribute Storage sessionStorage;
 readonly attribute Storage globalStorage;

Database openDatabase(in DOMString name, in DOMString version, in
DOMString displayName, in unsigned long estimatedSize);

 // modal user prompts
 void alert(in DOMString message);
 boolean confirm(in DOMString message);
 DOMString prompt(in DOMString message);
 DOMString prompt(in DOMString message, in DOMString default);
 void print();

 // other browsing contexts
 readonly attribute Window frames;
 readonly attribute unsigned long length;
 readonly attribute Window opener;

Window open();
Window open(in DOMString url);
Window open(in DOMString url, in DOMString target);
Window open(in DOMString url, in DOMString target, in DOMString

features);
Window open(in DOMString url, in DOMString target, in DOMString

features, in DOMString replace);

 // cross-document messaging
 void postMessage(in DOMString message);

 // event handler DOM attributes
 attribute EventListener onabort;
 attribute EventListener onbeforeunload;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

257 of 458 30/12/2020, 08:08

 attribute EventListener onblur;
 attribute EventListener onchange;
 attribute EventListener onclick;
 attribute EventListener oncontextmenu;
 attribute EventListener ondblclick;
 attribute EventListener ondrag;
 attribute EventListener ondragend;
 attribute EventListener ondragenter;
 attribute EventListener ondragleave;
 attribute EventListener ondragover;
 attribute EventListener ondragstart;
 attribute EventListener ondrop;
 attribute EventListener onerror;
 attribute EventListener onfocus;
 attribute EventListener onkeydown;
 attribute EventListener onkeypress;
 attribute EventListener onkeyup;
 attribute EventListener onload;
 attribute EventListener onmessage;
 attribute EventListener onmousedown;
 attribute EventListener onmousemove;
 attribute EventListener onmouseout;
 attribute EventListener onmouseover;
 attribute EventListener onmouseup;
 attribute EventListener onmousewheel;
 attribute EventListener onresize;
 attribute EventListener onscroll;
 attribute EventListener onselect;
 attribute EventListener onsubmit;
 attribute EventListener onunload;
};

The window, frames, and self DOM attributes must all return the Window object itself.

The Window object also provides the scope for script execution. Each Document in a browsing

context has an associated list of added properties which, when a document is active, are available
on the Document's default view Window object. A Document object's list of added properties must

be empty when the Document object is created.

Objects implementing the Window interface must also implement the EventTarget interface.

Note: Window objects also have an implicit [[Get]] method which returns nested

browsing contexts.

4.2.1. Security

User agents must raise a security exception whenever any of the members of a Window object are

accessed by scripts whose origin is not the same as the Window object's browsing context's active

document's origin, with the following exceptions:

The location object

The postMessage() method

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

258 of 458 30/12/2020, 08:08

User agents must not allow scripts to override the location object's setter.

4.2.2. Constructors

All Window objects must provide the following constructors:

Audio()

Audio(src)

When invoked as constructors, these must return a new HTMLAudioElement object (a new

audio element). If the src argument is present, the object created must have its src content

attribute set to the provided value, and the user agent must invoke the load() method on

the object before returning.

Image()

Image(in unsigned long w)

Image(in unsigned long w, in unsigned long h)

When invoked as corstructors, these must return a new HTMLImageElement object (a new

img element). If the h argument is present, the new object's height content attribute must

be set to h. If the w argument is present, the new object's width content attribute must be set

to w.

Option()

Option(in DOMString name)

Option(in DOMString name, in DOMString value)

When invoked as constructors, these must return a new HTMLOptionElement object (a new

option element). need to define argument processing

And when constructors are invoked but without using the constructor syntax...?

4.2.3. APIs for creating and navigating browsing contexts by name

The open() method on Window objects provides a mechanism for navigating an existing browsing

context or opening and navigating an auxiliary browsing context.

The method has four arguments, though they are all optional.

The first argument, url, gives a URI (or IRI) for a page to load in the browsing context. If no
arguments are provided, then the url argument defaults to "about:blank". The argument must be

resolved to an absolute URI by ...

The second argument, target, specifies the name of the browsing context that is to be navigated. It
must be a valid browsing context name. If fewer than two arguments are provided, then the name
argument defaults to the value "_blank".

The third argument, features, has no effect and is supported for historical reasons only.

The fourth argument, replace, specifies whether or not the new page will replace the page currently
loaded in the browsing context, when target identifies an existing browsing context (as opposed to
leaving the current page in the browsing context's session history). When three or fewer arguments
are provided, replace defaults to false.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

259 of 458 30/12/2020, 08:08

When the method is invoked, the user agent must first select a browsing context to navigate by
applying the rules for chosing a browsing context given a browsing context name using the target
argument as the name and the browsing context of the script as the context in which the algorithm is
executed, unless the user has indicated a preference, in which case the browsing context to
navigate may instead be the one indicated by the user.

For example, suppose there is a user agent that supports control-clicking a link to open it in a
new tab. If a user clicks in that user agent on an element whose onclick handler uses the

window.open() API to open a page in an iframe, but, while doing so, holds the control key

down, the user agent could override the selection of the target browsing context to instead
target a new tab.

Then, the user agent must navigate the selected browsing context to the URI given in url. If the
replace is true, then replacement must be enabled; otherwise, it must not be enabled unless the
browsing context was just created as part of the the rules for chosing a browsing context given a
browsing context name.

The method must return the Window object of the default view of the browsing context that was

navigated, or null if no browsing context was navigated.

The name attribute of the Window object must, on getting, return the current name of the browsing

context, and, on setting, set the name of the browsing context to the new value.

Note: The name gets reset when the browsing context is navigated to another
domain.

4.2.4. Accessing other browsing contexts

In ECMAScript implementations, objects that implement the Window interface must have a [[Get]]

method that, when invoked with a property name that is a number i, returns the ith child browsing
context of the active Document, sorted in document order of the elements nesting those browsing

contexts.

The length DOM attribute on the Window interface must return the number of child browsing

contexts of the active Document.

4.3. Scripting

4.3.1. Running executable code

Various mechanisms can cause author-provided executable code to run in the context of a
document. These mechanisms include, but are probably not limited to:

Processing of script elements.

Processing of inline javascript: URIs (e.g. the src attribute of img elements, or an

@import rule in a CSS style element block).

Event handlers, whether registered through the DOM using addEventListener(), by

explicit event handler content attributes, by event handler DOM attributes, or otherwise.

Processing of technologies like XBL or SVG that have their own scripting features.

User agents may provide a mechanism to enable or disable the execution of author-provided code.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

260 of 458 30/12/2020, 08:08

When the user agent is configured such that author-provided code does not execute, or if the user
agent is implemented so as to never execute author-provided code, it is said that scripting is
disabled. When author-provided code does execute, scripting is enabled. A user agent with
scripting disabled is a user agent with no scripting support for the purposes of conformance.

4.3.2. Origin

Access to certain APIs is granted or denied to scripts based on the origin of the script and the API
being accessed.

The origin of a script depends on the context of that script:

If a script is in a script element

The origin of the script is the origin of the Document to which the script element belongs.

If a script is a function or other code reference created by another script

The origin of the script is the origin of the script that created it.

If a script is a javascript: URI in an attribute

The origin is the origin of the Document of the element on which the attribute is found.

If a script is a javascript: URI in a style sheet

The origin is the origin of the Document to which the style sheet applies.

If a script is a javascript: URI to which a browsing context is being navigated, the URI

having been provided by the user (e.g. by using a bookmarklet)

The origin is the origin of the Document of the browsing context's active document.

If a script is a javascript: URI to which a browsing context is being navigated, the URI

having been declared in markup

The origin is the origin of the Document of the element (e.g. an a or area element) that

declared the URI.

If a script is a javascript: URI to which a browsing context is being navigated, the URI

having been provided by script

The origin is the origin of the script that provided the URI.

The origin of scripts thus comes down to finding the origin of Document objects.

The origin of a Document or image that was served over the network and whose address uses a

URI scheme with a server-based naming authority is the tuple consisting of the <scheme>,
<host>/<ihost>, and <port> parts of the Document's full URI. [RFC3986] [RFC3987]

The origin of a Document or image that was generated from a data: URI found in another

Document or in a script is the origin of the Document or script.

The origin of a Document or image that was generated from a data: URI from another source is a

globally unique identifier assigned when the document is created.

The origin of a Document or image that was generated from a javascript: URI is the same as

the origin of that javascript: URI.

The string representing the script's domain in IDNA format is obtained as follows: take the
domain part of the script's origin tuple and apply the IDNA ToASCII algorithm and then the IDNA
ToUnicode algorithm to each component of the domain name (with both the AllowUnassigned and
UseSTD3ASCIIRules flags set both times). [RFC3490]

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

261 of 458 30/12/2020, 08:08

If ToASCII fails to convert one of the components of the string, e.g. because it is too long or because
it contains invalid characters, or if the origin of the script has no domain part, then the string
representing the script's domain in IDNA format cannot be obtained. (ToUnicode is defined to never
fail.)

It's been suggested that we should put IP addresses into the origin tuple, to mitigate DNS
rebinding attacks. However that would kill multi-homed systems like GMail. Should we do
something like have a DNS record say whether or not to include the IP in the origin for a host?

4.3.3. Unscripted same-origin checks

When two URIs are to be compared to determine if they have the same scheme/host/port, it
means that the following algorithm must be invoked, where uri and uri are the two URIs.

1. First, both uri and uri must be normalized to obtain the two tuples (scheme , host , port)
and (scheme , host , port), by applying the following subalgorithm to each URI:

1. Let uri be the URI being normalized.

2. Parse uri according to the rules described in RFC 3986 and RFC 3987. [RFC3986]
[RFC3987]

3. If uri does not use a server-based naming authority, then fail the overall algorithm —
the two URIs do not have the same scheme/host/port.

4. Let scheme be the <scheme> component of the URI. If the UA doesn't support the
given protocol, then fail the overall algorithm — the two URIs do not have the same
scheme/host/port.

5. Let host be the <host>/<ihost> component of the URI.

6. Apply the IDNA ToASCII algorithm to host, with both the AllowUnassigned and
UseSTD3ASCIIRules flags set. Let host be the result of the ToASCII algorithm.

If ToASCII fails to convert one of the components of the string, e.g. because it is too
long or because it contains invalid characters, then fail the overall algorithm — the two
URIs do not have the same scheme/host/port. [RFC3490]

7. If no port is explicitly listed, then let port be the default port for the protocol given by
scheme. Otherwise, let port be the <port> component of the URI.

8. Return the tuple (scheme, host, port).

2. If scheme is not case-insensitively identical to scheme , or if host is not case-insensitively
identical to host , or if port is not identical to port , then fail the overall algorithm — the two
URIs do not have the same scheme/host/port.

3. Otherwise, the two URIs do have the same scheme/host/port.

4.3.4. Security exceptions

Define security exception.

4.3.5. The javascript: protocol

1 2

1 2 1 1 1

2 2 2

1 2 1

2 1 2

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

262 of 458 30/12/2020, 08:08

A URI using the javascript: protocol must, if evaluated, be evaluated using the in-context

evaluation operation defined for javascript: URIs. [JSURI]

When a browsing context is navigated to a javascript: URI, and the active document of that

browsing context has the same origin as the URI, the dereference context must be the browsing
context being navigated.

When a browsing context is navigated to a javascript: URI, and the active document of that

browsing context has a different origin than the URI, the dereference context must be an empty
object.

Otherwise, the dereference context must the browsing context of the Document to which belongs

the element for which the URI is being dereferenced, or to which the style sheet for which the URI is
being dereferenced applies, whichever is appropriate.

URIs using the javascript: protocol should be evaluated when the resource for that URI is

needed, unless scripting is disabled or the Document corresponding to the dereference context (as

defined above), if any, has designMode enabled.

If the dereference by-product is void (there is no return value), then the URI must be treated in a
manner equivalent to an HTTP resource with an HTTP 204 No Content response.

Otherwise, the URI must be treated in a manner equivalent to an HTTP resource with a 200 OK
response whose Content-Type metadata is text/html and whose response body is the

dereference by-product, converted to a string value.

Note: Certain contexts, in particular img elements, ignore the Content-Type

metadata.

So for example a javascript: URI for a src attribute of an img element would be evaluated

in the context of the page as soon as the attribute is set; it would then be sniffed to determine
the image type and decoded as an image.

A javascript: URI in an href attribute of an a element would only be evaluated when the

link was followed.

The src attribute of an iframe element would be evaluated in the context of the iframe's

own browsing context; once evaluated, its return value (if it was not void) would replace that
browsing context's document, thus changing the variables visible in that browsing context.

4.3.6. Events

We need to define how to handle events that are to be fired on a Document that is no longer the
active document of its browsing context, and for Documents that have no browsing context. Do
the events fire? Do the handlers in that document not fire? Do we just define scripting to be
disabled when the document isn't active, with events still running as is? See also the script

element section, which says scripts don't run when the document isn't active.

4.3.6.1. Event handler attributes

HTML elements can have event handler attributes specified. These act as bubbling event listeners
for the element on which they are specified.

Each event handler attribute has two parts, an event handler content attribute and an event handler

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

263 of 458 30/12/2020, 08:08

DOM attribute. Event handler attributes must initially be set to null. When their value changes
(through the changing of their event handler content attribute or their event handler DOM attribute),
they will either be null, or have an EventListener object assigned to them.

Objects other than Element objects, in particular Window, only have event handler DOM attribute

(since they have no content attributes).

Event handler content attributes, when specified, must contain valid ECMAScript code matching
the ECMAScript FunctionBody production. [ECMA262]

When an event handler content attribute is set, its new value must be interpreted as the body of an
anonymous function with a single argument called event, with the new function's scope chain being

linked from the activation object of the handler, to the element, to the element's form element if it is

a form control, to the Document object, to the browsing context of that Document. The function's

this parameter must be the Element object representing the element. The resulting function must

then be set as the value of the corresponding event handler attribute, and the new value must be set
as the value of the content attribute. If the given function body fails to compile, then the
corresponding event handler attribute must be set to null instead (the content attribute must still be
updated to the new value, though).

Note: See ECMA262 Edition 3, sections 10.1.6 and 10.2.3, for more details on
activation objects. [ECMA262]

Event handler DOM attributes, on setting, must set the corresponding event handler attribute to
their new value, and on getting, must return whatever the current value of the corresponding event
handler attribute is (possibly null).

The following are the event handler attributes that must be supported by all HTML elements, as both
content attributes and DOM attributes, and on Window objects, as DOM attributes:

onabort

Must be invoked whenever an abort event is targeted at or bubbles through the element.

onbeforeunload

Must be invoked whenever a beforeunload event is targeted at or bubbles through the

element.

onblur

Must be invoked whenever a blur event is targeted at or bubbles through the element.

onchange

Must be invoked whenever a change event is targeted at or bubbles through the element.

onclick

Must be invoked whenever a click event is targeted at or bubbles through the element.

oncontextmenu

Must be invoked whenever a contextmenu event is targeted at or bubbles through the

element.

ondblclick

Must be invoked whenever a dblclick event is targeted at or bubbles through the element.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

264 of 458 30/12/2020, 08:08

ondrag

Must be invoked whenever a drag event is targeted at or bubbles through the element.

ondragend

Must be invoked whenever a dragend event is targeted at or bubbles through the element.

ondragenter

Must be invoked whenever a dragenter event is targeted at or bubbles through the

element.

ondragleave

Must be invoked whenever a dragleave event is targeted at or bubbles through the

element.

ondragover

Must be invoked whenever a dragover event is targeted at or bubbles through the element.

ondragstart

Must be invoked whenever a dragstart event is targeted at or bubbles through the

element.

ondrop

Must be invoked whenever a drop event is targeted at or bubbles through the element.

onerror

Must be invoked whenever an error event is targeted at or bubbles through the element.

Note: The onerror handler is also used for reporting script errors.

onfocus

Must be invoked whenever a focus event is targeted at or bubbles through the element.

onkeydown

Must be invoked whenever a keydown event is targeted at or bubbles through the element.

onkeypress

Must be invoked whenever a keypress event is targeted at or bubbles through the element.

onkeyup

Must be invoked whenever a keyup event is targeted at or bubbles through the element.

onload

Must be invoked whenever a load event is targeted at or bubbles through the element.

onmessage

Must be invoked whenever a message event is targeted at or bubbles through the element.

onmousedown

Must be invoked whenever a mousedown event is targeted at or bubbles through the

element.

onmousemove

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

265 of 458 30/12/2020, 08:08

Must be invoked whenever a mousemove event is targeted at or bubbles through the

element.

onmouseout

Must be invoked whenever a mouseout event is targeted at or bubbles through the element.

onmouseover

Must be invoked whenever a mouseover event is targeted at or bubbles through the

element.

onmouseup

Must be invoked whenever a mouseup event is targeted at or bubbles through the element.

onmousewheel

Must be invoked whenever a mousewheel event is targeted at or bubbles through the

element.

onresize

Must be invoked whenever a resize event is targeted at or bubbles through the element.

onscroll

Must be invoked whenever a scroll event is targeted at or bubbles through the element.

onselect

Must be invoked whenever a select event is targeted at or bubbles through the element.

onsubmit

Must be invoked whenever a submit event is targeted at or bubbles through the element.

onunload

Must be invoked whenever an unload event is targeted at or bubbles through the element.

When an event handler attribute is invoked, its argument must be set to the Event object of the

event in question. If the function returns the exact boolean value false, the event's
preventDefault() method must then invoked. Exception: for historical reasons, for the HTML

mouseover event, the preventDefault() method must be called when the function returns true

instead.

When scripting is disabled, event handler attributes must do nothing.

When scripting is enabled, all event handler attributes on an element, whether set to null or to a
function, must be registered as event listeners on the element, as if the addEventListenerNS()

method on the Element object's EventTarget interface had been invoked when the element was

created, with the event type (type argument) equal to the type described for the event handler

attribute in the list above, the namespace (namespaceURI argument) set to null, the listener set to

be a target and bubbling phase listener (useCapture argument set to false), the event group set to

the default group (evtGroup argument set to null), and the event listener itself (listener

argument) set to do nothing while the event handler attribute is null, and set to invoke the function
associated with the event handler attribute otherwise.

4.3.6.2. Event firing

maybe this should be moved higher up (terminology? conformance? DOM?) Also, the whole

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

266 of 458 30/12/2020, 08:08

terminology thing should be changed so that we don't define any specific events here, we only
define 'simple event', 'progress event', 'mouse event', 'key event', and the like, and have the
actual dispatch use those generic terms when firing events.

Certain operations and methods are defined as firing events on elements. For example, the
click() method on the HTMLElement interface is defined as firing a click event on the element.

[DOM3EVENTS]

Firing a click event means that a click event with no namespace, which bubbles and is

cancelable, and which uses the MouseEvent interface, must be dispatched at the given element.

The event object must have its screenX, screenY, clientX, clientY, and button attributes set

to 0, its ctrlKey, shiftKey, altKey, and metaKey attributes set according to the current state of

the key input device, if any (false for any keys that are not available), its detail attribute set to 1,

and its relatedTarget attribute set to null. The getModifierState() method on the object

must return values appropriately describing the state of the key input device at the time the event is
created.

Firing a change event means that a change event with no namespace, which bubbles but is not

cancelable, and which uses the Event interface, must be dispatched at the given element. The

event object must have its detail attribute set to 0.

Firing a contextmenu event means that a contextmenu event with no namespace, which

bubbles and is cancelable, and which uses the Event interface, must be dispatched at the given

element. The event object must have its detail attribute set to 0.

Firing a simple event called e means that an event with the name e, with no namespace, which
does not bubble but is cancelable, and which uses the Event interface, must be dispatched at the

given element.

Firing a show event means firing a simple event called show. Actually this should fire an event that

has modifier information (shift/ctrl etc).

Firing a load event means firing a simple event called load. Firing an error event means firing

a simple event called error.

Firing a progress event called e means something that hasn't yet been defined, in the
[PROGRESS] spec.

The default action of these event is to do nothing unless otherwise stated.

If you dispatch a custom "click" event at an element that would normally have default actions,
should they get triggered? If so, we need to go through the entire spec and make sure that any
default actions are defined in terms of any event of the right type on that element, not those that
are dispatched in expected ways.

4.3.6.3. Events and the Window object

When an event is dispatched at a DOM node in a Document in a browsing context, if the event is

not a load event, the user agent must also dispatch the event to the Window, as follows:

1. In the capture phase, the event must be dispatched to the Window object before being

dispatched to any of the nodes.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

267 of 458 30/12/2020, 08:08

2. In the bubble phase, the event must be dispatched to the Window object at the end of the

phase, unless bubbling has been prevented.

4.3.6.4. Runtime script errors

This section only applies to user agents that support scripting in general and ECMAScript in
particular.

Whenever a runtime script error occurs in one of the scripts associated with the document, the value
of the onerror event handler DOM attribute of the Window object must be processed, as follows:

↪ If the value is a function

The function referenced by the onerror attribute must be invoked with three arguments,

before notifying the user of the error.

The three arguments passed to the function are all DOMStrings; the first must give the

message that the UA is considering reporting, the second must give the URI to the
resource in which the error occured, and the third must give the line number in that
resource on which the error occured.

If the function returns false, then the error should not be reported to the user. Otherwise,
if the function returns another value (or does not return at all), the error should be
reported to the user.

Any exceptions thrown or errors caused by this function must be reported to the user
immediately after the error that the function was called for, without calling the function
again.

↪ If the value is null

The error should not reported to the user.

↪ If the value is anything else

The error should be reported to the user.

The initial value of onerror must be undefined.

4.4. User prompts

The alert(message) method, when invoked, must show the given message to the user. The user

agent may make the method wait for the user to acknowledge the message before returning; if so,
the user agent must pause while the method is waiting.

The confirm(message) method, when invoked, must show the given message to the user, and

ask the user to respond with a positive or negative response. The user agent must then pause as
the the method waits for the user's response. If the user responds positively, the method must return
true, and if the user responds negatively, the method must return false.

The prompt(message, default) method, when invoked, must show the given message to the

user, and ask the user to either respond with a string value or abort. The user agent must then
pause as the the method waits for the user's response. The second argument is optional. If the
second argument (default) is present, then the response must be defaulted to the value given by
default. If the user aborts, then the method must return null; otherwise, the method must return the
string that the user responded with.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

268 of 458 30/12/2020, 08:08

The print() method, when invoked, should offer the user the opportunity to obtain a physical form

of the document. The user agent may make the method wait for the user to either accept or decline
before returning; if so, the user agent must pause while the method is waiting. (This does not, of
course, preclude the user agent from always offering the user with the opportunity to convert the
document to whatever media the user might want.)

4.5. Browser state

The navigator attribute of the Window interface must return an instance of the

ClientInformation interface, which represents the identity and state of the user agent (the

client), and allows Web pages to register themselves as potential protocol and content handlers:

interface ClientInformation {
 readonly attribute boolean onLine;
 void registerProtocolHandler(in DOMString protocol, in DOMString
uri, in DOMString title);
 void registerContentHandler(in DOMString mimeType, in DOMString
uri, in DOMString title);
};

4.5.1. Custom protocol and content handlers

The registerProtocolHandler() method allows Web sites to register themselves as possible

handlers for particular protocols. For example, an online fax service could register itself as a handler
of the fax: protocol ([RFC2806]), so that if the user clicks on such a link, he is given the opportunity

to use that Web site. Analogously, the registerContentHandler() method allows Web sites to

register themselves as possible handlers for content in a particular MIME type. For example, the
same online fax service could register itself as a handler for image/g3fax files ([RFC1494]), so

that if the user has no native application capable of handling G3 Facsimile byte streams, his Web
browser can instead suggest he use that site to view the image.

User agents may, within the constraints described in this section, do whatever they like when the
methods are called. A UA could, for instance, prompt the user and offer the user the opportunity to
add the site to a shortlist of handlers, or make the handlers his default, or cancel the request. UAs
could provide such a UI through modal UI or through a non-modal transient notification interface.
UAs could also simply silently collect the information, providing it only when relevant to the user.

There is an example of how these methods could be presented to the user below.

The arguments to the methods have the following meanings:

protocol (registerProtocolHandler() only)

A scheme, such as ftp or fax. The scheme must be treated case-insensitively by user

agents for the purposes of comparing with the scheme part of URIs that they consider against
the list of registered handlers.

The protocol value, if it contains a colon (as in "ftp:"), will never match anything, since

schemes don't contain colons.

mimeType (registerContentHandler() only)

A MIME type, such as model/vrml or text/richtext. The MIME type must be treated

case-insensitively by user agents for the purposes of comparing with MIME types of

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

269 of 458 30/12/2020, 08:08

documents that they consider against the list of registered handlers.

User agents must compare the given values only to the MIME type/subtype parts of content
types, not to the complete type including parameters. Thus, if mimeType values passed to this
method include characters such as commas or whitespace, or include MIME parameters,
then the handler being registered will never be used.

uri

The URI of the page that will handle the requests. When the user agent uses this URI, it must
replace the first occurrence of the exact literal string "%s" with an escaped version of the URI

of the content in question (as defined below), and then fetch the resulting URI using the GET
method (or equivalent for non-HTTP URIs).

To get the escaped version of the URI, first, the domain part of the URI (if any) must be
converted to its punycode representation, and then, every character in the URI that is not in
the ranges given in the next paragraph must be replaced by its UTF-8 byte representation,
each byte being represented by a U+0025 (%) character and two digits in the range U+0030
(0) to U+0039 (9) and U+0041 (A) to U+0046 (F) giving the hexadecimal representation of the
byte.

The ranges of characters that must not be escaped are: U+002D (-), U+002E (.), U+0030 (0)
to U+0039 (9), U+0041 (A) to U+005A (Z), U+005F (_), U+0061 (a) to U+007A (z), and
U+007E (~).

If the user had visited a site that made the following call:

navigator.registerContentHandler('application/x-soup',
'http://example.com/soup?url=%s', 'SoupWeb™')

...and then clicked on a link such as:

Download our
Chicken Kiwi soup!

...then, assuming this chickenkïwi.soup file was served with the MIME type

application/x-soup, the UA might navigate to the following URI:

http://example.com/soup?url=http%3A%2F
%2Fwww.example.net%2Fchickenk%C3%AFwi.soup

This site could then fetch the chickenkïwi.soup file and do whatever it is that it does

with soup (synthesise it and ship it to the user, or whatever).

title

A descriptive title of the handler, which the UA might use to remind the user what the site in
question is.

User agents should raise security exceptions if the methods are called with protocol or mimeType
values that the UA deems to be "privileged". For example, a site attempting to register a handler for
http URIs or text/html content in a Web browser would likely cause an exception to be raised.

User agents must raise a SYNTAX_ERR exception if the uri argument passed to one of these

methods does not contain the exact literal string "%s".

User agents must not raise any other exceptions (other than binding-specific exceptions, such as for
an incorrect number of arguments in an ECMAScript implementation).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

270 of 458 30/12/2020, 08:08

This section does not define how the pages registered by these methods are used, beyond the
requirements on how to process the uri value (see above). To some extent, the processing model for
navigating across documents defines some cases where these methods are relevant, but in general
UAs may use this information wherever they would otherwise consider handing content to native
plugins or helper applications.

UAs must not use registered content handlers to handle content that was returned as part of a non-
GET transaction (or rather, as part of any non-idempotent transaction), as the remote site would not
be able to fetch the same data.

4.5.1.1. Security and privacy

These mechanisms can introduce a number of concerns, in particular privacy concerns.

Hijacking all Web usage. User agents should not allow protocols that are key to its normal
operation, such as http or https, to be rerouted through third-party sites. This would allow a user's

activities to be trivially tracked, and would allow user information, even in secure connections, to be
collected.

Hijacking defaults. It is strongly recommended that user agents do not automatically change any
defaults, as this could lead the user to send data to remote hosts that the user is not expecting. New
handlers registering themselves should never automatically cause those sites to be used.

Registration spamming. User agents should consider the possibility that a site will attempt to
register a large number of handlers, possibly from multiple domains (e.g. by redirecting through a
series of pages each on a different domain, and each registering a handler for video/mpeg —

analogous practices abusing other Web browser features have been used by pornography Web
sites for many years). User agents should gracefully handle such hostile attempts, protecting the
user.

Misleading titles. User agents should not rely wholy on the title argument to the methods when
presenting the registered handlers to the user, since sites could easily lie. For example, a site
hostile.example.net could claim that it was registering the "Cuddly Bear Happy Content

Handler". User agents should therefore use the handler's domain in any UI along with any title.

Hostile handler metadata. User agents should protect against typical attacks against strings
embedded in their interface, for example ensuring that markup or escape characters in such strings
are not executed, that null bytes are properly handled, that over-long strings do not cause crashes or
buffer overruns, and so forth.

Leaking Intranet URIs. The mechanism described in this section can result in secret Intranet URIs
being leaked, in the following manner:

1. The user registers a third-party content handler as the default handler for a content type.

2. The user then browses his corporate Intranet site and accesses a document that uses that
content type.

3. The user agent contacts the third party and hands the third party the URI to the Intranet
content.

No actual confidential file data is leaked in this manner, but the URIs themselves could contain
confidential information. For example, the URI could be https://www.corp.example.com

/upcoming-aquisitions/samples.egf, which might tell the third party that Example

Corporation is intending to merge with Samples LLC. Implementors might wish to consider allowing
administrators to disable this feature for certain subdomains, content types, or protocols.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

271 of 458 30/12/2020, 08:08

Leaking secure URIs. User agents should not send HTTPS URIs to third-party sites registered as
content handlers, in the same way that user agents do not send Referer headers from secure sites

to third-party sites.

Leaking credentials. User agents must never send username or password information in the URIs
that are escaped and included sent to the handler sites. User agents may even avoid attempting to
pass to Web-based handlers the URIs of resources that are known to require authentication to
access, as such sites would be unable to access the resources in question without prompting the
user for credentials themselves (a practice that would require the user to know whether to trust the
third-party handler, a decision many users are unable to make or even understand).

4.5.1.2. Sample user interface

This section is non-normative.

A simple implementation of this feature for a desktop Web browser might work as follows.

The registerProtocolHandler() method could display a modal dialog box:

||[Protocol Handler Registration]|||||||||||||||||||||||||||
| |
| This Web page: |
| |
| Kittens at work |
| http://kittens.example.org/ |
| |
| ...would like permission to handle the protocol "x-meow:" |
| using the following Web-based application: |
| |
| Kittens-at-work displayer |
| http://kittens.example.org/?show=%s |
| |
| Do you trust the administrators of the "kittens.example. |
| org" domain? |
| |
| (Trust kittens.example.org) ((Cancel)) |
|__|

...where "Kittens at work" is the title of the page that invoked the method,
"http://kittens.example.org/" is the URI of that page, "x-meow" is the string that was passed to the
registerProtocolHandler() method as its first argument (protocol), "http://kittens.example.org

/?show=%s" was the second argument (uri), and "Kittens-at-work displayer" was the third argument
(title).

If the user clicks the Cancel button, then nothing further happens. If the user clicks the "Trust"
button, then the handler is remembered.

When the user then attempts to fetch a URI that uses the "x-meow:" scheme, then it might display a
dialog as follows:

||[Unknown Protocol]||
| |
| You have attempted to access: |
| |
| x-meow:S2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%3D |

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

272 of 458 30/12/2020, 08:08

| |
| How would you like FerretBrowser to handle this resource? |
| |
| (o) Contact the FerretBrowser plugin registry to see if |
| there is an official way to handle this resource. |
| |
| () Pass this URI to a local application: |
| [/no application selected/] (Choose) |
| |
| () Pass this URI to the "Kittens-at-work displayer" |
| application at "kittens.example.org". |
| |
| [] Always do this for resources using the "x-meow" |
| protocol in future. |
| |
| (Ok) ((Cancel)) |
|__|

...where the third option is the one that was primed by the site registering itself earlier.

If the user does select that option, then the browser, in accordance with the requirements described
in the previous two sections, will redirect the user to "http://kittens.example.org/?show=x-
meow%3AS2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%253D".

The registerContentHandler() method would work equivalently, but for unknown MIME types

instead of unknown protocols.

4.6. Offline Web applications

4.6.1. Introduction

...

4.6.2. Application caches

An application cache is a collection of resources. An application cache is identified by the URI of a
resource manifest which is used to populate the cache.

Application caches are versioned, and there can be different instances of caches for the same
manifest URI, each having a different version. A cache is newer than another if it was created after
the other (in other words, caches in a group have a chronological order).

Each group of application caches for the same manifest URI have a common update status, which
is one of the following: idle, checking, downloading.

A browsing context can be associated with an application cache. A child browsing context is always
associated with the same browsing context as its parent browsing context, if any. A top-level
browsing context is associated with the application cache appropriate for its active document. (A
browsing context's associated cache thus can change during session history traversal.)

A Document initially has no appropriate cache, but steps in the parser and in the navigation sections

cause cache selection to occur early in the page load process.

An application cache consists of:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

273 of 458 30/12/2020, 08:08

One of more resources (including their out-of-band metadata, such as HTTP headers, if any),
identified by URIs, each falling into one (or more) of the following categories:

Implicit entries

Documents that were added to the cache because a top-level browsing context was
navigated to that document and the document indicated that this was its cache, using
the manifest attribute.

The manifest

The resource corresponding to the URI that was given in an implicit entry's html

element's manifest attribute. The manifest is downloaded and processed during the

application cache update process. All the implicit entries have the same
scheme/host/port as the manifest.

Explicit entries

Resources that were listed in the cache's manifest. Explicit entries can also be marked
as foreign, which means that they have an manifest attribute but that it doesn't point

at this cache's manifest.

Fallback entries

Resources that were listed in the cache's manifest as fallback entries.

Opportunistically cached entries

Resources whose URIs matched an opportunistic caching namespace when they were
fetched, and were therefore cached in the application cache.

Dynamic entries

Resources that were added to the cache by the add() method.

Note: A URI in the list can be flagged with multiple different types, and thus an
entry can end up being categorised as multiple entries. For example, an entry
can be an explicit entry and a dynamic entry at the same time.

Zero or more opportunistic caching namespaces: URIs, used as prefix match patterns,
each of which is mapped to a fallback entry. Each namespace URI prefix, when parsed as a
URI, has the same scheme/host/port as the manifest.

Zero or more URIs that form the online whitelist.

Multiple application caches can contain the same resource, e.g. if their manifests all reference that
resource. If the user agent is to select an application cache from a list of caches that contain a
resource, that the user agent must use the application cache that the user most likely wants to see
the resource from, taking into account the following:

which application cache was most recently updated,

which application cache was being used to display the resource from which the user decided
to look at the new resource, and

which application cache the user prefers.

4.6.3. The cache manifest syntax

4.6.3.1. Writing cache manifests

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

274 of 458 30/12/2020, 08:08

Manifests must be served using the text/cache-manifest MIME type. All resources served

using the text/cache-manifest MIME type must follow the syntax of application cache

manifests, as described in this section.

An application cache manifest is a text file, whose text is encoded using UTF-8. Data in application
cache manifests is line-based. Newlines must be represented by U+000A LINE FEED (LF)
characters, U+000D CARRIAGE RETURN (CR) characters, or U+000D CARRIAGE RETURN (CR)
U+000A LINE FEED (LF) pairs.

Note: This is a willful double violation of RFC2046.

The first line of an application cache manifest must consist of the string "CACHE", a single U+0020
SPACE character, the string "MANIFEST", and zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters. If any other text is found on the first line, the user
agent will ignore the entire file. The first line may optionally be preceded by a U+FEFF BYTE
ORDER MARK (BOM) character.

Subsequent lines, if any, must all be one of the following:

A blank line

Blank lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER
TABULATION (tab) characters only.

A comment

Comment lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER
TABULATION (tab) characters, followed by a single U+0023 NUMBER SIGN (#) character,
followed by zero or more characters other than U+000A LINE FEED (LF) and U+000D
CARRIAGE RETURN (CR) characters.

Note: Comments must be on a line on their own. If they were to be included on
a line with a URI, the "#" would be mistaken for part of a fragment identifier.

A section header

Section headers change the current section. There are three possible section headers:

CACHE:

Switches to the explicit section.

FALLBACK:

Switches to the fallback section.

NETWORK:

Switches to the online whitelist section.

Section header lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters, followed by one of the names above (including
the U+003A COLON (:) character) followed by zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters.

Ironically, by default, the current section is the explicit section.

Data for the current section

The format that data lines must take depends on the current section.

When the current section is the explicit section or the online whitelist section, data lines must

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

275 of 458 30/12/2020, 08:08

consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab)
characters, a valid URI reference or IRI reference, and then zero or more U+0020 SPACE
and U+0009 CHARACTER TABULATION (tab) characters. [RFC3986] [RFC3987]

When the current section is the fallback section, data lines must consist of zero or more
U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, a valid URI
reference or IRI reference, one or more U+0020 SPACE and U+0009 CHARACTER
TABULATION (tab) characters, another valid URI reference or IRI reference, and then zero or
more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters. [RFC3986]
[RFC3987]

Manifests may contain sections more than once. Sections may be empty.

URIs that are to be fallback pages associated with opportunistic caching namespaces, and those
namespaces themselves, must be given in fallback sections, with the namespace being the first URI
of the data line, and the corresponding fallback page being the second URI. All the other pages to
be cached must be listed in explicit sections.

Opportunistic caching namespaces must have the same scheme/host/port as the manifest itself.

An opportunistic caching namespace must not be listed more than once.

URIs that the user agent is to put into the online whitelist must all be specified in online whitelist
sections. (This is needed for any URI that the page is intending to use to communicate back to the
server.)

URIs in the online whitelist section must not also be listed in explicit section, and must not be listed
as fallback entries in the fallback section. (URIs in the online whitelist section may match
opportunistic caching namespaces, however.)

Relative URIs must be given relative to the manifest's own URI.

URIs in manifests must not have fragment identifiers.

4.6.3.2. Parsing cache manifests

When a user agent is to parse a manifest, it means that the user agent must run the following
steps:

1. The user agent must decode the bytestream corresponding with the manifest to be parsed,
treating it as UTF-8. Bytes or sequences of bytes that are not valid UTF-8 sequences must be
interpreted as a U+FFFD REPLACEMENT CHARACTER. All U+0000 NULL characters must
be replaced by U+FFFD REPLACEMENT CHARACTERs.

2. Let explicit URIs be an initially empty list of explicit entries.

3. Let fallback URIs be an initially empty mapping of opportunistic caching namespaces to
fallback entries.

4. Let online whitelist URIs be an initially empty list of URIs for a online whitelist.

5. Let input be the decoded text of the manifest's bytestream.

6. Let position be a pointer into input, initially pointing at the first character.

7. If position is pointing at a U+FEFF BYTE ORDER MARK (BOM) character, then advance
position to the next character.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

276 of 458 30/12/2020, 08:08

8. If the characters starting from position are "CACHE", followed by a U+0020 SPACE character,
followed by "MANIFEST", then advance position to the next character after those. Otherwise,
this isn't a cache manifest; abort this algorithm with a failure while checking for the magic
signature.

9. Collect a sequence of characters that are U+0020 SPACE or U+0009 CHARACTER
TABULATION (tab) characters.

10. If position is not past the end of input and the character at position is neither a U+000A LINE
FEED (LF) characters nor a U+000D CARRIAGE RETURN (CR) character, then this isn't a
cache manifest; abort this algorithm with a failure while checking for the magic signature.

11. This is a cache manifest. The algorithm cannot fail beyond this point (though bogus lines can
get ignored).

12. Let mode be "explicit".

13. Start of line: If position is past the end of input, then jump to the last step. Otherwise, collect a
sequence of characters that are U+000A LINE FEED (LF), U+000D CARRIAGE RETURN
(CR), U+0020 SPACE, or U+0009 CHARACTER TABULATION (tab) characters.

14. Now, collect a sequence of characters that are not U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters, and let the result be line.

15. If the first character in line is a U+0023 NUMBER SIGN (#) character, then jump back to the
step labelled "start of line".

16. Drop any trailing U+0020 SPACE, or U+0009 CHARACTER TABULATION (tab) characters at
the end of line.

17. If line equals "CACHE:" (the word "CACHE" followed by a U+003A COLON (:) character),
then set mode to "explicit" and jump back to the step labelled "start of line".

18. If line equals "FALLBACK:" (the word "FALLBACK" followed by a U+003A COLON (:)
character), then set mode to "fallback" and jump back to the step labelled "start of line".

19. If line equals "NETWORK:" (the word "NETWORK" followed by a U+003A COLON (:)
character), then set mode to "online whitelist" and jump back to the step labelled "start of
line".

20. This is either a data line or it is syntactically incorrect.

↪ If mode is "explicit"

If line is not a syntactically valid URI reference or IRI reference, then jump back to
the step labelled "start of line".

Otherwise, resolve the URI reference or IRI reference to an absolute URI or IRI,
and drop the fragment identifier, if any.

Now, if the resource's URI has a different <scheme> component than the
manifest's URI, then jump back to the step labelled "start of line".

Otherwise, add this URI to the explicit URIs.

↪ If mode is "fallback"

If line does not contain at least one U+0020 SPACE or U+0009 CHARACTER
TABULATION (tab) character, then jump back to the step labelled "start of line".

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

277 of 458 30/12/2020, 08:08

Otherwise, let everything before the first U+0020 SPACE or U+0009
CHARACTER TABULATION (tab) character in line be part one, and let everything
after the first U+0020 SPACE or U+0009 CHARACTER TABULATION (tab)
character in line be part two.

Strip any leading U+0020 SPACE or U+0009 CHARACTER TABULATION (tab)
characters in part two.

If part one and part two are not both syntactically valid URI or IRI references, then
jump back to the step labelled "start of line".

Resolve the URI or IRI references in part one and part two to absolute URIs or
IRIs.

If the absolute URI or IRI corresponding to part one is already in the fallback URIs
mapping as an opportunistic caching namespace, then jump back to the step
labelled "start of line".

If the absolute URI or IRI corresponding to part one does not have the same
scheme/host/port as the manifest's URI, then jump back to the step labelled "start
of line".

If the absolute URI or IRI corresponding to part two has a different <scheme>
component than the manifest's URI, then jump back to the step labelled "start of
line".

Otherwise, add the absolute URI or IRI corresponding to part one to the fallback
URIs mapping as an opportunistic caching namespace, mapped to the absolute
URI corresponding to part two as the fallback entry.

↪ If mode is "online whitelist"

If line is not a syntactically valid URI reference or IRI reference, then jump back to
the step labelled "start of line".

Otherwise, resolve the URI reference or IRI reference to an absolute URI or IRI,
and drop the fragment identifier, if any.

Now, if the resource's URI has a different <scheme> component than the
manifest's URI, then jump back to the step labelled "start of line".

Otherwise, add this URI to the online whitelist URIs.

21. Jump back to the step labelled "start of line". (That step jumps to the next, and last, step
when the end of the file is reached.)

22. Return the explicit URIs list, the fallback URIs mapping, and the online whitelist URIs.

Relative URI references and IRI references resolved to absolute URIs or IRIs in the above algorithm
must use the manifest's URI as the Base URI from the Retrieval URI for the purposes reference
resolution as defined by RFC 3986. [RFC3986]

Note: If a resource is listed in both the online whitelist and in the explicit section,
then that resource will be downloaded and cached, but when the page tries to use
this resource, the user agent will ignore the cached copy and attempt to fetch the file
from the network. Indeed, the cached copy will only be used if it is opened from a
top-level browsing context.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

278 of 458 30/12/2020, 08:08

4.6.4. Updating an application cache

When the user agent is required (by other parts of this specification) to start the application cache
update process, the user agent must run the following steps:

the event stuff needs to be more consistent -- something about showing every step of the ui or no
steps or something; and we need to deal with showing ui for browsing contexts that open when
an update is already in progress, and we may need to give applications control over the ui the
first time they cache themselves (right now the original cache is done without notifications to the
browsing contexts)

1. Let manifest URI be the URI of the manifest of the cache to be updated.

2. Let cache group be the group of application caches identified by manifest URI.

3. Let cache be the most recently updated application cache identified by manifest URI (that is,
the newest version found in cache group).

4. If the status of the cache group is either checking or downloading, then abort these steps, as
an update is already in progress for them. Otherwise, set the status of this group of caches to
checking. This entire step must be performed as one atomic operation so as to avoid race
conditions.

5. If there is already a resource with the URI of manifest URI in cache, and that resource is
categorised as a manifest, then this is an upgrade attempt. Otherwise, this is a cache
attempt.

Note: If this is a cache attempt, then cache is forcibly the only application
cache in cache group, and it hasn't ever been populated from its manifest (i.e.
this update is an attempt to download the application for the first time). It also
can't have any browsing contexts associated with it.

6. Fire a simple event called checking at the ApplicationCache singleton of each top-level

browsing context that is associated with a cache in cache group. The default action of this
event should be the display of some sort of user interface indicating to the user that the user
agent is checking for the availability of updates.

7. Fetch the resource from manifest URI, and let manifest be that resource.

If the resource is labelled with the MIME type text/cache-manifest, parse manifest

according to the rules for parsing manifests, obtaining a list of explicit entries, fallback entries
and the opportunistic caching namespaces that map to them, and entries for the online
whitelist.

8. If the previous step fails (e.g. the server returns a 4xx or 5xx response or equivalent, or there
is a DNS error, or the connection times out, or the parser for manifests fails when checking
the magic signature), or if the resource is labelled with a MIME type other than text/cache-

manifest, then run these substeps:

1. Fire a simple event called error at the ApplicationCache singleton of each top-

level browsing context that is associated with a cache in cache group. The default
action of this event should be the display of some sort of user interface indicating to
the user that the user agent failed to save the application for offline use.

2. If this is a cache attempt, then discard cache and abort the update process, optionally

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

279 of 458 30/12/2020, 08:08

alerting the user to the failure.

3. Otherwise, jump to the last step in the overall set of steps of the update process.

9. If this is an upgrade attempt and the newly downloaded manifest is byte-for-byte identical to
the manifest found in cache, or if the server reported it as "304 Not Modified" or equivalent,
then fire a simple event called noupdate at the ApplicationCache singleton of each top-

level browsing context that is associated with a cache in cache group. The default action of
this event should be the display of some sort of user interface indicating to the user that the
application is up to date. Then, jump to the last step of the update process.

10. Set the status of cache group to downloading.

11. Fire a simple event called downloading at the ApplicationCache singleton of each top-

level browsing context that is associated with a cache in cache group. The default action of
this event should be the display of some sort of user interface indicating to the user that a
new version is being downloaded.

12. If this is an upgrade attempt, then let new cache be a newly created application cache
identified by manifest URI, being a new version in cache group. Otherwise, let new cache and
cache be the same version of the application cache.

13. Let file list be an empty list of URIs with flags.

14. Add all the URIs in the list of explicit entries obtained by parsing manifest to file list, each
flagged with "explicit entry".

15. Add all the URIs in the list of fallback entries obtained by parsing manifest to file list, each
flagged with "fallback entry".

16. If this is an upgrade attempt, then add all the URIs of opportunistically cached entries in
cache that match the opportunistic caching namespaces obtained by parsing manifest to file
list, each flagged with "opportunistic entry".

17. If this is an upgrade attempt, then add all the URIs of implicit entries in cache to file list, each
flagged with "implicit entry".

18. If this is an upgrade attempt, then add all the URIs of dynamic entries in cache to file list,
each flagged with "dynamic entry".

19. If any URI is in file list more than once, then merge the entries into one entry for that URI, that
entry having all the flags that the original entries had.

20. For each URI in file list, run the following steps:

1. Fire a simple event called progress at the ApplicationCache singleton of each

top-level browsing context that is associated with a cache in cache group. The default
action of this event should be the display of some sort of user interface indicating to
the user that a file is being downloaded in preparation for updating the application.

2. Fetch the resource. If this is an upgrade attempt, then use cache as an HTTP cache,
and honour HTTP caching semantics (such as expiration, ETags, and so forth) with
respect to that cache. User agents may also have other caches in place that are also
honored.

3. If the previous steps fails (e.g. the server returns a 4xx or 5xx response or equivalent,
or there is a DNS error, or the connection times out), then run these substeps:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

280 of 458 30/12/2020, 08:08

1. Fire a simple event called error at the ApplicationCache singleton of each

top-level browsing context that is associated with a cache in cache group. The
default action of this event should be the display of some sort of user interface
indicating to the user that the user agent failed to save the application for offline
use.

2. If this is a cache attempt, then discard cache and abort the update process,
optionally alerting the user to the failure.

3. Otherwise, jump to the last step in the overall set of steps of the update
process.

4. Otherwise, the fetching succeeded. Store the resource in the new cache.

5. If the URI being processed was flagged as an "explicit entry" in file list, then categorise
the entry as an explicit entry.

6. If the URI being processed was flagged as a "fallback entry" in file list, then categorise
the entry as a fallback entry.

7. If the URI being processed was flagged as a "opportunistic entry" in file list, then
categorise the entry as an opportunistically cached entry.

8. If the URI being processed was flagged as an "implicit entry" in file list, then categorise
the entry as a implicit entry.

9. If the URI being processed was flagged as an "dynamic entry" in file list, then
categorise the entry as a dynamic entry.

21. Store manifest in new cache, if it's not there already, and categorise this entry (whether newly
added or not) as the manifest.

22. Store the list of opportunistic caching namespaces, and the URIs of the fallback entries that
they map to, in the new cache.

23. Store the URIs that form the new online whitelist in the new cache.

24. If this is a cache attempt, then:

Set the status of cache group to idle.

Associate any Document objects that were flagged as candidates for this manifest URI's

caches with cache.

Fire a simple event called cached at the ApplicationCache singleton of each top-level

browsing context that is associated with a cache in cache group. The default action of this
event should be the display of some sort of user interface indicating to the user that the
application has been cached and that they can now use it offline.

25. Otherwise, this is an upgrade attempt:

Set the status of cache group to idle.

Fire a simple event called updateready at the ApplicationCache singleton of each top-

level browsing context that is associated with a cache in cache group. The default action of
this event should be the display of some sort of user interface indicating to the user that a
new version is available and that they can activate it by reloading the page.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

281 of 458 30/12/2020, 08:08

26. Abort these steps. The following step is jumped to by various parts of the algorithm above
when they have to cancel the update.

27. Let the status of the group of caches to which cache belongs be idle. If appropriate, remove
any user interface indicating that an update for this cache is in progress.

4.6.5. Processing model

The processing model of application caches for offline support in Web applications is part of the
navigation model, but references the algorithms defined in this section.

A URI matches an opportunistic caching namespace if there exists an application cache whose
manifest's URI has the same scheme/host/port as the URI in question, and if that application cache
has an opportunistic caching namespace with a <path> component that exactly matches the start of
the <path> component of the URI being examined. If multiple opportunistic caching namespaces
match the same URI, the one with the longest <path> component is the one that matches. A URI
looking for an opportunistic caching namespace can match more than one application cache at a
time, but only matches one namespace in each cache.

If a manifest http://example.com/app1/manifest declares that http://example.com

/resources/images should be opportunistically cached, and the user navigates to

http://example.com/resources/images/cat.png, then the user agent will decide that

the application cache identified by http://example.com/app1/manifest contains a

namespace with a match for that URI.

When the application cache selection algorithm algorithm is invoked with a manifest URI, the
user agent must run the first applicable set of steps from the following list:

↪ If the resource is not being loaded as part of navigation of a top-level browsing context

As an optimisation, if the resource was loaded from an application cache, and the
manifest URI of that cache doesn't match the manifest URI with which the algorithm was
invoked, then the user agent should mark the entry in that application cache
corresponding to the resource that was just loaded as being foreign.

Other than that, nothing special happens with respect to application caches.

↪ If the resource being loaded was loaded from an application cache and the URI of that
application cache's manifest is the same as the manifest URI with which the algorithm
was invoked

Associate the Document with the cache from which it was loaded. Invoke the application

cache update process.

↪ If the resource being loaded was loaded from an application cache and the URI of that
application cache's manifest is not the same as the manifest URI with which the
algorithm was invoked

Mark the entry for this resource in the application cache from which it was loaded as
foreign.

Restart the current navigation from the top of the navigation algorithm, undoing any
changes that were made as part of the initial load (changes can be avoided by ensuring
that the step to update the session history with the new page is only ever completed after
the application cache selection algorithm is run, though this is not required).

Note: The navigation will not result in the same resource being loaded,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

282 of 458 30/12/2020, 08:08

because "foreign" entries are never picked during navigation.

User agents may notify the user of the inconsistency between the cache manifest and
the resource's own metadata, to aid in application development.

↪ If the resource being loaded was not loaded from an application cache, but it was loaded
using HTTP GET or equivalent

1. If the manifest URI does not have the same scheme/host/port as the resource's
own URI, then invoke the application cache selection algorithm again, but without
a manifest, and abort these steps.

2. If there is already an application cache identified by this manifest URI, and that
application cache contains a resource with the URI of the manifest, and that
resource is categorised as a manifest, then: store the resource in the matching
cache with the most up to date version, categorised as an implicit entry, associate
the Document with that cache, invoke the application cache update process, and

abort these steps.

3. Flag the resource's Document as a candidate for this manifest URI's caches.

4. If there is already an application cache identified by this manifest URI, then that
application cache does not yet contain a resource with the URI of the manifest, or
it does but that resource is not yet categorised as a manifest: store the resource in
that cache, categorised as an implicit entry (replacing the file's previous contents if
it was already in the cache, but not removing any other categories it might have),
and abort these steps.

5. Otherwise, there is no matching application cache: create a new application cache
identified by this manifest URI, store the resource in that cache, categorised as an
implicit entry, and then invoke the application cache update process.

↪ Otherwise

Invoke the application cache selection algorithm again, but without a manifest.

When the application cache selection algorithm is invoked without a manifest, then: if the
resource is being loaded as part of navigation of a top-level browsing context, and the resource was
fetched from a particular application cache, then the user agent must associate the Document with

that application cache and invoke the application cache update process for that cache; otherwise,
nothing special happens with respect to application caches.

4.6.5.1. Changes to the networking model

When a browsing context is associated with an application cache, any and all resource loads must
go through the following steps instead of immediately invoking the mechanisms appropriate to that
resource's scheme:

1. If the resource is not to be fetched using the HTTP GET mechanism or equivalent, then fetch
the resource normally and abort these steps.

2. If the resource's URI, ignoring its fragment identifier if any, is listed in the application cache's
online whitelist, then fetch the resource normally and abort these steps.

3. If the resource's URI is an implicit entry, the manifest, an explicit entry, a fallback entry, an
opportunistically cached entry, or a dynamic entry in the application cache, then fetch the
resource from the cache and abort these steps.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

283 of 458 30/12/2020, 08:08

4. If the resource's URI has the same scheme/host/port as the manifest's URI, and the start of
the resource's URI's <path> component is exactly matched by the <path> component of an
opportunistic caching namespace in the application cache, then:

Fetch the resource normally. If this results 4xx or 5xx status codes or equivalent, or if there
were network errors, then instead fetch, from the cache, the resource of the fallback entry
corresponding to the namespace with the longest matching <path> component. Abort these
steps.

5. Fail the resource load.

Note: The above algorithm ensures that resources that are not present in the
manifest will always fail to load (at least, after the cache has been primed the first
time), making the testing of offline applications simpler.

4.6.6. Application cache API

interface ApplicationCache {

 // update status
 const unsigned short UNCACHED = 0;
 const unsigned short IDLE = 1;
 const unsigned short CHECKING = 2;
 const unsigned short DOWNLOADING = 3;
 const unsigned short UPDATEREADY = 4;
 readonly attribute unsigned short status;

 // updates
 void update();
 void swapCache();

 // dynamic entries
 readonly attribute unsigned long length;
 DOMString item(in unsigned long index);
 void add(in DOMString uri);
 void remove(in DOMString uri);

 // events
 attribute EventListener onchecking;
 attribute EventListener onerror;
 attribute EventListener onnoupdate;
 attribute EventListener ondownloading;
 attribute EventListener onprogress;
 attribute EventListener onupdateready;
 attribute EventListener oncached;

};

Objects implementing the ApplicationCache interface must also implement the EventTarget

interface.

There is a one-to-one mapping from Document objects to ApplicationCache objects. The

applicationCache attribute on Window objects must return the ApplicationCache object

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

284 of 458 30/12/2020, 08:08

associated with the active document of the Window's browsing context.

An ApplicationCache object might be associated with an application cache. When the

Document object that the ApplicationCache object maps to is associated with an application

cache, then that is the application cache with which the ApplicationCache object is associated.

Otherwise, the ApplicationCache object is associated with the application cache that the

Document object's browsing context is associated with, if any.

The status attribute, on getting, must return the current state of the application cache

ApplicationCache object is associated with, if any. This must be the appropriate value from the

following list:

UNCACHED (numeric value 0)

The ApplicationCache object is not associated with an application cache at this time.

IDLE (numeric value 1)

The ApplicationCache object is associated with an application cache whose group is in

the idle update status, and that application cache is the newest cache in its group that
contains a resource categorised as a manifest.

CHECKING (numeric value 2)

The ApplicationCache object is associated with an application cache whose group is in

the checking update status.

DOWNLOADING (numeric value 3)

The ApplicationCache object is associated with an application cache whose group is in

the downloading update status.

UPDATEREADY (numeric value 4)

The ApplicationCache object is associated with an application cache whose group is in

the idle update status, but that application cache is not the newest cache in its group that
contains a resource categorised as a manifest.

The length attribute must return the number of dynamic entries in the application cache with which

the ApplicationCache object is associated, if any, and zero if the object is not associated with

any application cache.

The dynamic entries in the application cache are ordered in the same order as they were added to
the cache by the add() method, with the oldest entry being the zeroth entry, and the most recently

added entry having the index length-1.

The item(index) method must return the dynamic entries with index index from the application

cache, if one is associated with the ApplicationCache object. If the object is not associated with

any application cache, or if the index argument is lower than zero or greater than length-1, the

method must instead raise an INDEX_SIZE_ERR exception.

The add(uri) method must run the following steps:

1. If the ApplicationCache object is not associated with any application cache, then raise an

INVALID_STATE_ERR exception and abort these steps.

2. If there is already a resource in in the application cache with which the ApplicationCache

object is associated that has the address uri, then ensure that entry is categorised as a
dynamic entry and return and abort these steps.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

285 of 458 30/12/2020, 08:08

3. If uri has a different <scheme> component than the manifest's URI, then raise a security
exception.

4. Return, but do not abort these steps.

5. Fetch the resource referenced by uri.

6. If this results 4xx or 5xx status codes or equivalent, or if there were network errors, then abort
these steps.

7. Wait for there to be no running scripts, or at least no running scripts that can reach an
ApplicationCache object associated with the application cache with which this

ApplicationCache object is associated.

Add the fetched resource to the application cache and categorise it as a dynamic entry before
letting any such scripts resume.

We can make the add() API more usable (i.e. make it possible to detect progress and distinguish
success from errors without polling and timeouts) if we have the method return an object that is a
target of Progress Events, much like the XMLHttpRequestEventTarget interface. This would also
make this far more complex to spec and implement.

The remove(uri) method must remove the dynamic entry categorisation of any entry with the

address uri in the application cache with which the ApplicationCache object is associated. If this

removes the last categorisation of an entry in that cache, then the entry must be removed entirely
(such that if it is re-added, it will be loaded from the network again). If the ApplicationCache

object is not associated with any application cache, then the method must raise an
INVALID_STATE_ERR exception instead.

If the update() method is invoked, the user agent must invoke the application cache update

process, in the background, for the application cache with which the ApplicationCache object is

associated. If there is no such application cache, then the method must raise an
INVALID_STATE_ERR exception instead.

If the swapCache() method is invoked, the user agent must run the following steps:

1. Let document be the Document with which the ApplicationCache object is associated.

2. Check that document is associated with an application cache. If it is not, then raise an
INVALID_STATE_ERR exception and abort these steps.

Note: This is not the same thing as the ApplicationCache object being itself

associated with an application cache! In particular, the Document with which

the ApplicationCache object is associated can only itself be associated with

an application cache if it is in a top-level browsing context.

3. Let cache be the application cache with which the ApplicationCache object is associated.

(By definition, this is the same as the one that was found in the previous step.)

4. Check that there is an application cache in the same group as cache which has an entry
categorised as a manifest that has is newer than cache. If there is not, then raise an
INVALID_STATE_ERR exception and abort these steps.

5. Let new cache be the newest application cache in the same group as cache which has an

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

286 of 458 30/12/2020, 08:08

entry categorised as a manifest.

6. Unassociate document from cache and instead associate it with new cache.

The following are the event handler DOM attributes that must be supported by objects implementing
the ApplicationCache interface:

onchecking

Must be invoked whenever an checking event is targeted at or bubbles through the

ApplicationCache object.

onerror

Must be invoked whenever an error event is targeted at or bubbles through the

ApplicationCache object.

onnoupdate

Must be invoked whenever an noupdate event is targeted at or bubbles through the

ApplicationCache object.

ondownloading

Must be invoked whenever an downloading event is targeted at or bubbles through the

ApplicationCache object.

onprogress

Must be invoked whenever an progress event is targeted at or bubbles through the

ApplicationCache object.

onupdateready

Must be invoked whenever an updateready event is targeted at or bubbles through the

ApplicationCache object.

oncached

Must be invoked whenever a cached event is targeted at or bubbles through the

ApplicationCache object.

4.6.7. Browser state

The navigator.onLine attribute must return false if the user agent will not contact the network

when the user follows links or when a script requests a remote page (or knows that such an attempt
would fail), and must return true otherwise.

When the value that would be returned by the navigator.onLine attribute of the Window

changes from true to false, the user agent must fire a simple event called offline at the body

element.

On the other hand, when the value that would be returned by the navigator.onLine attribute of

the Window changes from false to true, the user agent must fire a simple event called online at the

body element.

4.7. Session history and navigation

4.7.1. The session history of browsing contexts

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

287 of 458 30/12/2020, 08:08

The sequence of Documents in a browsing context is its session history.

History objects provide a representation of the pages in the session history of browsing contexts.

Each browsing context has a distinct session history.

Each Document object in a browsing context's session history is associated with a unique instance

of the History object, although they all must model the same underlying session history.

The history attribute of the Window interface must return the object implementing the History

interface for that Window object's active document.

History objects represent their browsing context's session history as a flat list of session history

entries. Each session history entry consists of either a URI or a state object, or both, and may in
addition have a title, a Document object, form data, a scroll position, and other information

associated with it.

Note: This does not imply that the user interface need be linear. See the notes below.

URIs without assaciated state objects are added to the session history as the user (or script)
navigates from page to page.

A state object is an object representing a user interface state.

Pages can add state objects between their entry in the session history and the next ("forward") entry.
These are then returned to the script when the user (or script) goes back in the history, thus enabling
authors to use the "navigation" metaphor even in one-page applications.

At any point, one of the entries in the session history is the current entry. This is the entry
representing the active document of the browsing context. The current entry is usually an entry for
the location of the Document. However, it can also be one of the entries for state objects added to

the history by that document.

Entries that consist of state objects share the same Document as the entry for the page that was

active when they were added.

Contiguous entries that differ just by fragment identifier also share the same Document.

Note: All entries that share the same Document (and that are therefore merely

different states of one particular document) are contiguous by definition.

User agents may discard the DOMs of entries other than the current entry that are not referenced
from any script, reloading the pages afresh when the user or script navigates back to such pages.
This specification does not specify when user agents should discard pages' DOMs and when they
should cache them. See the section on the load and unload events for more details.

Entries that have had their DOM discarded must, for the purposes of the algorithms given below, act
as if they had not. When the user or script navigates back or forwards to a page which has no in-
memory DOM objects, any other entries that shared the same Document object with it must share

the new object as well.

When state object entries are added, a URI can be provided. This URI is used to replace the state
object entry if the Document is evicted.

When a user agent discards the DOM from an entry in the session history, it must also discard all the
entries that share that Document but do not have an associated URI (i.e. entries that only have a

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

288 of 458 30/12/2020, 08:08

state object). Entries that shared that Document object but had a state object and have a different

URI must then have their state objects removed. Removed entries are not recreated if the user or
script navigates back to the page. If there are no state object entries for that Document object then

no entries are removed.

4.7.2. The History interface

interface History {
 readonly attribute long length;
 void go(in long delta);
 void go();
 void back();
 void forward();
 void pushState(in DOMObject data, in DOMString title);
 void pushState(in DOMObject data, in DOMString title, in DOMString
url);
 void clearState();
};

The length attribute of the History interface must return the number of entries in this session

history.

The actual entries are not accessible from script.

The go(delta) method causes the UA to move the number of steps specified by delta in the

session history.

If the index of the current entry plus delta is less than zero or greater than or equal to the number of
items in the session history, then the user agent must do nothing.

If the delta is zero, then the user agent must act as if the location.reload() method was called

instead.

Otherwise, the user agent must cause the current browsing context to traverse the history to the
specified entry, as described below. The specified entry is the one whose index equals the index of
the current entry plus delta.

When a user agent is required to traverse the history to a specified entry, the user agent must act
as follows:

1. If there is no longer a Document object for the entry in question, the user agent must

navigate the browsing context to the location for that entry to preform an entry update of that
entry, and abort these steps. The "navigate" algorithm reinvokes this "traverse" algorithm to
complete the traversal, at which point there is a Document object and so this step gets

skipped.

2. If appropriate, update the current entry in the browsing context's Document object's History

object to reflect any state that the user agent wishes to persist.

For example, some user agents might want to persist the scroll position, or the values of
form controls.

3. If there are any entries with state objects between the current entry and the specified entry
(not inclusive), then the user agent must iterate through every entry between the current entry
and the specified entry, starting with the entry closest to the current entry, and ending with the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

289 of 458 30/12/2020, 08:08

one closest to the specified entry. For each entry, if the entry is a state object, the user agent
must activate the state object.

4. If the specified entry has a different Document object than the current entry then the user

agent must run the following substeps:

1. The user agent must move any properties that have been added to the browsing
context's default view's Window object to the active document's Document's list of

added properties.

2. If the browsing context is a top-level browsing context (and not an auxiliary browsing
context), and the origin of the Document of the specified entry is not the same as the

origin of the Document of the current entry, then the following sub-sub-steps must be

run:
1. The current browsing context name must be stored with all the entries in the

history that are associated with Document objects with the same origin as the

active document and that are contiguous with the current entry.
2. The browsing context's browsing context name must be unset.

3. The user agent must make the specified entry's Document object the active document

of the browsing context. (If it is a top-level browsing context, this might change which
application cache it is associated with.)

4. If the specified entry has a browsing context name stored with it, then the following
sub-sub-steps must be run:

1. The browsing context's browsing context name must be set to the name stored
with the specified entry.

2. Any browsing context name stored with the entries in the history that are
associated with Document objects with the same origin as the new active

document, and that are contiguous with the specified entry, must be cleared.

5. The user agent must move any properties that have been added to the active
document's Document's list of added properties to browsing context's default view's

Window object.

5. If the specified entry is a state object, the user agent must activate that state object.

6. If the specified entry has a URI that differs from the current entry's only by its fragment
identifier, and the two share the same Document object, then fire a simple event with the

name hashchanged at the body element, and, if the new URI has a fragment identifier,

scroll to the fragment identifier.

7. User agents may also update other aspects of the document view when the location changes
in this way, for instance the scroll position, values of form fields, etc.

8. The current entry is now the specified entry.

how does the changing of the global attributes affect .watch() when seen from other Windows?

When the user navigates through a browsing context, e.g. using a browser's back and forward
buttons, the user agent must translate this action into the equivalent invocations of the
history.go(delta) method on the various affected window objects.

Some of the other members of the History interface are defined in terms of the go() method, as

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

290 of 458 30/12/2020, 08:08

follows:

Member Definition

go() Must do the same as go(0)

back() Must do the same as go(-1)

forward() Must do the same as go(1)

The pushState(data, title, url) method adds a state object to the history.

When this method is invoked, the user agent must first check the third argument. If a third argument
is specified, then the user agent must verify that the third argument is a valid URI or IRI (as defined
by RFC 3986 and 3987), and if so, that, after resolving it to an absolute URI, it is either identical to
the document's URI, or that it differs from the document's URI only in the <query>, <abs_path>,
and/or <fragment> parts, as applicable (the <query> and <abs_path> parts can only be the same if
the document's URI uses a hierarchical <scheme>). If the verification fails (either because the
argument is syntactically incorrect, or differs in a way not described as acceptable in the previous
sentence) then the user agent must raise a security exception. [RFC3986] [RFC3987]

If the third argument passes its verification step, or if the third argument was omitted, then the user
agent must remove from the session history any entries for that Document from the entry after the

current entry up to the last entry in the session history that references the same Document object, if

any. If the current entry is the last entry in the session history, or if there are no entries after the
current entry that reference the same Document object, then no entries are removed.

Then, the user agent must add a state object entry to the session history, after the current entry, with
the specified data as the state object, the given title as the title, and, if the third argument is present,
the given url as the URI of the entry.

Finally, the user agent must update the current entry to be the this newly added entry.

Note: The title is purely advisory. User agents might use the title in the user
interface.

User agents may limit the number of state objects added to the session history per page. If a page
hits the UA-defined limit, user agents must remove the entry immediately after the first entry for that
Document object in the session history after having added the new entry. (Thus the state history

acts as a FIFO buffer for eviction, but as a LIFO buffer for navigation.)

The clearState() method removes all the state objects for the Document object from the

session history.

When this method is invoked, the user agent must remove from the session history all the entries
from the first state object entry for that Document object up to the last entry that references that

same Document object, if any.

Then, if the current entry was removed in the previous step, the current entry must be set to the last
entry for that Document object in the session history.

4.7.3. Activating state objects

When a state object in the session history is activated (which happens in the cases described
above), the user agent must fire a popstate event in no namespace on the the body element using

the PopStateEvent interface, with the state object in the state attribute. This event bubbles but is

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

291 of 458 30/12/2020, 08:08

not cancelable and has no default action.

interface PopStateEvent : Event {
 readonly attribute DOMObject state;
 void initPopStateEvent(in DOMString typeArg, in boolean
canBubbleArg, in boolean cancelableArg, in DOMObject statetArg);
 void initPopStateEventNS(in DOMString namespaceURIArg, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in
DOMObject stateArg);
};

The initPopStateEvent() and initPopStateEventNS() methods must initialise the event in

a manner analogous to the similarly-named methods in the DOM3 Events interfaces.
[DOM3EVENTS]

The state attribute represents the context information for the event.

Should we coalesce these events if they occur while the page is away? (e.g. during traversal --
see above)

4.7.4. The Location interface

Each Document object in a browsing context's session history is associated with a unique instance

of a Location object.

The location attribute of the HTMLDocument interface must return the Location object for that

Document object.

The location attribute of the Window interface must return the Location object for that Window

object's active document.

Location objects provide a representation of the URI of their document, and allow the current entry

of the browsing context's session history to be changed, by adding or replacing entries in the
history object.

interface Location {
 readonly attribute DOMString href;
 void assign(in DOMString url);
 void replace(in DOMString url);
 void reload();

 // URI decomposition attributes
 attribute DOMString protocol;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString port;
 attribute DOMString pathname;
 attribute DOMString search;
 attribute DOMString hash;
};

In the ECMAScript DOM binding, objects implementing this interface must stringify to the same

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

292 of 458 30/12/2020, 08:08

value as the href attribute.

In the ECMAScript DOM binding, the location members of the HTMLDocument and Window

interfaces behave as if they had a setter: user agents must treats attempts to set these location

attribute as attempts at setting the href attribute of the relevant Location object instead.

The href attribute returns the address of the page represented by the associated Document object,

as an absolute IRI reference.

On setting, the user agent must act as if the assign() method had been called with the new value

as its argument.

When the assign(url) method is invoked, the UA must navigate the browsing context to the

specified url.

When the replace(url) method is invoked, the UA must navigate to the specified url with

replacement enabled.

Relative url arguments for assign() and replace() must be resolved relative to the base URI of

the script that made the method call.

The Location interface also has the complement of URI decomposition attributes, protocol,

host, port, hostname, pathname, search, and hash. These must follow the rules given for URI

decomposition attributes, with the input being the address of the page represented by the associated
Document object, as an absolute IRI reference (same as the href attribute), and the common

setter action being the same as setting the href attribute to the new output value.

4.7.4.1. Security

User agents must raise a security exception whenever any of the members of a Location object

are accessed by scripts whose origin is not the same as the Location object's associated

Document's origin, with the following exceptions:

The href setter

User agents must not allow scripts to override the href attribute's setter.

4.7.5. Implementation notes for session history

This section is non-normative.

The History interface is not meant to place restrictions on how implementations represent the

session history to the user.

For example, session history could be implemented in a tree-like manner, with each page having
multiple "forward" pages. This specification doesn't define how the linear list of pages in the
history object are derived from the actual session history as seen from the user's perspective.

Similarly, a page containing two iframes has a history object distinct from the iframes'

history objects, despite the fact that typical Web browsers present the user with just one "Back"

button, with a session history that interleaves the navigation of the two inner frames and the outer
page.

Security: It is suggested that to avoid letting a page "hijack" the history navigation facilities of a UA
by abusing pushState(), the UA provide the user with a way to jump back to the previous page

(rather than just going back to the previous state). For example, the back button could have a drop

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

293 of 458 30/12/2020, 08:08

down showing just the pages in the session history, and not showing any of the states. Similarly, an
aural browser could have two "back" commands, one that goes back to the previous state, and one
that jumps straight back to the previous page.

In addition, a user agent could ignore calls to pushState() that are invoked on a timer, or from

event handlers that do not represent a clear user action, or that are invoked in rapid succession.

4.8. Navigating across documents

Certain actions cause the browsing context to navigate. For example, following a hyperlink, form
submission, and the window.open() and location.assign() methods can all cause a

browsing context to navigate. A user agent may also provide various ways for the user to explicitly
cause a browsing context to navigate.

When a browsing context is navigated, the user agent must run the following steps:

1. Cancel any preexisting attempt to navigate the browsing context.

2. If the new resource is the same as the current resource, but a fragment identifier has been
specified, then navigate to that fragment identifier and abort these steps.

3. If the new resource is to be handled by displaying some sort of inline content, e.g. an error
message because the specified scheme is not one of the supported protocols, or an inline
prompt to allow the user to select a registered handler for the given scheme, then display the
inline content and abort these steps.

4. If the new resource is to be handled using a mechanism that does not affect the browsing
context, then abort these steps and proceed with that mechanism instead.

5. If the new resource is to be fetched using HTTP GET or equivalent, and if the browsing
context being navigated is a top-level browsing context, then check if there are any
application caches that have a manifest with the same scheme/host/port as the URI in
question, and that have this URI as one of their entries (excluding entries marked as
manifest), and that already contain their manifest, categorised as a manifest. If so, then the
user agent must then fetch the resource from the most appropriate application cache of those
that match.

Otherwise, start fetching the specified resource in the appropriate manner (e.g. performing an
HTTP GET or POST operation, or reading the file from disk, or executing script in the case of
a javascript: URI). If this results in a redirect, return to step 2 with the new resource.

For example, imagine an HTML page with an associated application cache displaying an
image and a form, where the image is also used by several other application caches. If
the user right-clicks on the image and chooses "View Image", then the user agent could
decide to show the image from any of those caches, but it is likely that the most useful
cache for the user would be the one that was used for the aforementioned HTML page.
On the other hand, if the user submits the form, and the form does a POST submission,
then the user agent will not use an application cache at all; the submission will be made
to the network.

6. Wait for one or more bytes to be available or for the user agent to establish that the resource
in question is empty. During this time, the user agent may allow the user to cancel this
navigation attempt or start other navigation attempts.

7. If the resource was not fetched from an application cache, and was to be fetched using HTTP

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

294 of 458 30/12/2020, 08:08

GET or equivalent, and its URI matches the opportunistic caching namespace of one or more
application caches, then:

↪ If the file was successfully downloaded

The user agent must cache the resource in all those application caches,
categorised as opportunistically cached entries.

↪ If the server returned a 4xx or 5xx status code or equivalent, or there were network
errors

If the browsing context being navigated is a top-level browsing context, then the
user agent must discard the failed load and instead use the fallback resource
specified for the opportunistic caching namespace in question. If multiple
application caches match, the user agent must use the fallback of the most
appropriate application cache of those that match. For the purposes of session
history (and features that depend on session history, e.g. bookmarking) the user
agent must use the URI of the resource that was requested (the one that matched
the opportunistic caching namespace), not the fallback resource. However, the
user agent may indicate to the user that the original page load failed, that the page
used was a fallback resource, and what the URI of the fallback resource actually
is.

8. If the document's out-of-band metadata (e.g. HTTP headers), not counting any type
information (such as the Content-Type HTTP header), requires some sort of processing that
will not affect the browsing context, then perform that processing and abort these steps.

Such processing might be triggered by, amongst other things, the following:

HTTP status codes (e.g. 204 No Content or 205 Reset Content)
HTTP Content-Disposition headers
Network errors

9. Let type be the sniffed type of the resource.

10. If the user agent has been configured to process resources of the given type using some
mechanism other than rendering the content in a browsing context, then skip this step.
Otherwise, if the type is one of the following types, jump to the appropriate entry in the
following list, and process the resource as described there:

↪ "text/html"

Follow the steps given in the HTML document section, and abort these steps.

↪ Any type ending in "+xml"

↪ "application/xml"

↪ "text/xml"

Follow the steps given in the XML document section. If that section determines
that the content is not to be displayed as a generic XML document, then proceed
to the next step in this overall set of steps. Otherwise, abort these steps.

↪ "text/plain"

Follow the steps given in the plain text file section, and abort these steps.

↪ A supported image type

Follow the steps given in the image section, and abort these steps.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

295 of 458 30/12/2020, 08:08

↪ A type that will use an external application to render the content in the browsing
context

Follow the steps given in the plugin section, and abort these steps.

11. If, given type, the new resource is to be handled by displaying some sort of inline content, e.g.
a native rendering of the content, an error message because the specified type is not
supported, or an inline prompt to allow the user to select a registered handler for the given
type, then display the inline content and abort these steps.

12. Otherwise, the document's type is such that the resource will not affect the browsing context,
e.g. because the resource is to be handed to an external application. Process the resource
appropriately.

Some of the sections below, to which the above algorithm defers in certain cases, require the user
agent to update the session history with the new page. When a user agent is required to do this,
it must follows the set of steps given below that is appropriate for the situation at hand. From the
point of view of any script, these steps must occur atomically.

1. pause for scripts

2. onbeforeunload

3. onunload

4. If the navigation was initiated for entry update of an entry

1. Replace the entry being updated with a new entry representing the new
resource and its Document object and related state. The user agent may

propagate state from the old entry to the new entry (e.g. scroll position).

2. Traverse the history to the new entry.

Otherwise

1. Remove all the entries after the current entry in the browsing context's
Document object's History object.

Note: This doesn't necessarily have to affect the user agent's user
interface.

2. Append a new entry at the end of the History object representing the new

resource and its Document object and related state.

3. Traverse the history to the new entry.

4. If the navigation was initiated with replacement enabled, remove the entry
immediately before the new current entry in the session history.

4.8.1. Page load processing model for HTML files

When an HTML document is to be loaded in a browsing context, the user agent must create a
Document object, mark it as being an HTML document, create an HTML parser, associate it with the

document, and begin to use the bytes provided for the document as the input stream for that parser.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

296 of 458 30/12/2020, 08:08

Note: The input stream converts bytes into characters for use in the tokeniser. This
process relies, in part, on character encoding information found in the real Content-
Type metadata of the resource; the "sniffed type" is not used for this purpose.

When no more bytes are available, an EOF character is implied, which eventually causes a load

event to be fired.

After creating the Document object, but potentially before the page has finished parsing, the user

agent must update the session history with the new page.

Note: Application cache selection happens in the HTML parser.

4.8.2. Page load processing model for XML files

When faced with displaying an XML file inline, user agents must first create a Document object,

following the requirements of the XML and Namespaces in XML recommendations, RFC 3023,
DOM3 Core, and other relevant specifications. [XML] [XMLNS] [RFC3023] [DOM3CORE]

The actual HTTP headers and other metadata, not the headers as mutated or implied by the
algorithms given in this specification, are the ones that must be used when determining the
character encoding according to the rules given in the above specifications.

If the root element, as parsed according to the XML specifications cited above, is found to be an
html element with an attribute manifest, then, as soon as the element is inserted into the DOM,

the user agent must run the application cache selection algorithm with the value of that attribute as
the manifest URI. Otherwise, as soon as the root element is inserted into the DOM, the user agent
must run the application cache selection algorithm with no manifest.

Note: Because the processing of the manifest attribute happens only once the root

element is parsed, any URIs referenced by processing instructions before the root
element (such as <?xml-styleesheet?> and <?xbl?> PIs) will be fetched from the

network and cannot be cached.

User agents may examine the namespace of the root Element node of this Document object to

perform namespace-based dispatch to alternative processing tools, e.g. determining that the content
is actually a syndication feed and passing it to a feed handler. If such processing is to take place,
abort the steps in this section, and jump to step 10 in the navigate steps above.

Otherwise, then, with the newly created Document, the user agents must update the session history

with the new page. User agents may do this before the complete document has been parsed (thus
achieving incremental rendering).

Error messages from the parse process (e.g. namespace well-formedness errors) may be reported
inline by mutating the Document.

4.8.3. Page load processing model for text files

When a plain text document is to be loaded in a browsing context, the user agent should create a
Document object, mark it as being an HTML document, create an HTML parser, associate it with the

document, act as if the tokeniser had emitted a start tag token with the tag name "pre", set the
tokenisation stage's content model flag to PLAINTEXT, and begin to pass the stream of characters
in the plain text document to that tokeniser.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

297 of 458 30/12/2020, 08:08

The rules for how to convert the bytes of the plain text document into actual characters are defined
in RFC 2046, RFC 2646, and subsequent versions thereof. [RFC2046] [RFC2646]

Upon creation of the Document object, the user agent must run the application cache selection

algorithm with no manifest.

When no more character are available, an EOF character is implied, which eventually causes a
load event to be fired.

After creating the Document object, but potentially before the page has finished parsing, the user

agent must update the session history with the new page.

User agents may add content to the head element of the Document, e.g. linking to stylesheet or an

XBL binding, providing script, giving the document a title, etc.

4.8.4. Page load processing model for images

When an image resource is to be loaded in a browsing context, the user agent should create a
Document object, mark it as being an HTML document, append an html element to the Document,

append a head element and a body element to the html element, append an img to the body

element, and set the src attribute of the img element to the address of the image.

Then, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache selection

algorithm with no manifest.

After creating the Document object, but potentially before the page has finished fully loading, the

user agent must update the session history with the new page.

User agents may add content to the head element of the Document, or attributes to the img

element, e.g. to link to stylesheet or an XBL binding, to provide a script, to give the document a
title, etc.

4.8.5. Page load processing model for content that uses plugins

When a resource that requires an external resource to be rendered is to be loaded in a browsing
context, the user agent should create a Document object, mark it as being an HTML document,

append an html element to the Document, append a head element and a body element to the

html element, append an embed to the body element, and set the src attribute of the img element

to the address of the image.

Then, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache selection

algorithm with no manifest.

After creating the Document object, but potentially before the page has finished fully loading, the

user agent must update the session history with the new page.

User agents may add content to the head element of the Document, or attributes to the embed

element, e.g. to link to stylesheet or an XBL binding, or to give the document a title.

4.8.6. Page load processing model for inline content that doesn't have a DOM

When the user agent is to display a user agent page inline in a browsing context, the user agent

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

298 of 458 30/12/2020, 08:08

should create a Document object, mark it as being an HTML document, and then either associate

that Document with a custom rendering that is not rendered using the normal Document rendering

rules, or mutate that Document until it represents the content the user agent wants to render.

Once the page has been set up, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache selection

algorithm with no manifest.

After creating the Document object, but potentially before the page has been completely set up, the

user agent must update the session history with the new page.

4.8.7. Navigating to a fragment identifier

When a user agent is supposed to navigate to a fragment identifier, then the user agent must update
the session history with the new page, where "the new page" has the same Document as before but

with the URI having the newly specified fragment identifier.

Part of that algorithm involves the user agent having to scroll to the fragment identifier, which is the
important part for this step.

When the user agent is required to scroll to the fragment identifier, it must change the scrolling
position of the document, or perform some other action, such that the indicated part of the document
is brought to the user's attention. If there is no indicated part, then the user agent must not scroll
anywhere.

The the indicated part of the document is the one that the fragment identifier identifies. The
semantics of the fragment identifier in terms of mapping it to a specific DOM Node is defined by the
MIME type specification of the document's MIME Type (for example, the processing of fragment
identifiers for XML MIME types is the responsibility of RFC3023).

For HTML documents (and the text/html MIME type), the following processing model must be

followed to determine what the indicated part of the document is.

1. Let fragid be the <fragment> part of the URI. [RFC3987]

2. If fragid is the empty string, then the the indicated part of the document is the top of the
document.

3. If there is an element in the DOM that has an ID exactly equal to fragid, then the first such
element in tree order is the indicated part of the document; stop the algorithm here.

4. If there is an a element in the DOM that has a name attribute whose value is exactly equal to

fragid, then the first such element in tree order is the indicated part of the document; stop the
algorithm here.

5. Otherwise, there is no indicated part of the document.

For the purposes of the interaction of HTML with Selectors' :target pseudo-class, the target element
is the indicated part of the document, if that is an element; otherwise there is no target element.
[SELECTORS]

4.9. Determining the type of a new resource in a browsing context

⚠Warning! It is imperative that the rules in this section be followed exactly. When two user

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

299 of 458 30/12/2020, 08:08

agents use different heuristics for content type detection, security problems can occur. For
example, if a server believes a contributed file to be an image (and thus benign), but a Web
browser believes the content to be HTML (and thus capable of executing script), the end user
can be exposed to malicious content, making the user vulnerable to cookie theft attacks and
other cross-site scripting attacks.

The sniffed type of a resource must be found as follows:

1. If the resource was fetched over an HTTP protocol, and there is no HTTP Content-Encoding
header, but there is an HTTP Content-Type header and it has a value whose bytes exactly
match one of the following three lines:

Bytes in Hexadecimal Textual representation

74 65 78 74 2f 70 6c 61 69 6e text/plain

74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 73
65 74 3d 49 53 4f 2d 38 38 35 39 2d 31

text/plain; charset=ISO-

8859-1

74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 73
65 74 3d 69 73 6f 2d 38 38 35 39 2d 31

text/plain; charset=iso-

8859-1

...then jump to the text or binary section below.

2. Let official type be the type given by the Content-Type metadata for the resource (in
lowercase, ignoring any parameters). If there is no such type, jump to the unknown type step
below.

3. If official type is "unknown/unknown" or "application/unknown", jump to the unknown type step
below.

4. If official type ends in "+xml", or if it is either "text/xml" or "application/xml", then the the sniffed
type of the resource is official type; return that and abort these steps.

5. If official type is an image type supported by the user agent (e.g. "image/png", "image/gif",
"image/jpeg", etc), then jump to the images section below.

6. If official type is "text/html", then jump to the feed or HTML section below.

7. Otherwise, the sniffed type of the resource is official type.

4.9.1. Content-Type sniffing: text or binary

1. The user agent may wait for 512 or more bytes of the resource to be available.

2. Let n be the smaller of either 512 or the number of bytes already available.

3. If n is 4 or more, and the first bytes of the file match one of the following byte sets:

Bytes in Hexadecimal Description

FE FF UTF-16BE BOM or UTF-32LE BOM

FF FE UTF-16LE BOM

00 00 FE FF UTF-32BE BOM

EF BB BF UTF-8 BOM

...then the sniffed type of the resource is "text/plain".

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

300 of 458 30/12/2020, 08:08

Should we remove UTF-32 from the above?

Otherwise, if any of the first n bytes of the resource are in one of the following byte ranges:

0x00 - 0x08
0x0E - 0x1A
0x1C - 0x1F

...then the sniffed type of the resource is "application/octet-stream".

maybe we should invoke the "Content-Type sniffing: image" section now, falling back on
"application/octet-stream".

Otherwise, the sniffed type of the resource is "text/plain".

4.9.2. Content-Type sniffing: unknown type

1. The user agent may wait for 512 or more bytes of the resource to be available.

2. Let stream length be the smaller of either 512 or the number of bytes already available.

3. For each row in the table below:

↪ If the row has no "WS" bytes:

1. Let pattern length be the length of the pattern (number of bytes described
by the cell in the second column of the row).

2. If pattern length is smaller than stream length then skip this row.

3. Apply the "and" operator to the first pattern length bytes of the resource and
the given mask (the bytes in the cell of first column of that row), and let the
result be the data.

4. If the bytes of the data matches the given pattern bytes exactly, then the
sniffed type of the resource is the type given in the cell of the third column
in that row; abort these steps.

↪ If the row has a "WS" byte:

1. Let index be an index into the mask and pattern byte strings of the
row.

2. Let index be an index into the byte stream being examined.

3. Loop: If index points beyond the end of the byte stream, then this row
doesn't match, skip this row.

4. Examine the index th byte of the byte stream as follows:

↪ If the index th byte of the pattern is a normal hexadecimal
byte and not a "WS" byte:

If the "and" operator, applied to the index th byte of the
stream and the index th byte of the mask, yield a value
different that the index th byte of the pattern, then skip this
row.

pattern

stream

stream

stream

stream

stream

pattern

pattern

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

301 of 458 30/12/2020, 08:08

Otherwise, increment index to the next byte in the mask
and pattern and index to the next byte in the byte stream.

↪ Otherwies, if the index th byte of the pattern is a "WS" byte:
"WS" means "whitespace", and allows insignificant whitespace
to be skipped when sniffing for a type signature.

If the index th byte of the stream is one of 0x09 (ASCII
TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C (ASCII FF),
0x0D (ASCII CR), or 0x20 (ASCII space), then increment only
the index to the next byte in the byte stream.

Otherwise, increment only the index to the next byte in the
mask and pattern.

5. If index does not point beyond the end of the mask and pattern byte
strings, then jump back to the loop step in this algorithm.

6. Otherwise, the sniffed type of the resource is the type given in the cell of
the third column in that row; abort these steps.

4. As a last-ditch effort, jump to the text or binary section.

Bytes in Hexadecimal Sniffed type Comment

Mask Pattern

FF FF DF DF DF
DF DF DF DF FF
DF DF DF DF

3C 21 44 4F 43
54 59 50 45 20
48 54 4D 4C

text/html The string "<!DOCTYPE HTML" in US-

ASCII or compatible encodings, case-
insensitively.

FF FF DF DF DF
DF

WS 3C 48 54 4D
4C

text/html The string "<HTML" in US-ASCII or

compatible encodings, case-
insensitively, possibly with leading
spaces.

FF FF DF DF DF
DF

WS 3C 48 45 41
44

text/html The string "<HEAD" in US-ASCII or

compatible encodings, case-
insensitively, possibly with leading
spaces.

FF FF DF DF DF
DF DF DF

WS 3C 53 43 52
49 50 54

text/html The string "<SCRIPT" in US-ASCII or

compatible encodings, case-
insensitively, possibly with leading
spaces.

FF FF FF FF FF 25 50 44 46 2D application/pdf The string "%PDF-", the PDF

signature.

FF FF FF FF FF
FF FF FF FF FF
FF

25 21 50 53 2D
41 64 6F 62 65
2D

application/postscript The string "%!PS-Adobe-", the

PostScript signature.

FF FF FF FF FF
FF

47 49 46 38 37
61

image/gif The string "GIF87a", a GIF signature.

FF FF FF FF FF
FF

47 49 46 38 39
61

image/gif The string "GIF89a", a GIF signature.

FF FF FF FF FF
FF FF FF

89 50 4E 47 0D
0A 1A 0A

image/png The PNG signature.

pattern

stream

stream

stream

stream

pattern

pattern

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

302 of 458 30/12/2020, 08:08

Bytes in Hexadecimal Sniffed type Comment

Mask Pattern

FF FF FF FF D8 FF image/jpeg A JPEG SOI marker followed by the
first byte of another marker.

FF FF 42 4D image/bmp The string "BM", a BMP signature.

User agents may support further types if desired, by implicitly adding to the above table. However,
user agents should not use any other patterns for types already mentioned in the table above, as
this could then be used for privilege escalation (where, e.g., a server uses the above table to
determine that content is not HTML and thus safe from XSS attacks, but then a user agent detects it
as HTML anyway and allows script to execute).

4.9.3. Content-Type sniffing: image

If the first bytes of the file match one of the byte sequences in the first columns of the following table,
then the sniffed type of the resource is the type given in the corresponding cell in the second column
on the same row:

Bytes in Hexadecimal Sniffed
type

Comment

47 49 46 38 37 61 image/gif The string "GIF87a", a GIF signature.

47 49 46 38 39 61 image/gif The string "GIF89a", a GIF signature.

89 50 4E 47 0D 0A 1A
0A

image/png The PNG signature.

FF D8 FF image/jpeg A JPEG SOI marker followed by the first byte of another
marker.

42 4D image/bmp The string "BM", a BMP signature.

User agents must ignore any rows for image types that they do not support.

Otherwise, the sniffed type of the resource is the same as its official type.

4.9.4. Content-Type sniffing: feed or HTML

1. The user agent may wait for 512 or more bytes of the resource to be available.

2. Let s be the stream of bytes, and let s[i] represent the byte in s with position i, treating s as
zero-indexed (so the first byte is at i=0).

3. If at any point this algorithm requires the user agent to determine the value of a byte in s
which is not yet available, or which is past the first 512 bytes of the resource, or which is
beyond the end of the resource, the user agent must stop this algorithm, and assume that the
sniffed type of the resource is "text/html".

Note: User agents are allowed, by the first step of this algorithm, to wait until
the first 512 bytes of the resource are available.

4. Initialise pos to 0.

5. Examine s[pos].

↪ If it is 0x09 (ASCII tab), 0x20 (ASCII space), 0x0A (ASCII LF), or 0x0D (ASCII CR)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

303 of 458 30/12/2020, 08:08

Increase pos by 1 and repeat this step.

↪ If it is 0x3C (ASCII "<")

Increase pos by 1 and go to the next step.

↪ If it is anything else

The sniffed type of the resource is "text/html". Abort these steps.

6. If the bytes with positions pos to pos+2 in s are exactly equal to 0x21, 0x2D, 0x2D
respectively (ASCII for "!--"), then:

1. Increase pos by 3.

2. If the bytes with positions pos to pos+2 in s are exactly equal to 0x2D, 0x2D, 0x3E
respectively (ASCII for "-->"), then increase pos by 3 and jump back to the previous

step (step 5) in the overall algorithm in this section.

3. Otherwise, increase pos by 1.

4. Otherwise, return to step 2 in these substeps.

7. If s[pos] is 0x21 (ASCII "!"):

1. Increase pos by 1.

2. If s[pos] equal 0x3E, then increase pos by 1 and jump back to step 5 in the overall
algorithm in this section.

3. Otherwise, return to step 1 in these substeps.

8. If s[pos] is 0x3F (ASCII "?"):

1. Increase pos by 1.

2. If s[pos] and s[pos+1] equal 0x3F and 0x3E respectively, then increase pos by 1 and
jump back to step 5 in the overall algorithm in this section.

3. Otherwise, return to step 1 in these substeps.

9. Otherwise, if the bytes in s starting at pos match any of the sequences of bytes in the first
column of the following table, then the user agent must follow the steps given in the
corresponding cell in the second column of the same row.

Bytes in
Hexadecimal

Requirement Comment

72 73 73 The sniffed type of the resource is
"application/rss+xml"; abort these steps

The three ASCII
characters "rss"

66 65 65 64 The sniffed type of the resource is
"application/atom+xml"; abort these steps

The four ASCII
characters "feed"

72 64 66 3A 52
44 46

Continue to the next step in this algorithm The ASCII characters
"rdf:RDF"

If none of the byte sequences above match the bytes in s starting at pos, then the sniffed type
of the resource is "text/html". Abort these steps.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

304 of 458 30/12/2020, 08:08

10. If, before the next ">", you find two xmlns* attributes with http://www.w3.org/1999/02/22-
rdf-syntax-ns# and http://purl.org/rss/1.0/ as the namespaces, then the sniffed type of the
resource is "application/rss+xml", abort these steps. (maybe we only need to check for
http://purl.org/rss/1.0/ actually)

11. Otherwise, the sniffed type of the resource is "text/html".

Note: For efficiency reaons, implementations may wish to implement this algorithm
and the algorithm for detecting the character encoding of HTML documents in
parallel.

4.9.5. Content-Type metadata

What explicit Content-Type metadata is associated with the resource (the resource's type
information) depends on the protocol that was used to fetch the resource.

For HTTP resources, only the Content-Type HTTP header contributes any data; the explicit type of
the resource is then the value of that header, interpreted as described by the HTTP specifications. If
the Content-Type HTTP header is present but it cannot be interpreted as described by the HTTP
specifications (e.g. because its value doesn't contain a U+002F SOLIDUS ('/') character), then the
resource has no type information. [HTTP]

For resources fetched from the filesystem, user agents should use platform-specific conventions,
e.g. operating system extension/type mappings.

Extensions must not be used for determining resource types for resources fetched over HTTP.

For resources fetched over most other protocols, e.g. FTP, there is no type information.

The algorithm for extracting an encoding from a Content-Type, given a string s, is as follows. It
either returns a encoding or nothing.

1. Skip characters in s up to and including the first U+003B SEMICOLON (;) character.

2. Skip any U+0009, U+000A, U+000B, U+000C, U+000D, or U+0020 characters (i.e. spaces)
that immediately follow the semicolon.

3. If the next six characters are not 'charset', return nothing.

4. Skip any U+0009, U+000A, U+000B, U+000C, U+000D, or U+0020 characters that
immediately follow the word 'charset' (there might not be any).

5. If the next character is not a U+003D EQUALS SIGN ('='), return nothing.

6. Skip any U+0009, U+000A, U+000B, U+000C, U+000D, or U+0020 characters that
immediately follow the word equals sign (there might not be any).

7. Process the next character as follows:

↪ If it is a U+0022 QUOTATION MARK ('"') and there is a later U+0022 QUOTATION
MARK ('"') in s

Return string between the two quotation marks.

↪ If it is a U+0027 APOSTROPHE ("'") and there is a later U+0027 APOSTROPHE ("'")
in s

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

305 of 458 30/12/2020, 08:08

Return the string between the two apostrophes.

↪ If it is an unmatched U+0022 QUOTATION MARK ('"')

↪ If it is an unmatched U+0027 APOSTROPHE ("'")

Return nothing.

↪ Otherwise

Return the string from this character to the first U+0009, U+000A, U+000B,
U+000C, U+000D, or U+0020 character or the end of s, whichever comes first.

4.10. Client-side session and persistent storage of name/value pairs

4.10.1. Introduction

This section is non-normative.

This specification introduces two related mechanisms, similar to HTTP session cookies [RFC2965],
for storing structured data on the client side.

The first is designed for scenarios where the user is carrying out a single transaction, but could be
carrying out multiple transactions in different windows at the same time.

Cookies don't really handle this case well. For example, a user could be buying plane tickets in two
different windows, using the same site. If the site used cookies to keep track of which ticket the user
was buying, then as the user clicked from page to page in both windows, the ticket currently being
purchased would "leak" from one window to the other, potentially causing the user to buy two tickets
for the same flight without really noticing.

To address this, this specification introduces the sessionStorage DOM attribute. Sites can add

data to the session storage, and it will be accessible to any page from that origin opened in that
window.

For example, a page could have a checkbox that the user ticks to indicate that he wants
insurance:

<label>
 <input type="checkbox" onchange="sessionStorage.insurance =
checked">
 I want insurance on this trip.
</label>

A later page could then check, from script, whether the user had checked the checkbox or not:

if (sessionStorage.insurance) { ... }

If the user had multiple windows opened on the site, each one would have its own individual
copy of the session storage object.

The second storage mechanism is designed for storage that spans multiple windows, and lasts
beyond the current session. In particular, Web applications may wish to store megabytes of user
data, such as entire user-authored documents or a user's mailbox, on the clientside for performance
reasons.

Again, cookies do not handle this case well, because they are transmitted with every request.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

306 of 458 30/12/2020, 08:08

The globalStorage DOM attribute is used to access a page's global storage area.

The site at example.com can display a count of how many times the user has loaded its page
by putting the following at the bottom of its page:

<p>
 You have viewed this page
 an untold number of
 time(s).
</p>
<script>
 if (!globalStorage.pageLoadCount)
 globalStorage.pageLoadCount = 0;
 globalStorage.pageLoadCount =
parseInt(globalStorage.pageLoadCount, 10) + 1;
 document.getElementById('count').textContent =
globalStorage.pageLoadCount;
</script>

Each origin has its own separate storage area.

Storage areas (both session storage and global storage) store strings. To store structured data in a
storage area, you must first convert it to a string.

4.10.2. The Storage interface

interface Storage {
 readonly attribute unsigned long length;
 DOMString key(in unsigned long index);
 DOMString getItem(in DOMString key);
 void setItem(in DOMString key, in DOMString data);
 void removeItem(in DOMString key);
};

Each Storage object provides access to a list of key/value pairs, which are sometimes called items.

Keys and values are strings. Any string (including the empty string) is a valid key.

Note: To store more structured data, authors may consider using the SQL interfaces
instead.

Each Storage object is associated with a list of key/value pairs when it is created, as defined in the

sections on the sessionStorage and globalStorage attributes. Multiple separate objects

implementing the Storage interface can all be associated with the same list of key/value pairs

simultaneously.

The length attribute must return the number of key/value pairs currently present in the list

associated with the object.

The key(n) method must return the name of the nth key in the list. The order of keys is user-agent

defined, but must be consistent within an object between changes to the number of keys. (Thus,
adding or removing a key may change the order of the keys, but merely changing the value of an
existing key must not.) If n is less than zero or greater than or equal to the number of key/value pairs
in the object, then this method must raise an INDEX_SIZE_ERR exception.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

307 of 458 30/12/2020, 08:08

The getItem(key) method must return the current value associated with the given key. If the

given key does not exist in the list associated with the object then this method must return null.

The setItem(key, value) method must first check if a key/value pair with the given key already

exists in the list associated with the object.

If it does not, then a new key/value pair must be added to the list, with the given key and value.

If the given key does exist in the list, then it must have its value updated to the value given in the
value argument.

When the setItem() method is invoked, events are fired on other HTMLDocument objects that can

access the newly stored data, as defined in the sections on the sessionStorage and

globalStorage attributes.

The removeItem(key) method must cause the key/value pair with the given key to be removed

from the list associated with the object, if it exists. If no item with that key exists, the method must do
nothing.

The setItem() and removeItem() methods must be atomic with respect to failure. That is,

changes to the data storage area must either be successful, or the data storage area must not be
changed at all.

In the ECMAScript DOM binding, enumerating a Storage object must enumerate through the

currently stored keys in the list the object is associated with. (It must not enumerate the values or the
actual members of the interface). In the ECMAScript DOM binding, Storage objects must support

dereferencing such that getting a property that is not a member of the object (i.e. is neither a
member of the Storage interface nor of Object) must invoke the getItem() method with the

property's name as the argument, and setting such a property must invoke the setItem() method

with the property's name as the first argument and the given value as the second argument.

4.10.3. The sessionStorage attribute

The sessionStorage attribute represents the set of storage areas specific to the current top-level

browsing context.

Each top-level browsing context has a unique set of session storage areas, one for each origin.

User agents should not expire data from a browsing context's session storage areas, but may do so
when the user requests that such data be deleted, or when the UA detects that it has limited storage
space, or for security reasons. User agents should always avoid deleting data while a script that
could access that data is running. When a top-level browsing context is destroyed (and therefore
permanently inaccessible to the user) the data stored in its session storage areas can be discarded
with it, as the API described in this specification provides no way for that data to ever be
subsequently retrieved.

Note: The lifetime of a browsing context can be unrelated to the lifetime of the actual
user agent process itself, as the user agent may support resuming sessions after a
restart.

When a new HTMLDocument is created, the user agent must check to see if the document's top-

level browsing context has allocated a session storage area for that document's origin. If it has not, a
new storage area for that document's origin must be created.

The Storage object for the document's associated Window object's sessionStorage attribute

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

308 of 458 30/12/2020, 08:08

must then be associated with that origin's session storage area for that top-level browsing context.

When a new top-level browsing context is created by cloning an existing browsing context, the new
browsing context must start with the same session storage areas as the original, but the two sets
must from that point on be considered separate, not affecting each other in any way.

When a new top-level browsing context is created by a script in an existing browsing context, or by
the user following a link in an existing browsing context, or in some other way related to a specific
HTMLDocument, then the session storage area of the origin of that HTMLDocument must be copied

into the new browsing context when it is created. From that point on, however, the two session
storage areas must be considered separate, not affecting each other in any way.

When the setItem() method is called on a Storage object x that is associated with a session

storage area, then in every HTMLDocument object whose Window object's sessionStorage

attribute's Storage object is associated with the same storage area, other than x, a storage event

must be fired, as described below.

4.10.4. The globalStorage attribute

The globalStorage object provides a Storage object for origin.

User agents must have a set of global storage areas, one for each origin.

User agents should only expire data from the global storage areas for security reasons or when
requested to do so by the user. User agents should always avoid deleting data while a script that
could access that data is running. Data stored in global storage areas should be considered
potentially user-critical. It is expected that Web applications will use the global storage areas for
storing user-written documents.

When the globalStorage attribute is accessed, the user agent must check to see if it has

allocated global storage area for the origin of the browsing context within which the script is running.
If it has not, a new storage area for that origin must be created.

The user agent must then create a Storage object associated with that origin's global storage area,

and return it.

When the setItem() method is called on a Storage object x that is associated with a global

storage area, then in every HTMLDocument object whose Window object's globalStorage

attribute's Storage object is associated with the same storage area, other than x, a storage event

must be fired, as described below.

4.10.5. The storage event

The storage event is fired in an HTMLDocument when a storage area changes, as described in the

previous two sections (for session storage, for global storage).

When this happens, the user agent must fire a simple event called storage on the body element.

However, it is possible (indeed, for session storage areas, likely) that the target's HTMLDocument

object is not an active document at that time. In such cases, the user agent must instead delay the
firing of the event until such time as the HTMLDocument object in question becomes an active

document again.

When there are multiple delayed storage events for the same HTMLDocument object, user agents

must coalesce those events such that only one event fires when the document becomes active

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

309 of 458 30/12/2020, 08:08

again.

If the DOM of a page that has delayed storage events queued up is discarded, then the delayed

events are dropped as well.

4.10.6. Miscellaneous implementation requirements for storage areas

4.10.6.1. Disk space

User agents should limit the total amount of space allowed for a storage area based on the domain
of the page setting the value.

User agents should not limit the total amount of space allowed on a per-storage-area basis,
otherwise a site could just store data in any number of subdomains or ports, e.g. storing up to the
limit in a1.example.com, a2.example.com, a3.example.com, etc, circumventing per-domain limits.

User agents may prompt the user when per-domain space quotas are reached, allowing the user to
grant a site more space. This enables sites to store many user-created documents on the user's
computer, for instance.

User agents should allow users to see how much space each domain is using.

If the storage area space limit is reached during a setItem() call, the user agent must raise an

INVALID_ACCESS_ERR exception.

A mostly arbitrary limit of five megabytes per domain is recommended. Implementation feedback is
welcome and will be used to update this suggestion in future.

4.10.6.2. Threads

Multiple browsing contexts must be able to access the global storage areas simultaneously in a
predictable manner. Scripts must not be able to detect any concurrent script execution.

This is required to guarentee that the length attribute of a Storage object never changes while a

script is executing, other than in a way that is predictable by the script itself.

There are various ways of implementing this requirement. One is that if a script running in one
browsing context accesses a global storage area, the UA blocks scripts in other browsing contexts
when they try to access the global storage area for the same origin until the first script has executed
to completion. (Similarly, when a script in one browsing context accesses its session storage area,
any scripts that have the same top level browsing context and the same origin would block when
accessing their session storage area until the first script has executed to completion.) Another
(potentially more efficient but probably more complex) implementation strategy is to use optimistic
transactional script execution. This specification does not require any particular implementation
strategy, so long as the requirement above is met.

4.10.7. Security and privacy

4.10.7.1. User tracking

A third-party advertiser (or any entity capable of getting content distributed to multiple sites) could
use a unique identifier stored in its global storage area to track a user across multiple sessions,
building a profile of the user's interests to allow for highly targeted advertising. In conjunction with a
site that is aware of the user's real identity (for example an e-commerce site that requires
authenticated credentials), this could allow oppressive groups to target individuals with greater
accuracy than in a world with purely anonymous Web usage.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

310 of 458 30/12/2020, 08:08

There are a number of techniques that can be used to mitigate the risk of user tracking:

Blocking third-party storage: user agents may restrict access to the globalStorage object

to scripts originating at the domain of the top-level document of the browsing context.

Expiring stored data: user agents may automatically delete stored data after a period of time.

For example, a user agent could treat third-party global storage areas as session-only
storage, deleting the data once the user had closed all the browsing contexts that could
access it.

This can restrict the ability of a site to track a user, as the site would then only be able to track
the user across multiple sessions when he authenticates with the site itself (e.g. by making a
purchase or logging in to a service).

However, this also puts the user's data at risk.

Treating persistent storage as cookies: user agents may present the persistent storage
feature to the user in a way that does not distinguish it from HTTP session cookies.
[RFC2965]

This might encourage users to view persistent storage with healthy suspicion.

Site-specific white-listing of access to global storage areas: user agents may allow sites to
access session storage areas in an unrestricted manner, but require the user to authorise
access to global storage areas.

Origin-tracking of persistent storage data: user agents may record the origins of sites that
contained content from third-party origins that caused data to be stored.

If this information is then used to present the view of data currently in persistent storage, it
would allow the user to make informed decisions about which parts of the persistent storage
to prune. Combined with a blacklist ("delete this data and prevent this domain from ever
storing data again"), the user can restrict the use of persistent storage to sites that he trusts.

Shared blacklists: user agents may allow users to share their persistent storage domain
blacklists.

This would allow communities to act together to protect their privacy.

While these suggestions prevent trivial use of this API for user tracking, they do not block it
altogether. Within a single domain, a site can continue to track the user during a session, and can
then pass all this information to the third party along with any identifying information (names, credit
card numbers, addresses) obtained by the site. If a third party cooperates with multiple sites to
obtain such information, a profile can still be created.

However, user tracking is to some extent possible even with no cooperation from the user agent
whatsoever, for instance by using session identifiers in URIs, a technique already commonly used
for innocuous purposes but easily repurposed for user tracking (even retroactively). This information
can then be shared with other sites, using using visitors' IP addresses and other user-specific data
(e.g. user-agent headers and configuration settings) to combine separate sessions into coherent
user profiles.

4.10.7.2. Cookie resurrection

If the user interface for persistent storage presents data in the persistent storage feature separately
from data in HTTP session cookies, then users are likely to delete data in one and not the other.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

311 of 458 30/12/2020, 08:08

This would allow sites to use the two features as redundant backup for each other, defeating a user's
attempts to protect his privacy.

4.10.7.3. DNS spoofing attacks

Because of the potential for DNS spoofing attacks, one cannot guarentee that a host claiming to be
in a certain domain really is from that domain. To mitigate this, pages can use SSL. Pages using
SSL can be sure that only pages using SSL that have certificates identifying them as being from the
same domain can access their global storage areas.

4.10.7.4. Cross-directory attacks

Different authors sharing one host name, for example users hosting content on geocities.com, all

share one persistent storage object. There is no feature to restrict the access by pathname. Authors
on shared hosts are therefore recommended to avoid using the persistent storage feature, as it
would be trivial for other authors to read from and write to the same storage area.

Note: Even if a path-restriction feature was made available, the usual DOM scripting
security model would make it trivial to bypass this protection and access the data
from any path.

4.10.7.5. Implementation risks

The two primary risks when implementing this persistent storage feature are letting hostile sites read
information from other domains, and letting hostile sites write information that is then read from other
domains.

Letting third-party sites read data that is not supposed to be read from their domain causes
information leakage, For example, a user's shopping wishlist on one domain could be used by
another domain for targeted advertising; or a user's work-in-progress confidential documents stored
by a word-processing site could be examined by the site of a competing company.

Letting third-party sites write data to the storage areas of other domains can result in information
spoofing, which is equally dangerous. For example, a hostile site could add items to a user's wishlist;
or a hostile site could set a user's session identifier to a known ID that the hostile site can then use
to track the user's actions on the victim site.

Thus, strictly following the model described in this specification is important for user security.

4.11. Client-side database storage

4.11.1. Introduction

...

4.11.2. Databases

Each origin has an associated set of databases. Each database has a name and a current version.
There is no way to enumerate or delete the databases available for a domain from this API.

Note: Each database has one version at a time, a database can't exist in multiple
versions at once. Versions are intended to allow authors to manage schema changes

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

312 of 458 30/12/2020, 08:08

incrementally and non-destructively, and without running the risk of old code (e.g. in
another browser window) trying to write to a database with incorrect assumptions.

The openDatabase() method returns a Database object. The method takes four arguments: a

database name, a database version, a display name, and an estimated size, in bytes, of the data
that will be stored in the database.

If the database version provided is not the empty string, and the database already exists but has a
different version, then the method must raise an INVALID_STATE_ERR exception.

Otherwise, if the database provided is the empty string, or if the database doesn't yet exist, or if the
database exists and the version provided to the openDatabase() method is the same as the

current version associated with the database, then the method must return a Database object

representing the database associated with the origin of the active document of the browsing context
of the Window object on which the method was called that has the name that was given. If no such

database exists, it must be created first.

All strings including the empty string are valid database names. Database names are case-sensitive.

Note: Implementations can support this even in environments that only support a
subset of all strings as database names by mapping database names (e.g. using a
hashing algorithm) to the supported set of names.

User agents are expected to use the display name and the estimated database size to optimise the
user experience. For example, a user agent could use the estimated size to suggest an initial quota
to the user. This allows a site that is aware that it will try to use hundreds of megabytes to declare
this upfront, instead of the user agent prompting the user for permission to increase the quota every
five megabytes.

interface Database {
 void transaction(in SQLTransactionCallback callback);
 void transaction(in SQLTransactionCallback callback, in
SQLTransactionErrorCallback errorCallback);
 void transaction(in SQLTransactionCallback callback, in
SQLTransactionErrorCallback errorCallback, in VoidCallback
successCallback);

 readonly attribute DOMString version;
 void changeVersion(in DOMString oldVersion, in DOMString
newVersion, in SQLTransactionCallback callback, in
SQLTransactionErrorCallback errorCallback, in VoidCallback
successCallback);
};

interface SQLTransactionCallback {
 void handleEvent(in SQLTransaction transaction);
};

interface SQLTransactionErrorCallback {
 boolean handleEvent(in SQLError error);
};

The transaction() method takes one or two arguments. When called, the method must

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

313 of 458 30/12/2020, 08:08

immediately return and then asynchronously run the transaction steps with the transaction callback
being the first argument, the error callback being the second argument, if any, the success callback
being the third argument, if any, and with no preflight operation or postflight operation.

The version that the database was opened with is the expected version of this Database object. It

can be the empty string, in which case there is no expected version — any version is fine.

On getting, the version attribute must return the current version of the database (as opposed to

the expected version of the Database object).

The changeVersion() method allows scripts to atomically verify the version number and change it

at the same time as doing a schema update. When the method is invoked, it must immediately
return, and then asynchronously run the transaction steps with the transaction callback being the
third argument, the error callback being the fourth argument, the success callback being the fifth
argument, the preflight operation being the following:

1. Check that the value of the first argument to the changeVersion() method exactly matches

the database's actual version. If it does not, then the preflight operation fails.

...and the postflight operation being the following:

1. Change the database's actual version to the value of the second argument to the
changeVersion() method.

2. Change the Database object's expected version to the value of the second argument to the

changeVersion() method.

4.11.3. Executing SQL statements

The transaction() and changeVersion() methods invoke callbacks with SQLTransaction

objects.

typedef sequence<Object> ObjectArray;

interface SQLTransaction {
 void executeSql(in DOMString sqlStatement);
 void executeSql(in DOMString sqlStatement, in ObjectArray
arguments);
 void executeSql(in DOMString sqlStatement, in ObjectArray
arguments, in SQLStatementCallback callback);
 void executeSql(in DOMString sqlStatement, in ObjectArray
arguments, in SQLStatementCallback callback, in
SQLStatementErrorCallback errorCallback);
};

interface SQLStatementCallback {
 void handleEvent(in SQLTransaction transaction, in SQLResultSet
resultSet);
};

interface SQLStatementErrorCallback {
 boolean handleEvent(in SQLTransaction transaction, in SQLError
error);
};

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

314 of 458 30/12/2020, 08:08

When the executeSql(sqlStatement, arguments, callback, errorCallback) method

is invoked, the user agent must run the following algorithm. (This algorithm is relatively simple and
doesn't actually execute any SQL — the bulk of the work is actually done as part of the transaction
steps.)

1. If the method was not invoked during the execution of a SQLTransactionCallback,

SQLStatementCallback, or SQLStatementErrorCallback then raise an

INVALID_STATE_ERR exception. (Calls from inside a SQLTransactionErrorCallback

thus raise an exception. The SQLTransactionErrorCallback handler is only called once

a transaction has failed, and no SQL statements can be added to a failed transaction.)

2. Parse the first argument to the method (sqlStatement) as an SQL statement, with the
exception that ? characters can be used in place of literals in the statement. [SQL]

3. Replace each ? placeholder with the value of the argument in the arguments array with the

same position. (So the first ? placeholder gets replaced by the first value in the arguments

array, and generally the nth ? placeholder gets replaced by the nth value in the arguments

array.)

If the second argument is ommitted or null, then treat the arguments array as empty.

The result is the statement.

4. If the syntax of sqlStatement is not valid (except for the use of ? characters in the place of

literals), or the statement uses features that are not supported (e.g. due to security reasons),
or the number of items in the arguments array is not equal to the number of ? placeholders in

the statement, or the statement cannot be parsed for some other reason, then mark the
statement as bogus.

5. If the Database object that the SQLTransaction object was created from has an expected

version that is neither the empty string nor the actual version of the database, then mark the
statement as bogus. (Error code 2.)

6. Queue up the statement in the transaction, along with the third argument (if any) as the
statement's result set callback and the fourth argument (if any) as the error callback.

The user agent must act as if the database was hosted in an otherwise completely empty
environment with no resources. For example, attempts to read from or write to the filesystem will fail.

User agents should limit the total amount of space allowed for each origin, but may prompt the user
and extend the limit if a database is reaching its quota. User agents should allow users to see how
much space each database is using.

A mostly arbitrary limit of five megabytes per origin is recommended. Implementation feedback is
welcome and will be used to update this suggestion in future.

SQL inherently supports multiple concurrent connections. Authors should make appropriate use of
the transaction features to handle the case of multiple scripts interacting with the same database
simultaneously (as could happen if the same page was opened in two different browsing contexts).

User agents must consider statements that use the BEGIN, COMMIT, and ROLLBACK SQL features

as being unsupported (and thus will mark them as bogus), so as to not let these statements interfere
with the explicit transactions managed by the database API itself.

Note: A future version of this specification will probably define the exact SQL subset

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

315 of 458 30/12/2020, 08:08

required in more detail.

4.11.4. Database query results

The executeSql() method invokes its callback with a SQLResultSet object as an argument.

interface SQLResultSet {
 readonly attribute int insertId;
 readonly attribute int rowsAffected;
 readonly attribute SQLResultSetRowList rows;
};

The insertId attribute must return the row ID of the row that the SQLResultSet object's SQL

statement inserted into the database, if the statement inserted a row. If the statement inserted
multiple rows, the ID of the last row must be the one returned. If the statement did not insert a row,
then the attribute must instead raise an INVALID_ACCESS_ERR exception.

The rowsAffected attribute must return the number of rows that were affected by the SQL

statement. If the statement did not affected any rows, then the attribute must return zero. For
"SELECT" statements, this returns zero (querying the database doesn't affect any rows).

The rows attribute must return a SQLResultSetRowList representing the rows returned, in the

order returned by the database. If no rows were returned, then the object will be empty.

interface SQLResultSetRowList {
 readonly attribute unsigned long length;

DOMObject item(in unsigned long index);
};

SQLResultSetRowList objects have a length attribute that must return the number of rows it

represents (the number of rows returned by the database).

The item(index) attribute must return the row with the given index index. If there is no such row,

then the method must raise an INDEX_SIZE_ERR exception.

Each row must be represented by a native ordered dictionary data type. In the ECMAScript binding,
this must be Object. Each row object must have one property (or dictionary entry) per column, with

those properties enumerating in the order that these columns were returned by the database. Each
property must have the name of the column and the value of the cell, as they were returned by the
database.

4.11.5. Errors

Errors in the database API are reported using callbacks that have a SQLError object as one of their

arguments.

interface SQLError {
 readonly attribute unsigned int code;
 readonly attribute DOMString message;
};

The code DOM attribute must return the most appropriate code from the following table:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

316 of 458 30/12/2020, 08:08

Code Situation

0 The transaction failed for reasons unrelated to the database itself and not covered by any
other error code.

1 The statement failed for database reasons not covered by any other error code.

2 The statement failed because the expected version of the database didn't match the actual
database version.

3 The statement failed because the data returned from the database was too large. The SQL
"LIMIT" modifier might be useful to reduce the size of the result set.

4 The statement failed because there was not enough remaining storage space, or the storage
quota was reached and the user declined to give more space to the database.

5 The statement failed because the transaction's first statement was a read-only statement,
and a subsequent statement in the same transaction tried to modify the database, but the
transaction failed to obtain a write lock before another transaction obtained a write lock and
changed a part of the database that the former transaction was dependending upon.

6 An INSERT, UPDATE, or REPLACE statement failed due to a constraint failure. For example,

because a row was being inserted and the value given for the primary key column duplicated
the value of an existing row.

We should define a more thorough list of codes. Implementation feedback is requested to
determine what codes are needed.

The message DOM attribute must return an error message describing the error encountered. The

message should be localised to the user's language.

4.11.6. Processing model

The transaction steps are as follows. These steps must be run asynchronously. These steps are
invoked with a transaction callback, optionally an error callback, optionally a success callback,
optionally a preflight operation, and optionally a postflight operation.

1. Open a new SQL transaction to the database, and create a SQLTransaction object that

represents that transaction.

2. If an error occured in the opening of the transaction, jump to the last step.

3. If a preflight operation was defined for this instance of the transaction steps, run that. If it fails,
then jump to the last step. (This is basically a hook for the changeVersion() method.)

4. Invoke the transaction callback with the aforementioned SQLTransaction object as its only

argument.

5. If the callback couldn't be called (e.g. it was null), or if the callback was invoked and raised an
exception, jump to the last step.

6. While there are any statements queued up in the transaction, perform the following steps for
each queued up statement in the transaction, oldest first. Each statement has a statement, a
result set callback, and optionally an error callback.

1. If the statement is marked as bogus, jump to the "in case of error" steps below.

2. Execute the statement in the context of the transaction. [SQL]

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

317 of 458 30/12/2020, 08:08

3. If the statement failed, jump to the "in case of error" steps below.

4. Create a SQLResultSet object that represents the result of the statement.

5. Invoke the statement's result set callback with the SQLTransaction object as its first

argument and the new SQLResultSet object as its second argument.

6. If the callback was invoked and raised an exception, jump to the last step in the overall
steps.

7. Move on to the next statement, if any, or onto the next overall step otherwise.

In case of error (or more specifically, if the above substeps say to jump to the "in case of
error" steps), run the following substeps:

1. If the statement had an associated error callback, then invoke that error callback with
the SQLTransaction object and a newly constructed SQLError object that

represents the error that caused these substeps to be run as the two arguments,
respectively.

2. If the error callback returns false, then move on to the next statement, if any, or onto
the next overall step otherwise.

3. Otherwise, the error callback did not return false, or there was no error callback. Jump
to the last step in the overall steps.

7. If a postflight operation was defined for his instance of the transaction steps, run that. If it
fails, then jump to the last step. (This is basically a hook for the changeVersion() method.)

8. Commit the transaction.

9. If an error occured in the committing of the transaction, jump to the last step.

10. Invoke the success callback.

11. End these steps. The next step is only used when something goes wrong.

12. Call the error callback with a newly constructed SQLError object that represents the last

error to have occured in this transaction. If the error callback returned false, and the last error
wasn't itself a failure when committing the transaction, then try to commit the transaction. If
that fails, or if the callback couldn't be called (e.g. the method was called with only one
argument), or if it didn't return false, then rollback the transaction. Any still-pending
statements in the transaction are discarded.

4.11.7. Privacy

In contrast with the globalStorage feature, which intentionally allows data to be accessed across

multiple domains, protocols, and ports (albeit in a controlled fashion), this database feature is limited
to scripts running with the same origin as the database. Thus, it is expected that the privacy
implications be equivalent to those already present in allowing scripts to communicate with their
originating host.

User agents are encouraged to treat data stored in databases in the same way as cookies for the
purposes of user interfaces, to reduce the risk of using this feature for cookie resurrection.

4.11.8. Security

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

318 of 458 30/12/2020, 08:08

4.11.8.1. User agents

User agent implementors are strongly encouraged to audit all their supported SQL statements for
security implications. For example, LOAD DATA INFILE is likely to pose security risks and there is

little reason to support it.

In general, it is recommended that user agents not support features that control how databases are
stored on disk. For example, there is little reason to allow Web authors to control the character
encoding used in the disk representation of the data, as all data in ECMAScript is implicitly UTF-16.

4.11.8.2. SQL injection

Authors are strongly recommended to make use of the ? placeholder feature of the executeSql()

method, and to never construct SQL statements on the fly.

4.12. Links

4.12.1. Hyperlink elements

The a, area, and link elements can, in certain situations described in the definitions of those

elements, represent hyperlinks.

The href attribute on a hyperlink element must have a value that is a URI (or IRI). This URI is the

destination resource of the hyperlink.

The href attribute on a and area elements is not required; when those elements do

not have href attributes they do not represent hyperlinks.

The href attribute on the link element is required, but whether a link element

represents a hyperlink or not depends on the value of the rel attribute of that

element.

The target attribute, if present, must be a valid browsing context name. User agents use this name

when following hyperlinks.

The ping attribute, if present, gives the URIs of the resources that are interested in being notified if

the user follows the hyperlink. The value must be a space separated list of one or more URIs (or
IRIs). The value is used by the user agent when following hyperlinks.

For a and area elements that represent hyperlinks, the relationship between the document

containing the hyperlink and the destination resource indicated by the hyperlink is given by the value
of the element's rel attribute, which must be a set of space-separated tokens. The allowed values

and their meanings are defined below. The rel attribute has no default value. If the attribute is

omitted or if none of the values in the attribute are recognised by the UA, then the document has no
particular relationship with the destination resource other than there being a hyperlink between the
two.

The media attribute describes for which media the target document was designed. It is purely

advisory. The value must be a valid media query. [MQ] The default, if the media attribute is omitted,

is all.

The hreflang attribute on hyperlink elements, if present, gives the language of the linked resource.

It is purely advisory. The value must be a valid RFC 3066 language code. [RFC3066] User agents
must not consider this attribute authoritative — upon fetching the resource, user agents must only

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

319 of 458 30/12/2020, 08:08

use language information associated with the resource to determine its language, not metadata
included in the link to the resource.

The type attribute, if present, gives the MIME type of the linked resource. It is purely advisory. The

value must be a valid MIME type, optionally with parameters. [RFC2046] User agents must not
consider the type attribute authoritative — upon fetching the resource, user agents must not use

metadata included in the link to the resource to determine its type.

4.12.2. Following hyperlinks

When a user follows a hyperlink, the user agent must navigate a browsing context to the URI of the
hyperlink.

The URI of the hyperlink is URI given by resolving the the href attribute of that hyperlink relative to

the hyperlink's element. In the case of server-side image maps, the URI of the hyperlink must further
have its hyperlink suffix appended to it.

If the user indicated a specific browsing context when following the hyperlink, or if the user agent is
configured to follow hyperlinks by navigating a particular browsing context, then that must be the
browsing context that is navigated.

Otherwise, if the hyperlink element is an a or area element that has a target attribute, then the

browsing context that is navigated must be chosen by applying the rules for chosing a browsing
context given a browsing context name, using the value of the target attribute as the browsing

context name. If these rules result in the creation of a new browsing context, it must be navigated
with replacement enabled.

Otherwise, if the hyperlink element is a sidebar hyperlink and the user agent implements a feature
that can be considered a secondary browsing context, such a secondary browsing context may be
selected as the browsing context to be navigated.

Otherwise, if the hyperlink element is an a or area element with no target attribute, but one of the

child nodes of the head element is a base element with a target attribute, then the browsing

context that is navigated must be chosen by applying the rules for chosing a browsing context given
a browsing context name, using the value of the target attribute of the first such base element as

the browsing context name. If these rules result in the creation of a new browsing context, it must be
navigated with replacement enabled.

Otherwise, the browsing context that must be navigated is the same browsing context as the one
which the hyperlink element itself is in.

4.12.2.1. Hyperlink auditing

If an a or area hyperlink element has a ping attribute and the user follows the hyperlink, the user

agent must take the ping attribute's value, split that string on spaces, treat each resulting token as a

URI (resolving relative URIs according to element's base URI) and then should send a request to
each of the resulting URIs. This may be done in parallel with the primary request, and is
independent of the result of that request.

User agents should allow the user to adjust this behaviour, for example in conjunction with a setting
that disables the sending of HTTP Referer headers. Based on the user's preferences, UAs may

either ignore the ping attribute altogether, or selectively ignore URIs in the list (e.g. ignoring any

third-party URIs).

For URIs that are HTTP URIs, the requests must be performed using the POST method (with an

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

320 of 458 30/12/2020, 08:08

empty entity body in the request). User agents must ignore any entity bodies returned in the
responses, but must, unless otherwise specified by the user, honour the HTTP headers — in
particular, HTTP cookie headers. [RFC2965]

Note: To save bandwidth, implementors might wish to consider omitting optional
headers such as Accept from these requests.

When the ping attribute is present, user agents should clearly indicate to the user that following the

hyperlink will also cause secondary requests to be sent in the background, possibly including listing
the actual target URIs.

The ping attribute is redundant with pre-existing technologies like HTTP redirects

and JavaScript in allowing Web pages to track which off-site links are most popular
or allowing advertisers to track click-through rates.

However, the ping attribute provides these advantages to the user over those

alternatives:

It allows the user to see the final target URI unobscured.

It allows the UA to inform the user about the out-of-band notifications.

It allows the paranoid user to disable the notifications without losing the
underlying link functionality.

It allows the UA to optimise the use of available network bandwidth so that the
target page loads faster.

Thus, while it is possible to track users without this feature, authors are encouraged
to use the ping attribute so that the user agent can improve the user experience.

4.12.3. Link types

The following table summarises the link types that are defined by this specification. This table is non-
normative; the actual definitions for the link types are given in the next few sections.

In this section, the term referenced document refers to the resource identified by the element
representing the link, and the term current document refers to the resource within which the element
representing the link finds itself.

To determine which link types apply to a link, a, or area element, the element's rel attribute must

be split on spaces. The resulting tokens are the link types that apply to that element.

Unless otherwise specified, a keyword must not be specified more than once per rel attribute.

Link type Effect on... Brief description

link a and

area

alternate Hyperlink Hyperlink Gives alternate representations of the current document.

archives Hyperlink Hyperlink Provides a link to a collection of records, documents, or
other materials of historical interest.

author Hyperlink Hyperlink Gives a link to the current document's author.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

321 of 458 30/12/2020, 08:08

Link type Effect on... Brief description

link a and

area

bookmark not allowed Hyperlink Gives the permalink for the nearest ancestor section.

contact Hyperlink Hyperlink Gives a link to contact information for the current
document.

external not allowed Hyperlink Indicates that the referenced document is not part of the
same site as the current document.

feed Hyperlink Hyperlink Gives the address of a syndication feed for the current
document.

first Hyperlink Hyperlink Indicates that the current document is a part of a series,
and that the first document in the series is the referenced
document.

help Hyperlink Hyperlink Provides a link to context-sensitive help.

icon External
Resource

not
allowed

Imports an icon to represent the current document.

index Hyperlink Hyperlink Gives a link to the document that provides a table of
contents or index listing the current document.

last Hyperlink Hyperlink Indicates that the current document is a part of a series,
and that the last document in the series is the referenced
document.

license Hyperlink Hyperlink Indicates that the current document is covered by the
copyright license described by the referenced document.

next Hyperlink Hyperlink Indicates that the current document is a part of a series,
and that the next document in the series is the referenced
document.

nofollow not allowed Hyperlink Indicates that the current document's original author or
publisher does not endorse the referenced document.

noreferrer not allowed Hyperlink Requires that the user agent not send an HTTP Referer

header if the user follows the hyperlink.

pingback External
Resource

not
allowed

Gives the address of the pingback server that handles
pingbacks to the current document.

prefetch External
Resource

not
allowed

Specifies that the target resource should be pre-emptively
cached.

prev Hyperlink Hyperlink Indicates that the current document is a part of a series,
and that the previous document in the series is the
referenced document.

search Hyperlink Hyperlink Gives a link to a resource that can be used to search
through the current document and its related pages.

stylesheet External
Resource

not
allowed

Imports a stylesheet.

sidebar Hyperlink Hyperlink Specifies that the referenced document, if retrieved, is
intended to be shown in the browser's sidebar (if it has
one).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

322 of 458 30/12/2020, 08:08

Link type Effect on... Brief description

link a and

area

tag Hyperlink Hyperlink Gives a tag (identified by the given address) that applies
to the current document.

up Hyperlink Hyperlink Provides a link to a document giving the context for the
current document.

Some of the types described below list synonyms for these values. These are to be handled as
specified by user agents, but must not be used in documents.

4.12.3.1. Link type "alternate"

The alternate keyword may be used with link, a, and area elements. For link elements, if the

rel attribute does not also contain the keyword stylesheet, it creates a hyperlink; but if it does

also contains the keyword stylesheet, the alternate keyword instead modifies the meaning of

the stylesheet keyword in the way described for that keyword, and the rest of this subsection

doesn't apply.

The alternate keyword indicates that the referenced document is an alternate representation of

the current document.

The nature of the referenced document is given by the media, hreflang, and type attributes.

If the alternate keyword is used with the media attribute, it indicates that the referenced

document is intended for use with the media specified.

If the alternate keyword is used with the hreflang attribute, and that attribute's value differs

from the root element's language, it indicates that the referenced document is a translation.

If the alternate keyword is used with the type attribute, it indicates that the referenced document

is a reformulation of the current document in the specified format.

The media, hreflang, and type attributes can be combined when specified with the alternate

keyword.

For example, the following link is a French translation that uses the PDF format:

<link rel=alternate type=application/pdf hreflang=fr href=manual-
fr>

If the alternate keyword is used with the type attribute set to the value application/rss+xml

or the value application/atom+xml, then the user agent must treat the link as it would if it had

the feed keyword specified as well.

The alternate link relationship is transitive — that is, if a document links to two other documents

with the link type "alternate", then, in addition to implying that those documents are alternative

representations of the first document, it is also implying that those two documents are alternative
representations of each other.

4.12.3.2. Link type "archives"

The archives keyword may be used with link, a, and area elements. For link elements, it

creates a hyperlink.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

323 of 458 30/12/2020, 08:08

The archives keyword indicates that the referenced document describes a collection of records,

documents, or other materials of historical interest.

A blog's index page could link to an index of the blog's past posts with rel="archives".

Synonyms: For historical reasons, user agents must also treat the keyword "archive" like the

archives keyword.

4.12.3.3. Link type "author"

The author keyword may be used with link, a, and area elements. For link elements, it creates

a hyperlink.

For a and area elements, the author keyword indicates that the referenced document provides

further information about the author of the section that the element defining the hyperlink applies to.

For link elements, the author keyword indicates that the referenced document provides further

information about the author for the page as a whole.

Note: The "referenced document" can be, and often is, a mailto: URI giving the

e-mail address of the author. [MAILTO]

Synonyms: For historical reasons, user agents must also treat link, a, and area elements that

have a rev attribute with the value "made" as having the author keyword specified as a link

relationship.

4.12.3.4. Link type "bookmark"

The bookmark keyword may be used with a and area elements.

The bookmark keyword gives a permalink for the nearest ancestor article element of the linking

element in question, or of the section the linking element is most closely associated with, if there are
no ancestor article elements.

The following snippet has three permalinks. A user agent could determine which permalink
applies to which part of the spec by looking at where the permalinks are given.

 ...
 <body>
 <h1>Example of permalinks</h1>
 <div id="a">
 <h2>First example</h2>
 <p>This permalink applies to
 only the content from the first H2 to the second H2. The DIV
isn't
 exactly that section, but it roughly corresponds to it.</p>
 </div>
 <h2>Second example</h2>
 <article id="b">
 <p>This permalink applies to
 the outer ARTICLE element (which could be, e.g., a blog
post).</p>
 <article id="c">
 <p>This permalink applies

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

324 of 458 30/12/2020, 08:08

to
 the inner ARTICLE element (which could be, e.g., a blog
comment).</p>
 </article>
 </article>
 </body>
 ...

4.12.3.5. Link type "contact"

The contact keyword may be used with link, a, and area elements. For link elements, it

creates a hyperlink.

For a and area elements, the contact keyword indicates that the referenced document provides

further contact information for the section that the element defining the hyperlink applies to.

User agents must treat any hyperlink in an address element as having the contact link type

specified.

For link elements, the contact keyword indicates that the referenced document provides further

contact information for the page as a whole.

4.12.3.6. Link type "external"

The external keyword may be used with a and area elements.

The external keyword indicates that the link is leading to a document that is not part of the site

that the current document forms a part of.

4.12.3.7. Link type "feed"

The feed keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

The feed keyword indicates that the referenced document is a syndication feed. If the alternate

link type is also specified, then the feed is specifically the feed for the current document; otherwise,
the feed is just a syndication feed, not necessarily associated with a particular Web page.

The first link, a, or area element in the document (in tree order) that creates a hyperlink with the

link type feed must be treated as the default syndication feed for the purposes of feed

autodiscovery.

Note: The feed keyword is implied by the alternate link type in certain cases (q.v.).

The following two link elements are equivalent: both give the syndication feed for the current

page:

<link rel="alternate" type="application/atom+xml" href="data.xml">

<link rel="feed alternate" href="data.xml">

The following extract offers various different syndication feeds:

 <p>You can access the planets database using Atom feeds:</p>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

325 of 458 30/12/2020, 08:08

 Recently
Visited Planets
 Known Bad
Planets
 Unexplored
Planets

4.12.3.8. Link type "help"

The help keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

For a and area elements, the help keyword indicates that the referenced document provides

further help information for the parent of the element defining the hyperlink, and its children.

In the following example, the form control has associated context-sensitive help. The user
agent could use this information, for example, displaying the referenced document if the user
presses the "Help" or "F1" key.

 <p><label> Topic: <input name=topic> <a href="help/topic.html"
rel="help">(Help)</label></p>

For link elements, the help keyword indicates that the referenced document provides help for the

page as a whole.

4.12.3.9. Link type "icon"

The icon keyword may be used with link elements, for which it creates an external resource link.

The specified resource is an icon representing the page or site, and should be used by the user
agent when representing the page in the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are provided, the
user agent must select the most appropriate icon according to the media attribute.

4.12.3.10. Link type "license"

The license keyword may be used with link, a, and area elements. For link elements, it

creates a hyperlink.

The license keyword indicates that the referenced document provides the copyright license terms

under which the current document is provided.

Synonyms: For historical reasons, user agents must also treat the keyword "copyright" like the

license keyword.

4.12.3.11. Link type "nofollow"

The nofollow keyword may be used with a and area elements.

The nofollow keyword indicates that the link is not endorsed by the original author or publisher of

the page.

4.12.3.12. Link type "noreferrer"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

326 of 458 30/12/2020, 08:08

The norefererr keyword may be used with a and area elements.

If a user agent follows a link defined by an a or area element that has the noreferrer keyword,

the user agent must not include a Referer HTTP header (or equivalent for other protocols) in the

request.

4.12.3.13. Link type "pingback"

The pingback keyword may be used with link elements, for which it creates an external resource

link.

For the semantics of the pingback keyword, see the Pingback 1.0 specification. [PINGBACK]

4.12.3.14. Link type "prefetch"

The prefetch keyword may be used with link elements, for which it creates an external resource

link.

The prefetch keyword indicates that preemptively fetching and caching the specified resource is

likely to be beneficial, as it is highly likely that the user will require this resource.

4.12.3.15. Link type "search"

The search keyword may be used with link, a, and area elements. For link elements, it creates

a hyperlink.

The search keyword indicates that the referenced document provides an interface specifically for

searching the document and its related resources.

Note: OpenSearch description documents can be used with link elements and the

search link type to enable user agents to autodiscover search interfaces.

[OPENSEARCH]

4.12.3.16. Link type "stylesheet"

The stylesheet keyword may be used with link elements, for which it creates an external

resource link that contributes to the styling processing model.

The specified resource is a resource that describes how to present the document. Exactly how the
resource is to be processed depends on the actual type of the resource.

If the alternate keyword is also specified on the link element, then the link is an alternative

stylesheet.

4.12.3.17. Link type "sidebar"

The sidebar keyword may be used with link, a, and area elements. For link elements, it

creates a hyperlink.

The sidebar keyword indicates that the referenced document, if retrieved, is intended to be shown

in a secondary browsing context (if possible), instead of in the current browsing context.

A hyperlink element with with the sidebar keyword specified is a sidebar hyperlink.

4.12.3.18. Link type "tag"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

327 of 458 30/12/2020, 08:08

The tag keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

The tag keyword indicates that the tag that the referenced document represents applies to the

current document.

4.12.3.19. Hierarchical link types

Some documents form part of a hierarchical structure of documents.

A hierarchical structure of documents is one where each document can have various subdocuments.
The document of which a document is a subdocument is said to be the document's parent. A
document with no parent forms the top of the hierarchy.

A document may be part of multiple hierarchies.

4.12.3.19.1. Lඑඖඓ ගඡ඘ඍ "index"

The index keyword may be used with link, a, and area elements. For link elements, it creates

a hyperlink.

The index keyword indicates that the document is part of a hierarchical structure, and that the link

is leading to the document that is the top of the hierarchy. It conveys more information when used
with the up keyword (q.v.).

Synonyms: For historical reasons, user agents must also treat the keywords "top", "contents",

and "toc" like the index keyword.

4.12.3.19.2. Lඑඖඓ ගඡ඘ඍ "up"

The up keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

The up keyword indicates that the document is part of a hierarchical structure, and that the link is

leading to the document that is the parent of the current document.

The up keyword may be repeated within a rel attribute to indicate the hierarchical distance from the

current document to the referenced document. Each occurance of the keyword represents one
further level. If the index keyword is also present, then the number of up keywords is the depth of

the current page relative to the top of the hierarchy.

If the page is part of multiple hierarchies, then they should be described in different paragraphs.
User agents must scope any interpretation of the up and index keywords together indicating the

depth of the hierarchy to the paragraph in which the link finds itself, if any, or to the document
otherwise.

When two links have both the up and index keywords specified together in the same scope and

contradict each other by having a different number of up keywords, the link with the greater number

of up keywords must be taken as giving the depth of the document.

This can be used to mark up a navigation style sometimes known as breadcrumbs. In the
following example, the current page can be reached via two paths.

<nav>
 <p>
 Main >

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

328 of 458 30/12/2020, 08:08

 Products >
 Dishwashers >
 <a>Second hand
 </p>
 <p>
 Main >
 Second hand >
 <a>Dishwashers
 </p>
</nav>

Note: The relList DOM attribute (e.g. on the a element) does not currently

represent multiple up keywords (the interface hides duplicates).

4.12.3.20. Sequential link types

Some documents form part of a sequence of documents.

A sequence of documents is one where each document can have a previous sibling and a next
sibling. A document with no previous sibling is the start of its sequence, a document with no next
sibling is the end of its sequence.

A document may be part of multiple sequences.

4.12.3.20.1. Lඑඖඓ ගඡ඘ඍ "first"

The first keyword may be used with link, a, and area elements. For link elements, it creates

a hyperlink.

The first keyword indicates that the document is part of a sequence, and that the link is leading to

the document that is the first logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keywords "begin" and "start"

like the first keyword.

4.12.3.20.2. Lඑඖඓ ගඡ඘ඍ "last"

The last keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

The last keyword indicates that the document is part of a sequence, and that the link is leading to

the document that is the last logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "end" like the last

keyword.

4.12.3.20.3. Lඑඖඓ ගඡ඘ඍ "next"

The next keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

The next keyword indicates that the document is part of a sequence, and that the link is leading to

the document that is the next logical document in the sequence.

4.12.3.20.4. Lඑඖඓ ගඡ඘ඍ "prev"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

329 of 458 30/12/2020, 08:08

The prev keyword may be used with link, a, and area elements. For link elements, it creates a

hyperlink.

The prev keyword indicates that the document is part of a sequence, and that the link is leading to

the document that is the previous logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "previous" like the

prev keyword.

4.12.3.21. Other link types

Other than the types defined above, only types defined as extensions in the WHATWG Wiki
RelExtensions page may be used with the rel attribute on link, a, and area elements.

[WHATWGWIKI]

Anyone is free to edit the WHATWG Wiki RelExtensions page at any time to add a type. Extension
types must be specified with the following information:

Keyword

The actual value being defined. The value should not be confusingly similar to any other
defined value (e.g. differing only in case).

Effect on... link

One of the following:

not allowed
The keyword is not allowed to be specified on link elements.

Hyperlink
The keyword may be specified on a link element; it creates a hyperlink link.

External Resource
The keyword may be specified on a link element; it creates a external resource link.

Effect on... a and area

One of the following:

not allowed
The keyword is not allowed to be specified on a and area elements.

Hyperlink
The keyword may be specified on a and area elements.

Brief description

A short description of what the keyword's meaning is.

Link to more details

A link to a more detailed description of the keyword's semantics and requirements. It could be
another page on the Wiki, or a link to an external page.

Synonyms

A list of other keyword values that have exactly the same processing requirements. Authors
must not use the values defined to be synonyms, they are only intended to allow user agents
to support legacy content.

Status

One of the following:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

330 of 458 30/12/2020, 08:08

Proposal
The keyword has not received wide peer review and approval. It is included for
completeness because pages use the keyword. Pages should not use the keyword.

Accepted
The keyword has received wide peer review and approval. It has a specification that
unambiguously defines how to handle pages that use the keyword, including when
they use them in incorrect ways. Pages may use the keyword.

Rejected
The keyword has received wide peer review and it has been found to have significant
problems. Pages must not use the keyword. When a keyword has this status, the
"Effect on... link" and "Effect on... a and area" information should be set to "not

allowed".

If a keyword is added with the "proposal" status and found to be redundant with existing
values, it should be removed and listed as a synonym for the existing value. If a keyword is
added with the "proposal" status and found to be harmful, then it should be changed to
"rejected" status, and its "Effect on..." information should be changed accordingly.

Conformance checkers must use the information given on the WHATWG Wiki RelExtensions page
to establish if a value not explicitly defined in this specification is allowed or not. When an author
uses a new type not defined by either this specification or the Wiki page, conformance checkers
should offer to add the value to the Wiki, with the details described above, with the "proposal" status.

This specification does not define how new values will get approved. It is expected that the Wiki will
have a community that addresses this.

4.13. Interfaces for URI manipulation

An interface that has a complement of URI decomposition attributes will have seven attributes
with the following definitions:

 attribute DOMString protocol;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString port;
 attribute DOMString pathname;
 attribute DOMString search;
 attribute DOMString hash;

The attributes defined to be URI decomposition attributes must act as described for the attributes
with the same corresponding names in this section.

In addition, an interface with a complement of URI decomposition attributes will define an input,
which is a URI that the attributes act on, and a common setter action, which is a set of steps
invoked when any of the attributes' setters are invoked.

The seven URI decomposition attributes have similar requirements.

On getting, if the input fulfills the condition given in the "getter condition" column corresponding to
the attribute in the table below, the user agent must return the part of the input URI given in the
"component" column, with any prefixes specified in the "prefix" column appropriately added to the
start of the string and any suffixes specified in the "suffix" column appropriately added to the end of
the string. Otherwise, the attribute must return the empty string.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

331 of 458 30/12/2020, 08:08

On setting, the new value must first be mutated as described by the "setter preprocessor" column,
then mutated by %-escaping any characters in the new value that are not valid in the relevant
component as given by the "component" column. Then, if the resulting new value fulfills the
condition given in the "setter condition" column, the user agent must make a new string output by
replacing the component of the URI given by the "component" column in the input URI with the new
value; otherwise, the user agent must let output be equal to the input. Finally, the user agent must
invoke the common setter action with the value of output.

The rules for parsing and constructing URIs are described in RFC 3986 and RFC 3987. [RFC3986]
[RFC3987]

Attribute Component Getter
Condition

Prefix Suffix Setter
Preprocessor

Setter
Condition

protocol <scheme> — — U+003A
COLON
(":")

Remove all trailing
U+003A COLON
(":") characters

The new
value is not
the empty
string

host <hostport> input is
hierarchical
and uses a
server-based
naming
authority

— — — —

hostname <host>/<ihost> input is
hierarchical
and uses a
server-based
naming
authority

— — Remove all
leading U+002F
SOLIDUS ("/")

characters

—

port <port> input is
hierarchical
and uses a
server-based
naming
authority

— — Remove any
characters in the
new value that are
not in the range
U+0030 DIGIT
ZERO .. U+0039
DIGIT NINE

The new
value is not
the empty
string

pathname <abs_path> input is
hierarchical

— — If it has no leading
U+002F SOLIDUS
("/") character,

prepend a
U+002F SOLIDUS
("/") character to

the new value

—

search <query> input is
hierarchical

U+003F
QUESTION
MARK ("?")

— Remove one
leading U+003F
QUESTION
MARK ("?")

character, if any

—

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

332 of 458 30/12/2020, 08:08

Attribute Component Getter
Condition

Prefix Suffix Setter
Preprocessor

Setter
Condition

hash <fragment> Fragment
identifier is
longer than
zero
characters

U+0023
NUMBER
SIGN ("#")

— Remove one
leading U+0023
NUMBER SIGN
("#") character, if

any

—

The <hostport> component is defined as being the <host>/<ihost> component, followed by a colon
and the <port> component, but with the colon and <port> component omitted if the given port
matches the default port for the protocol given by the <scheme> component.

5. Editing

This section describes various features that allow authors to enable users to edit documents and
parts of documents interactively.

5.1. Introduction

This section is non-normative.

Would be nice to explain how these features work together.

5.2. The contenteditable attribute

The contenteditable attribute is a common attribute. User agents must support this attribute on

all HTML elements.

The contenteditable attribute is an enumerated attribute whose keywords are the empty string,

true, and false. The empty string and the true keyword map to the true state. The false

keyword maps to the false state, which is also the invalid value default. There is no missing value
default.

If an HTML element has a contenteditable attribute set to the true state, or if its nearest

ancestor HTML element with the contenteditable attribute set has its attribute set to the true

state, or if it has no ancestors with the contenteditable attribute set but the Document has

designMode enabled, then the UA must treat the element as editable (as described below).

Otherwise, either the HTML element has a contenteditable attribute set to the false state, or its

nearest ancestor HTML element with the contenteditable attribute set is not editable, or it has

no ancestor with the contenteditable attribute set and the Document itself has designMode

disabled, and the element is thus not editable.

The contentEditable DOM attribute, on getting, must return the string "inherit" if the content

attribute isn't set, "true" if the attribute is set and has the true state, and "false" otherwise. On

setting, if the new value is case-insensitively equal to the string "inherit" then the content attribute

must be removed, if the new value is case-insensitively equal to the string "true then the content

attribute must be set to the string "true, if the new value is case-insensitively equal to the string

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

333 of 458 30/12/2020, 08:08

"false then the content attribute must be set to the string "false, and otherwise the attribute setter

must raise a SYNTAX_ERR exception.

If an element is editable and its parent element is not, or if an element is editable and it has no
parent element, then the element is an editing host. Editable elements can be nested. User agents
must make editing hosts focusable (which typicially means they enter the tab order). An editing host
can contain non-editable sections, these are handled as described below. An editing host can
contain non-editable sections that contain further editing hosts.

When an editing host has focus, it must have a caret position that specifies where the current
editing position is. It may also have a selection.

Note: How the caret and selection are represented depends entirely on the UA.

5.2.1. User editing actions

There are several actions that the user agent should allow the user to perform while the user is
interacting with an editing host. How exactly each action is triggered is not defined for every action,
but when it is not defined, suggested key bindings are provided to guide implementors.

Move the caret

User agents must allow users to move the caret to any position within an editing host, even
into nested editable elements. This could be triggered as the default action of keydown

events with various key identifiers and as the default action of mousedown events.

Change the selection

User agents must allow users to change the selection within an editing host, even into nested
editable elements. This could be triggered as the default action of keydown events with

various key identifiers and as the default action of mousedown events.

Insert text

This action must be triggered as the default action of a textInput event, and may be

triggered by other commands as well. It must cause the user agent to insert the specified text
(given by the event object's data attribute in the case of the textInput event) at the caret.

If the caret is positioned somewhere where phrasing content is not allowed (e.g. inside an
empty ol element), then the user agent must not insert the text directly at the caret position.

In such cases the behaviour is UA-dependent, but user agents must not, in response to a
request to insert text, generate a DOM that is less conformant than the DOM prior to the
request.

User agents should allow users to insert new paragraphs into elements that contains only
content other than paragraphs.

For example, given the markup:

<section>
 <dl>
 <dt> Ben </dt>
 <dd> Goat </dd>
 </dl>
</section>

...the user agent should allow the user to insert p elements before and after the dl

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

334 of 458 30/12/2020, 08:08

element, as children of the section element.

Break block

UAs should offer a way for the user to request that the current paragraph be broken at the
caret, e.g. as the default action of a keydown event whose identifier is the "Enter" key and

that has no modifiers set.

The exact behaviour is UA-dependent, but user agents must not, in response to a request to
break a paragraph, generate a DOM that is less conformant than the DOM prior to the
request.

Insert a line separator

UAs should offer a way for the user to request an explicit line break at the caret position
without breaking the paragraph, e.g. as the default action of a keydown event whose

identifier is the "Enter" key and that has a shift modifier set. Line separators are typically
found within a poem verse or an address. To insert a line break, the user agent must insert a
br element.

If the caret is positioned somewhere where phrasing content is not allowed (e.g. in an empty
ol element), then the user agent must not insert the br element directly at the caret position.

In such cases the behaviour is UA-dependent, but user agents must not, in response to a
request to insert a line separator, generate a DOM that is less conformant than the DOM prior
to the request.

Delete

UAs should offer a way for the user to delete text and elements, e.g. as the default action of
keydown events whose identifiers are "U+0008" or "U+007F".

Five edge cases in particular need to be considered carefully when implementing this feature:
backspacing at the start of an element, backspacing when the caret is immediately after an
element, forward-deleting at the end of an element, forward-deleting when the caret is
immediately before an element, and deleting a selection whose start and end points do not
share a common parent node.

In any case, the exact behaviour is UA-dependent, but user agents must not, in response to a
request to delete text or an element, generate a DOM that is less conformant than the DOM
prior to the request.

Insert, and wrap text in, semantic elements

UAs should offer a way for the user to mark text as having stress emphasis and as being
important, and may offer the user the ability to mark text and paragraphs with other
semantics.

UAs should similarly offer a way for the user to insert empty semantic elements (such as,
again, em, strong, and others) to subsequently fill by entering text manually.

UAs should also offer a way to remove those semantics from marked up text, and to remove
empty semantic element that have been inserted.

The exact behaviour is UA-dependent, but user agents must not, in response to a request to
wrap semantics around some text or to insert or remove a semantic element, generate a
DOM that is less conformant than the DOM prior to the request.

Select and move non-editable elements nested inside editing hosts

UAs should offer a way for the user to move images and other non-editable parts around the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

335 of 458 30/12/2020, 08:08

content within an editing host. This may be done using the drag and drop mechanism. User
agents must not, in response to a request to move non-editable elements nested inside
editing hosts, generate a DOM that is less conformant than the DOM prior to the request.

Edit form controls nested inside editing hosts

When an editable form control is edited, the changes must be reflected in both its current
value and its default value. For input elements this means updating the defaultValue

DOM attribute as well as the value DOM attribute; for select elements it means updating

the option elements' defaultSelected DOM attribute as well as the selected DOM

attribute; for textarea elements this means updating the defaultValue DOM attribute as

well as the value DOM attribute. (Updating the default* DOM attributes causes content

attributes to be updated as well.)

User agents may perform several commands per user request; for example if the user selects a
block of text and hits Enter, the UA might interpret that as a request to delete the content of the

selection followed by a request to break the paragraph at that position.

5.2.2. Making entire documents editable

Documents have a designMode, which can be either enabled or disabled.

The designMode DOM attribute on the Document object takes takes two values, "on" and "off".

When it is set, the new value must be case-insensitively compared to these two values. If it matches
the "on" value, then designMode must be enabled, and if it matches the "off" value, then

designMode must be disabled. Other values must be ignored.

When designMode is enabled, the DOM attribute must return the value "on", and when it is

disabled, it must return the value "off".

The last state set must persist until the document is destroyed or the state is changed. Initially,
documents must have their designMode disabled.

Enabling designMode causes scripts in general to be disabled and the document to become

editable.

When the Document has designMode enabled, event listeners registered on the document or any

elements owned by the document must do nothing.

5.3. Drag and drop

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action of a
mousedown event that is followed by a series of mousemove events, and the drop could be

triggered by the mouse being released.

On media without a pointing device, the user would probably have to explicitly indicate his intention
to perform a drag-and-drop operation, stating what he wishes to drag and what he wishes to drop,
respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g. where the
mouse was clicked, or the start of the selection or element that was selected for the drag), may have

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

336 of 458 30/12/2020, 08:08

any number of intermediate steps (elements that the mouse moves over during a drag, or elements
that the user picks as possible drop points as he cycles through possibilities), and must either have
an end point (the element above which the mouse button was released, or the element that was
finally selected), or be canceled. The end point must be the last element selected as a possible drop
point before the drop occurs (so if the operation is not canceled, there must be at least one element
in the middle step).

5.3.1. The DragEvent and DataTransfer interfaces

The drag-and-drop processing model involves several events. They all use the DragEvent

interface.

interface DragEvent : UIEvent {
 readonly attribute DataTransfer dataTransfer;
 void initDragEvent(in DOMString typeArg, in boolean canBubbleArg,
in boolean cancelableArg, in AbstractView viewArg, in long detailArg,
in DataTransfer dataTransferArg);
 void initDragEventNS(in DOMString namespaceURIArg, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in
AbstractView viewArg, in long detailArg, in DataTransfer
dataTransferArg);
};

The initDragEvent() and initDragEventNS() methods must initialise the event in a manner

analogous to the similarly-named methods in the DOM3 Events interfaces. [DOM3EVENTS]

The dataTransfer attribute of the DragEvent interface represents the context information for the

event.

When a DragEvent object is created, a new DataTransfer object must be created and assigned

to the dataTransfer context information field of the event object.

interface DataTransfer {
 attribute DOMString dropEffect;
 attribute DOMString effectAllowed;
 void clearData(in DOMString format);
 void setData(in DOMString format, in DOMString data);
 DOMString getData(in DOMString format);
 void setDragImage(in Element image, in long x, in long y);
 void addElement(in Element element);
};

DataTransfer objects can conceptually contain various kinds of data.

When a DragEvent event object is initialised, the DataTransfer object created for the event's

dataTransfer member must be initialised as follows:

The DataTransfer object must initially contain no data, no elements, and have no

associated image.

The DataTransfer object's effectAllowed attribute must be set to "uninitialized".

The dropEffect attribute must be set to "none".

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

337 of 458 30/12/2020, 08:08

The dropEffect attribute controls the drag-and-drop feedback that the user is given during a drag-

and-drop operation.

The attribute must ignore any attempts to set it to a value other than none, copy, link, and move.

On getting, the attribute must return the last of those four values that it was set to.

The effectAllowed attribute is used in the drag-and-drop processing model to initialise the

dropEffect attribute during the dragenter and dragover events.

The attribute must ignore any attempts to set it to a value other than none, copy, copyLink,

copyMove, link, linkMove, move, all, and uninitialized. On getting, the attribute must

return the last of those values that it was set to.

DataTransfer objects can hold pieces of data, each associated with a unique format. Formats are

generally given by MIME types, with some values special-cased for legacy reasons.

The clearData(format) method must clear the DataTransfer object of any data associated

with the given format. If format is the value "Text", then it must be treated as "text/plain". If the

format is "URL", then it must be treated as "text/uri-list".

The setData(format, data) method must add data to the data stored in the DataTransfer

object, labelled as being of the type format. This must replace any previous data that had been set
for that format. If format is the value "Text", then it must be treated as "text/plain". If the format

is "URL", then it must be treated as "text/uri-list".

The getData(format) method must return the data that is associated with the type format, if any,

and must return the empty string otherwise. If format is the value "Text", then it must be treated as

"text/plain". If the format is "URL", then the data associated with the "text/uri-list" format

must be parsed as appropriate for text/uri-list data, and the first URI from the list must be

returned. If there is no data with that format, or if there is but it has no URIs, then the method must
return the empty string. [RFC2483]

The setDragImage(element, x, y) method sets which element to use to generate the drag

feedback. The element argument can be any Element; if it is an img element, then the user agent

should use the element's image (at its intrinsic size) to generate the feedback, otherwise the user
agent should base the feedback on the given element (but the exact mechanism for doing so is not
specified).

The addElement(element) method is an alternative way of specifying how the user agent is to

render the drag feedback. It adds an element to the DataTransfer object.

5.3.2. Events fired during a drag-and-drop action

The following events are involved in the drag-and-drop model. Whenever the processing model
described below causes one of these events to be fired, the event fired must use the DragEvent

interface defined above, must have the bubbling and cancelable behaviours given in the table below,
and must have the context information set up as described after the table, with the view attribute set

to the view with which the user interacted to trigger the drag-and-drop event, and the detail

attribute set to zero.

Event
Name

Target Bubbles? Cancelable? dataTransfer effectAllowed dropEffect

dragstart Source
node

✓
Bubbles

✓
Cancelable

Contains
source node

uninitialized none

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

338 of 458 30/12/2020, 08:08

Event
Name

Target Bubbles? Cancelable? dataTransfer effectAllowed dropEffect

unless a
selection is
being dragged,
in which case it
is empty

drag Source
node

✓
Bubbles

✓
Cancelable

Empty Same as last
event

none

dragenter Immediate
user
selection
or the
body
element

✓
Bubbles

✓
Cancelable

Empty Same as last
event

Based on
effectAllowed

value

dragleave Previous
target
element

✓
Bubbles

— Empty Same as last
event

none

dragover Current
target
element

✓
Bubbles

✓
Cancelable

Empty Same as last
event

Based on
effectAllowed

value

drop Current
target
element

✓
Bubbles

✓
Cancelable

getData()

returns data set
in dragstart

event

Same as last
event

Current drag
operation

dragend Source
node

✓
Bubbles

— Empty Same as last
event

Current drag
operation

The dataTransfer object's contents are empty except for dragstart events and drop events,

for which the contents are set as described in the processing model, below.

The effectAllowed attribute must be set to "uninitialized" for dragstart events, and to

whatever value the field had after the last drag-and-drop event was fired for all other events (only
counting events fired by the user agent for the purposes of the drag-and-drop model described
below).

The dropEffect attribute must be set to "none" for dragstart, drag, and dragleave events

(except when stated otherwise in the algorithms given in the sections below), to the value
corresponding to the current drag operation for drop and dragend events, and to a value based on

the effectAllowed attribute's value and to the drag-and-drop source, as given by the following

table, for the remaining events (dragenter and dragover):

effectAllowed dropEffect

none none

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

339 of 458 30/12/2020, 08:08

effectAllowed dropEffect

copy, copyLink, copyMove, all copy

link, linkMove link

move move

uninitialized when what is being dragged is a selection from a text field move

uninitialized when what is being dragged is a selection copy

uninitialized when what is being dragged is an a element with an href

attribute

link

Any other case copy

5.3.3. Drag-and-drop processing model

When the user attempts to begin a drag operation, the user agent must first determine what is being
dragged. If the drag operation was invoked on a selection, then it is the selection that is being
dragged. Otherwise, it is the first element, going up the ancestor chain, starting at the node that the
user tried to drag, that has the DOM attribute draggable set to true. If there is no such element,

then nothing is being dragged, the drag-and-drop operation is never started, and the user agent
must not continue with this algorithm.

Note: img elements and a elements with an href attribute have their draggable

attribute set to true by default.

If the user agent determines that something can be dragged, a dragstart event must then be

fired.

If it is a selection that is being dragged, then this event must be fired on the node that the user
started the drag on (typically the text node that the user originally clicked). If the user did not specify
a particular node, for example if the user just told the user agent to begin a drag of "the selection",
then the event must be fired on the deepest node that is a common ancestor of all parts of the
selection.

We should look into how browsers do other types (e.g. Firefox apparently also adds text/html for
internal drag and drop of a selection).

If it is not a selection that is being dragged, then the event must be fired on the element that is being
dragged.

The node on which the event is fired is the source node. Multiple events are fired on this node
during the course of the drag-and-drop operation.

If it is a selection that is being dragged, the dataTransfer member of the event must be created

with no nodes. Otherwise, it must be created containing just the source node. Script can use the
addElement() method to add further elements to the list of what is being dragged.

If it is a selection that is being dragged, the dataTransfer member of the event must have the text

of the selection added to it as the data associated with the text/plain format. Otherwise, if it is an

img element being dragged, then the value of the element's src DOM attribute must be added,

associated with the text/uri-list format. Otherwise, if it is an a element being dragged, then

the value of the element's href DOM attribute must be added, associated with the text/uri-

list format. Otherwise, no data is added to the object by the user agent.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

340 of 458 30/12/2020, 08:08

If the event is canceled, then the drag-and-drop operation must not occur; the user agent must not
continue with this algorithm.

If it is not canceled, then the drag-and-drop operation must be initiated.

Note: Since events with no event handlers registered are, almost by definition, never
canceled, drag-and-drop is always available to the user if the author does not
specifically prevent it.

The drag-and-drop feedback must be generated from the first of the following sources that is
available:

1. The element specified in the last call to the setDragImage() method of the dataTransfer

object of the dragstart event, if the method was called. In visual media, if this is used, the x

and y arguments that were passed to that method should be used as hints for where to put
the cursor relative to the resulting image. The values are expressed as distances in CSS
pixels from the left side and from the top side of the image respectively. [CSS21]

2. The elements that were added to the dataTransfer object, both before the event was fired,

and during the handling of the event using the addElement() method, if any such elements

were indeed added.

3. The selection that the user is dragging.

The user agent must take a note of the data that was placed in the dataTransfer object. This data

will be made available again when the drop event is fired.

From this point until the end of the drag-and-drop operation, device input events (e.g. mouse and
keyboard events) must be suppressed. In addition, the user agent must track all DOM changes
made during the drag-and-drop operation, and add them to its undo history as one atomic operation
once the drag-and-drop operation has ended.

During the drag operation, the element directly indicated by the user as the drop target is called the
immediate user selection. (Only elements can be selected by the user; other nodes must not be
made available as drop targets.) However, the immediate user selection is not necessarily the
current target element, which is the element currently selected for the drop part of the drag-and-
drop operation. The immediate user selection changes as the user selects different elements (either
by pointing at them with a pointing device, or by selecting them in some other way). The current
target element changes when the immediate user selection changes, based on the results of event
handlers in the document, as described below.

Both the current target element and the immediate user selection can be null, which means no target
element is selected. They can also both be elements in other (DOM-based) documents, or other
(non-Web) programs altogether. (For example, a user could drag text to a word-processor.) The
current target element is initially null.

In addition, there is also a current drag operation, which can take on the values "none", "copy",
"link", and "move". Initially it has the value "none". It is updated by the user agent as described in the
steps below.

User agents must, every 350ms (±200ms), perform the following steps in sequence. (If the user
agent is still performing the previous iteration of the sequence when the next iteration becomes due,
the user agent must not execute the overdue iteration, effectively "skipping missed frames" of the
drag-and-drop operation.)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

341 of 458 30/12/2020, 08:08

1. First, the user agent must fire a drag event at the source node. If this event is canceled, the

user agent must set the current drag operation to none (no drag operation).

2. Next, if the drag event was not canceled and the user has not ended the drag-and-drop

operation, the user agent must check the state of the drag-and-drop operation, as follows:

1. First, if the user is indicating a different immediate user selection than during the last
iteration (or if this is the first iteration), and if this immediate user selection is not the
same as the current target element, then the current target element must be updated,
as follows:

1. If the new immediate user selection is null, or is in a non-DOM document or
application, then set the current target element to the same value.

2. Otherwise, the user agent must fire a dragenter event at the immediate user

selection.

3. If the event is canceled, then the current target element must be set to the
immediate user selection.

4. Otherwise, if the current target element is not the body element, the user agent
must fire a dragenter event at the body element, and the current target

element must be set to the body element, regardless of whether that event was
canceled or not. (If the body element is null, then the current target element
would be set to null too in this case, it wouldn't be set to the Document object.)

2. If the previous step caused the current target element to change, and if the previous
target element was not null or a part of a non-DOM document, the user agent must fire
a dragleave event at the previous target element.

3. If the current target element is a DOM element, the user agent must fire a dragover

event at this current target element.

If the dragover event is canceled, the current drag operation must be reset to "none".

Otherwise, the current drag operation must be set based on the values the
effectAllowed and dropEffect attributes of the dataTransfer object had after

the event was handled, as per the following table:

effectAllowed dropEffect Drag
operation

uninitialized, copy, copyLink, copyMove, or

all

copy "copy"

uninitialized, link, copyLink, linkMove, or

all

link "link"

uninitialized, move, copyMove, linkMove, or

all

move "move"

Any other case "none"

Then, regardless of whether the dragover event was canceled or not, the drag

feedback (e.g. the mouse cursor) must be updated to match the current drag
operation, as follows:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

342 of 458 30/12/2020, 08:08

Drag
operation

Feedback

"copy" Data will be copied if dropped here.

"link" Data will be linked if dropped here.

"move" Data will be moved if dropped here.

"none" No operation allowed, dropping here will cancel the drag-and-drop
operation.

4. Otherwise, if the current target element is not a DOM element, the user agent must
use platform-specific mechanisms to determine what drag operation is being
performed (none, copy, link, or move). This sets the current drag operation.

3. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the mouse button
in a mouse-driven drag-and-drop interface), or if the drag event was canceled, then this will

be the last iteration. The user agent must execute the following steps, then stop looping.

1. If the current drag operation is none (no drag operation), or, if the user ended the drag-
and-drop operation by canceling it (e.g. by hitting the Escape key), or if the current

target element is null, then the drag operation failed. If the current target element is a
DOM element, the user agent must fire a dragleave event at it; otherwise, if it is not

null, it must use platform-specific conventions for drag cancellation.

2. Otherwise, the drag operation was as success. If the current target element is a DOM
element, the user agent must fire a drop event at it; otherwise, it must use platform-

specific conventions for indicating a drop.

When the target is a DOM element, the dropEffect attribute of the event's

dataTransfer object must be given the value representing the current drag

operation (copy, link, or move), and the object must be set up so that the

getData() method will return the data that was added during the dragstart event.

If the event is canceled, the current drag operation must be set to the value of the
dropEffect attribute of the event's dataTransfer object as it stood after the event

was handled.

Otherwise, the event is not canceled, and the user agent must perform the event's
default action, which depends on the exact target as follows:

↪ If the current target element is a text field (e.g. textarea, or an input

element with type="text")

The user agent must insert the data associated with the text/plain

format, if any, into the text field in a manner consistent with platform-specific
conventions (e.g. inserting it at the current mouse cursor position, or
inserting it at the end of the field).

↪ Otherwise

Reset the current drag operation to "none".

3. Finally, the user agent must fire a dragend event at the source node, with the

dropEffect attribute of the event's dataTransfer object being set to the value

corresponding to the current drag operation.

Note: The current drag operation can change during the processing of

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

343 of 458 30/12/2020, 08:08

the drop event, if one was fired.

The event is not cancelable. After the event has been handled, the user agent must act
as follows:

↪ If the current target element is a text field (e.g. textarea, or an input

element with type="text"), and a drop event was fired in the previous

step, and the current drag operation is "move", and the source of the drag-
and-drop operation is a selection in the DOM

The user agent should delete the range representing the dragged selection
from the DOM.

↪ If the current target element is a text field (e.g. textarea, or an input

element with type="text"), and a drop event was fired in the previous

step, and the current drag operation is "move", and the source of the drag-
and-drop operation is a selection in a text field

The user agent should delete the dragged selection from the relevant text
field.

↪ Otherwise

The event has no default action.

5.3.3.1. When the drag-and-drop operation starts or ends in another document

The model described above is independent of which Document object the nodes involved are from;

the events must be fired as described above and the rest of the processing model must be followed
as described above, irrespective of how many documents are involved in the operation.

5.3.3.2. When the drag-and-drop operation starts or ends in another application

If the drag is initiated in another application, the source node is not a DOM node, and the user agent
must use platform-specific conventions instead when the requirements above involve the source
node. User agents in this situation must act as if the dragged data had been added to the
DataTransfer object when the drag started, even though no dragstart event was actually fired;

user agents must similarly use platform-specific conventions when deciding on what drag feedback
to use.

If a drag is started in a document but ends in another application, then the user agent must instead
replace the parts of the processing model relating to handling the target according to platform-
specific conventions.

In any case, scripts running in the context of the document must not be able to distinguish the case
of a drag-and-drop operation being started or ended in another application from the case of a drag-
and-drop operation being started or ended in another document from another domain.

5.3.4. The draggable attribute

All elements may have the draggable content attribute set. The draggable attribute is an

enumerated attribute. It has three states. The first state is true and it has the keyword true. The

second state is false and it has the keyword false. The third state is auto; it has no keywords but it

is the missing value default.

The draggable DOM attribute, whose value depends on the content attribute's in the way

described below, controls whether or not the element is draggable. Generally, only text selections

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

344 of 458 30/12/2020, 08:08

are draggable, but elements whose draggable DOM attribute is true become draggable as well.

If an element's draggable content attribute has the state true, the draggable DOM attribute must

return true.

Otherwise, if the element's draggable content attribute has the state false, the draggable DOM

attribute must return false.

Otherwise, the element's draggable content attribute has the state auto. If the element is an img

element, or, if the element is an a element with an href content attribute, the draggable DOM

attribute must return true.

Otherwise, the draggable DOM must return false.

If the draggable DOM attribute is set to the value false, the draggable content attribute must be

set to the literal value false. If the draggable DOM attribute is set to the value true, the

draggable content attribute must be set to the literal value true.

5.3.5. Copy and paste

Copy-and-paste is a form of drag-and-drop: the "copy" part is equivalent to dragging content to
another application (the "clipboard"), and the "paste" part is equivalent to dragging content from
another application.

Select-and-paste (a model used by mouse operations in the X Window System) is equivalent to a
drag-and-drop operation where the source is the selection.

5.3.5.1. Copy to clipboard

When the user invokes a copy operation, the user agent must act as if the user had invoked a drag
on the current selection. If the drag-and-drop operation initiates, then the user agent must act as if
the user had indicated (as the immediate user selection) a hypothetical application representing the
clipbroad. Then, the user agent must act as if the user had ended the drag-and-drop operation
without canceling it. If the drag-and-drop operation didn't get canceled, the user agent should then
follow the relevant platform-specific conventions for copy operations (e.g. updating the clipboard).

5.3.5.2. Cut to clipboard

When the user invokes a cut operation, the user agent must act as if the user had invoked a copy
operation (see the previous section), followed, if the copy was completed successfully, by a selection
delete operation.

5.3.5.3. Paste from clipboard

When the user invokes a clipboard paste operation, the user agent must act as if the user had
invoked a drag on a hypothetical application representing the clipboard, setting the data associated
with the drag as the text from the keyboard (either as text/plain or text/uri-list). If the

contents of the clipboard cannot be represented as text or URIs, then the paste operation must not
have any effect.

Then, the user agent must act as if the user had indicated (as the immediate user selection) the
element with the keyboard focus, and then ended the drag-and-drop operation without canceling it.

5.3.5.4. Paste from selection

When the user invokes a selection paste operation, the user agent must act as if the user had

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

345 of 458 30/12/2020, 08:08

invoked a drag on the current selection, then indicated (as the immediate user selection) the
element with the keyboard focus, and then ended the drag-and-drop operation without canceling it.

If the contents of the selection cannot be represented as text or URIs, then the paste operation must
not have any effect.

5.3.6. Security risks in the drag-and-drop model

User agents must not make the data added to the DataTransfer object during the dragstart

event available to scripts until the drop event, because otherwise, if a user were to drag sensitive

information from one document to a second document, crossing a hostile third document in the
process, the hostile document could intercept the data.

For the same reason, user agents must only consider a drop to be successful if the user specifically
ended the drag operation — if any scripts end the drag operation, it must be considered
unsuccessful (canceled) and the drop event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script actions. For
example, in a mouse-and-window environment, if a script moves a window while the user has his
mouse button depressed, the UA would not consider that to start a drag. This is important because
otherwise UAs could cause data to be dragged from sensitive sources and dropped into hostile
documents without the user's consent.

5.4. Undo history

There has got to be a better way of doing this, surely.

The user agent must associate an undo transaction history with each HTMLDocument object.

The undo transaction history is a list of entries. The entries are of two type: DOM changes and undo
objects.

Each DOM changes entry in the undo transaction history consists of batches of one or more of the
following:

Changes to the content attributes of an Element node.

Changes to the DOM attributes of a Node.

Changes to the DOM hierarchy of nodes that are descendants of the HTMLDocument object

(parentNode, childNodes).

Undo object entries consist of objects representing state that scripts running in the document are
managing. For example, a Web mail application could use an undo object to keep track of the fact
that a user has moved an e-mail to a particular folder, so that the user can undo the action and have
the e-mail return to its former location.

Broadly speaking, DOM changes entries are handled by the UA in response to user edits of form
controls and editing hosts on the page, and undo object entries are handled by script in response to
higher-level user actions (such as interactions with server-side state, or in the implementation of a
drawing tool).

5.4.1. The UndoManager interface

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

346 of 458 30/12/2020, 08:08

This API sucks. Seriously. It's a terrible API. Really bad. I hate it. Here are the requirements:

Has to cope with cases where the server has undo state already when the page is loaded,
that can be stuffed into the undo buffer onload.

Has to support undo/redo.

Has to cope with the "undo" action being "contact the server and tell it to undo", rather
than it being the opposite of the "redo" action.

Has to cope with some undo states expiring from the undo history (e.g. server can only
remember one undelete action) but other states not expiring (e.g. client can undo arbitrary
amounts of local edits).

To manage undo object entries in the undo transaction history, the UndoManager interface can be

used:

interface UndoManager {
 unsigned long add(in DOMObject data, in DOMStrong title);
 void remove(in unsigned long index);
 void clearUndo();
 void clearRedo();
 DOMObject item(in unsigned long index);
 readonly attribute unsigned long length;
 readonly attribute unsigned long position;
};

The undoManager attribute of the Window interface must return the object implementing the

UndoManager interface for that Window object's associated HTMLDocument object.

In the ECMAScript DOM binding, objects implementing this interface must also support being
dereferenced using the square bracket notation, such that dereferencing with an integer index is
equivalent to invoking the item() method with that index (e.g. undoManager[1] returns the same

as undoManager.item(1)).

UndoManager objects represent their document's undo transaction history. Only undo object entries

are visible with this API, but this does not mean that DOM changes entries are absent from the undo
transaction history.

The length attribute must return the number of undo object entries in the undo transaction history.

The item(n) method must return the nth undo object entry in the undo transaction history.

The undo transaction history has a current position. This is the position between two entries in the
undo transaction history's list where the previous entry represents what needs to happen if the user
invokes the "undo" command (the "undo" side, lower numbers), and the next entry represents what
needs to happen if the user invokes the "redo" command (the "redo" side, higher numbers).

The position attribute must return the index of the undo object entry nearest to the undo position,

on the "redo" side. If there are no undo object entries on the "redo" side, then the attribute must
return the same as the length attribute. If there are no undo object entries on the "undo" side of the

undo position, the position attribute returns zero.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

347 of 458 30/12/2020, 08:08

Note: Since the undo transaction history contains both undo object entries and DOM
changes entries, but the position attribute only returns indices relative to undo

object entries, it is possible for several "undo" or "redo" actions to be performed
without the value of the position attribute changing.

The add(data, title) method's behaviour depends on the current state. Normally, it must insert

the data object passed as an argument into the undo transaction history immediately before the
undo position, optionally remembering the given title to use in the UI. If the method is called during
an undo operation, however, the object must instead be added immediately after the undo position.

If the method is called and there is neither an undo operation in progress nor a redo operation in
progress then any entries in the undo transaction history after the undo position must be removed
(as if clearRedo() had been called).

We could fire events when someone adds something to the undo history -- one event per undo
object entry before the position (or after, during redo addition), allowing the script to decide if that
entry should remain or not. Or something. Would make it potentially easier to expire server-held
state when the server limitations come into play.

The remove(index) method must remove the undo object entry with the specified index. If the

index is less than zero or greater than or equal to length then the method must raise an

INDEX_SIZE_ERR exception. DOM changes entries are unaffected by this method.

The clearUndo() method must remove all entries in the undo transaction history before the undo

position, be they DOM changes entries or undo object entries.

The clearRedo() method must remove all entries in the undo transaction history after the undo

position, be they DOM changes entries or undo object entries.

Another idea is to have a way for scripts to say "startBatchingDOMChangesForUndo()" and after
that the changes to the DOM go in as if the user had done them.

5.4.2. Undo: moving back in the undo transaction history

When the user invokes an undo operation, or when the execCommand() method is called with the

undo command, the user agent must perform an undo operation.

If the undo position is at the start of the undo transaction history, then the user agent must do
nothing.

If the entry immediately before the undo position is a DOM changes entry, then the user agent must
remove that DOM changes entry, reverse the DOM changes that were listed in that entry, and, if the
changes were reversed with no problems, add a new DOM changes entry (consisting of the opposite
of those DOM changes) to the undo transaction history on the other side of the undo position.

If the DOM changes cannot be undone (e.g. because the DOM state is no longer consistent with the
changes represented in the entry), then the user agent must simply remove the DOM changes entry,
without doing anything else.

If the entry immediately before the undo position is an undo object entry, then the user agent must
first remove that undo object entry from the undo transaction history, and then must fire an undo

event on the Document object, using the undo object entry's associated undo object as the event's

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

348 of 458 30/12/2020, 08:08

data.

Any calls to add() while the event is being handled will be used to populate the redo history, and

will then be used if the user invokes the "redo" command to undo his undo.

5.4.3. Redo: moving forward in the undo transaction history

When the user invokes a redo operation, or when the execCommand() method is called with the

redo command, the user agent must perform a redo operation.

This is mostly the opposite of an undo operation, but the full definition is included here for
completeness.

If the undo position is at the end of the undo transaction history, then the user agent must do
nothing.

If the entry immediately after the undo position is a DOM changes entry, then the user agent must
remove that DOM changes entry, reverse the DOM changes that were listed in that entry, and, if the
changes were reversed with no problems, add a new DOM changes entry (consisting of the opposite
of those DOM changes) to the undo transaction history on the other side of the undo position.

If the DOM changes cannot be redone (e.g. because the DOM state is no longer consistent with the
changes represented in the entry), then the user agent must simply remove the DOM changes entry,
without doing anything else.

If the entry immediately after the undo position is an undo object entry, then the user agent must first
remove that undo object entry from the undo transaction history, and then must fire a redo event on

the Document object, using the undo object entry's associated undo object as the event's data.

5.4.4. The UndoManagerEvent interface and the undo and redo events

interface UndoManagerEvent : Event {
 readonly attribute DOMObject data;
 void initUndoManagerEvent(in DOMString typeArg, in boolean
canBubbleArg, in boolean cancelableArg, in DOMObject dataArg);
 void initUndoManagerEventNS(in DOMString namespaceURIArg, in
DOMString typeArg, in boolean canBubbleArg, in boolean cancelableArg,
in DOMObject dataArg);
};

The initUndoManagerEvent() and initUndoManagerEventNS() methods must initialise the

event in a manner analogous to the similarly-named methods in the DOM3 Events interfaces.
[DOM3EVENTS]

The data attribute represents the undo object for the event.

The undo and redo events do not bubble, cannot be canceled, and have no default action. When

the user agent fires one of these events it must use the UndoManagerEvent interface, with the

data field containing the relevant undo object.

5.4.5. Implementation notes

How user agents present the above conceptual model to the user is not defined. The undo interface
could be a filtered view of the undo transaction history, it could manipulate the undo transaction
history in ways not described above, and so forth. For example, it is possible to design a UA that

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

349 of 458 30/12/2020, 08:08

appears to have separate undo transaction histories for each form control; similarly, it is possible to
design systems where the user has access to more undo information than is present in the offical
(as described above) undo transaction history (such as providing a tree-based approach to
document state). Such UI models should be based upon the single undo transaction history
described in this section, however, such that to a script there is no detectable difference.

5.5. Command APIs

The execCommand(commandId, doShowUI, value) method on the HTMLDocument interface

allows scripts to perform actions on the current selection or at the current caret position. Generally,
these commands would be used to implement editor UI, for example having a "delete" button on a
toolbar.

There are three variants to this method, with one, two, and three arguments respectively. The
doShowUI and value parameters, even if specified, are ignored unless otherwise stated.

Note: In this specification, in fact, the doShowUI parameter is always ignored,
regardless of its value. It is included for historical reasons only.

When any of these methods are invoked, user agents must act as described in the list below.

For actions marked "editing hosts only", if the selection is not entirely within an editing host, of if
there is no selection and the caret is not inside an editing host, then the user agent must do nothing.

If the commandId is undo

The user agent must move back one step in its undo transaction history, restoring the
associated state. If there is no further undo information the user agent must do nothing. See
the undo history.

If the commandId is redo

The user agent must move forward one step in its undo transaction history, restoring the
associated state. If there is no further undo (well, "redo") information the user agent must do
nothing. See the undo history.

If the commandId is selectAll

The user agent must change the selection so that all the content in the currently focused
editing host is selected. If no editing host is focused, then the content of the entire document
must be selected.

If the commandId is unselect

The user agent must change the selection so that nothing is selected.

We need some sort of way in which the user can make a selection without risk of script
clobbering it.

If the commandId is superscript

Editing hosts only. The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the sup element (or unwrapped, or, if there is no selection, have

that semantic inserted or removed — the exact behaviour is UA-defined).

If the commandId is subscript

Editing hosts only. The user agent must act as if the user had requested that the selection be

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

350 of 458 30/12/2020, 08:08

wrapped in the semantics of the sub element (or, again, unwrapped, or have that semantic

inserted or removed, as defined by the UA).

If the commandId is formatBlock

Editing hosts only. This command changes the semantics of the blocks containing the
selection.

If there is no selection, then, where in the description below refers to the selection, the user
agent must act as if the selection was an empty range at the caret position.

If the value parameter is not specified or has a value other than one of the following literal
strings:

<address>
<aside>
<h1>
<h2>
<h3>
<h4>
<h5>
<h6>
<nav>
<p>
<pre>

...then the user agent must do nothing.

Otherwise, the user agent must, for every position in the selection, take the furthest prose
content ancestor element of that position that contains only phrasing content, and, if that
element is a descendant of the editing host, rename it (as if the Element.renameNode()

method had been used) according to the value, by stripping the leading < character and the

trailing > character and using the rest as the new tag name, using the HTML namespace.

If the commandId is delete

Editing hosts only. The user agent must act as if the user had performed a backspace
operation.

If the commandId is forwardDelete

Editing hosts only. The user agent must act as if the user had performed a forward delete
operation.

If the commandId is insertLineBreak

Editing hosts only. The user agent must act as if the user had requested a line separator.

If the commandId is insertParagraph

Editing hosts only. The user agent must act as if the user had performed a break block editing
action.

If the commandId is insertText

Editing hosts only. The user agent must act as if the user had inserted text corresponding to
the value parameter.

If the commandId is vendorID-customCommandID

User agents may implement vendor-specific extensions to this API. Vendor-specific
extensions to the list of commands should use the syntax vendorID-customCommandID so

as to prevent clashes between extensions from different vendors and future additions to this
specification.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

351 of 458 30/12/2020, 08:08

If the commandId is something else

User agents must do nothing.

5.6. The text selection APIs

Every browsing context has a selection. The selection can be empty, and the selection can have
more than one range (a disjointed selection). The user should be able to change the selection. User
agents are not required to let the user select more than one range, and may collapse multiple
ranges in the selection to a single range when the user interacts with the selection. (But, of course,
the user agent may let the user create selections with multiple ranges.)

This one selection must be shared by all the content of the browsing context (though not by nested
browsing contexts), including any editing hosts in the document. (Editing hosts that are not inside a
document cannot have a selection.)

If the selection is empty (collapsed, so that it has only one segment and that segment's start and end
points are the same) then the selection's position should equal the caret position. When the
selection is not empty, this specification does not define the caret position; user agents should follow
platform conventions in deciding whether the caret is at the start of the selection, the end of the
selection, or somewhere else.

On some platforms (such as those using Wordstar editing conventions), the caret position is totally
independent of the start and end of the selection, even when the selection is empty. On such
platforms, user agents may ignore the requirement that the cursor position be linked to the position
of the selection altogether.

Mostly for historical reasons, in addition to the browsing context's selection, each textarea and

input element has an independent selection. These are the text field selections.

The datagrid and select elements also have selections, indicating which items have been

picked by the user. These are not discussed in this section.

Note: This specification does not specify how selections are presented to the user.
The Selectors specification, in conjunction with CSS, can be used to style text
selections using the ::selection pseudo-element. [SELECTORS] [CSS21]

5.6.1. APIs for the browsing context selection

The getSelection() method on the Window interface must return the Selection object

representing the selection of that Window object's browsing context.

For historical reasons, the getSelection() method on the HTMLDocument interface must return

the same Selection object.

interface Selection {
 readonly attribute Node anchorNode;
 readonly attribute long anchorOffset;
 readonly attribute Node focusNode;
 readonly attribute long focusOffset;
 readonly attribute boolean isCollapsed;
 void collapse(in Node parentNode, in long offset);
 void collapseToStart();

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

352 of 458 30/12/2020, 08:08

 void collapseToEnd();
 void selectAllChildren(in Node parentNode);
 void deleteFromDocument();
 readonly attribute long rangeCount;
 Range getRangeAt(in long index);
 void addRange(in Range range);
 void removeRange(in Range range);
 void removeAllRanges();
 DOMString toString();
};

The Selection interface is represents a list of Range objects. The first item in the list has index 0,

and the last item has index count-1, where count is the number of ranges in the list. [DOM2RANGE]

All of the members of the Selection interface are defined in terms of operations on the Range

objects represented by this object. These operations can raise exceptions, as defined for the Range

interface; this can therefore result in the members of the Selection interface raising exceptions as

well, in addition to any explicitly called out below.

The anchorNode attribute must return the value returned by the startContainer attribute of the

last Range object in the list, or null if the list is empty.

The anchorOffset attribute must return the value returned by the startOffset attribute of the

last Range object in the list, or 0 if the list is empty.

The focusNode attribute must return the value returned by the endContainer attribute of the last

Range object in the list, or null if the list is empty.

The focusOffset attribute must return the value returned by the endOffset attribute of the last

Range object in the list, or 0 if the list is empty.

The isCollapsed attribute must return true if there are zero ranges, or if there is exactly one range

and its collapsed attribute is itself true. Otherwise it must return false.

The collapse(parentNode, offset) method must raise a WRONG_DOCUMENT_ERR DOM

exception if parentNode's ownerDocument is not the HTMLDocument object with which the

Selection object is associated. Otherwise it is, and the method must remove all the ranges in the

Selection list, then create a new Range object, add it to the list, and invoke its setStart() and

setEnd() methods with the parentNode and offset values as their arguments.

The collapseToStart() method must raise an INVALID_STATE_ERR DOM exception if there

are no ranges in the list. Otherwise, it must invoke the collapse() method with the

startContainer and startOffset values of the first Range object in the list as the arguments.

The collapseToEnd() method must raise an INVALID_STATE_ERR DOM exception if there are

no ranges in the list. Otherwise, it must invoke the collapse() method with the endContainer

and endOffset values of the last Range object in the list as the arguments.

The selectAllChildren(parentNode) method must invoke the collapse() method with the

parentNode value as the first argument and 0 as the second argument, and must then invoke the
selectNodeContents() method on the first (and only) range in the list with the parentNode value

as the argument.

The deleteFromDocument() method must invoke the deleteContents() method on each

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

353 of 458 30/12/2020, 08:08

range in the list, if any, from first to last.

The rangeCount attribute must return the number of ranges in the list.

The getRangeAt(index) method must return the indexth range in the list. If index is less than

zero or greater or equal to the value returned by the rangeCount attribute, then the method must

raise an INDEX_SIZE_ERR DOM exception.

The addRange(range) method must add the given range Range object to the list of selections, at

the end (so the newly added range is the new last range). Duplicates are not prevented; a range
may be added more than once in which case it appears in the list more than once, which (for
example) will cause toString() to return the range's text twice.

The removeRange(range) method must remove the first occurrence of range in the list of ranges,

if it appears at all.

The removeAllRanges() method must remove all the ranges from the list of ranges, such that the

rangeCount attribute returns 0 after the removeAllRanges() method is invoked (and until a new

range is added to the list, either through this interface or via user interaction).

The toString() method must return a concatenation of the results of invoking the toString()

method of the Range object on each of the ranges of the selection, in the order they appear in the

list (first to last).

In language bindings where this is supported, objects implementing the Selection interface must

stringify to the value returned by the object's toString() method.

In the following document fragment, the emphasised parts indicate the selection.

<p>The cute girl likes the <cite>Oxford English
Dictionary</cite>.</p>

If a script invoked window.getSelection().toString(), the return value would be "the

Oxford English".

Note: The Selection interface has no relation to the DataGridSelection interface.

5.6.2. APIs for the text field selections

When we define HTMLTextAreaElement and HTMLInputElement we will have to add the IDL
given below to both of their IDLs.

The input and textarea elements define four members in their DOM interfaces for handling their

text selection:

 void select();
 attribute unsigned long selectionStart;
 attribute unsigned long selectionEnd;
 void setSelectionRange(in unsigned long start, in unsigned long
end);

These methods and attributes expose and control the selection of input and textarea text fields.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

354 of 458 30/12/2020, 08:08

The select() method must cause the contents of the text field to be fully selected.

The selectionStart attribute must, on getting, return the offset (in logical order) to the character

that immediately follows the start of the selection. If there is no selection, then it must return the
offset (in logical order) to the character that immediately follows the text entry cursor.

On setting, it must act as if the setSelectionRange() method had been called, with the new

value as the first argument, and the current value of the selectionEnd attribute as the second

argument, unless the current value of the selectionEnd is less than the new value, in which case

the second argument must also be the new value.

The selectionEnd attribute must, on getting, return the offset (in logical order) to the character

that immediately follows the end of the selection. If there is no selection, then it must return the offset
(in logical order) to the character that immediately follows the text entry cursor.

On setting, it must act as if the setSelectionRange() method had been called, with the current

value of the selectionStart attribute as the first argument, and new value as the second

argument.

The setSelectionRange(start, end) method must set the selection of the text field to the

sequence of characters starting with the character at the startth position (in logical order) and ending
with the character at the (end-1)th position. Arguments greater than the length of the value in the
text field must be treated as pointing at the end of the text field. If end is less than or equal to start
then the start of the selection and the end of the selection must both be placed immediately before
the character with offset end. In UAs where there is no concept of an empty selection, this must set
the cursor to be just before the character with offset end.

To obtain the currently selected text, the following JavaScript suffices:

var selectionText = control.value.substring(control.selectionStart,
control.selectionEnd);

...where control is the input or textarea element.

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count as
characters. Thus, for instance, the selection can include just an invisible character, and the text
insertion cursor can be placed to one side or another of such a character.

When these methods and attributes are used with input elements that are not displaying simple

text fields, they must raise an INVALID_STATE_ERR exception.

6. Communication

6.1. Event definitions

Messages in cross-document messaging and, by default, in server-sent DOM events, use the
message event.

The following interface is defined for this event:

interface MessageEvent : Event {
 readonly attribute DOMString data;

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

355 of 458 30/12/2020, 08:08

 readonly attribute DOMString domain;
 readonly attribute DOMString uri;
 readonly attribute Window source;
 void initMessageEvent(in DOMString typeArg, in boolean
canBubbleArg, in boolean cancelableArg, in DOMString dataArg, in
DOMString domainArg, in DOMString uriArg, in Window sourceArg);
 void initMessageEventNS(in DOMString namespaceURI, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in
DOMString dataArg, in DOMString domainArg, in DOMString uriArg, in
Window sourceArg);
};

The initMessageEvent() and initMessageEventNS() methods must initialise the event in a

manner analogous to the similarly-named methods in the DOM3 Events interfaces. [DOM3EVENTS]

The data attribute represents the message being sent.

The domain attribute represents, in cross-document messaging, the domain of the document from

which the message came.

The uri attribute represents, in cross-document messaging, the address of the document from

which the message came.

The source attribute represents, in cross-document messaging, the Window from which the

message came.

6.2. Server-sent DOM events

This section describes a mechanism for allowing servers to dispatch DOM events into documents
that expect it. The event-source element provides a simple interface to this mechanism.

6.2.1. The RemoteEventTarget interface

Any object that implements the EventTarget interface must also implement the

RemoteEventTarget interface.

interface RemoteEventTarget {
 void addEventSource(in DOMString src);
 void removeEventSource(in DOMString src);
};

When the addEventSource(src) method is invoked, the user agent must add the URI specified

in src to the list of event sources for that object. The same URI can be registered multiple times.

When the removeEventSource(src) method is invoked, the user agent must remove the URI

specified in src from the list of event sources for that object. If the same URI has been registered
multiple times, removing it must only remove one instance of that URI for each invocation of the
removeEventSource() method.

Relative URIs must be resolved relative to

6.2.2. Connecting to an event stream

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

356 of 458 30/12/2020, 08:08

Each object implementing the EventTarget and RemoteEventTarget interfaces has a list of

event sources that are registered for that object.

When a new URI is added to this list, the user agent should, as soon as all currently executing
scripts (if any) have finished executing, and if the specified URI isn't removed from the list before
they do so, fetch the resource identified by that URI.

When an event source is removed from the list of event sources for an object, if that resource is still
being fetched, then the relevant connection must be closed.

Since connections established to remote servers for such resources are expected to be long-lived,
UAs should ensure that appropriate buffering is used. In particular, while line buffering may be safe if
lines are defined to end with a single U+000A LINE FEED character, block buffering or line buffering
with different expected line endings can cause delays in event dispatch.

In general, the semantics of the transport protocol specified by the URIs for the event sources must
be followed, including HTTP caching rules.

For HTTP connections, the Accept header may be included; if included, it must only contain

formats of event framing that are supported by the user agent (one of which must be
application/x-dom-event-stream, as described below).

Other formats of event framing may also be supported in addition to application/x-dom-

event-stream, but this specification does not define how they are to be parsed or processed.

Note: Such formats could include systems like SMS-push; for example servers could
use Accept headers and HTTP redirects to an SMS-push mechanism as a kind of

protocol negotiation to reduce network load in GSM environments.

User agents should use the Cache-Control: no-cache header in requests to bypass any

caches for requests of event sources.

For connections to domains other than the document's domain, the semantics of the Access-Control
HTTP header must be followed. [ACCESSCONTROL]

HTTP 200 OK responses with a Content-Type header specifying the type application/x-dom-

event-stream that are either from the document's domain or explicitly allowed by the Access-

Control HTTP headers must be processed line by line as described below.

For the purposes of such successfully opened event streams only, user agents should ignore HTTP
cache headers, and instead assume that the resource indicates that it does not wish to be cached.

If such a resource completes loading (i.e. the entire HTTP response body is received or the
connection itself closes), the user agent should request the event source resource again after a
delay of approximately five seconds.

HTTP 200 OK responses that have a Content-Type other than application/x-dom-event-

stream (or some other supported type), and HTTP responses whose Access-Control headers

indicate that the resource are not to be used, must be ignored and must prevent the user agent from
refetching the resource for that event source.

HTTP 201 Created, 202 Accepted, 203 Non-Authoritative Information, and 206 Partial Content
responses must be treated like HTTP 200 OK responses for the purposes of reopening event source
resources. They are, however, likely to indicate an error has occurred somewhere and may cause
the user agent to emit a warning.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

357 of 458 30/12/2020, 08:08

HTTP 204 No Content, and 205 Reset Content responses must be treated as if they were 200 OK
responses with the right MIME type but no content, and should therefore cause the user agent to
refetch the resource after a short delay.

HTTP 300 Multiple Choices responses should be handled automatically if possible (treating the
responses as if they were 302 Found responses pointing to the appropriate resource), and otherwise
must be treated as HTTP 404 responses.

HTTP 301 Moved Permanently responses must cause the user agent to reconnect using the new
server specified URI instead of the previously specified URI for all subsequent requests for this
event source. (It doesn't affect other event sources with the same URI unless they also receive 301
responses, and it doesn't affect future sessions, e.g. if the page is reloaded.)

HTTP 302 Found, 303 See Other, and 307 Temporary Redirect responses must cause the user
agent to connect to the new server-specified URI, but if the user agent needs to again request the
resource at a later point, it must return to the previously specified URI for this event source.

HTTP 304 Not Modified responses should be handled like HTTP 200 OK responses, with the
content coming from the user agent cache. A new request should then be made after a short delay
of approximately five seconds.

HTTP 305 Use Proxy, HTTP 401 Unauthorized, and 407 Proxy Authentication Required should be
treated transparently as for any other subresource.

Any other HTTP response code not listed here should cause the user agent to stop trying to process
this event source.

DNS errors must be considered fatal, and cause the user agent to not open any connection for that
event source.

For non-HTTP protocols, UAs should act in equivalent ways.

6.2.3. Parsing an event stream

This event stream format's MIME type is application/x-dom-event-stream.

The event stream format is (in pseudo-BNF):

<stream> ::= <bom>? <event>*
<event> ::= [<comment> | <command> | <field>]* <newline>
<comment> ::= ';' <any-char>* <newline>
<command> ::= ':' <any-char>* <newline>
<field> ::= <name> [':' <space>? <any-char>*]? <newline>
<name> ::= <name-start-char> <name-char>*

characters:
<bom> ::= a single U+FEFF BYTE ORDER MARK character
<space> ::= a single U+0020 SPACE character (' ')
<newline> ::= a U+000D CARRIAGE RETURN character
 followed by a U+000A LINE FEED character
 | a single U+000D CARRIAGE RETURN character
 | a single U+000A LINE FEED character
 | the end of the file
<name-start-char> ::= a single Unicode character other than
 ':', ';', U+000D CARRIAGE RETURN and U+000A LINE
FEED

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

358 of 458 30/12/2020, 08:08

<name-char> ::= a single Unicode character other than
 ':', U+000D CARRIAGE RETURN and U+000A LINE FEED
<any-char> ::= a single Unicode character other than
 U+000D CARRIAGE RETURN and U+000A LINE FEED

Event streams in this format must always be encoded as UTF-8. Lines must be separated by either
a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pair, a single U+000A LINE
FEED (LF) character, or a single U+000D CARRIAGE RETURN (CR) character. User agents must
treat those three variants as equivalent line terminators.

Bytes or sequences of bytes that are not valid UTF-8 sequences must be interpreted as the U+FFFD
REPLACEMENT CHARACTER.

One leading U+FEFF BYTE ORDER MARK character must be ignored if any are present.

The stream must then be parsed by reading everything line by line, in blocks separated by blank
lines. Comment lines (those starting with the character ';') and command lines (those starting with
the character ':') must be ignored.

Command lines are reserved for future extensions.

For each non-blank, non-comment, non-command line, the field name must first be taken. This is
everything on the line up to but not including the first colon (':') or the line terminator, whichever
comes first. Then, if there was a colon, the data for that line must be taken. This is everything after
the colon, ignoring a single space after the colon if there is one, up to the end of the line. If there was
no colon the data is the empty string.

Examples:

Field name: Field data

This is a blank field

1. These two lines: have the same data
2. These two lines:have the same data

1. But these two lines: do not
2. But these two lines: do not

If a field name occurs multiple times in a block, the value for that field in that black must consist of
the data parts for each of those lines, concatenated with U+000A LINE FEED characters between
them (regardless of what the line terminators used in the stream actually are).

For example, the following block:

Test: Line 1
Foo: Bar
Test: Line 2

...is treated as having two fields, one called Test with the value "Line 1\nLine 2" (where

\n represents a newline), and one called Foo with the value " Bar" (note the leading space

character).

A block thus consists of all the name-value pairs for its fields. Command lines have no effect on
blocks and are not considered part of a block.

Note: Since any random stream of characters matches the above format, there is no

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

359 of 458 30/12/2020, 08:08

need to define any error handling.

6.2.4. Interpreting an event stream

Once the fields have been parsed, they are interpreted as follows (these are case-sensitive exact
comparisons):

Event field

This field gives the name of the event. For example, load, DOMActivate, updateTicker.

If there is no field with this name, the name message must be used.

Namespace field

This field gives the DOM3 namespace for the event. (For normal DOM events this would be
null.) If it isn't specified the event namespace is null.

Class field

This field gives is the interface used for the event, for instance Event, UIEvent,

MutationEvent, KeyboardEvent, etc. For compatibility with DOM3 Events, the values

UIEvents, MouseEvents, MutationEvents, and HTMLEvents are valid values and must

be treated respectively as meaning the interfaces UIEvent, MouseEvent, MutationEvent,

and Event. (This value can therefore be used as the argument to createEvent().)

If the value is not specified but the Namespace is null and the Event field exactly matches

one of the events specified by DOM3 Events in section 1.4.2 "Complete list of event types",
then the interface used must default to the interface relevant for that event type.
[DOM3EVENTS]

For example:

Event: click

...would cause Class to be treated as MouseEvent.

If the Namespace is null and the Event field is message (including if it was not specified

explicitly), then the MessageEvent interface must be used.

Otherwise, the Event interface must be used.

It is quite possible to give the wrong class for an event. This is equivalent to creating an event
in the DOM using the DOM Event APIs, but using the wrong interface for it.

Bubbles field

This field specifies whether the event is to bubble. If it is specified and has the value No, the

event must not bubble. If it is specified and has any other value (including no or NO) then the

event must bubble.

If it is not specified but the Namespace field is null and the Event field exactly matches one

of the events specified by DOM3 Events in section 1.4.2 "Complete list of event types", then
the event must bubble if the DOM3 Events spec specifies that that event bubbles, and musn't
bubble if it specifies it does not. [DOM3EVENTS]

For example:

Event: load

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

360 of 458 30/12/2020, 08:08

...would cause Bubbles to be treated as No.

Otherwise, the event must bubble.

Cancelable field

This field specifies whether the event can have its default action prevented. If it is specified
and has the value No, the event must not be cancelable. If it is specified and has any other

value (including no or NO) then the event must be cancelable.

If it is not specified, but the Namespace field is null and the Event field exactly matches one

of the events specified by DOM3 Events in section 1.4.2 "Complete list of event types", then
the event must be cancelable if the DOM3 Events specification specifies that it is, and must
not be cancelable otherwise. [DOM3EVENTS]

For example:

Event: load

...would cause Cancelable to be treated as No.

Otherwise, the event must be cancelable.

Target field

This field gives the node that the event is to be dispatched on.

If the object for which the event source is being processed is not a Node, but the Target

field is nonetheless specified, then the event must be dropped.

Otherwise, if field is specified and its value starts with a # character, then the remainder of the

value represents an ID, and the event must be dispatched on the same node as would be
obtained by the getElementById() method on the ownerDocument of the node whose

event source is being processed.

For example,

Target: #test

...would target the element with ID test.

Otherwise, if the field is specified and its value is the literal string "Document", then the event

must be dispatched at the ownerDocument of the node whose event source is being

processed.

Otherwise, the field (whether specified or not) is ignored and the event must be dispatched at
the object itself.

Other fields depend on the interface specified (or possibly implied) by the Class field. If the

specified interface has an attribute that exactly matches the name of the field, and the value of the
field can be converted (using the type conversions defined in ECMAScript) to the type of the
attribute, then it must be used. Any attributes (other than the Event interface attributes) that do not

have matching fields are initialised to zero, null, false, or the empty string.

For example:

Event: click
Class: MouseEvent

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

361 of 458 30/12/2020, 08:08

button: 2

...would result in a 'click' event using the MouseEvent interface that has button set to 2 but

screenX, screenY, etc, set to 0, false, or null as appropriate.

If a field does not match any of the attributes on the event, it must be ignored.

For example:

Event: keypress
Class: MouseEvent
keyIdentifier: 0

...would result in a MouseEvent event with its fields all at their default values, with the event

name being keypress. The keyIdentifier field would be ignored. (If the author had not

included the Class field explicitly, it would have just worked, since the class would have

defaulted as described above.)

Once a blank line or the end of the file is reached, an event of the type and namespace given by the
Event and Namespace fields respectively must be synthesized and dispatched to the appropriate

node as described by the fields above. No event must be dispatched until a blank line has been
received or the end of the file reached.

The event must be dispatched as if using the DOM dispatchEvent() method. Thus, if the Event

field was omitted, leaving the name as the empty string, or if the name had invalid characters, then
the dispatching of the event fails.

Events fired from event sources do not have user-agent default actions.

The following event stream, once followed by a blank line:

data: YHOO
data: -2
data: 10

...would cause an event message with the interface MessageEvent to be dispatched on the

event-source element, which would then bubble up the DOM, and whose data attribute

would contain the string YHOO\n-2\n10 (where \n again represents a newline).

This could be used as follows:

<event-source src="http://stocks.example.com/ticker.php"
 onmessage="var data = event.data.split('\n');
updateStocks(data[0], data[1], data[2]);">

...where updateStocks() is a function defined as:

function updateStocks(symbol, delta, value) { ... }

...or some such.

The following stream contains four blocks and therefore fires four events. The first block has
just a comment, and will fire a message event with all the fields set to the empty string or null.

The second block has two fields with names "load" and "Target" respectively; since there is no
"load" member on the MessageEvent object that field is ignored, leaving the event as a

second message event with all the fields set to the empty string or null, but this time the event

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

362 of 458 30/12/2020, 08:08

is targetted at an element with ID "image1". The third block is empty (no lines between two
blank lines), and the fourth block has only two comments, so they both yet again fire message

events with all the fields set to the empty string or null.

; test

load
Target: #image1

; if any more events follow this block, they will not be affected
by
; the "Target" and "load" fields above.

6.2.5. Notes

Legacy proxy servers are known to, in certain cases, drop HTTP connections after a short timeout.
To protect against such proxy servers, authors can include a comment line (one starting with a ';'
character) every 15 seconds or so.

Authors wishing to relate event source connections to each other or to specific documents
previously served might find that relying on IP addresses doesn't work, as individual clients can have
multiple IP addresses (due to having multiple proxy servers) and individual IP addresses can have
multiple clients (due to sharing a proxy server). It is better to include a unique identifier in the
document when it is served and then pass that identifier as part of the URI in the src attribute of the

event-source element.

Implementations that support HTTP's per-server connection limitation might run into trouble when
opening multiple pages from a site if each page has an event-source to the same domain.

Authors can avoid this using the relatively complex mechanism of using unique domain names per
connection, or by allowing the user to enable or disable the event-source functionality on a per-

page basis.

6.3. Network connections

To enable Web applications to communicate with each other in local area networks, and to maintain
bidirectional communications with their originating server, this specification introduces the
Connection interface.

The Window interface provides three constructors for creating Connection objects:

TCPConnection(), for creating a direct (possibly encrypted) link to another node on the Internet

using TCP/IP; LocalBroadcastConnection(), for creating a connection to any listening peer on

a local network (which could be a local TCP/IP subnet using UDP, a Bluetooth PAN, or another kind
of network infrastructure); and PeerToPeerConnection(), for a direct peer-to-peer connection

(which could again be over TCP/IP, Bluetooth, IrDA, or some other type of network).

Note: This interface does not allow for raw access to the underlying network. For
example, this interface could not be used to implement an IRC client without
proxying messages through a custom server.

6.3.1. Introduction

This section is non-normative.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

363 of 458 30/12/2020, 08:08

An introduction to the client-side and server-side of using the direct connection APIs.

An example of a party-line implementation of a broadcast service, and direct peer-to-peer chat for
direct local connections.

6.3.2. The Connection interface

interface Connection {
 readonly attribute DOMString network;
 readonly attribute DOMString peer;
 readonly attribute int readyState;
 attribute EventListener onopen;
 attribute EventListener onread;
 attribute EventListener onclose;
 void send(in DOMString data);
 void disconnect();
};

Connection objects must also implement the EventTarget interface. [DOM3EVENTS]

When a Connection object is created, the UA must try to establish a connection, as described in

the sections below describing each connection type.

The network attribute represents the name of the network connection (the value depends on the

kind of connection being established). The peer attribute identifies the remote host for direct (non-

broadcast) connections.

The network attribute must be set as soon as the Connection object is created, and keeps the

same value for the lifetime of the object. The peer attribute must initially be set to the empty string

and must be updated once, when the connection is established, after which point it must keep the
same value for the lifetime of the object.

The readyState attribute represents the state of the connection. When the object is created it

must be set to 0. It can have the following values:

0 Connecting

The connection has not yet been established.

1 Connected

The connection is established and communication is possible.

2 Closed

The connection has been closed.

Once a connection is established, the readyState attribute's value must be changed to 1, and the

open event must be fired on the Connection object.

When data is received, the read event will be fired on the Connection object.

When the connection is closed, the readyState attribute's value must be changed to 2, and the

close event must be fired on the Connection object.

The onopen, onread, and onclose attributes must, when set, register their new value as an event

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

364 of 458 30/12/2020, 08:08

listener for their respective events (namely open, read, and close), and unregister their previous

value if any.

The send() method transmits data using the connection. If the connection is not yet established, it

must raise an INVALID_STATE_ERR exception. If the connection is established, then the behaviour

depends on the connection type, as described below.

The disconnect() method must close the connection, if it is open. If the connection is already

closed, it must do nothing. Closing the connection causes a close event to be fired and the

readyState attribute's value to change, as described above.

6.3.3. Connection Events

All the events described in this section are events in no namespace, which do not bubble, are not
cancelable, and have no default action.

The open event is fired when the connection is established. UAs must use the normal Event

interface when firing this event.

The close event is fired when the connection is closed (whether by the author, calling the

disconnect() method, or by the server, or by a network error). UAs must use the normal Event

interface when firing this event as well.

Note: No information regarding why the connection was closed is passed to the
application in this version of this specification.

The read event is fired when when data is received for a connection. UAs must use the

ConnectionReadEvent interface for this event.

interface ConnectionReadEvent : Event {
 readonly attribute DOMString data;
 readonly attribute DOMString source;
 void initConnectionReadEvent(in DOMString typeArg, in boolean
canBubbleArg, in boolean cancelableArg, in DOMString dataArg);
 void initConnectionReadEventNS(in DOMString namespaceURI, in
DOMString typeArg, in boolean canBubbleArg, in boolean cancelableArg,
in DOMString dataArg);
};

The initConnectionReadEvent() and initConnectionReadEventNS() methods must

initialise the event in a manner analogous to the similarly-named methods in the DOM3 Events
interfaces. [DOM3EVENTS]

The data attribute represents the data that was transmitted from the peer.

The source attribute represents the name of the peer. This is primarily useful on broadcast

connections; on direct connections it is equal to the peer attribute on the Connection object.

Events that would be fired during script execution (e.g. between the connection object being created
— and thus the connection being established — and the current script completing; or, during the
execution of a read event handler) must be buffered, and those events queued up and each one

individually fired after the script has completed.

6.3.4. TCP connections

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

365 of 458 30/12/2020, 08:08

The TCPConnection(subdomain, port, secure) constructor on the Window interface returns

a new object implementing the Connection interface, set up for a direct connection to a specified

host on the page's domain.

When this constructor is invoked, the following steps must be followed.

First, if the domain part of the script's origin is not a host name (e.g. it is an IP address) then the UA
must raise a security exception.

Then, if the subdomain argument is null or the empty string, the target host is the domain part of the
script's origin. Otherwise, the subdomain argument is prepended to the domain part of the script's
origin with a dot separating the two strings, and that is the target host.

If either:

the target host is not a valid host name, or

the port argument is neither equal to 80, nor equal to 443, nor greater than or equal to 1024
and less than or equal to 65535,

...then the UA must raise a security exception.

Otherwise, the user agent must verify that the the string representing the script's domain in IDNA
format can be obtained without errors. If it cannot, then the user agent must raise a security
exception.

The user agent may also raise a security exception at this time if, for some reason, permission to
create a direct TCP connection to the relevant host is denied. Reasons could include the UA being
instructed by the user to not allow direct connections, or the UA establishing (for instance using
UPnP) that the network topology will cause connections on the specified port to be directed at the
wrong host.

If no exceptions are raised by the previous steps, then a new Connection object must be created,

its peer attribute must be set to a string consisting of the name of the target host, a colon (U+003A

COLON), and the port number as decimal digits, and its network attribute must be set to the same

value as the peer attribute.

This object must then be returned.

The user agent must then begin trying to establish a connection with the target host and specified
port. (This typically would begin in the backgound, while the script continues to execute.)

If the secure boolean argument is set to true, then the user agent must establish a secure
connection with the target host and specified port using TLS or another protocol, negotiated with the
server. [RFC2246] If this fails the user agent must act as if it had closed the connection.

Once a secure connection is established, or if the secure boolean argument is not set to true, then
the user agent must continue to connect to the server using the protocol described in the section
entitled clients connecting over TCP. All data on connections made using TLS must be sent as
"application data".

Once the connection is established, the UA must act as described in the section entitled sending
and receiving data over TCP.

User agents should allow multiple TCP connections to be established per host. In particular, user
agents should not apply per-host HTTP connection limits to connections established with the
TCPConnection constructor.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

366 of 458 30/12/2020, 08:08

6.3.5. Broadcast connections

The LocalBroadcastConnection() constructor on the Window interface returns a new object

implementing the Connection interface, set up to broadcast on the local network.

When this constructor is invoked, a new Connection object must be created.

The network attribute of the object must be set to the string representing the script's domain in

IDNA format. If this string cannot be obtained, then the user agent must raise a security exception
exception when the constructor is called.

The peer attribute must be set to the empty string.

The object must then be returned, unless, for some reason, permission to broadcast on the local
network is to be denied. In the latter case, a security exception must be raised instead. User agents
may deny such permission for any reason, for example a user preference.

If the object is returned (i.e. if no exception is raised), the user agent must the begin broadcasting
and listening on the local network, in the background, as described below. The user agent may
define "the local network" in any way it considers appropriate and safe; for instance the user agent
may ask the user which network (e.g. Bluetooth, IrDA, Ethernet, etc) the user would like to broadcast
on before beginning broadcasting.

UAs may broadcast and listen on multiple networks at once. For example, the UA could broadcast
on both Bluetooth and Wifi at the same time.

As soon as the object is returned, the connection has been established, which implies that the open

event must be fired. Broadcast connections are never closed.

6.3.5.1. Broadcasting over TCP/IP

Should we drop this altogether? Letting people fill the local network with garbage seems unwise.

We need to register a UDP port for this. For now this spec refers to port 18080/udp.

Note: Since this feature requires that the user agent listen to a particular port, some
platforms might prevent more than one user agent per IP address from using this
feature at any one time.

On TCP/IP networks, broadcast connections transmit data using UDP over port 18080.

When the send(data) method is invoked on a Connection object that was created by the

LocalBroadcastConnection() constructor, the user agent must follow these steps:

1. Create a string consisting of the value of the network attribute of the Connection object, a

U+0020 SPACE character, a U+0002 START OF TEXT character, and the data argument.

2. Encode the string as UTF-8.

3. If the resulting byte stream is longer than 65487 bytes, raise an INDEX_SIZE_ERR DOM

exception and stop.

4. Create a UDP packet whose data is the byte stream, with the source and destination ports
being 18080, and with appropriate length and checksum fields. Transmit this packet to IPv4

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

367 of 458 30/12/2020, 08:08

address 255.255.255.255 or IPv6 address ff02::1, as appropriate. IPv6 applications
will also have to enable reception from this address.

When a broadcast connection is opened on a TCP/IP network, the user agent should listen for UDP
packets on port 18080.

When the user agent receives a packet on port 18080, the user agent must attempt to decode that
packet's data as UTF-8. If the data is not fully correct UTF-8 (i.e. if there are decoding errors) then
the packet must be ignored. Otherwise, the user agent must check to see if the decoded string
contains a U+0020 SPACE character. If it does not, then the packet must again be ignored (it might
be a peer discovery packet from a PeerToPeerConnection() constructor). If it does then the

user agent must split the string at the first space character. All the characters before the space are
then known as d, and all the characters after the space are known as s. If s is not at least one
character long, or if the first character of s is not a U+0002 START OF TEXT character, then the
packet must be ignored. (This allows for future extension of this protocol.)

Otherwise, for each Connection object that was created by the LocalBroadcastConnection()

constructor and whose network attribute exactly matches d, a read event must be fired on the

Connection object. The string s, with the first character removed, must be used as the data, and

the source IP address of the packet as the source.

Making the source IP available means that if two or more machines in a private network can be
made to go to a hostile page simultaneously, the hostile page can determine the IP addresses
used locally (i.e. on the other side of any NAT router). Is there some way we can keep link-local
IP addresses secret while still allowing for applications to distinguish between multiple
participants?

6.3.5.2. Broadcasting over Bluetooth

Does anyone know enough about Bluetooth to write this section?

6.3.5.3. Broadcasting over IrDA

Does anyone know enough about IrDA to write this section?

6.3.6. Peer-to-peer connections

The PeerToPeerConnection() constructor on the Window interface returns a new object

implementing the Connection interface, set up for a direct connection to a user-specified host.

When this constructor is invoked, a new Connection object must be created.

The network attribute of the object must be set to the string representing the script's domain in

IDNA format. If this string cannot be obtained, then the user agent must raise a security exception
exception when the constructor is called.

The peer attribute must be set to the empty string.

The object must then be returned, unless, for some reason, permission to establish peer-to-peer
connections is generally disallowed, for example due to administrator settings. In the latter case, a
security exception must be raised instead.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

368 of 458 30/12/2020, 08:08

The user agent must then, typically while the script resumes execution, find a remote host to
establish a connection to. To do this it must start broadcasting and listening for peer discovery
messages and listening for incoming connection requests on all the supported networks. How this is
performed depends on the type of network and is described below.

The UA should inform the user of the clients that are detected, and allow the user to select one to
connect to. UAs may also allow users to explicit specify hosts that were not detected, e.g. by having
the user enter an IP address.

If an incoming connection is detected before the user specifies a target host, the user agent should
ask the user to confirm that this is the host they wish to connect to. If it is, the connection should be
accepted and the UA will act as the server in this connection. (Which UA acts as the server and
which acts as the client is not discernible at the DOM API level.)

If no incoming connection is detected and if the user specifies a particular target host, a connection
should be established to that host, with the UA acting as the client in the connection.

No more than one connection must be established per Connection object, so once a connection

has been established, the user agent must stop listening for further connections (unless, or until
such time as, another Connection object is being created).

If at any point the user cancels the connection process or the remote host refuses the connection,
then the user agent must act as if it had closed the connection, and stop trying to connect.

6.3.6.1. Peer-to-peer connections over TCP/IP

Should we replace this section with something that uses Rendez-vous/zeroconf or equivalent?

We need to register ports for this. For now this spec refers to port 18080/udp and 18080/tcp.

Note: Since this feature requires that the user agent listen to a particular port, some
platforms might prevent more than one user agent per IP address from using this
feature at any one time.

When using TCP/IP, broadcasting peer discovery messages must be done by creating UDP packets
every few seconds containing as their data the value of the connection's network attribute,

encoded as UTF-8, with the source and destination ports being set to 18080 and appropriate length
and checksum fields, and sending these packets to address (in IPv4) 255.255.255.255 or (in IPv6)
ff02::1, as appropriate.

Listening for peer discovery messages must be done by examining incoming UDP packets on port
18080. IPv6 applications will also have to enable reception from the ff02::1 address. If
their payload is exactly byte-for-byte equal to a UTF-8 encoded version of the value of the
connection's network attribute, then the source address of that packet represents the address of a

host that is ready to accept a peer-to-peer connection, and it should therefore be offered to the user.

Incoming connection requests must be listened for on TCP port 18080. If an incoming connection is
received, the UA must act as a server, as described in the section entitled servers accepting
connections over TCP.

If no incoming connection requests are accepted and the user instead specifies a target host to
connect to, the UA acts as a client: the user agent must attempt to connect to the user-specified host
on port 18080, as described in the section entitled clients connecting over TCP.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

369 of 458 30/12/2020, 08:08

Once the connection is established, the UA must act as described in the section entitled sending
and receiving data over TCP.

Note: This specification does not include a way to establish secure (encrypted) peer-

to-peer connections at this time. If you can see a good way to do this, let me

know.

6.3.6.2. Peer-to-peer connections over Bluetooth

Does anyone know enough about Bluetooth to write this section?

6.3.6.3. Peer-to-peer connections over IrDA

Does anyone know enough about IrDA to write this section?

6.3.7. The common protocol for TCP-based connections

The same protocol is used for TCPConnection and PeerToPeerConnection connection types.

This section describes how such connections are established from the client and server sides, and
then describes how data is sent and received over such connections (which is the same for both
clients and servers).

6.3.7.1. Clients connecting over TCP

This section defines the client-side requirements of the protocol used by the TCPConnection and

PeerToPeerConnection connection types.

If a TCP connection to the specified target host and port cannot be established, for example
because the target host is a domain name that cannot be resolved to an IP address, or because
packets cannot be routed to the host, the user agent should retry creating the connection. If the user
agent gives up trying to connect, the user agent must act as if it had closed the connection.

Note: No information regarding the state of the connection is passed to the
application while the connection is being established in this version of this
specification.

Once a TCP/IP connection to the remote host is established, the user agent must transmit the
following sequence of bytes, represented here in hexadecimal form:

0x48 0x65 0x6C 0x6C 0x6F 0x0A

Note: This represents the string "Hello" followed by a newline, encoded in UTF-8.

The user agent must then read all the bytes sent from the remote host, up to the first 0x0A byte
(inclusive). That string of bytes is then compared byte-for-byte to the following string of bytes:

0x57 0x65 0x6C 0x63 0x6F 0x6E 0x65 0x0A

Note: This says "Welcome".

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

370 of 458 30/12/2020, 08:08

If the server sent back a string in any way different to this, then the user agent must close the
connection and give up trying to connect.

Otherwise, the user agent must then take the string representing the script's domain in IDNA format,
encode it as UTF-8, and send that to the remote host, followed by a 0x0A byte (a U+000A LINE
FEED in UTF-8).

The user agent must then read all the bytes sent from the remote host, up to the first 0x0A byte
(inclusive). That string of bytes must then be compared byte-for-byte to the string that was just sent
to the server (the one with the IDNA domain name and ending with a newline character). If the
server sent back a string in any way different to this, then the user agent must close the connection
and give up trying to connect.

Otherwise, the connection has been established (and events and so forth get fired, as described
above).

If at any point during this process the connection is closed prematurely, then the user agent must
close the connection and give up trying to connect.

6.3.7.2. Servers accepting connections over TCP

This section defines the server side of the protocol described in the previous section. For authors, it
should be used as a guide for how to implement servers that can communicate with Web pages over
TCP. For UAs these are the requirements for the server part of PeerToPeerConnections.

Once a TCP/IP connection from a remote host is established, the user agent must transmit the
following sequence of bytes, represented here in hexadecimal form:

0x57 0x65 0x6C 0x63 0x6F 0x6E 0x65 0x0A

Note: This says "Welcome" and a newline in UTF-8.

The user agent must then read all the bytes sent from the remote host, up to the first 0x0A byte
(inclusive). That string of bytes is then compared byte-for-byte to the following string of bytes:

0x48 0x65 0x6C 0x6C 0x6F 0x0A

Note: "Hello" and a newline.

If the remote host sent back a string in any way different to this, then the user agent must close the
connection and give up trying to connect.

Otherwise, the user agent must then take the string representing the script's domain in IDNA format,
encode it as UTF-8, and send that to the remote host, followed by a 0x0A byte (a U+000A LINE
FEED in UTF-8).

The user agent must then read all the bytes sent from the remote host, up to the first 0x0A byte
(inclusive). That string of bytes must then be compared byte-for-byte to the string that was just sent
to that host (the one with the IDNA domain name and ending with a newline character). If the remote
host sent back a string in any way different to this, then the user agent must close the connection
and give up trying to connect.

Otherwise, the connection has been established (and events and so forth get fired, as described
above).

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

371 of 458 30/12/2020, 08:08

Note: For author-written servers (as opposed to the server side of a peer-to-peer
connection), the script's domain would be replaced by the hostname of the server.
Alternatively, such servers might instead wait for the client to send its domain string,
and then simply echo it back. This would allow connections from pages on any
domain, instead of just pages originating from the same host. The client compares
the two strings to ensure they are the same before allowing the connection to be
used by author script.

If at any point during this process the connection is closed prematurely, then the user agent must
close the connection and give up trying to connect.

6.3.7.3. Sending and receiving data over TCP

When the send(data) method is invoked on the connection's corresponding Connection object,

the user agent must take the data argument, replace any U+0000 NULL and U+0017 END OF
TRANSMISSION BLOCK characters in it with U+FFFD REPLACEMENT CHARACTER characters,
then transmit a U+0002 START OF TEXT character, this new data string and a single U+0017 END
OF TRANSMISSION BLOCK character (in that order) to the remote host, all encoded as UTF-8.

When the user agent receives bytes on the connection, the user agent must buffer received bytes
until it receives a 0x17 byte (a U+0017 END OF TRANSMISSION BLOCK character). If the first
buffered byte is not a 0x02 byte (a U+0002 START OF TEXT character encoded as UTF-8) then all
the data up to the 0x17 byte, inclusive, must be dropped. (This allows for future extension of this
protocol.) Otherwise, all the data from (but not including) the 0x02 byte and up to (but not including)
the 0x17 byte must be taken, interpreted as a UTF-8 string, and a read event must be fired on the

Connection object with that string as the data. If that string cannot be decoded as UTF-8 without

errors, the packet should be ignored.

Note: This protocol does not yet allow binary data (e.g. an image or media data) to be
efficiently transmitted. A future version of this protocol might allow this by using the
prefix character U+001F INFORMATION SEPARATOR ONE, followed by binary data
which uses a particular byte (e.g. 0xFF) to encode byte 0x17 somehow (since
otherwise 0x17 would be treated as transmission end by down-level UAs).

6.3.8. Security

Need to write this section.

If you have an unencrypted page that is (through a man-in-the-middle attack) changed, it can
access a secure service that is using IP authentication and then send that data back to the
attacker. Ergo we should probably stop unencrypted pages from accessing encrypted services,
on the principle that the actual level of security is zero. Then again, if we do that, we prevent
insecure sites from using SSL as a tunneling mechanism.

Should consider dropping the subdomain-only restriction. It doesn't seem to add anything, and
prevents cross-domain chatter.

6.3.9. Relationship to other standards

Should have a section talking about the fact that we blithely ignoring IANA's port assignments

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

372 of 458 30/12/2020, 08:08

here.

Should explain why we are not reusing HTTP for this. (HTTP is too heavy-weight for such a
simple need; requiring authors to implement an HTTP server just to have a party line is too much
of a barrier to entry; cannot rely on prebuilt components; having a simple protocol makes it much
easier to do RAD; HTTP doesn't fit the needs and doesn't have the security model needed; etc)

6.4. Cross-document messaging

Web browsers, for security and privacy reasons, prevent documents in different domains from
affecting each other; that is, cross-site scripting is disallowed.

While this is an important security feature, it prevents pages from different domains from
communicating even when those pages are not hostile. This section introduces a messaging system
that allows documents to communicate with each other regardless of their source domain, in a way
designed to not enable cross-site scripting attacks.

6.4.1. Processing model

When a script invokes the postMessage(message) method on a Window object, the user agent

must create an event that uses the MessageEvent interface, with the event name message, which

bubbles, is cancelable, and has no default action. The data attribute must be set to the value

passed as the message argument to the postMessage() method, the domain attribute must be

set to the domain of the document that the script that invoked the methods is associated with, the
uri attribute must be set to the URI of that document, and the source attribute must be set to the

Window object of the default view of the browsing context with which that document is associated.

The event must then be dispatched at the Document object that is the active document of the

Window object on which the method was invoked.

The postMessage() method must only return once the event dispatch has been completely

processed by the target document (i.e. all three of the capture, target, and bubble phases have been
done, and event listeners have been executed as appropriate).

⚠Warning! Authors should check the domain attribute to ensure that messages are only

accepted from domains that they expect to receive messages from. Otherwise, bugs in the
author's message handling code could be exploited by hostile sites.

For example, if document A contains an object element that contains document B, and script

in document A calls postMessage() on document B, then a message event will be fired on

that element, marked as originating from document A. The script in document A might look like:

var o = document.getElementsByTagName('object')[0];
o.contentWindow.postMessage('Hello world');

To register an event handler for incoming events, the script would use addEventListener()

(or similar mechanisms). For example, the script in document B might look like:

document.addEventListener('message', receiver, false);
function receiver(e) {
 if (e.domain == 'example.com') {
 if (e.data == 'Hello world') {

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

373 of 458 30/12/2020, 08:08

 e.source.postMessage('Hello');
 } else {
 alert(e.data);
 }
 }
}

This script first checks the domain is the expected domain, and then looks at the message,
which it either displays to the user, or responds to by sending a message back to the document
which sent the message in the first place.

⚠Warning! The integrity of this API is based on the inability for scripts of one origin to post
arbitrary events (using dispatchEvent() or otherwise) to objects in other origins.

Note: Implementors are urged to take extra care in the implementation of this
feature. It allows authors to transmit information from one domain to another
domain, which is normally disallowed for security reasons. It also requires that UAs
be careful to allow access to certain properties but not others.

7. Repetition templates

See WF2 for now

8. The HTML syntax

8.1. Writing HTML documents

This section only applies to documents, authoring tools, and markup generators. In particular, it does
not apply to conformance checkers; conformance checkers must use the requirements given in the
next section ("parsing HTML documents").

Documents must consist of the following parts, in the given order:

1. Optionally, a single U+FEFF BYTE ORDER MARK (BOM) character.

2. Any number of comments and space characters.

3. A DOCTYPE.

4. Any number of comments and space characters.

5. The root element, in the form of an html element.

6. Any number of comments and space characters.

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarations are to be serialised,
as discussed in the section on that topic.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

374 of 458 30/12/2020, 08:08

The U+0000 NULL character must not appear anywhere in a document.

Note: Space characters before the root html element will be dropped when the

document is parsed; space characters after the root html element will be parsed as

if they were at the end of the html element. Thus, space characters around the root

element do not round-trip. It is suggested that newlines be inserted after the
DOCTYPE and any comments that aren't in the root element.

8.1.1. The DOCTYPE

A DOCTYPE is a mostly useless, but required, header.

Note: DOCTYPEs are required for legacy reasons. When omitted, browsers tend to
use a different rendering mode that is incompatible with some specifications.
Including the DOCTYPE in a document ensures that the browser makes a best-effort
attempt at following the relevant specifications.

A DOCTYPE must consist of the following characters, in this order:

1. A U+003C LESS-THAN SIGN (<) character.
2. A U+0021 EXCLAMATION MARK (!) character.
3. A U+0044 LATIN CAPITAL LETTER D or U+0064 LATIN SMALL LETTER D character.
4. A U+004F LATIN CAPITAL LETTER O or U+006F LATIN SMALL LETTER O character.
5. A U+0043 LATIN CAPITAL LETTER C or U+0063 LATIN SMALL LETTER C character.
6. A U+0054 LATIN CAPITAL LETTER T or U+0074 LATIN SMALL LETTER T character.
7. A U+0059 LATIN CAPITAL LETTER Y or U+0079 LATIN SMALL LETTER Y character.
8. A U+0050 LATIN CAPITAL LETTER P or U+0070 LATIN SMALL LETTER P character.
9. A U+0045 LATIN CAPITAL LETTER E or U+0065 LATIN SMALL LETTER E character.

10. One or more space characters.
11. A U+0048 LATIN CAPITAL LETTER H or U+0068 LATIN SMALL LETTER H character.
12. A U+0054 LATIN CAPITAL LETTER T or U+0074 LATIN SMALL LETTER T character.
13. A U+004D LATIN CAPITAL LETTER M or U+006D LATIN SMALL LETTER M character.
14. A U+004C LATIN CAPITAL LETTER L or U+006C LATIN SMALL LETTER L character.
15. Zero or more space characters.
16. A U+003E GREATER-THAN SIGN (>) character.

Note: In other words, <!DOCTYPE HTML>, case-insensitively.

8.1.2. Elements

There are four different kinds of elements: void elements, CDATA elements, RCDATA elements, and
normal elements.

Void elements

base, link, meta, hr, br, img, embed, param, area, col, input

CDATA elements

style, script

RCDATA elements

title, textarea

Normal elements

All other allowed HTML elements are normal elements.

Tags are used to delimit the start and end of elements in the markup. CDATA, RCDATA, and normal

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

375 of 458 30/12/2020, 08:08

elements have a start tag to indicate where they begin, and an end tag to indicate where they end.
The start and end tags of certain normal elements can be omitted, as described later. Those that
cannot be omitted must not be omitted. Void elements only have a start tag; end tags must not be
specified for void elements.

The contents of the element must be placed between just after the start tag (which might be implied,
in certain cases) and just before the end tag (which again, might be implied in certain cases). The
exact allowed contents of each individual element depends on the content model of that element, as
described earlier in this specification. Elements must not contain content that their content model
disallows. In addition to the restrictions placed on the contents by those content models, however,
the four types of elements have additional syntactic requirements.

Void elements can't have any contents (since there's no end tag, no content can be put between the
start tag and the end tag.)

CDATA elements can have text, though it has restrictions described below.

RCDATA elements can have text and character entity references, but the text must not contain an
ambiguous ampersand. There are also further restrictions described below.

Normal elements can have text, character entity references, other elements, and comments, but the
text must not contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersand.

Some normal elements also have yet more restrictions on what content they are allowed to hold,
beyond the restrictions imposed by the content model and those described in this paragraph. Those
restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names that only use
characters in the range U+0061 LATIN SMALL LETTER A .. U+007A LATIN SMALL LETTER Z, or,
in uppercase, U+0041 LATIN CAPITAL LETTER A .. U+005A LATIN CAPITAL LETTER Z, and
U+002D HYPHEN-MINUS (-). In the HTML syntax, tag names may be written with any mix of lower-

and uppercase letters that, when converted to all-lowercase, matches the element's tag name; tag
names are case-insensitive.

8.1.2.1. Start tags

Start tags must have the following format:

1. The first character of a start tag must be a U+003C LESS-THAN SIGN (<).

2. The next few characters of a start tag must be the element's tag name.

3. If there are to be any attributes in the next step, there must first be one or more space
characters.

4. Then, the start tag may have a number of attributes, the syntax for which is described below.
Attributes may be separated from each other by one or more space characters.

5. After the attributes, there may be one or more space characters. (Some attributes are
required to be followed by a space. See the attributes section below.)

6. Then, if the element is one of the void elements, then there may be a single U+002F
SOLIDUS (/) character. This character has no effect except to appease the markup gods. As

this character is therefore just a symbol of faith, atheists should omit it.

7. Finally, start tags must be closed by a U+003E GREATER-THAN SIGN (>) character.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

376 of 458 30/12/2020, 08:08

8.1.2.2. End tags

End tags must have the following format:

1. The first character of an end tag must be a U+003C LESS-THAN SIGN (<).

2. The second character of an end tag must be a U+002F SOLIDUS (/).

3. The next few characters of an end tag must be the element's tag name.

4. After the tag name, there may be one or more space characters.

5. Finally, end tags must be closed by a U+003E GREATER-THAN SIGN (>) character.

8.1.2.3. Attributes

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names must consist of one character other than the
space characters, U+003E GREATER-THAN SIGN (>), and U+002F SOLIDUS (/), followed by zero
or more characters other than the space characters, U+003E GREATER-THAN SIGN (>), U+002F
SOLIDUS (/), and U+003D EQUALS SIGN (=). In the HTML syntax, attribute names may be written
with any mix of lower- and uppercase letters that, when converted to all-lowercase, matches the
attribute's name; attribute names are case-insensitive.

Attribute values are a mixture of text and character entity references, except with the additional
restriction that the text cannot contain an ambiguous ampersand.

Attributes can be specified in four different ways:

Empty attribute syntax

Just the attribute name.

In the following example, the disabled attribute is given with the empty attribute

syntax:

<input disabled>

If an attribute using the empty attribute syntax is to be followed by another attribute, then
there must be a space character separating the two.

Unquoted attribute value syntax

The attribute name, followed by zero or more space characters, followed by a single U+003D
EQUALS SIGN character, followed by zero or more space characters, followed by the
attribute value, which, in addition to the requirements given above for attribute values, must
not contain any literal space characters or U+003E GREATER-THAN SIGN (>) characters,

and must not, furthermore, start with either a literal U+0022 QUOTATION MARK (") character

or a literal U+0027 APOSTROPHE (') character.

In the following example, the value attribute is given with the unquoted attribute value

syntax:

<input value=yes>

If an attribute using the unquoted attribute syntax is to be followed by another attribute or by
one of the optional U+002F SOLIDUS (/) characters allowed in step 6 of the start tag syntax

above, then there must be a space character separating the two.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

377 of 458 30/12/2020, 08:08

Single-quoted attribute value syntax

The attribute name, followed by zero or more space characters, followed by a single U+003D
EQUALS SIGN character, followed by zero or more space characters, followed by a single
U+0027 APOSTROPHE (') character, followed by the attribute value, which, in addition to the

requirements given above for attribute values, must not contain any literal U+0027
APOSTROPHE (') characters, and finally followed by a second single U+0027

APOSTROPHE (') character.

In the following example, the type attribute is given with the single-quoted attribute

value syntax:

<input type='checkbox'>

Double-quoted attribute value syntax

The attribute name, followed by zero or more space characters, followed by a single U+003D
EQUALS SIGN character, followed by zero or more space characters, followed by a single
U+0022 QUOTATION MARK (") character, followed by the attribute value, which, in addition

to the requirements given above for attribute values, must not contain any literal U+0022
QUOTATION MARK (") characters, and finally followed by a second single U+0022

QUOTATION MARK (") character.

In the following example, the name attribute is given with the double-quoted attribute

value syntax:

<input name="be evil">

8.1.2.4. Optional tags

Certain tags can be omitted.

An html element's start tag may be omitted if the first thing inside the html element is not a space

character or a comment.

An html element's end tag may be omitted if the html element is not immediately followed by a

space character or a comment.

A head element's start tag may be omitted if the first thing inside the head element is an element.

A head element's end tag may be omitted if the head element is not immediately followed by a

space character or a comment.

A body element's start tag may be omitted if the first thing inside the body element is not a space

character or a comment, except if the first thing inside the body element is a script or style

element.

A body element's end tag may be omitted if the body element is not immediately followed by a

space character or a comment.

A li element's end tag may be omitted if the li element is immediately followed by another li

element or if there is no more content in the parent element.

A dt element's end tag may be omitted if the dt element is immediately followed by another dt

element or a dd element.

A dd element's end tag may be omitted if the dd element is immediately followed by another dd

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

378 of 458 30/12/2020, 08:08

element or a dt element, or if there is no more content in the parent element.

A p element's end tag may be omitted if the p element is immediately followed by an address,

blockquote, dl, fieldset, form, h1, h2, h3, h4, h5, h6, hr, menu, ol, p, pre, table, or ul

element, or if there is no more content in the parent element.

An optgroup element's end tag may be omitted if the optgroup element is immediately followed

by another optgroup element, or if there is no more content in the parent element.

An option element's end tag may be omitted if the option element is immediately followed by

another option element, or if there is no more content in the parent element.

A colgroup element's start tag may be omitted if the first thing inside the colgroup element is a

col element, and if the element is not immediately preceded by another colgroup element whose

end tag has been omitted.

A colgroup element's end tag may be omitted if the colgroup element is not immediately

followed by a space character or a comment.

A thead element's end tag may be omitted if the thead element is immediately followed by a

tbody or tfoot element.

A tbody element's start tag may be omitted if the first thing inside the tbody element is a tr

element, and if the element is not immediately preceded by a tbody, thead, or tfoot element

whose end tag has been omitted.

A tbody element's end tag may be omitted if the tbody element is immediately followed by a

tbody or tfoot element, or if there is no more content in the parent element.

A tfoot element's end tag may be omitted if the tfoot element is immediately followed by a

tbody element, or if there is no more content in the parent element.

A tr element's end tag may be omitted if the tr element is immediately followed by another tr

element, or if there is no more content in the parent element.

A td element's end tag may be omitted if the td element is immediately followed by a td or th

element, or if there is no more content in the parent element.

A th element's end tag may be omitted if the th element is immediately followed by a td or th

element, or if there is no more content in the parent element.

However, a start tag must never be omitted if it has any attributes.

8.1.2.5. Restrictions on content models

For historical reasons, certain elements have extra restrictions beyond even the restrictions given by
their content model.

A p element must not contain blockquote, dl, menu, ol, pre, table, or ul elements, even

though these elements are technically allowed inside p elements according to the content models

described in this specification. (In fact, if one of those elements is put inside a p element in the

markup, it will instead imply a p element end tag before it.)

An optgroup element must not contain optgroup elements, even though these elements are

technically allowed to be nested according to the content models described in this specification. (If
an optgroup element is put inside another in the markup, it will in fact imply an optgroup end tag

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

379 of 458 30/12/2020, 08:08

before it.)

A table element must not contain tr elements, even though these elements are technically

allowed inside table elements according to the content models described in this specification. (If a

tr element is put inside a table in the markup, it will in fact imply a tbody start tag before it.)

A single U+000A LINE FEED (LF) character may be placed immediately after the start tag of pre

and textarea elements. This does not affect the processing of the element. The otherwise optional

U+000A LINE FEED (LF) character must be included if the element's contents start with that
character (because otherwise the leading newline in the contents would be treated like the optional
newline, and ignored).

The following two pre blocks are equivalent:

<pre>Hello</pre>

<pre>
Hello</pre>

8.1.2.6. Restrictions on the contents of CDATA and RCDATA elements

The text in CDATA and RCDATA elements must not contain any occurences of the string "</"

(U+003C LESS-THAN SIGN, U+002F SOLIDUS) followed by characters that case-insensitively
match the tag name of the element followed by one of U+0009 CHARACTER TABULATION,
U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), U+0020
SPACE, U+003E GREATER-THAN SIGN (>), or U+002F SOLIDUS (/), unless that string is part of
an escaping text span.

An escaping text span is a span of text (in CDATA and RCDATA elements) and character entity
references (in RCDATA elements) that starts with an escaping text span start that is not itself in an
escaping text span, and ends at the next escaping text span end.

An escaping text span start is a part of text that consists of the four character sequence "<!--"

(U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D
HYPHEN-MINUS).

An escaping text span end is a part of text that consists of the three character sequence "-->"

(U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN) whose
U+003E GREATER-THAN SIGN (>).

An escaping text span start may share its U+002D HYPHEN-MINUS characters with its
corresponding escaping text span end.

The text in CDATA and RCDATA elements must not have an escaping text span start that is not
followed by an escaping text span end.

8.1.3. Text

Text is allowed inside elements, attributes, and comments. Text must consist of valid Unicode
characters other than U+0000. Text should not contain control characters other than space
characters. Extra constraints are placed on what is and what is not allowed in text based on where
the text is to be put, as described in the other sections.

8.1.3.1. Newlines

Newlines in HTML may be represented either as U+000D CARRIAGE RETURN (CR) characters,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

380 of 458 30/12/2020, 08:08

U+000A LINE FEED (LF) characters, or pairs of U+000D CARRIAGE RETURN (CR), U+000A LINE
FEED (LF) characters in that order.

8.1.4. Character entity references

In certain cases described in other sections, text may be mixed with character entity references.
These can be used to escape characters that couldn't otherwise legally be included in text.

Character entity references must start with a U+0026 AMPERSAND (&). Following this, there are

three possible kinds of character entity references:

Named entities

The ampersand must be followed by one of the names given in the entities section, using the
same case. The name must be one that is terminated by a U+003B SEMICOLON (;)

character.

Decimal numeric entities

The ampersand must be followed by a U+0023 NUMBER SIGN (#) character, followed by

one or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE, representing a
base-ten integer that itself is a valid Unicode code point that is not U+0000, U+000D, in the
range U+0080 .. U+009F, or in the range 0xD800 .. 0xDFFF (surrogates). The digits must
then be followed by a U+003B SEMICOLON character (;).

Hexadecimal numeric entities

The ampersand must be followed by a U+0023 NUMBER SIGN (#) character, which must be

followed by either a U+0078 LATIN SMALL LETTER X or a U+0058 LATIN CAPITAL LETTER
X character, which must then be followed by one or more digits in the range U+0030 DIGIT
ZERO .. U+0039 DIGIT NINE, U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL
LETTER F, and U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F,
representing a base-sixteen integer that itself is a valid Unicode code point that is not
U+0000, U+000D, in the range U+0080 .. U+009F, or in the range 0xD800 .. 0xDFFF
(surrogates). The digits must then be followed by a U+003B SEMICOLON character (;).

An ambiguous ampersand is a U+0026 AMPERSAND (&) character that is not the last character in

the file, that is not followed by a space character, that is not followed by a start tag that has not been
omitted, and that is not followed by another U+0026 AMPERSAND (&) character.

8.1.5. Comments

Comments must start with the four character sequence U+003C LESS-THAN SIGN, U+0021
EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS (<!--). Following

this sequence, the comment may have text, with the additional restriction that the text must not
contain two consecutive U+002D HYPHEN-MINUS (-) characters, nor end with a U+002D

HYPHEN-MINUS (-) character. Finally, the comment must be ended by the three character

sequence U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN
(-->).

8.2. Parsing HTML documents

This section only applies to user agents, data mining tools, and conformance checkers.

The rules for parsing XML documents (and thus XHTML documents) into DOM trees are covered by
the XML and Namespaces in XML specifications, and are out of scope of this specification. [XML]

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

381 of 458 30/12/2020, 08:08

[XMLNS]

For HTML documents, user agents must use the parsing rules described in this section to generate
the DOM trees. Together, these rules define what is referred to as the HTML parser.

While the HTML form of HTML5 bears a close resemblance to SGML and XML, it is a
separate language with its own parsing rules.

Some earlier versions of HTML (in particular from HTML2 to HTML4) were based on
SGML and used SGML parsing rules. However, few (if any) web browsers ever
implemented true SGML parsing for HTML documents; the only user agents to
strictly handle HTML as an SGML application have historically been validators. The
resulting confusion — with validators claiming documents to have one
representation while widely deployed Web browsers interoperably implemented a
different representation — has wasted decades of productivity. This version of HTML
thus returns to a non-SGML basis.

Authors interested in using SGML tools in their authoring pipeline are encouraged to
use XML tools and the XML serialisation of HTML5.

This specification defines the parsing rules for HTML documents, whether they are syntactically valid
or not. Certain points in the parsing algorithm are said to be parse errors. The error handling for
parse errors is well-defined: user agents must either act as described below when encountering
such problems, or must abort processing at the first error that they encounter for which they do not
wish to apply the rules described below.

Conformance checkers must report at least one parse error condition to the user if one or more
parse error conditions exist in the document and must not report parse error conditions if none exist
in the document. Conformance checkers may report more than one parse error condition if more
than one parse error conditions exist in the document. Conformance checkers are not required to
recover from parse errors.

Note: Parse errors are only errors with the syntax of HTML. In addition to checking
for parse errors, conformance checkers will also verify that the document obeys all
the other conformance requirements described in this specification.

8.2.1. Overview of the parsing model

The input to the HTML parsing process consists of a stream of Unicode characters, which is passed
through a tokenisation stage (lexical analysis) followed by a tree construction stage (semantic
analysis). The output is a Document object.

Note: Implementations that do not support scripting do not have to actually create a
DOM Document object, but the DOM tree in such cases is still used as the model for

the rest of the specification.

In the common case, the data handled by the tokenisation stage comes from the network, but it can
also come from script, e.g. using the document.write() API.

There is only one set of state for the tokeniser stage and the tree construction stage, but the tree
construction stage is reentrant, meaning that while the tree construction stage is handling one token,
the tokeniser might be resumed, causing further tokens to be emitted and processed before the first

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

382 of 458 30/12/2020, 08:08

token's processing is complete.

In the following example, the tree construction stage will be called upon to handle a "p" start tag
token while handling the "script" start tag token:

...
<script>
 document.write('<p>');
</script>
...

8.2.2. The input stream

The stream of Unicode characters that consists the input to the tokenisation stage will be initially
seen by the user agent as a stream of bytes (typically coming over the network or from the local file
system). The bytes encode the actual characters according to a particular character encoding, which
the user agent must use to decode the bytes into characters.

Note: For XML documents, the algorithm user agents must use to determine the
character encoding is given by the XML specification. This section does not apply to
XML documents. [XML]

8.2.2.1. Determining the character encoding

In some cases, it might be impractical to unambiguously determine the encoding before parsing the
document. Because of this, this specification provides for a two-pass mechanism with an optional
pre-scan. Implementations are allowed, as described below, to apply a simplified parsing algorithm
to whatever bytes they have available before beginning to parse the document. Then, the real parser
is started, using a tentative encoding derived from this pre-parse and other out-of-band metadata. If,
while the document is being loaded, the user agent discovers an encoding declaration that conflicts
with this information, then the parser can get reinvoked to perform a parse of the document with the
real encoding.

User agents must use the following algorithm (the encoding sniffing algorithm) to determine the
character encoding to use when decoding a document in the first pass. This algorithm takes as input
any out-of-band metadata available to the user agent (e.g. the Content-Type metadata of the
document) and all the bytes available so far, and returns an encoding and a confidence. The
confidence is either tentative or certain. The encoding used, and whether the confidence in that
encoding is tentative or confident, is used during the parsing to determine whether to change the
encoding.

1. If the transport layer specifies an encoding, return that encoding with the confidence certain,
and abort these steps.

2. The user agent may wait for more bytes of the resource to be available, either in this step or
at any later step in this algorithm. For instance, a user agent might wait 500ms or 512 bytes,
whichever came first. In general preparsing the source to find the encoding improves
performance, as it reduces the need to throw away the data structures used when parsing
upon finding the encoding information. However, if the user agent delays too long to obtain
data to determine the encoding, then the cost of the delay could outweigh any performance
improvements from the preparse.

3. For each of the rows in the following table, starting with the first one and going down, if there
are as many or more bytes available than the number of bytes in the first column, and the first
bytes of the file match the bytes given in the first column, then return the encoding given in

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

383 of 458 30/12/2020, 08:08

the cell in the second column of that row, with the confidence certain, and abort these steps:

Bytes in Hexadecimal Description

FE FF UTF-16BE BOM

FF FE UTF-16LE BOM

EF BB BF UTF-8 BOM

4. Otherwise, the user agent will have to search for explicit character encoding information in the
file itself. This should proceed as follows:

Let position be a pointer to a byte in the input stream, initially pointing at the first byte. If at
any point during these substeps the user agent either runs out of bytes or decides that
scanning further bytes would not be efficient, then skip to the next step of the overall
character encoding detection algorithm. User agents may decide that scanning any bytes is
not efficient, in which case these substeps are entirely skipped.

Now, repeat the following "two" steps until the algorithm aborts (either because user agent
aborts, as described above, or because a character encoding is found):

1. If position points to:

↪ A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (ASCII '<!--')

Advance the position pointer so that it points at the first 0x3E byte which is
preceded by two 0x2D bytes (i.e. at the end of an ASCII '-->' sequence) and
comes after the 0x3C byte that was found. (The two 0x2D bytes can be the
same as the those in the '<!--' sequence.)

↪ A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65, 0x54 or
0x74, 0x41 or 0x61, and finally one of 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x20
(case-insensitive ASCII '<meta' followed by a space)

1. Advance the position pointer so that it points at the next 0x09, 0x0A,
0x0B, 0x0C, 0x0D, or 0x20 byte (the one in sequence of characters
matched above).

2. Get an attribute and its value. If no attribute was sniffed, then skip
this inner set of steps, and jump to the second step in the overall
"two step" algorithm.

3. Examine the attribute's name:

↪ If it is 'charset'
If the attribute's value is a supported character encoding,
then return the given encoding, with confidence tentative,
and abort all these steps. Otherwise, do nothing with this
attribute, and continue looking for other attributes.

↪ If it is 'content'
The attribute's value is now parsed.

1. Apply the algorithm for extracting an encoding
from a Content-Type, giving the attribute's value
as the string to parse.

2. If an encoding was returned, and it is the name of

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

384 of 458 30/12/2020, 08:08

a supported character encoding, then return that
encoding, with the confidence tentative, and abort
all these steps.

3. Otherwise, skip this 'content' attribute and
continue on with any other attributes.

↪ Any other name
Do nothing with that attribute.

4. Return to step 1 in these inner steps.

↪ A sequence of bytes starting with a 0x3C byte (ASCII '<'), optionally a 0x2F
byte (ASCII '/'), and finally a byte in the range 0x41-0x5A or 0x61-0x7A (an
ASCII letter)

1. Advance the position pointer so that it points at the next 0x09 (ASCII
TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C (ASCII FF), 0x0D
(ASCII CR), 0x20 (ASCII space), 0x3E (ASCII '>'), 0x3C (ASCII '<')
byte.

2. If the pointer points to a 0x3C (ASCII '<') byte, then return to the first
step in the overall "two step" algorithm.

3. Repeatedly get an attribute until no further attributes can be found,
then jump to the second step in the overall "two step" algorithm.

↪ A sequence of bytes starting with: 0x3C 0x21 (ASCII '<!')

↪ A sequence of bytes starting with: 0x3C 0x2F (ASCII '</')

↪ A sequence of bytes starting with: 0x3C 0x3F (ASCII '<?')

Advance the position pointer so that it points at the first 0x3E byte (ASCII
'>') that comes after the 0x3C byte that was found.

↪ Any other byte

Do nothing with that byte.

2. Move position so it points at the next byte in the input stream, and return to the first
step of this "two step" algorithm.

When the above "two step" algorithm says to get an attribute, it means doing this:

1. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII VT),
0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x2F (ASCII '/') then
advance position to the next byte and start over.

2. If the byte at position is 0x3C (ASCII '<'), then move position back to the previous byte,
and stop looking for an attribute. There isn't one.

3. If the byte at position is 0x3E (ASCII '>'), then stop looking for an attribute. There isn't
one.

4. Otherwise, the byte at position is the start of the attribute name. Let attribute name and
attribute value be the empty string.

5. Attribute name: Process the byte at position as follows:

↪ If it is 0x3D (ASCII '='), and the attribute name is longer than the empty string

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

385 of 458 30/12/2020, 08:08

Advance position to the next byte and jump to the step below labelled
value.

↪ If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C (ASCII FF),
0x0D (ASCII CR), or 0x20 (ASCII space)

Jump to the step below labelled spaces.

↪ If it is 0x2F (ASCII '/'), 0x3C (ASCII '<'), or 0x3E (ASCII '>')

Stop looking for an attribute. The attribute's name is the value of attribute
name, its value is the empty string.

↪ If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')

Append the Unicode character with codepoint b+0x20 to attribute name
(where b is the value of the byte at position).

↪ Anything else

Append the Unicode character with the same codepoint as the value of the
byte at position) to attribute name. (It doesn't actually matter how bytes
outside the ASCII range are handled here, since only ASCII characters can
contribute to the detection of a character encoding.)

6. Advance position to the next byte and return to the previous step.

7. Spaces. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B
(ASCII VT), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then advance
position to the next byte, then, repeat this step.

8. If the byte at position is not 0x3D (ASCII '='), stop looking for an attribute. Move
position back to the previous byte. The attribute's name is the value of attribute name,
its value is the empty string.

9. Advance position past the 0x3D (ASCII '=') byte.

10. Value. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII
VT), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then advance position
to the next byte, then, repeat this step.

11. Process the byte at position as follows:

↪ If it is 0x22 (ASCII '"') or 0x27 ("'")

1. Let b be the value of the byte at position.

2. Advance position to the next byte.

3. If the value of the byte at position is the value of b, then stop looking
for an attribute. The attribute's name is the value of attribute name,
and its value is the value of attribute value.

4. Otherwise, if the value of the byte at position is in the range 0x41
(ASCII 'A') to 0x5A (ASCII 'Z'), then append a Unicode character to
attribute value whose codepoint is 0x20 more than the value of the
byte at position.

5. Otherwise, append a Unicode character to attribute value whose
codepoint is the same as the value of the byte at position.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

386 of 458 30/12/2020, 08:08

6. Return to the second step in these substeps.

↪ If it is 0x3C (ASCII '<'), or 0x3E (ASCII '>')

Stop looking for an attribute. The attribute's name is the value of attribute
name, its value is the empty string.

↪ If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')

Append the Unicode character with codepoint b+0x20 to attribute value
(where b is the value of the byte at position).

↪ Anything else

Append the Unicode character with the same codepoint as the value of the
byte at position) to attribute value.

12. Process the byte at position as follows:

↪ If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C (ASCII FF),
0x0D (ASCII CR), 0x20 (ASCII space), 0x3C (ASCII '<'), or 0x3E (ASCII '>')

Stop looking for an attribute. The attribute's name is the value of attribute
name and its value is the value of attribute value.

↪ If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')

Append the Unicode character with codepoint b+0x20 to attribute value
(where b is the value of the byte at position).

↪ Anything else

Append the Unicode character with the same codepoint as the value of the
byte at position) to attribute value.

13. Advance position to the next byte and return to the previous step.

For the sake of interoperability, user agents should not use a pre-scan algorithm that returns
different results than the one described above. (But, if you do, please at least let us know, so
that we can improve this algorithm and benefit everyone...)

5. If the user agent has information on the likely encoding for this page, e.g. based on the
encoding of the page when it was last visited, then return that encoding, with the confidence
tentative, and abort these steps.

6. The user agent may attempt to autodetect the character encoding from applying frequency
analysis or other algorithms to the data stream. If autodetection succeeds in determining a
character encoding, then return that encoding, with the confidence tentative, and abort these
steps. [UNIVCHARDET]

7. Otherwise, return an implementation-defined or user-specified default character encoding,
with the confidence tentative. Due to its use in legacy content, windows-1252 is

recommended as a default in predominantly Western demographics. In non-legacy
environments, the more comprehensive UTF-8 encoding is recommended instead. Since

these encodings can in many cases be distinguished by inspection, a user agent may
heuristically decide which to use as a default.

8.2.2.2. Character encoding requirements

User agents must at a minimum support the UTF-8 and Windows-1252 encodings, but may support
more.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

387 of 458 30/12/2020, 08:08

Note: It is not unusual for Web browsers to support dozens if not upwards of a
hundred distinct character encodings.

User agents must support the preferred MIME name of every character encoding they support that
has a preferred MIME name, and should support all the IANA-registered aliases. [IANACHARSET]

When a user agent would otherwise use the ISO-8859-1 encoding, it must instead use the
Windows-1252 encoding.

Note: This requirement is a willful violation of the W3C Character Model
specification. [CHARMOD]

User agents must not support the CESU-8, UTF-7, BOCU-1 and SCSU encodings. [CESU8] [UTF7]
[BOCU1] [SCSU]

Support for UTF-32 is not recommended. This encoding is rarely used, and frequently
misimplemented.

8.2.2.3. Preprocessing the input stream

Given an encoding, the bytes in the input stream must be converted to Unicode characters for the
tokeniser, as described by the rules for that encoding, except that leading U+FEFF BYTE ORDER
MARK characters must not be stripped by the encoding layer.

Bytes or sequences of bytes in the original byte stream that could not be converted to Unicode
characters must be converted to U+FFFD REPLACEMENT CHARACTER code points.

One leading U+FEFF BYTE ORDER MARK character must be ignored if any are present.

All U+0000 NULL characters in the input must be replaced by U+FFFD REPLACEMENT
CHARACTERs. Any occurrences of such characters is a parse error.

U+000D CARRIAGE RETURN (CR) characters, and U+000A LINE FEED (LF) characters, are
treated specially. Any CR characters that are followed by LF characters must be removed, and any
CR characters not followed by LF characters must be converted to LF characters. Thus, newlines in
HTML DOMs are represented by LF characters, and there are never any CR characters in the input
to the tokenisation stage.

The next input character is the first character in the input stream that has not yet been consumed.
Initially, the next input character is the first character in the input.

The insertion point is the position (just before a character or just before the end of the input
stream) where content inserted using document.write() is actually inserted. The insertion point

is relative to the position of the character immediately after it, it is not an absolute offset into the input
stream. Initially, the insertion point is uninitialised.

The "EOF" character in the tables below is a conceptual character representing the end of the input
stream. If the parser is a script-created parser, then the end of the input stream is reached when an
explicit "EOF" character (inserted by the document.close() method) is consumed. Otherwise,

the "EOF" character is not a real character in the stream, but rather the lack of any further
characters.

8.2.2.4. Changing the encoding while parsing

When the parser requires the user agent to change the encoding, it must run the following steps.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

388 of 458 30/12/2020, 08:08

This might happen if the encoding sniffing algorithm described above failed to find an encoding, or if
it found an encoding that was not the actual encoding of the file.

1. If the new encoding is UTF-16, change it to UTF-8.

2. If the new encoding is identical or equivalent to the encoding that is already being used to
interpret the input stream, then set the confidence to confident and abort these steps. This
happens when the encoding information found in the file matches what the encoding sniffing
algorithm determined to be the encoding, and in the second pass through the parser if the
first pass found that the encoding sniffing algorithm described in the earlier section failed to
find the right encoding.

3. If all the bytes up to the last byte converted by the current decoder have the same Unicode
interpretations in both the current encoding and the new encoding, and if the user agent
supports changing the converter on the fly, then the user agent may change to the new
converter for the encoding on the fly. Set the encoding to the new encoding, set the
confidence to confident, and abort these steps.

4. Otherwise, navigate to the document again, with replacement enabled, but this time skip the
encoding sniffing algorithm and instead just set the encoding to the new encoding and the
confidence to confident. Whenever possible, this should be done without actually contacting
the network layer (the bytes should be re-parsed from memory), even if, e.g., the document is
marked as not being cacheable.

Note: While the invocation of this algorithm is not a parse error, it is still indicative of
non-conforming content.

8.2.3. Tokenisation

Implementations must act as if they used the following state machine to tokenise HTML. The state
machine must start in the data state. Most states consume a single character, which may have
various side-effects, and either switches the state machine to a new state to reconsume the same
character, or switches it to a new state (to consume the next character), or repeats the same state
(to consume the next character). Some states have more complicated behaviour and can consume
several characters before switching to another state.

The exact behaviour of certain states depends on a content model flag that is set after certain
tokens are emitted. The flag has several states: PCDATA, RCDATA, CDATA, and PLAINTEXT.
Initially it must be in the PCDATA state. In the RCDATA and CDATA states, a further escape flag is
used to control the behaviour of the tokeniser. It is either true or false, and initially must be set to the
false state.

The output of the tokenisation step is a series of zero or more of the following tokens: DOCTYPE,
start tag, end tag, comment, character, end-of-file. DOCTYPE tokens have a name, a public
identifier, a system identifier, and a correctness flag. When a DOCTYPE token is created, its name,
public identifier, and system identifier must be marked as missing, and the correctness flag must be
set to correct (its other state is incorrect). Start and end tag tokens have a tag name and a list of
attributes, each of which has a name and a value. Comment and character tokens have data.

When a token is emitted, it must immediately be handled by the tree construction stage. The tree
construction stage can affect the state of the content model flag, and can insert additional characters
into the stream. (For example, the script element can result in scripts executing and using the

dynamic markup insertion APIs to insert characters into the stream being tokenised.)

When an end tag token is emitted, the content model flag must be switched to the PCDATA state.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

389 of 458 30/12/2020, 08:08

When an end tag token is emitted with attributes, that is a parse error.

A permitted slash is a U+002F SOLIDUS character that is immediately followed by a U+003E
GREATER-THAN SIGN, if, and only if, the current token being processed is a start tag token whose
tag name is one of the following: base, link, meta, hr, br, img, embed, param, area, col,

input

Before each step of the tokeniser, the user agent may check to see if either one of the scripts in the
list of scripts that will execute as soon as possible or the first script in the list of scripts that will
execute asynchronously, has completed loading. If one has, then it must be executed and removed
from its list.

The tokeniser state machine is as follows:

Data state

Consume the next input character:

↪ U+0026 AMPERSAND (&)
When the content model flag is set to one of the PCDATA or RCDATA states:
switch to the entity data state.
Otherwise: treat it as per the "anything else" entry below.

↪ U+002D HYPHEN-MINUS (-)
If the content model flag is set to either the RCDATA state or the CDATA state,
and the escape flag is false, and there are at least three characters before this
one in the input stream, and the last four characters in the input stream, including
this one, are U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK,
U+002D HYPHEN-MINUS, and U+002D HYPHEN-MINUS ("<!--"), then set the
escape flag to true.

In any case, emit the input character as a character token. Stay in the data state.

↪ U+003C LESS-THAN SIGN (<)
When the content model flag is set to the PCDATA state: switch to the tag open
state.
When the content model flag is set to either the RCDATA state or the CDATA state
and the escape flag is false: switch to the tag open state.
Otherwise: treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the content model flag is set to either the RCDATA state or the CDATA state,
and the escape flag is true, and the last three characters in the input stream
including this one are U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS,
U+003E GREATER-THAN SIGN ("-->"), set the escape flag to false.

In any case, emit the input character as a character token. Stay in the data state.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the input character as a character token. Stay in the data state.

Entity data state

(This cannot happen if the content model flag is set to the CDATA state.)

Attempt to consume an entity.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

390 of 458 30/12/2020, 08:08

If nothing is returned, emit a U+0026 AMPERSAND character token.

Otherwise, emit the character token that was returned.

Finally, switch to the data state.

Tag open state

The behaviour of this state depends on the content model flag.

If the content model flag is set to the RCDATA or CDATA states
Consume the next input character. If it is a U+002F SOLIDUS (/) character, switch to
the close tag open state. Otherwise, emit a U+003C LESS-THAN SIGN character
token and reconsume the current input character in the data state.

If the content model flag is set to the PCDATA state
Consume the next input character:

↪ U+0021 EXCLAMATION MARK (!)
Switch to the markup declaration open state.

↪ U+002F SOLIDUS (/)
Switch to the close tag open state.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL
LETTER Z

Create a new start tag token, set its tag name to the lowercase version of
the input character (add 0x0020 to the character's code point), then switch
to the tag name state. (Don't emit the token yet; further details will be filled
in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER
Z

Create a new start tag token, set its tag name to the input character, then
switch to the tag name state. (Don't emit the token yet; further details will be
filled in before it is emitted.)

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Emit a U+003C LESS-THAN SIGN character token and a
U+003E GREATER-THAN SIGN character token. Switch to the data state.

↪ U+003F QUESTION MARK (?)
Parse error. Switch to the bogus comment state.

↪ Anything else
Parse error. Emit a U+003C LESS-THAN SIGN character token and
reconsume the current input character in the data state.

Close tag open state

If the content model flag is set to the RCDATA or CDATA states but no start tag token has
ever been emitted by this instance of the tokeniser (fragment case), or, if the content model
flag is set to the RCDATA or CDATA states and the next few characters do not match the tag
name of the last start tag token emitted (case insensitively), or if they do but they are not
immediately followed by one of the following characters:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000B LINE TABULATION
U+000C FORM FEED (FF)
U+0020 SPACE
U+003E GREATER-THAN SIGN (>)
U+002F SOLIDUS (/)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

391 of 458 30/12/2020, 08:08

EOF

...then emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character
token, and switch to the data state to process the next input character.

Otherwise, if the content model flag is set to the PCDATA state, or if the next few characters
do match that tag name, consume the next input character:

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, set its tag name to the lowercase version of the input
character (add 0x0020 to the character's code point), then switch to the tag name
state. (Don't emit the token yet; further details will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, set its tag name to the input character, then switch to
the tag name state. (Don't emit the token yet; further details will be filled in before
it is emitted.)

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Switch to the data state.

↪ EOF
Parse error. Emit a U+003C LESS-THAN SIGN character token and a U+002F
SOLIDUS character token. Reconsume the EOF character in the data state.

↪ Anything else
Parse error. Switch to the bogus comment state.

Tag name state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Switch to the before attribute name state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input character (add 0x0020 to the
character's code point) to the current tag token's tag name. Stay in the tag name
state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the EOF character in the data
state.

↪ U+002F SOLIDUS (/)
Parse error unless this is a permitted slash. Switch to the before attribute name
state.

↪ Anything else
Append the current input character to the current tag token's tag name. Stay in the
tag name state.

Before attribute name state

Consume the next input character:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

392 of 458 30/12/2020, 08:08

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the before attribute name state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Start a new attribute in the current tag token. Set that attribute's name to the
lowercase version of the current input character (add 0x0020 to the character's
code point), and its value to the empty string. Switch to the attribute name state.

↪ U+002F SOLIDUS (/)
Parse error unless this is a permitted slash. Stay in the before attribute name
state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the EOF character in the data
state.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute's name to the
current input character, and its value to the empty string. Switch to the attribute
name state.

Attribute name state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Switch to the after attribute name state.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input character (add 0x0020 to the
character's code point) to the current attribute's name. Stay in the attribute name
state.

↪ U+002F SOLIDUS (/)
Parse error unless this is a permitted slash. Switch to the before attribute name
state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the EOF character in the data
state.

↪ Anything else
Append the current input character to the current attribute's name. Stay in the
attribute name state.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

393 of 458 30/12/2020, 08:08

When the user agent leaves the attribute name state (and before emitting the tag token, if
appropriate), the complete attribute's name must be compared to the other attributes on the
same token; if there is already an attribute on the token with the exact same name, then this
is a parse error and the new attribute must be dropped, along with the value that gets
associated with it (if any).

After attribute name state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the after attribute name state.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Start a new attribute in the current tag token. Set that attribute's name to the
lowercase version of the current input character (add 0x0020 to the character's
code point), and its value to the empty string. Switch to the attribute name state.

↪ U+002F SOLIDUS (/)
Parse error unless this is a permitted slash. Switch to the before attribute name
state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the EOF character in the data
state.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute's name to the
current input character, and its value to the empty string. Switch to the attribute
name state.

Before attribute value state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the before attribute value state.

↪ U+0022 QUOTATION MARK (")
Switch to the attribute value (double-quoted) state.

↪ U+0026 AMPERSAND (&)
Switch to the attribute value (unquoted) state and reconsume this input character.

↪ U+0027 APOSTROPHE (')
Switch to the attribute value (single-quoted) state.

↪ U+003E GREATER-THAN SIGN (>)

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

394 of 458 30/12/2020, 08:08

Emit the current tag token. Switch to the data state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the character in the data
state.

↪ Anything else
Append the current input character to the current attribute's value. Switch to the
attribute value (unquoted) state.

Attribute value (double-quoted) state

Consume the next input character:

↪ U+0022 QUOTATION MARK (")
Switch to the before attribute name state.

↪ U+0026 AMPERSAND (&)
Switch to the entity in attribute value state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the character in the data
state.

↪ Anything else
Append the current input character to the current attribute's value. Stay in the
attribute value (double-quoted) state.

Attribute value (single-quoted) state

Consume the next input character:

↪ U+0027 APOSTROPHE (')
Switch to the before attribute name state.

↪ U+0026 AMPERSAND (&)
Switch to the entity in attribute value state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the character in the data
state.

↪ Anything else
Append the current input character to the current attribute's value. Stay in the
attribute value (single-quoted) state.

Attribute value (unquoted) state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Switch to the before attribute name state.

↪ U+0026 AMPERSAND (&)
Switch to the entity in attribute value state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

↪ EOF
Parse error. Emit the current tag token. Reconsume the character in the data
state.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

395 of 458 30/12/2020, 08:08

↪ Anything else
Append the current input character to the current attribute's value. Stay in the
attribute value (unquoted) state.

Entity in attribute value state

Attempt to consume an entity.

If nothing is returned, append a U+0026 AMPERSAND character to the current attribute's
value.

Otherwise, append the returned character token to the current attribute's value.

Finally, switch back to the attribute value state that you were in when were switched into this
state.

Bogus comment state

(This can only happen if the content model flag is set to the PCDATA state.)

Consume every character up to the first U+003E GREATER-THAN SIGN character (>) or the
end of the file (EOF), whichever comes first. Emit a comment token whose data is the
concatenation of all the characters starting from and including the character that caused the
state machine to switch into the bogus comment state, up to and including the last consumed
character before the U+003E character, if any, or up to the end of the file otherwise. (If the
comment was started by the end of the file (EOF), the token is empty.)

Switch to the data state.

If the end of the file was reached, reconsume the EOF character.

Markup declaration open state

(This can only happen if the content model flag is set to the PCDATA state.)

If the next two characters are both U+002D HYPHEN-MINUS (-) characters, consume those
two characters, create a comment token whose data is the empty string, and switch to the
comment start state.

Otherwise if the next seven characters are a case-insensitive match for the word
"DOCTYPE", then consume those characters and switch to the DOCTYPE state.

Otherwise, is is a parse error. Switch to the bogus comment state. The next character that is
consumed, if any, is the first character that will be in the comment.

Comment start state

Consume the next input character:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment start dash state.

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Emit the comment token. Switch to the data state.

↪ EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

↪ Anything else
Append the input character to the comment token's data. Switch to the comment
state.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

396 of 458 30/12/2020, 08:08

Comment start dash state

Consume the next input character:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end state

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Emit the comment token. Switch to the data state.

↪ EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

↪ Anything else
Append a U+002D HYPHEN-MINUS (-) character and the input character to the
comment token's data. Switch to the comment state.

Comment state

Consume the next input character:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end dash state

↪ EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

↪ Anything else
Append the input character to the comment token's data. Stay in the comment
state.

Comment end dash state

Consume the next input character:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end state

↪ EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

↪ Anything else
Append a U+002D HYPHEN-MINUS (-) character and the input character to the
comment token's data. Switch to the comment state.

Comment end state

Consume the next input character:

↪ U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data state.

↪ U+002D HYPHEN-MINUS (-)
Parse error. Append a U+002D HYPHEN-MINUS (-) character to the comment
token's data. Stay in the comment end state.

↪ EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

↪ Anything else
Parse error. Append two U+002D HYPHEN-MINUS (-) characters and the input
character to the comment token's data. Switch to the comment state.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

397 of 458 30/12/2020, 08:08

DOCTYPE state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Switch to the before DOCTYPE name state.

↪ Anything else
Parse error. Reconsume the current character in the before DOCTYPE name
state.

Before DOCTYPE name state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the before DOCTYPE name state.

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Create a new DOCTYPE token. Set its correctness flag to incorrect.
Emit the token. Switch to the data state.

↪ EOF
Parse error. Create a new DOCTYPE token. Set its correctness flag to incorrect.
Emit the token. Reconsume the EOF character in the data state.

↪ Anything else
Create a new DOCTYPE token. Set the token's name name to the current input
character. Switch to the DOCTYPE name state.

DOCTYPE name state

First, consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Switch to the after DOCTYPE name state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Append the current input character to the current DOCTYPE token's name. Stay in
the DOCTYPE name state.

After DOCTYPE name state

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

398 of 458 30/12/2020, 08:08

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the after DOCTYPE name state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
If the next six characters are a case-insensitive match for the word "PUBLIC", then
consume those characters and switch to the before DOCTYPE public identifier
state.

Otherwise, if the next six characters are a case-insensitive match for the word
"SYSTEM", then consume those characters and switch to the before DOCTYPE
system identifier state.

Otherwise, this is the parse error. Switch to the bogus DOCTYPE state.

Before DOCTYPE public identifier state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the before DOCTYPE public identifier state.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's public identifier to the empty string, then switch to the
DOCTYPE public identifier (double-quoted) state.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's public identifier to the empty string, then switch to the
DOCTYPE public identifier (single-quoted) state.

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Switch to the data state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Parse error. Switch to the bogus DOCTYPE state.

DOCTYPE public identifier (double-quoted) state

Consume the next input character:

↪ U+0022 QUOTATION MARK (")

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

399 of 458 30/12/2020, 08:08

Switch to the after DOCTYPE public identifier state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Append the current input character to the current DOCTYPE token's public
identifier. Stay in the DOCTYPE public identifier (double-quoted) state.

DOCTYPE public identifier (single-quoted) state

Consume the next input character:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE public identifier state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Append the current input character to the current DOCTYPE token's public
identifier. Stay in the DOCTYPE public identifier (single-quoted) state.

After DOCTYPE public identifier state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the after DOCTYPE public identifier state.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string, then switch to the
DOCTYPE system identifier (double-quoted) state.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string, then switch to the
DOCTYPE system identifier (single-quoted) state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Parse error. Switch to the bogus DOCTYPE state.

Before DOCTYPE system identifier state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

400 of 458 30/12/2020, 08:08

Stay in the before DOCTYPE system identifier state.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string, then switch to the
DOCTYPE system identifier (double-quoted) state.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string, then switch to the
DOCTYPE system identifier (single-quoted) state.

↪ U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Switch to the data state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Parse error. Switch to the bogus DOCTYPE state.

DOCTYPE system identifier (double-quoted) state

Consume the next input character:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE system identifier state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Append the current input character to the current DOCTYPE token's system
identifier. Stay in the DOCTYPE system identifier (double-quoted) state.

DOCTYPE system identifier (single-quoted) state

Consume the next input character:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE system identifier state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Append the current input character to the current DOCTYPE token's system
identifier. Stay in the DOCTYPE system identifier (single-quoted) state.

After DOCTYPE system identifier state

Consume the next input character:

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE
Stay in the after DOCTYPE system identifier state.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data state.

↪ EOF

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

401 of 458 30/12/2020, 08:08

Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Parse error. Switch to the bogus DOCTYPE state.

Bogus DOCTYPE state

Consume the next input character:

↪ U+003E GREATER-THAN SIGN (>)
Set the DOCTYPE token's correctness flag to incorrect. Emit that DOCTYPE
token. Switch to the data state.

↪ EOF
Parse error. Set the DOCTYPE token's correctness flag to incorrect. Emit that
DOCTYPE token. Reconsume the EOF character in the data state.

↪ Anything else
Stay in the bogus DOCTYPE state.

8.2.3.1. Tokenising entities

This section defines how to consume an entity. This definition is used when parsing entities in text
and in attributes.

The behaviour depends on the identity of the next character (the one immediately after the U+0026
AMPERSAND character):

↪ U+0009 CHARACTER TABULATION

↪ U+000A LINE FEED (LF)

↪ U+000B LINE TABULATION

↪ U+000C FORM FEED (FF)

↪ U+0020 SPACE

↪ U+003C LESS-THAN SIGN

↪ U+0026 AMPERSAND

↪ EOF

Not an entity. No characters are consumed, and nothing is returned. (This is not an error,
either.)

↪ U+0023 NUMBER SIGN (#)

Consume the U+0023 NUMBER SIGN.

The behaviour further depends on the character after the U+0023 NUMBER SIGN:

↪ U+0078 LATIN SMALL LETTER X

↪ U+0058 LATIN CAPITAL LETTER X
Consume the X.

Follow the steps below, but using the range of characters U+0030 DIGIT
ZERO through to U+0039 DIGIT NINE, U+0061 LATIN SMALL LETTER A
through to U+0066 LATIN SMALL LETTER F, and U+0041 LATIN CAPITAL
LETTER A, through to U+0046 LATIN CAPITAL LETTER F (in other words,
0-9, A-F, a-f).

When it comes to interpreting the number, interpret it as a hexadecimal
number.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

402 of 458 30/12/2020, 08:08

↪ Anything else
Follow the steps below, but using the range of characters U+0030 DIGIT
ZERO through to U+0039 DIGIT NINE (i.e. just 0-9).

When it comes to interpreting the number, interpret it as a decimal number.

Consume as many characters as match the range of characters given above.

If no characters match the range, then don't consume any characters (and unconsume
the U+0023 NUMBER SIGN character and, if appropriate, the X character). This is a
parse error; nothing is returned.

Otherwise, if the next character is a U+003B SEMICOLON, consume that too. If it isn't,
there is a parse error.

If one or more characters match the range, then take them all and interpret the string of
characters as a number (either hexadecimal or decimal as appropriate).

If that number is one of the numbers in the first column of the following table, then this is
a parse error. Find the row with that number in the first column, and return a character
token for the Unicode character given in the second column of that row.

Number Unicode character

0x0D U+000A LINE FEED (LF)

0x80 U+20AC EURO SIGN ('€')

0x81 U+FFFD REPLACEMENT CHARACTER

0x82 U+201A SINGLE LOW-9 QUOTATION MARK ('‚')

0x83 U+0192 LATIN SMALL LETTER F WITH HOOK ('ƒ')

0x84 U+201E DOUBLE LOW-9 QUOTATION MARK ('„')

0x85 U+2026 HORIZONTAL ELLIPSIS ('…')

0x86 U+2020 DAGGER ('†')

0x87 U+2021 DOUBLE DAGGER ('‡')

0x88 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT ('ˆ')

0x89 U+2030 PER MILLE SIGN ('‰')

0x8A U+0160 LATIN CAPITAL LETTER S WITH CARON ('Š')

0x8B U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK ('‹')

0x8C U+0152 LATIN CAPITAL LIGATURE OE ('Œ')

0x8D U+FFFD REPLACEMENT CHARACTER

0x8E U+017D LATIN CAPITAL LETTER Z WITH CARON ('Ž')

0x8F U+FFFD REPLACEMENT CHARACTER

0x90 U+FFFD REPLACEMENT CHARACTER

0x91 U+2018 LEFT SINGLE QUOTATION MARK ('‘')

0x92 U+2019 RIGHT SINGLE QUOTATION MARK ('’')

0x93 U+201C LEFT DOUBLE QUOTATION MARK ('“')

0x94 U+201D RIGHT DOUBLE QUOTATION MARK ('”')

0x95 U+2022 BULLET ('•')

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

403 of 458 30/12/2020, 08:08

Number Unicode character

0x96 U+2013 EN DASH ('–')

0x97 U+2014 EM DASH ('—')

0x98 U+02DC SMALL TILDE ('˜')

0x99 U+2122 TRADE MARK SIGN ('™')

0x9A U+0161 LATIN SMALL LETTER S WITH CARON ('š')

0x9B U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK ('›')

0x9C U+0153 LATIN SMALL LIGATURE OE ('œ')

0x9D U+FFFD REPLACEMENT CHARACTER

0x9E U+017E LATIN SMALL LETTER Z WITH CARON ('ž')

0x9F U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS ('Ÿ')

Otherwise, if the number is zero, if the number is higher than 0x10FFFF, or if it's one of
the surrogate characters (characters in the range 0xD800 to 0xDFFF), then this is a
parse error; return a character token for the U+FFFD REPLACEMENT CHARACTER
character instead.

Otherwise, return a character token for the Unicode character whose code point is that
number.

↪ Anything else

Consume the maximum number of characters possible, with the consumed characters
case-sensitively matching one of the identifiers in the first column of the entities table.

If no match can be made, then this is a parse error. No characters are consumed, and
nothing is returned.

If the last character matched is not a U+003B SEMICOLON (;), there is a parse error.

If the entity is being consumed as part of an attribute, and the last character matched is
not a U+003B SEMICOLON (;), and the next character is in the range U+0030 DIGIT

ZERO to U+0039 DIGIT NINE, U+0041 LATIN CAPITAL LETTER A to U+005A LATIN
CAPITAL LETTER Z, or U+0061 LATIN SMALL LETTER A to U+007A LATIN SMALL
LETTER Z, then, for historical reasons, all the characters that were matched after the
U+0026 AMPERSAND (&) must be unconsumed, and nothing is returned.

Otherwise, return a character token for the character corresponding to the entity name
(as given by the second column of the entities table).

If the markup contains I'm ¬it; I tell you, the entity is parsed as "not",

as in, I'm ¬it; I tell you. But if the markup was I'm ∉ I tell

you, the entity would be parsed as "notin;", resulting in I'm ∉ I tell you.

8.2.4. Tree construction

The input to the tree construction stage is a sequence of tokens from the tokenisation stage. The
tree construction stage is associated with a DOM Document object when a parser is created. The

"output" of this stage consists of dynamically modifying or extending that document's DOM tree.

Tree construction passes through several phases. Initially, UAs must act according to the steps
described as being those of the initial phase.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

404 of 458 30/12/2020, 08:08

This specification does not define when an interactive user agent has to render the Document

available to the user, or when it has to begin accepting user input.

When the steps below require the UA to append a character to a node, the UA must collect it and
all subsequent consecutive characters that would be appended to that node, and insert one Text

node whose data is the concatenation of all those characters.

DOM mutation events must not fire for changes caused by the UA parsing the document.
(Conceptually, the parser is not mutating the DOM, it is constructing it.) This includes the parsing of
any content inserted using document.write() and document.writeln() calls.

[DOM3EVENTS]

Note: Not all of the tag names mentioned below are conformant tag names in this
specification; many are included to handle legacy content. They still form part of the
algorithm that implementations are required to implement to claim conformance.

Note: The algorithm described below places no limit on the depth of the DOM tree
generated, or on the length of tag names, attribute names, attribute values, text
nodes, etc. While implementators are encouraged to avoid arbitrary limits, it is
recognised that practical concerns will likely force user agents to impose nesting
depths.

8.2.4.1. The initial phase

Initially, the tree construction stage must handle each token emitted from the tokenisation stage as
follows:

↪ A character token that is one of one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Ignore the token.

↪ A comment token

Append a Comment node to the Document object with the data attribute set to the data

given in the comment token.

↪ A DOCTYPE token

If the DOCTYPE token's name does not case-insensitively match the string "HTML", or if

the token's public identifier is not missing, or if the token's system identifier is not
missing, then there is a parse error. Conformance checkers may, instead of reporting this
error, switch to a conformance checking mode for another language (e.g. based on the
DOCTYPE token a conformance checker could recognise that the document is an
HTML4-era document, and defer to an HTML4 conformance checker.)

Append a DocumentType node to the Document node, with the name attribute set to

the name given in the DOCTYPE token; the publicId attribute set to the public

identifier given in the DOCTYPE token, or the empty string if the public identifier was not
set; the systemId attribute set to the system identifier given in the DOCTYPE token, or

the empty string if the system identifier was not set; and the other attributes specific to
DocumentType objects set to null and empty lists as appropriate. Associate the

DocumentType node with the Document object so that it is returned as the value of the

doctype attribute of the Document object.

Then, if the DOCTYPE token matches one of the conditions in the following list, then set

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

405 of 458 30/12/2020, 08:08

the document to quirks mode:

The correctness flag is set to incorrect.
The name is set to anything other than "HTML".
The public identifier is set to: "+//Silmaril//dtd html Pro v0r11
19970101//EN"
The public identifier is set to: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit
+ extensions//EN"
The public identifier is set to: "-//AS//DTD HTML 3.0 asWedit +
extensions//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.0 Level 1//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.0 Level 2//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.0 Strict Level
1//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.0 Strict Level
2//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.0 Strict//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.0//EN"
The public identifier is set to: "-//IETF//DTD HTML 2.1E//EN"
The public identifier is set to: "-//IETF//DTD HTML 3.0//EN"
The public identifier is set to: "-//IETF//DTD HTML 3.0//EN//"
The public identifier is set to: "-//IETF//DTD HTML 3.2 Final//EN"
The public identifier is set to: "-//IETF//DTD HTML 3.2//EN"
The public identifier is set to: "-//IETF//DTD HTML 3//EN"
The public identifier is set to: "-//IETF//DTD HTML Level 0//EN"
The public identifier is set to: "-//IETF//DTD HTML Level 0//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Level 1//EN"
The public identifier is set to: "-//IETF//DTD HTML Level 1//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Level 2//EN"
The public identifier is set to: "-//IETF//DTD HTML Level 2//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Level 3//EN"
The public identifier is set to: "-//IETF//DTD HTML Level 3//EN//3.0"
The public identifier is set to: "-//IETF//DTD HTML Strict Level 0//EN"
The public identifier is set to: "-//IETF//DTD HTML Strict Level
0//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Strict Level 1//EN"
The public identifier is set to: "-//IETF//DTD HTML Strict Level
1//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Strict Level 2//EN"
The public identifier is set to: "-//IETF//DTD HTML Strict Level
2//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Strict Level 3//EN"
The public identifier is set to: "-//IETF//DTD HTML Strict Level
3//EN//3.0"
The public identifier is set to: "-//IETF//DTD HTML Strict//EN"
The public identifier is set to: "-//IETF//DTD HTML Strict//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML Strict//EN//3.0"
The public identifier is set to: "-//IETF//DTD HTML//EN"
The public identifier is set to: "-//IETF//DTD HTML//EN//2.0"
The public identifier is set to: "-//IETF//DTD HTML//EN//3.0"
The public identifier is set to: "-//Metrius//DTD Metrius
Presentational//EN"
The public identifier is set to: "-//Microsoft//DTD Internet Explorer
2.0 HTML Strict//EN"
The public identifier is set to: "-//Microsoft//DTD Internet Explorer
2.0 HTML//EN"
The public identifier is set to: "-//Microsoft//DTD Internet Explorer
2.0 Tables//EN"
The public identifier is set to: "-//Microsoft//DTD Internet Explorer
3.0 HTML Strict//EN"
The public identifier is set to: "-//Microsoft//DTD Internet Explorer

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

406 of 458 30/12/2020, 08:08

3.0 HTML//EN"
The public identifier is set to: "-//Microsoft//DTD Internet Explorer
3.0 Tables//EN"
The public identifier is set to: "-//Netscape Comm. Corp.//DTD HTML//EN"
The public identifier is set to: "-//Netscape Comm. Corp.//DTD Strict
HTML//EN"
The public identifier is set to: "-//O'Reilly and Associates//DTD HTML
2.0//EN"
The public identifier is set to: "-//O'Reilly and Associates//DTD HTML
Extended 1.0//EN"
The public identifier is set to: "-//Spyglass//DTD HTML 2.0 Extended//EN"
The public identifier is set to: "-//SQ//DTD HTML 2.0 HoTMetaL +
extensions//EN"
The public identifier is set to: "-//Sun Microsystems Corp.//DTD HotJava
HTML//EN"
The public identifier is set to: "-//Sun Microsystems Corp.//DTD HotJava
Strict HTML//EN"
The public identifier is set to: "-//W3C//DTD HTML 3 1995-03-24//EN"
The public identifier is set to: "-//W3C//DTD HTML 3.2 Draft//EN"
The public identifier is set to: "-//W3C//DTD HTML 3.2 Final//EN"
The public identifier is set to: "-//W3C//DTD HTML 3.2//EN"
The public identifier is set to: "-//W3C//DTD HTML 3.2S Draft//EN"
The public identifier is set to: "-//W3C//DTD HTML 4.0 Frameset//EN"
The public identifier is set to: "-//W3C//DTD HTML 4.0 Transitional//EN"
The public identifier is set to: "-//W3C//DTD HTML Experimental
19960712//EN"
The public identifier is set to: "-//W3C//DTD HTML Experimental
970421//EN"
The public identifier is set to: "-//W3C//DTD W3 HTML//EN"
The public identifier is set to: "-//W3O//DTD W3 HTML 3.0//EN"
The public identifier is set to: "-//W3O//DTD W3 HTML 3.0//EN//"
The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"
The public identifier is set to: "-//WebTechs//DTD Mozilla HTML 2.0//EN"
The public identifier is set to: "-//WebTechs//DTD Mozilla HTML//EN"
The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"
The public identifier is set to: "HTML"
The system identifier is set to: "http://www.ibm.com/data/dtd
/v11/ibmxhtml1-transitional.dtd"
The system identifier is missing and the public identifier is set to: "-//W3C//DTD
HTML 4.01 Frameset//EN"
The system identifier is missing and the public identifier is set to: "-//W3C//DTD
HTML 4.01 Transitional//EN"

Otherwise, if the DOCTYPE token matches one of the conditions in the following list,
then set the document to limited quirks mode:

The public identifier is set to: "-//W3C//DTD XHTML 1.0 Frameset//EN"
The public identifier is set to: "-//W3C//DTD XHTML 1.0 Transitional//EN"
The system identifier is not missing and the public identifier is set to:
"-//W3C//DTD HTML 4.01 Frameset//EN"
The system identifier is not missing and the public identifier is set to:
"-//W3C//DTD HTML 4.01 Transitional//EN"

The name, system identifier, and public identifier strings must be compared to the values
given in the lists above in a case-insensitive manner.

Then, switch to the root element phase of the tree construction stage.

↪ A start tag token

↪ An end tag token

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

407 of 458 30/12/2020, 08:08

↪ A character token that is not one of one of U+0009 CHARACTER TABULATION, U+000A
LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

↪ An end-of-file token

Parse error.

Set the document to quirks mode.

Then, switch to the root element phase of the tree construction stage and reprocess the
current token.

8.2.4.2. The root element phase

After the initial phase, as each token is emitted from the tokenisation stage, it must be processed as
described in this section.

↪ A DOCTYPE token

Parse error. Ignore the token.

↪ A comment token

Append a Comment node to the Document object with the data attribute set to the data

given in the comment token.

↪ A character token that is one of one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Ignore the token.

↪ A character token that is not one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

↪ A start tag token

↪ An end tag token

↪ An end-of-file token

If the token is a start tag token with the tag name "html", and it has an attribute
"application", then run the application cache selection algorithm with the value of that
attribute as the manifest URI. Otherwise, run the application cache selection algorithm
with no manifest.

Create an HTMLElement node with the tag name html, in the HTML namespace.

Append it to the Document object. Switch to the main phase and reprocess the current

token.

Should probably make end tags be ignored, so that "</head><!-- --><html>" puts the
comment before the root node (or should we?)

The root element can end up being removed from the Document object, e.g. by scripts; nothing in

particular happens in such cases, content continues being appended to the nodes as described in
the next section.

8.2.4.3. The main phase

After the root element phase, each token emitted from the tokenisation stage must be processed as
described in this section. This is by far the most involved part of parsing an HTML document.

The tree construction stage in this phase has several pieces of state: a stack of open elements, a list

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

408 of 458 30/12/2020, 08:08

of active formatting elements, a head element pointer, a form element pointer, and an insertion

mode.

We could just fold insertion modes and phases into one concept (and duplicate the two rules
common to all insertion modes into all of them).

8.2.4.3.1. Tඐඍ ඛගඉඋඓ ඗ඎ ඗඘ඍඖ ඍඔඍඕඍඖගඛ

Initially the stack of open elements contains just the html root element node created in the last

phase before switching to this phase (or, in the fragment case, the html element created as part of

that algorithm). That's the topmost node of the stack. It never gets popped off the stack. (This stack
grows downwards.)

The current node is the bottommost node in this stack.

Elements in the stack fall into the following categories:

Special

The following HTML elements have varying levels of special parsing rules: address, area,

base, basefont, bgsound, blockquote, body, br, center, col, colgroup, dd, dir,

div, dl, dt, embed, fieldset, form, frame, frameset, h1, h2, h3, h4, h5, h6, head,

hr, iframe, image, img, input, isindex, li, link, listing, menu, meta, noembed,

noframes, noscript, ol, optgroup, option, p, param, plaintext, pre, script,

select, spacer, style, tbody, textarea, tfoot, thead, title, tr, ul, and wbr.

Scoping

The following HTML elements introduce new scopes for various parts of the parsing: button,

caption, html, marquee, object, table, td and th.

Formatting

The following HTML elements are those that end up in the list of active formatting elements:
a, b, big, em, font, i, nobr, s, small, strike, strong, tt, and u.

Phrasing

All other elements found while parsing an HTML document.

Still need to add these new elements to the lists: event-source, section, nav, article,

aside, header, footer, datagrid, command

The stack of open elements is said to have an element in scope or have an element in table
scope when the following algorithm terminates in a match state:

1. Initialise node to be the current node (the bottommost node of the stack).

2. If node is the target node, terminate in a match state.

3. Otherwise, if node is a table element, terminate in a failure state.

4. Otherwise, if the algorithm is the "has an element in scope" variant (rather than the "has an
element in table scope" variant), and node is one of the following, terminate in a failure state:

caption
td
th

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

409 of 458 30/12/2020, 08:08

button
marquee
object

5. Otherwise, if node is an html element, terminate in a failure state. (This can only happen if

the node is the topmost node of the stack of open elements, and prevents the next step from
being invoked if there are no more elements in the stack.)

6. Otherwise, set node to the previous entry in the stack of open elements and return to step 2.
(This will never fail, since the loop will always terminate in the previous step if the top of the
stack is reached.)

Nothing happens if at any time any of the elements in the stack of open elements are moved to a
new location in, or removed from, the Document tree. In particular, the stack is not changed in this

situation. This can cause, amongst other strange effects, content to be appended to nodes that are
no longer in the DOM.

Note: In some cases (namely, when closing misnested formatting elements), the
stack is manipulated in a random-access fashion.

8.2.4.3.2. Tඐඍ ඔඑඛග ඗ඎ ඉඋගඑඞඍ ඎ඗කඕඉගගඑඖඏ ඍඔඍඕඍඖගඛ

Initially the list of active formatting elements is empty. It is used to handle mis-nested formatting
element tags.

The list contains elements in the formatting category, and scope markers. The scope markers are
inserted when entering buttons, object elements, marquees, table cells, and table captions, and

are used to prevent formatting from "leaking" into tables, buttons, object elements, and marquees.

When the steps below require the UA to reconstruct the active formatting elements, the UA must
perform the following steps:

1. If there are no entries in the list of active formatting elements, then there is nothing to
reconstruct; stop this algorithm.

2. If the last (most recently added) entry in the list of active formatting elements is a marker, or if
it is an element that is in the stack of open elements, then there is nothing to reconstruct; stop
this algorithm.

3. Let entry be the last (most recently added) element in the list of active formatting elements.

4. If there are no entries before entry in the list of active formatting elements, then jump to step
8.

5. Let entry be the entry one earlier than entry in the list of active formatting elements.

6. If entry is neither a marker nor an element that is also in the stack of open elements, go to
step 4.

7. Let entry be the element one later than entry in the list of active formatting elements.

8. Perform a shallow clone of the element entry to obtain clone. [DOM3CORE]

9. Append clone to the current node and push it onto the stack of open elements so that it is the
new current node.

10. Replace the entry for entry in the list with an entry for clone.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

410 of 458 30/12/2020, 08:08

11. If the entry for clone in the list of active formatting elements is not the last entry in the list,
return to step 7.

This has the effect of reopening all the formatting elements that were opened in the current body,
cell, or caption (whichever is youngest) that haven't been explicitly closed.

Note: The way this specification is written, the list of active formatting elements
always consists of elements in chronological order with the least recently added
element first and the most recently added element last (except for while steps 8 to 11
of the above algorithm are being executed, of course).

When the steps below require the UA to clear the list of active formatting elements up to the last
marker, the UA must perform the following steps:

1. Let entry be the last (most recently added) entry in the list of active formatting elements.

2. Remove entry from the list of active formatting elements.

3. If entry was a marker, then stop the algorithm at this point. The list has been cleared up to the
last marker.

4. Go to step 1.

8.2.4.3.3. Cකඍඉගඑඖඏ ඉඖඌ එඖඛඍකගඑඖඏ HTML ඍඔඍඕඍඖගඛ

When the steps below require the UA to create an element for a token, the UA must create a node
implementing the interface appropriate for the element type corresponding to the tag name of the
token (as given in the section of this specification that defines that element, e.g. for an a element it

would be the HTMLAnchorElement interface), with the tag name being the name of that element,

with the node being in the HTML namespace, and with the attributes on the node being those given
in the given token.

When the steps below require the UA to insert an HTML element for a token, the UA must first
create an element for the token, and then append this node to the current node, and push it onto the
stack of open elements so that it is the new current node.

The steps below may also require that the UA insert an HTML element in a particular place, in which
case the UA must create an element for the token and then insert or append the new node in the
location specified. (This happens in particular during the parsing of tables with invalid content.)

The interface appropriate for an element that is not defined in this specification is HTMLElement.

The generic CDATA parsing algorithm and the generic RCDATA parsing algorithm consist of
the following steps. These algorithms are always invoked in response to a start tag token, and are
always passed a context node, typically the current node, which is used as the place to insert the
resulting element node.

1. Create an element for the token.

2. Append the new element to the given context node.

3. If the algorithm that was invoked is the generic CDATA parsing algorithm, switch the
tokeniser's content model flag to the CDATA state; otherwise the algorithm invoked was the
generic RCDATA parsing algorithm, switch the tokeniser's content model flag to the RCDATA
state.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

411 of 458 30/12/2020, 08:08

4. Then, collect all the character tokens that the tokeniser returns until it returns a token that is
not a character token, or until it stops tokenising.

5. If this process resulted in a collection of character tokens, append a single Text node, whose

contents is the concatenation of all those tokens' characters, to the new element node.

6. The tokeniser's content model flag will have switched back to the PCDATA state.

7. If the next token is an end tag token with the same tag name as the start tag token, ignore it.
Otherwise, this is a parse error.

8.2.4.3.4. Cඔ඗ඛඑඖඏ ඍඔඍඕඍඖගඛ ගඐඉග ඐඉඞඍ එඕ඘ඔඑඍඌ ඍඖඌ ගඉඏඛ

When the steps below require the UA to generate implied end tags, then, if the current node is a
dd element, a dt element, an li element, a p element, a tbody element, a td element, a tfoot

element, a th element, a thead element, a tr element, the UA must act as if an end tag with the

respective tag name had been seen and then generate implied end tags again.

The step that requires the UA to generate implied end tags but lists an element to exclude from the
process, then the UA must perform the above steps as if that element was not in the above list.

8.2.4.3.5. Tඐඍ ඍඔඍඕඍඖග ඘඗එඖගඍකඛ

Initially the head element pointer and the form element pointer are both null.

Once a head element has been parsed (whether implicitly or explicitly) the head element pointer

gets set to point to this node.

The form element pointer points to the last form element that was opened and whose end tag has

not yet been seen. It is used to make form controls associate with forms in the face of dramatically
bad markup, for historical reasons.

8.2.4.3.6. Tඐඍ එඖඛඍකගඑ඗ඖ ඕ඗ඌඍ

Initially the insertion mode is "before head". It can change to "in head", "in head noscript", "after
head", "in body", "in table", "in caption", "in column group", "in table body", "in row", "in cell", "in
select", "after body", "in frameset", and "after frameset" during the course of the parsing, as
described below. It affects how certain tokens are processed.

If the tree construction stage is switched from the main phase to the trailing end phase and back
again, the various pieces of state are not reset; the UA must act as if the state was maintained.

When the steps below require the UA to reset the insertion mode appropriately, it means the UA
must follow these steps:

1. Let last be false.

2. Let node be the last node in the stack of open elements.

3. If node is the first node in the stack of open elements, then set last to true. If the context
element of the HTML fragment parsing algorithm is neither a td element nor a th element,

then set node to the context element. (fragment case)

4. If node is a select element, then switch the insertion mode to "in select" and abort these

steps. (fragment case)

5. If node is a td or th element, then switch the insertion mode to "in cell" and abort these

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

412 of 458 30/12/2020, 08:08

steps.

6. If node is a tr element, then switch the insertion mode to "in row" and abort these steps.

7. If node is a tbody, thead, or tfoot element, then switch the insertion mode to "in table

body" and abort these steps.

8. If node is a caption element, then switch the insertion mode to "in caption" and abort these

steps.

9. If node is a colgroup element, then switch the insertion mode to "in column group" and

abort these steps. (fragment case)

10. If node is a table element, then switch the insertion mode to "in table" and abort these

steps.

11. If node is a head element, then switch the insertion mode to "in body" ("in body"! not "in

head"!) and abort these steps. (fragment case)

12. If node is a body element, then switch the insertion mode to "in body" and abort these steps.

13. If node is a frameset element, then switch the insertion mode to "in frameset" and abort

these steps. (fragment case)

14. If node is an html element, then: if the head element pointer is null, switch the insertion

mode to "before head", otherwise, switch the insertion mode to "after head". In either case,
abort these steps. (fragment case)

15. If last is true, then set the insertion mode to "in body" and abort these steps. (fragment case)

16. Let node now be the node before node in the stack of open elements.

17. Return to step 3.

8.2.4.3.7. H඗ඟ ග඗ ඐඉඖඌඔඍ ග඗ඓඍඖඛ එඖ ගඐඍ ඕඉඑඖ ඘ඐඉඛඍ

Tokens in the main phase must be handled as follows:

↪ A DOCTYPE token

Parse error. Ignore the token.

↪ A start tag whose tag name is "html"

If this start tag token was not the first start tag token, then it is a parse error.

For each attribute on the token, check to see if the attribute is already present on the top
element of the stack of open elements. If it is not, add the attribute and its corresponding
value to that element.

↪ An end-of-file token

Generate implied end tags.

If there are more than two nodes on the stack of open elements, or if there are two nodes
but the second node is not a body node, this is a parse error.

Otherwise, if the parser was originally created as part of the HTML fragment parsing
algorithm, and there's more than one element in the stack of open elements, and the
second node on the stack of open elements is not a body node, then this is a parse

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

413 of 458 30/12/2020, 08:08

error. (fragment case)

Stop parsing.

This fails because it doesn't imply HEAD and BODY tags. We should probably expand
out the insertion modes and merge them with phases and then put the three things
here into each insertion mode instead of trying to factor them out so carefully.

↪ Anything else

Depends on the insertion mode:

↪ If the insertion mode is "before head"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is "head"
Create an element for the token.

Set the head element pointer to this new element node.

Append the new element to the current node and push it onto the
stack of open elements.

Change the insertion mode to "in head".

↪ A start tag token whose tag name is one of: "base", "link", "meta",
"script", "style", "title"

Act as if a start tag token with the tag name "head" and no
attributes had been seen, then reprocess the current token.

Note: This will result in a head element being

generated, and with the current token being
reprocessed in the "in head" insertion mode.

↪ An end tag whose tag name is one of: "head", "body", "html", "p",
"br"

Act as if a start tag token with the tag name "head" and no
attributes had been seen, then reprocess the current token.

↪ Any other end tag
Parse error. Ignore the token.

Do we really want to ignore end tags here?

↪ A character token that is not one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

414 of 458 30/12/2020, 08:08

U+000C FORM FEED (FF), or U+0020 SPACE

↪ Any other start tag token
Act as if a start tag token with the tag name "head" and no
attributes had been seen, then reprocess the current token.

Note: This will result in an empty head element being

generated, with the current token being reprocessed
in the "after head" insertion mode.

↪ If the insertion mode is "in head"
Handle the token as follows.

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is one of: "base", "link"
Insert an HTML element for the token.

↪ A start tag whose tag name is "meta"
Insert an HTML element for the token.

If the element has a charset attribute, and its value is a

supported encoding, and the confidence is currently tentative, then
change the encoding to the encoding given by the value of the
charset attribute.

Otherwise, if the element has a content attribute, and applying

the algorithm to extract an encoding from a Content-Type to its
value returns a supported encoding encoding, and the confidence
is currently tentative, then change the encoding to the encoding
encoding.

↪ A start tag whose tag name is "title"
Follow the generic RCDATA parsing algorithm, with the head

element pointer as the context node, unless that's null, in which
case use the current node (fragment cose).

↪ A start tag whose tag name is "noscript", if scripting is enabled:

↪ A start tag whose tag name is "style"
Follow the generic CDATA parsing algorithm, with the current node
as the context node.

↪ A start tag whose tag name is "noscript", if scripting is disabled:
Insert a noscript element for the token.

Change the insertion mode to "in head noscript".

↪ A start tag whose tag name is "script"
Create an element for the token.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

415 of 458 30/12/2020, 08:08

Mark the element as being "parser-inserted". This ensures that, if
the script is external, any document.write() calls in the script

will execute in-line, instead of blowing the document away, as
would happen in most other cases.

Switch the tokeniser's content model flag to the CDATA state.

Then, collect all the character tokens that the tokeniser returns
until it returns a token that is not a character token, or until it stops
tokenising.

If this process resulted in a collection of character tokens, append
a single Text node to the script element node whose contents

is the concatenation of all those tokens' characters.

The tokeniser's content model flag will have switched back to the
PCDATA state.

If the next token is not an end tag token with the tag name "script",
then this is a parse error; mark the script element as "already

executed". Otherwise, the token is the script element's end tag,

so ignore it.

If the parser was originally created for the HTML fragment parsing
algorithm, then mark the script element as "already executed",

and skip the rest of the processing described for this token
(including the part below where "scripts that will execute as soon
as the parser resumes" are executed). (fragment case)

Note: Marking the script element as "already

executed" prevents it from executing when it is
inserted into the document a few paragraphs below.
Thus, scripts missing their end tags and scripts that
were inserted using innerHTML aren't executed.

Let the old insertion point have the same value as the current
insertion point. Let the insertion point be just before the next input
character.

Append the new element to the current node. Special processing
occurs when a script element is inserted into a document that

might cause some script to execute, which might cause new
characters to be inserted into the tokeniser.

Let the insertion point have the value of the old insertion point. (In
other words, restore the insertion point to the value it had before
the previous paragraph. This value might be the "undefined"
value.)

At this stage, if there is a script that will execute as soon as the
parser resumes, then:

↪ If the tree construction stage is being called reentrantly,
say from a call to document.write():

Abort the processing of any nested invokations of the

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

416 of 458 30/12/2020, 08:08

tokeniser, yielding control back to the caller.
(Tokenisation will resume when the caller returns to the
"outer" tree construction stage.)

↪ Otherwise:
Follow these steps:

1. Let the script be the script that will execute as
soon as the parser resumes. There is no longer
a script that will execute as soon as the parser
resumes.

2. Pause until the script has completed loading.

3. Let the insertion point be just before the next
input character.

4. Execute the script.

5. Let the insertion point be undefined again.

6. If there is once again a script that will execute
as soon as the parser resumes, then repeat
these steps from step 1.

↪ An end tag whose tag name is "head"
Pop the current node (which will be the head element) off the

stack of open elements.

Change the insertion mode to "after head".

↪ An end tag whose tag name is one of: "body", "html", "p", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "head"

↪ Any other end tag
Parse error. Ignore the token.

↪ Anything else
Act as if an end tag token with the tag name "head" had been
seen, and reprocess the current token.

In certain UAs, some elements don't trigger the "in body" mode
straight away, but instead get put into the head. Do we want to
copy that?

↪ If the insertion mode is "in head noscript"

↪ An end tag whose tag name is "noscript"
Pop the current node (which will be a noscript element) from

the stack of open elements; the new current node will be a head

element.

Switch the insertion mode to "in head".

↪ A character token that is one of one of U+0009 CHARACTER

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

417 of 458 30/12/2020, 08:08

TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

↪ A comment token

↪ A start tag whose tag name is one of: "link", "meta", "style"
Process the token as if the insertion mode had been "in head".

↪ An end tag whose tag name is one of: "p", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is one of: "head", "noscript"

↪ Any other end tag
Parse error. Ignore the token.

↪ Anything else
Parse error. Act as if an end tag with the tag name "noscript" had
been seen and reprocess the current token.

↪ If the insertion mode is "after head"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is "body"
Insert a body element for the token.

Change the insertion mode to "in body".

↪ A start tag whose tag name is "frameset"
Insert a frameset element for the token.

Change the insertion mode to "in frameset".

↪ A start tag token whose tag name is one of: "base", "link", "meta",
"script", "style", "title"

Parse error.

Push the node pointed to by the head element pointer onto the

stack of open elements.

Process the token as if the insertion mode had been "in head".

Pop the current node (which will be the node pointed to by the
head element pointer) off the stack of open elements.

↪ Anything else
Act as if a start tag token with the tag name "body" and no
attributes had been seen, and then reprocess the current token.

↪ If the insertion mode is "in body"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

418 of 458 30/12/2020, 08:08

Handle the token as follows:

↪ A character token
Reconstruct the active formatting elements, if any.

Append the token's character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag token whose tag name is one of: "base", "link", "meta",
"script", "style"

Process the token as if the insertion mode had been "in head".

↪ A start tag whose tag name is "title"
Parse error. Process the token as if the insertion mode had been
"in head".

↪ A start tag whose tag name is "body"
Parse error.

If the second element on the stack of open elements is not a body

element, or, if the stack of open elements has only one node on it,
then ignore the token. (fragment case)

Otherwise, for each attribute on the token, check to see if the
attribute is already present on the body element (the second

element) on the stack of open elements. If it is not, add the
attribute and its corresponding value to that element.

↪ An end tag whose tag name is "body"
If the second element in the stack of open elements is not a body

element, this is a parse error. Ignore the token. (fragment case)

Otherwise, if there is a node in the stack of open elements that is
not either a dd element, a dt element, an li element, a p

element, a tbody element, a td element, a tfoot element, a th

element, a thead element, a tr element, the body element, or

the html element, then this is a parse error.

Change the insertion mode to "after body".

↪ An end tag whose tag name is "html"
Act as if an end tag with tag name "body" had been seen, then, if
that token wasn't ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the fragment case.

↪ A start tag whose tag name is one of: "address", "blockquote",
"center", "dir", "div", "dl", "fieldset", "listing", "menu", "ol", "p",
"ul"

This doesn't match browsers.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

419 of 458 30/12/2020, 08:08

If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token.

↪ A start tag whose tag name is "pre"
If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token.

If the next token is a U+000A LINE FEED (LF) character token,
then ignore that token and move on to the next one. (Newlines at
the start of pre blocks are ignored as an authoring convenience.)

↪ A start tag whose tag name is "form"
If the form element pointer is not null, ignore the token with a

parse error.

Otherwise:

If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token, and set the form element

pointer to point to the element created.

↪ A start tag whose tag name is "li"
If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Run the following algorithm:

1. Initialise node to be the current node (the bottommost node
of the stack).

2. If node is an li element, then pop all the nodes from the

current node up to node, including node, then stop this
algorithm. If more than one node is popped, then this is a
parse error.

3. If node is not in the formatting category, and is not in the
phrasing category, and is not an address or div element,

then stop this algorithm.

4. Otherwise, set node to the previous entry in the stack of
open elements and return to step 2.

Finally, insert an li element.

↪ A start tag whose tag name is one of: "dd", "dt"
If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Run the following algorithm:

1. Initialise node to be the current node (the bottommost node

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

420 of 458 30/12/2020, 08:08

of the stack).

2. If node is a dd or dt element, then pop all the nodes from

the current node up to node, including node, then stop this
algorithm. If more than one node is popped, then this is a
parse error.

3. If node is not in the formatting category, and is not in the
phrasing category, and is not an address or div element,

then stop this algorithm.

4. Otherwise, set node to the previous entry in the stack of
open elements and return to step 2.

Finally, insert an HTML element with the same tag name as the
token's.

↪ A start tag whose tag name is "plaintext"
If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token.

Switch the content model flag to the PLAINTEXT state.

Note: Once a start tag with the tag name "plaintext"
has been seen, that will be the last token ever seen
other than character tokens (and the end-of-file
token), because there is no way to switch the content
model flag out of the PLAINTEXT state.

↪ An end tag whose tag name is one of: "address", "blockquote",
"center", "dir", "div", "dl", "fieldset", "listing", "menu", "ol", "pre",
"ul"

If the stack of open elements has an element in scope with the
same tag name as that of the token, then generate implied end
tags.

Now, if the current node is not an element with the same tag name
as that of the token, then this is a parse error.

If the stack of open elements has an element in scope with the
same tag name as that of the token, then pop elements from this
stack until an element with that tag name has been popped from
the stack.

↪ An end tag whose tag name is "form"
If the stack of open elements has an element in scope with the
same tag name as that of the token, then generate implied end
tags.

Now, if the current node is not an element with the same tag name
as that of the token, then this is a parse error.

Otherwise, if the current node is an element with the same tag
name as that of the token pop that element from the stack.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

421 of 458 30/12/2020, 08:08

In any case, set the form element pointer to null.

↪ An end tag whose tag name is "p"
If the stack of open elements has a p element in scope, then

generate implied end tags, except for p elements.

If the current node is not a p element, then this is a parse error.

If the stack of open elements has a p element in scope, then pop

elements from this stack until the stack no longer has a p element

in scope.

Otherwise, act as if a start tag with the tag name p had been seen,

then reprocess the current token.

↪ An end tag whose tag name is one of: "dd", "dt", "li"
If the stack of open elements has an element in scope whose tag
name matches the tag name of the token, then generate implied
end tags, except for elements with the same tag name as the
token.

If the current node is not an element with the same tag name as
the token, then this is a parse error.

If the stack of open elements has an element in scope whose tag
name matches the tag name of the token, then pop elements from
this stack until an element with that tag name has been popped
from the stack.

↪ A start tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5",
"h6"

If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token.

↪ An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5",
"h6"

If the stack of open elements has in scope an element whose tag
name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then generate
implied end tags.

Now, if the current node is not an element with the same tag name
as that of the token, then this is a parse error.

If the stack of open elements has in scope an element whose tag
name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then pop
elements from the stack until an element with one of those tag
names has been popped from the stack.

↪ A start tag whose tag name is "a"
If the list of active formatting elements contains an element whose
tag name is "a" between the end of the list and the last marker on
the list (or the start of the list if there is no marker on the list), then
this is a parse error; act as if an end tag with the tag name "a" had
been seen, then remove that element from the list of active

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

422 of 458 30/12/2020, 08:08

formatting elements and the stack of open elements if the end tag
didn't already remove it (it might not have if the element is not in
table scope).

In the non-conforming stream
a<table>b</table>x, the

first a element would be closed upon seeing the second one,

and the "x" character would be inside a link to "b", not to "a".
This is despite the fact that the outer a element is not in table

scope (meaning that a regular end tag at the start of

the table wouldn't close the outer a element).

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Add that element to the list
of active formatting elements.

↪ A start tag whose tag name is one of: "b", "big", "em", "font", "i",
"s", "small", "strike", "strong", "tt", "u"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Add that element to the list
of active formatting elements.

↪ A start tag whose tag name is "nobr"
Reconstruct the active formatting elements, if any.

If the stack of open elements has a nobr element in scope, then

this is a parse error. Act as if an end tag with the tag name nobr

had been seen, then once again reconstruct the active formatting
elements, if any.

Insert an HTML element for the token. Add that element to the list
of active formatting elements.

↪ An end tag whose tag name is one of: "a", "b", "big", "em", "font",
"i", "nobr", "s", "small", "strike", "strong", "tt", "u"

Follow these steps:

1. Let the formatting element be the last element in the list of
active formatting elements that:

is between the end of the list and the last scope
marker in the list, if any, or the start of the list
otherwise, and

has the same tag name as the token.

If there is no such node, or, if that node is also in the stack
of open elements but the element is not in scope, then this
is a parse error. Abort these steps. The token is ignored.

Otherwise, if there is such a node, but that node is not in
the stack of open elements, then this is a parse error;
remove the element from the list, and abort these steps.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

423 of 458 30/12/2020, 08:08

Otherwise, there is a formatting element and that element is
in the stack and is in scope. If the element is not the current
node, this is a parse error. In any case, proceed with the
algorithm as written in the following steps.

2. Let the furthest block be the topmost node in the stack of
open elements that is lower in the stack than the formatting
element, and is not an element in the phrasing or formatting
categories. There might not be one.

3. If there is no furthest block, then the UA must skip the
subsequent steps and instead just pop all the nodes from
the bottom of the stack of open elements, from the current
node up to and including the formatting element, and
remove the formatting element from the list of active
formatting elements.

4. Let the common ancestor be the element immediately
above the formatting element in the stack of open
elements.

5. If the furthest block has a parent node, then remove the
furthest block from its parent node.

6. Let a bookmark note the position of the formatting element
in the list of active formatting elements relative to the
elements on either side of it in the list.

7. Let node and last node be the furthest block. Follow these
steps:

1. Let node be the element immediately prior to node in
the stack of open elements.

2. If node is not in the list of active formatting elements,
then remove node from the stack of open elements
and then go back to step 1.

3. Otherwise, if node is the formatting element, then go
to the next step in the overall algorithm.

4. Otherwise, if last node is the furthest block, then
move the aforementioned bookmark to be
immediately after the node in the list of active
formatting elements.

5. If node has any children, perform a shallow clone of
node, replace the entry for node in the list of active
formatting elements with an entry for the clone,
replace the entry for node in the stack of open
elements with an entry for the clone, and let node be
the clone.

6. Insert last node into node, first removing it from its
previous parent node if any.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

424 of 458 30/12/2020, 08:08

7. Let last node be node.

8. Return to step 1 of this inner set of steps.

8. Insert whatever last node ended up being in the previous
step into the common ancestor node, first removing it from
its previous parent node if any.

9. Perform a shallow clone of the formatting element.

10. Take all of the child nodes of the furthest block and append
them to the clone created in the last step.

11. Append that clone to the furthest block.

12. Remove the formatting element from the list of active
formatting elements, and insert the clone into the list of
active formatting elements at the position of the
aforementioned bookmark.

13. Remove the formatting element from the stack of open
elements, and insert the clone into the stack of open
elements immediately after (i.e. in a more deeply nested
position than) the position of the furthest block in that stack.

14. Jump back to step 1 in this series of steps.

Note: The way these steps are defined, only elements
in the formatting category ever get cloned by this
algorithm.

Note: Because of the way this algorithm causes
elements to change parents, it has been dubbed the
"adoption agency algorithm" (in contrast with other
possibly algorithms for dealing with misnested
content, which included the "incest algorithm", the
"secret affair algorithm", and the "Heisenberg
algorithm").

↪ A start tag whose tag name is "button"
If the stack of open elements has a button element in scope,

then this is a parse error; act as if an end tag with the tag name
"button" had been seen, then reprocess the token.

Otherwise:

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Insert a marker at the end of the list of active formatting elements.

↪ A start tag token whose tag name is one of: "marquee", "object"
Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

425 of 458 30/12/2020, 08:08

Insert a marker at the end of the list of active formatting elements.

↪ An end tag token whose tag name is one of: "button", "marquee",
"object"

If the stack of open elements has in scope an element whose tag
name is the same as the tag name of the token, then generate
implied end tags.

Now, if the current node is not an element with the same tag name
as the token, then this is a parse error.

Now, if the stack of open elements has an element in scope
whose tag name matches the tag name of the token, then pop
elements from the stack until that element has been popped from
the stack, and clear the list of active formatting elements up to the
last marker.

↪ A start tag whose tag name is "xmp"
Reconstruct the active formatting elements, if any.

Follow the generic CDATA parsing algorithm, with the current node
as the context node.

↪ A start tag whose tag name is "table"
If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token.

Change the insertion mode to "in table".

↪ A start tag whose tag name is one of: "area", "basefont",
"bgsound", "br", "embed", "img", "param", "spacer", "wbr"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Immediately pop the
current node off the stack of open elements.

↪ A start tag whose tag name is "hr"
If the stack of open elements has a p element in scope, then act

as if an end tag with the tag name p had been seen.

Insert an HTML element for the token. Immediately pop the
current node off the stack of open elements.

↪ A start tag whose tag name is "image"
Parse error. Change the token's tag name to "img" and reprocess
it. (Don't ask.)

↪ A start tag whose tag name is "input"
Reconstruct the active formatting elements, if any.

Insert an input element for the token.

If the form element pointer is not null, then associate the input

element with the form element pointed to by the form element

pointer.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

426 of 458 30/12/2020, 08:08

Pop that input element off the stack of open elements.

↪ A start tag whose tag name is "isindex"
Parse error.

If the form element pointer is not null, then ignore the token.

Otherwise:

Act as if a start tag token with the tag name "form" had been seen.

If the token has an attribute called "action", set the action

attribute on the resulting form element to the value of the "action"

attribute of the token.

Act as if a start tag token with the tag name "hr" had been seen.

Act as if a start tag token with the tag name "p" had been seen.

Act as if a start tag token with the tag name "label" had been seen.

Act as if a stream of character tokens had been seen (see below
for what they should say).

Act as if a start tag token with the tag name "input" had been
seen, with all the attributes from the "isindex" token except
"name", "action", and "prompt". Set the name attribute of the

resulting input element to the value "isindex".

Act as if a stream of character tokens had been seen (see below
for what they should say).

Act as if an end tag token with the tag name "label" had been
seen.

Act as if an end tag token with the tag name "p" had been seen.

Act as if a start tag token with the tag name "hr" had been seen.

Act as if an end tag token with the tag name "form" had been
seen.

If the token has an attribute with the name "prompt", then the first
stream of characters must be the same string as given in that
attribute, and the second stream of characters must be empty.
Otherwise, the two streams of character tokens together should,
together with the input element, express the equivalent of "This

is a searchable index. Insert your search keywords here: (input
field)" in the user's preferred language.

Then need to specify that if the form submission causes just a
single form control, whose name is "isindex", to be submitted,
then we submit just the value part, not the "isindex=" part.

↪ A start tag whose tag name is "textarea"
Create an element for the token.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

427 of 458 30/12/2020, 08:08

If the form element pointer is not null, then associate the

textarea element with the form element pointed to by the form

element pointer.

Append the new element to the current node.

Switch the tokeniser's content model flag to the RCDATA state.

If the next token is a U+000A LINE FEED (LF) character token,
then ignore that token and move on to the next one. (Newlines at
the start of textarea elements are ignored as an authoring

convenience.)

Then, collect all the character tokens that the tokeniser returns
until it returns a token that is not a character token, or until it stops
tokenising.

If this process resulted in a collection of character tokens, append
a single Text node, whose contents is the concatenation of all

those tokens' characters, to the new element node.

The tokeniser's content model flag will have switched back to the
PCDATA state.

If the next token is an end tag token with the tag name "textarea",
ignore it. Otherwise, this is a parse error.

↪ A start tag whose tag name is one of: "iframe", "noembed",
"noframes"

↪ A start tag whose tag name is "noscript", if scripting is enabled:
Follow the generic CDATA parsing algorithm, with the current node
as the context node.

↪ A start tag whose tag name is "select"
Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Change the insertion mode to "in select".

↪ An end tag whose tag name is "br"
Parse error. Act as if a start tag token with the tag name "br" had
been seen. Ignore the end tag token.

↪ A start or end tag whose tag name is one of: "caption", "col",
"colgroup", "frame", "frameset", "head", "option", "optgroup",
"tbody", "td", "tfoot", "th", "thead", "tr"

↪ An end tag whose tag name is one of: "area", "basefont",
"bgsound", "br", "embed", "hr", "iframe", "image", "img", "input",
"isindex", "noembed", "noframes", "param", "select", "spacer",
"table", "textarea", "wbr"

↪ An end tag whose tag name is "noscript", if scripting is enabled:
Parse error. Ignore the token.

↪ A start or end tag whose tag name is one of: "event-source",
"section", "nav", "article", "aside", "header", "footer", "datagrid",

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

428 of 458 30/12/2020, 08:08

"command"

Work in progress!

↪ A start tag token not covered by the previous entries
Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Note: This element will be a phrasing element.

↪ An end tag token not covered by the previous entries
Run the following algorithm:

1. Initialise node to be the current node (the bottommost node
of the stack).

2. If node has the same tag name as the end tag token, then:

1. Generate implied end tags.

2. If the tag name of the end tag token does not match
the tag name of the current node, this is a parse
error.

3. Pop all the nodes from the current node up to node,
including node, then stop this algorithm.

3. Otherwise, if node is in neither the formatting category nor
the phrasing category, then this is a parse error. Stop this
algorithm. The end tag token is ignored.

4. Set node to the previous entry in the stack of open
elements.

5. Return to step 2.

↪ If the insertion mode is "in table"

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is "caption"
Clear the stack back to a table context. (See below.)

Insert a marker at the end of the list of active formatting elements.

Insert an HTML element for the token, then switch the insertion
mode to "in caption".

↪ A start tag whose tag name is "colgroup"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

429 of 458 30/12/2020, 08:08

Clear the stack back to a table context. (See below.)

Insert an HTML element for the token, then switch the insertion
mode to "in column group".

↪ A start tag whose tag name is "col"
Act as if a start tag token with the tag name "colgroup" had been
seen, then reprocess the current token.

↪ A start tag whose tag name is one of: "tbody", "tfoot", "thead"
Clear the stack back to a table context. (See below.)

Insert an HTML element for the token, then switch the insertion
mode to "in table body".

↪ A start tag whose tag name is one of: "td", "th", "tr"
Act as if a start tag token with the tag name "tbody" had been
seen, then reprocess the current token.

↪ A start tag whose tag name is "table"
Parse error. Act as if an end tag token with the tag name "table"
had been seen, then, if that token wasn't ignored, reprocess the
current token.

Note: The fake end tag token here can only be
ignored in the fragment case.

↪ An end tag whose tag name is "table"
If the stack of open elements does not have an element in table
scope with the same tag name as the token, this is a parse error.
Ignore the token. (fragment case)

Otherwise:

Generate implied end tags.

Now, if the current node is not a table element, then this is a

parse error.

Pop elements from this stack until a table element has been

popped from the stack.

Reset the insertion mode appropriately.

↪ An end tag whose tag name is one of: "body", "caption", "col",
"colgroup", "html", "tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

↪ Anything else
Parse error. Process the token as if the insertion mode was "in
body", with the following exception:

If the current node is a table, tbody, tfoot, thead, or tr

element, then, whenever a node would be inserted into the current
node, it must instead be inserted into the foster parent element.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

430 of 458 30/12/2020, 08:08

The foster parent element is the parent element of the last
table element in the stack of open elements, if there is a table

element and it has such a parent element. If there is no table

element in the stack of open elements (fragment case), then the
foster parent element is the first element in the stack of open
elements (the html element). Otherwise, if there is a table

element in the stack of open elements, but the last table element

in the stack of open elements has no parent, or its parent node is
not an element, then the foster parent element is the element
before the last table element in the stack of open elements.

If the foster parent element is the parent element of the last table

element in the stack of open elements, then the new node must be
inserted immediately before the last table element in the stack of

open elements in the foster parent element; otherwise, the new
node must be appended to the foster parent element.

When the steps above require the UA to clear the stack back to a table
context, it means that the UA must, while the current node is not a table

element or an html element, pop elements from the stack of open elements.

If this causes any elements to be popped from the stack, then this is a parse
error.

Note: The current node being an html element after this

process is a fragment case.

↪ If the insertion mode is "in caption"

↪ An end tag whose tag name is "caption"
If the stack of open elements does not have an element in table
scope with the same tag name as the token, this is a parse error.
Ignore the token. (fragment case)

Otherwise:

Generate implied end tags.

Now, if the current node is not a caption element, then this is a

parse error.

Pop elements from this stack until a caption element has been

popped from the stack.

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in table".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup",
"tbody", "td", "tfoot", "th", "thead", "tr"

↪ An end tag whose tag name is "table"
Parse error. Act as if an end tag with the tag name "caption" had
been seen, then, if that token wasn't ignored, reprocess the
current token.

Note: The fake end tag token here can only be

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

431 of 458 30/12/2020, 08:08

ignored in the fragment case.

↪ An end tag whose tag name is one of: "body", "col", "colgroup",
"html", "tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

↪ Anything else
Process the token as if the insertion mode was "in body".

↪ If the insertion mode is "in column group"

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is "col"
Insert a col element for the token. Immediately pop the current

node off the stack of open elements.

↪ An end tag whose tag name is "colgroup"
If the current node is the root html element, then this is a parse

error, ignore the token. (fragment case)

Otherwise, pop the current node (which will be a colgroup

element) from the stack of open elements. Switch the insertion
mode to "in table".

↪ An end tag whose tag name is "col"
Parse error. Ignore the token.

↪ Anything else
Act as if an end tag with the tag name "colgroup" had been seen,
and then, if that token wasn't ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the fragment case.

↪ If the insertion mode is "in table body"

↪ A start tag whose tag name is "tr"
Clear the stack back to a table body context. (See below.)

Insert a tr element for the token, then switch the insertion mode

to "in row".

↪ A start tag whose tag name is one of: "th", "td"
Parse error. Act as if a start tag with the tag name "tr" had been
seen, then reprocess the current token.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elements does not have an element in table
scope with the same tag name as the token, this is a parse error.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

432 of 458 30/12/2020, 08:08

Ignore the token.

Otherwise:

Clear the stack back to a table body context. (See below.)

Pop the current node from the stack of open elements. Switch the
insertion mode to "in table".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup",
"tbody", "tfoot", "thead"

↪ An end tag whose tag name is "table"
If the stack of open elements does not have a tbody, thead, or

tfoot element in table scope, this is a parse error. Ignore the

token. (fragment case)

Otherwise:

Clear the stack back to a table body context. (See below.)

Act as if an end tag with the same tag name as the current node
("tbody", "tfoot", or "thead") had been seen, then reprocess the
current token.

↪ An end tag whose tag name is one of: "body", "caption", "col",
"colgroup", "html", "td", "th", "tr"

Parse error. Ignore the token.

↪ Anything else
Process the token as if the insertion mode was "in table".

When the steps above require the UA to clear the stack back to a table
body context, it means that the UA must, while the current node is not a
tbody, tfoot, thead, or html element, pop elements from the stack of

open elements. If this causes any elements to be popped from the stack, then
this is a parse error.

Note: The current node being an html element after this

process is a fragment case.

↪ If the insertion mode is "in row"

↪ A start tag whose tag name is one of: "th", "td"
Clear the stack back to a table row context. (See below.)

Insert an HTML element for the token, then switch the insertion
mode to "in cell".

Insert a marker at the end of the list of active formatting elements.

↪ An end tag whose tag name is "tr"
If the stack of open elements does not have an element in table
scope with the same tag name as the token, this is a parse error.
Ignore the token. (fragment case)

Otherwise:

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

433 of 458 30/12/2020, 08:08

Clear the stack back to a table row context. (See below.)

Pop the current node (which will be a tr element) from the stack

of open elements. Switch the insertion mode to "in table body".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup",
"tbody", "tfoot", "thead", "tr"

↪ An end tag whose tag name is "table"
Act as if an end tag with the tag name "tr" had been seen, then, if
that token wasn't ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the fragment case.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elements does not have an element in table
scope with the same tag name as the token, this is a parse error.
Ignore the token.

Otherwise, act as if an end tag with the tag name "tr" had been
seen, then reprocess the current token.

↪ An end tag whose tag name is one of: "body", "caption", "col",
"colgroup", "html", "td", "th"

Parse error. Ignore the token.

↪ Anything else
Process the token as if the insertion mode was "in table".

When the steps above require the UA to clear the stack back to a table row
context, it means that the UA must, while the current node is not a tr

element or an html element, pop elements from the stack of open elements.

If this causes any elements to be popped from the stack, then this is a parse
error.

Note: The current node being an html element after this

process is a fragment case.

↪ If the insertion mode is "in cell"

↪ An end tag whose tag name is one of: "td", "th"
If the stack of open elements does not have an element in table
scope with the same tag name as that of the token, then this is a
parse error and the token must be ignored.

Otherwise:

Generate implied end tags, except for elements with the same tag
name as the token.

Now, if the current node is not an element with the same tag name
as the token, then this is a parse error.

Pop elements from this stack until an element with the same tag
name as the token has been popped from the stack.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

434 of 458 30/12/2020, 08:08

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in row". (The current node will be a
tr element at this point.)

↪ A start tag whose tag name is one of: "caption", "col", "colgroup",
"tbody", "td", "tfoot", "th", "thead", "tr"

If the stack of open elements does not have a td or th element in

table scope, then this is a parse error; ignore the token. (fragment
case)

Otherwise, close the cell (see below) and reprocess the current
token.

↪ An end tag whose tag name is one of: "body", "caption", "col",
"colgroup", "html"

Parse error. Ignore the token.

↪ An end tag whose tag name is one of: "table", "tbody", "tfoot",
"thead", "tr"

If the stack of open elements does not have an element in table
scope with the same tag name as that of the token (which can
only happen for "tbody", "tfoot" and "thead", or, in the fragment
case), then this is a parse error and the token must be ignored.

Otherwise, close the cell (see below) and reprocess the current
token.

↪ Anything else
Process the token as if the insertion mode was "in body".

Where the steps above say to close the cell, they mean to run the following
algorithm:

1. If the stack of open elements has a td element in table scope, then act

as if an end tag token with the tag name "td" had been seen.

2. Otherwise, the stack of open elements will have a th element in table

scope; act as if an end tag token with the tag name "th" had been
seen.

Note: The stack of open elements cannot have both a td and a

th element in table scope at the same time, nor can it have

neither when the insertion mode is "in cell".

↪ If the insertion mode is "in select"
Handle the token as follows:

↪ A character token
Append the token's character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is "option"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

435 of 458 30/12/2020, 08:08

If the current node is an option element, act as if an end tag with

the tag name "option" had been seen.

Insert an HTML element for the token.

↪ A start tag whose tag name is "optgroup"
If the current node is an option element, act as if an end tag with

the tag name "option" had been seen.

If the current node is an optgroup element, act as if an end tag

with the tag name "optgroup" had been seen.

Insert an HTML element for the token.

↪ An end tag whose tag name is "optgroup"
First, if the current node is an option element, and the node

immediately before it in the stack of open elements is an
optgroup element, then act as if an end tag with the tag name

"option" had been seen.

If the current node is an optgroup element, then pop that node

from the stack of open elements. Otherwise, this is a parse error,
ignore the token.

↪ An end tag whose tag name is "option"
If the current node is an option element, then pop that node from

the stack of open elements. Otherwise, this is a parse error, ignore
the token.

↪ An end tag whose tag name is "select"
If the stack of open elements does not have an element in table
scope with the same tag name as the token, this is a parse error.
Ignore the token. (fragment case)

Otherwise:

Pop elements from the stack of open elements until a select

element has been popped from the stack.

Reset the insertion mode appropriately.

↪ A start tag whose tag name is "select"
Parse error. Act as if the token had been an end tag with the tag
name "select" instead.

↪ An end tag whose tag name is one of: "caption", "table", "tbody",
"tfoot", "thead", "tr", "td", "th"

Parse error.

If the stack of open elements has an element in table scope with
the same tag name as that of the token, then act as if an end tag
with the tag name "select" had been seen, and reprocess the
token. Otherwise, ignore the token.

↪ Anything else
Parse error. Ignore the token.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

436 of 458 30/12/2020, 08:08

↪ If the insertion mode is "after body"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Process the token as it would be processed if the insertion mode
was "in body".

↪ A comment token
Append a Comment node to the first element in the stack of open

elements (the html element), with the data attribute set to the

data given in the comment token.

↪ An end tag whose tag name is "html"
If the parser was originally created as part of the HTML fragment
parsing algorithm, this is a parse error; ignore the token. (The
element will be an html element in this case.) (fragment case)

Otherwise, switch to the trailing end phase.

↪ Anything else
Parse error. Set the insertion mode to "in body" and reprocess the
token.

↪ If the insertion mode is "in frameset"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ A start tag whose tag name is "frameset"
Insert a frameset element for the token.

↪ An end tag whose tag name is "frameset"
If the current node is the root html element, then this is a parse

error; ignore the token. (fragment case)

Otherwise, pop the current node from the stack of open elements.

If the parser was not originally created as part of the HTML
fragment parsing algorithm (fragment case), and the current node
is no longer a frameset element, then change the insertion mode

to "after frameset".

↪ A start tag whose tag name is "frame"
Insert an HTML element for the token. Immediately pop the
current node off the stack of open elements.

↪ A start tag whose tag name is "noframes"

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

437 of 458 30/12/2020, 08:08

Process the token as if the insertion mode had been "in body".

↪ Anything else
Parse error. Ignore the token.

↪ If the insertion mode is "after frameset"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION,
U+000C FORM FEED (FF), or U+0020 SPACE

Append the character to the current node.

↪ A comment token
Append a Comment node to the current node with the data

attribute set to the data given in the comment token.

↪ An end tag whose tag name is "html"
Switch to the trailing end phase.

↪ A start tag whose tag name is "noframes"
Process the token as if the insertion mode had been "in body".

↪ Anything else
Parse error. Ignore the token.

This doesn't handle UAs that don't support frames, or that do support frames but want to show
the NOFRAMES content. Supporting the former is easy; supporting the latter is harder.

8.2.4.4. The trailing end phase

After the main phase, as each token is emitted from the tokenisation stage, it must be processed as
described in this section.

↪ A DOCTYPE token

Parse error. Ignore the token.

↪ A comment token

Append a Comment node to the Document object with the data attribute set to the data

given in the comment token.

↪ A character token that is one of one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Process the token as it would be processed in the main phase.

↪ A character token that is not one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

↪ A start tag token

↪ An end tag token

Parse error. Switch back to the main phase and reprocess the token.

↪ An end-of-file token

Stop parsing.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

438 of 458 30/12/2020, 08:08

8.2.5. The End

Once the user agent stops parsing the document, the user agent must follow the steps in this
section.

First, the rules for when a script completes loading start applying (script execution is no longer
managed by the parser).

If any of the scripts in the list of scripts that will execute as soon as possible have completed loading,
or if the list of scripts that will execute asynchronously is not empty and the first script in that list has
completed loading, then the user agent must act as if those scripts just completed loading, following
the rules given for that in the script element definition.

Then, if the list of scripts that will execute when the document has finished parsing is not empty, and
the first item in this list has already completed loading, then the user agent must act as if that script
just finished loading.

By this point, there will be no scripts that have loaded but have not yet been executed.

The user agent must then fire a simple event called DOMContentLoaded at the Document.

Once everything that delays the load event has completed, the user agent must fire a load event

at the body element.

delaying the load event for things like image loads allows for intranet port scans (even without
javascript!). Should we really encode that into the spec?

8.3. Namespaces

The HTML namespace is: http://www.w3.org/1999/xhtml

8.4. Serialising HTML fragments

The following steps form the HTML fragment serialisation algorithm. The algorithm takes as input
a DOM Element or Document, referred to as the node, and either returns a string or raises an

exception.

Note: This algorithm serialises the children of the node being serialised, not the
node itself.

1. Let s be a string, and initialise it to the empty string.

2. For each child node child of the node, in tree order, append the appropriate string from the
following list to s:

↪ If the child node is an Element

Append a U+003C LESS-THAN SIGN (<) character, followed by the element's tag

name. (For nodes created by the HTML parser, Document.createElement(),

or Document.renameNode(), the tag name will be lowercase.)

For each attribute that the element has, append a U+0020 SPACE character, the
attribute's name (which, for attributes set by the HTML parser or by

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

439 of 458 30/12/2020, 08:08

Element.setAttributeNode() or Element.setAttribute(), will be

lowercase), a U+003D EQUALS SIGN (=) character, a U+0022 QUOTATION

MARK (") character, the attribute's value, escaped as described below, and a

second U+0022 QUOTATION MARK (") character.

While the exact order of attributes is UA-defined, and may depend on factors such
as the order that the attributes were given in the original markup, the sort order
must be stable, such that consecutive invocations of this algorithm serialise an
element's attributes in the same order.

Append a U+003E GREATER-THAN SIGN (>) character.

If the child node is an area, base, basefont, bgsound, br, col, embed,

frame, hr, img, input, link, meta, param, spacer, or wbr element, then

continue on to the next child node at this point.

If the child node is a pre or textarea element, append a U+000A LINE FEED

(LF) character.

Append the value of running the HTML fragment serialisation algorithm on the
child element (thus recursing into this algorithm for that element), followed by a
U+003C LESS-THAN SIGN (<) character, a U+002F SOLIDUS (/) character, the

element's tag name again, and finally a U+003E GREATER-THAN SIGN (>)

character.

↪ If the child node is a Text or CDATASection node

If one of the ancestors of the child node is a style, script, xmp, iframe,

noembed, noframes, noscript, or plaintext element, then append the value

of the child node's data DOM attribute literally.

Otherwise, append the value of the child node's data DOM attribute, escaped as

described below.

↪ If the child node is a Comment

Append the literal string <!-- (U+003C LESS-THAN SIGN, U+0021

EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS),
followed by the value of the child node's data DOM attribute, followed by the

literal string --> (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E

GREATER-THAN SIGN).

↪ If the child node is a DocumentType

Append the literal string <!DOCTYPE (U+003C LESS-THAN SIGN, U+0021

EXCLAMATION MARK, U+0044 LATIN CAPITAL LETTER D, U+004F LATIN
CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054 LATIN
CAPITAL LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050 LATIN
CAPITAL LETTER P, U+0045 LATIN CAPITAL LETTER E), followed by a space
(U+0020 SPACE), followed by the value of the child node's name DOM attribute,

followed by the literal string > (U+003E GREATER-THAN SIGN).

Other nodes types (e.g. Attr) cannot occur as children of elements. If they do, this algorithm

must raise an INVALID_STATE_ERR exception.

3. The result of the algorithm is the string s.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

440 of 458 30/12/2020, 08:08

Escaping a string (for the purposes of the algorithm above) consists of replacing any occurances of
the "&" character by the string "&", any occurances of the "<" character by the string "<",

any occurances of the ">" character by the string ">", and any occurances of the """ character

by the string """.

Note: Entity reference nodes are assumed to be expanded by the user agent, and are
therefore not covered in the algorithm above.

Note: It is possible that the output of this algorithm, if parsed with an HTML parser,
will not return the original tree structure. For instance, if a textarea element to

which a Comment node has been appended is serialised and the output is then

reparsed, the comment will end up being displayed in the text field. Similarly, if, as a
result of DOM manipulation, an element contains a comment that contains the literal
string "-->", then when the result of serialising the element is parsed, the comment

will be truncated at that point and the rest of the comment will be interpreted as
markup. More examples would be making a script element contain a text node with

the text string "</script>", or having a p element that contains a ul element (as the

ul element's start tag would imply the end tag for the p).

8.5. Parsing HTML fragments

The following steps form the HTML fragment parsing algorithm. The algorithm takes as input a
DOM Element, referred to as context, which gives the context for the parser, as well as input, a

string to parse, and returns a list of zero or more nodes.

Note: Parts marked fragment case in algorithms in the parser section are parts that
only occur if the parser was created for the purposes of this algorithm. The
algorithms have been annotated with such markings for informational purposes
only; such markings have no normative weight. If it is possible for a condition
described as a fragment case to occur even when the parser wasn't created for the
purposes of handling this algorithm, then that is an error in the specification.

1. Create a new Document node, and mark it as being an HTML document.

2. Create a new HTML parser, and associate it with the just created Document node.

3. Set the HTML parser's tokenisation stage's content model flag according to the context
element, as follows:

↪ If it is a title or textarea element

Set the content model flag to RCDATA.

↪ If it is a style, script, xmp, iframe, noembed, or noframes element

Set the content model flag to CDATA.

↪ If it is a noscript element

If scripting is enabled, set the content model flag to CDATA. Otherwise, set the
content model flag to PCDATA.

↪ If it is a plaintext element

Set the content model flag to PLAINTEXT.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

441 of 458 30/12/2020, 08:08

↪ Otherwise

Set the content model flag to PCDATA.

4. Switch the HTML parser's tree construction stage to the main phase.

5. Let root be a new html element with no attributes.

6. Append the element root to the Document node created above.

7. Set up the parser's stack of open elements so that it contains just the single element root.

8. Reset the parser's insertion mode appropriately.

Note: The parser will reference the context node as part of that algorithm.

9. Set the parser's form element pointer to the nearest node to the context that is a form

element (going straight up the ancestor chain, and including the element itself, if it is a form

element), or, if there is no such form element, to null.

10. Place into the input stream for the HTML parser just created the input.

11. Start the parser and let it run until it has consumed all the characters just inserted into the
input stream.

12. Return all the child nodes of root, preserving the document order.

8.6. Entities

This table lists the entity names that are supported by HTML, and the code points to which they
refer. It is referenced by the previous sections.

Entity Name Character

AElig; U+00C6

AElig U+00C6

AMP; U+0026

AMP U+0026

Aacute; U+00C1

Aacute U+00C1

Acirc; U+00C2

Acirc U+00C2

Agrave; U+00C0

Agrave U+00C0

Alpha; U+0391

Aring; U+00C5

Aring U+00C5

Atilde; U+00C3

Atilde U+00C3

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

442 of 458 30/12/2020, 08:08

Entity Name Character

Auml; U+00C4

Auml U+00C4

Beta; U+0392

COPY; U+00A9

COPY U+00A9

Ccedil; U+00C7

Ccedil U+00C7

Chi; U+03A7

Dagger; U+2021

Delta; U+0394

ETH; U+00D0

ETH U+00D0

Eacute; U+00C9

Eacute U+00C9

Ecirc; U+00CA

Ecirc U+00CA

Egrave; U+00C8

Egrave U+00C8

Epsilon; U+0395

Eta; U+0397

Euml; U+00CB

Euml U+00CB

GT; U+003E

GT U+003E

Gamma; U+0393

Iacute; U+00CD

Iacute U+00CD

Icirc; U+00CE

Icirc U+00CE

Igrave; U+00CC

Igrave U+00CC

Iota; U+0399

Iuml; U+00CF

Iuml U+00CF

Kappa; U+039A

LT; U+003C

LT U+003C

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

443 of 458 30/12/2020, 08:08

Entity Name Character

Lambda; U+039B

Mu; U+039C

Ntilde; U+00D1

Ntilde U+00D1

Nu; U+039D

OElig; U+0152

Oacute; U+00D3

Oacute U+00D3

Ocirc; U+00D4

Ocirc U+00D4

Ograve; U+00D2

Ograve U+00D2

Omega; U+03A9

Omicron; U+039F

Oslash; U+00D8

Oslash U+00D8

Otilde; U+00D5

Otilde U+00D5

Ouml; U+00D6

Ouml U+00D6

Phi; U+03A6

Pi; U+03A0

Prime; U+2033

Psi; U+03A8

QUOT; U+0022

QUOT U+0022

REG; U+00AE

REG U+00AE

Rho; U+03A1

Scaron; U+0160

Sigma; U+03A3

THORN; U+00DE

THORN U+00DE

TRADE; U+2122

Tau; U+03A4

Theta; U+0398

Uacute; U+00DA

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

444 of 458 30/12/2020, 08:08

Entity Name Character

Uacute U+00DA

Ucirc; U+00DB

Ucirc U+00DB

Ugrave; U+00D9

Ugrave U+00D9

Upsilon; U+03A5

Uuml; U+00DC

Uuml U+00DC

Xi; U+039E

Yacute; U+00DD

Yacute U+00DD

Yuml; U+0178

Zeta; U+0396

aacute; U+00E1

aacute U+00E1

acirc; U+00E2

acirc U+00E2

acute; U+00B4

acute U+00B4

aelig; U+00E6

aelig U+00E6

agrave; U+00E0

agrave U+00E0

alefsym; U+2135

alpha; U+03B1

amp; U+0026

amp U+0026

and; U+2227

ang; U+2220

apos; U+0027

aring; U+00E5

aring U+00E5

asymp; U+2248

atilde; U+00E3

atilde U+00E3

auml; U+00E4

auml U+00E4

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

445 of 458 30/12/2020, 08:08

Entity Name Character

bdquo; U+201E

beta; U+03B2

brvbar; U+00A6

brvbar U+00A6

bull; U+2022

cap; U+2229

ccedil; U+00E7

ccedil U+00E7

cedil; U+00B8

cedil U+00B8

cent; U+00A2

cent U+00A2

chi; U+03C7

circ; U+02C6

clubs; U+2663

cong; U+2245

copy; U+00A9

copy U+00A9

crarr; U+21B5

cup; U+222A

curren; U+00A4

curren U+00A4

dArr; U+21D3

dagger; U+2020

darr; U+2193

deg; U+00B0

deg U+00B0

delta; U+03B4

diams; U+2666

divide; U+00F7

divide U+00F7

eacute; U+00E9

eacute U+00E9

ecirc; U+00EA

ecirc U+00EA

egrave; U+00E8

egrave U+00E8

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

446 of 458 30/12/2020, 08:08

Entity Name Character

empty; U+2205

emsp; U+2003

ensp; U+2002

epsilon; U+03B5

equiv; U+2261

eta; U+03B7

eth; U+00F0

eth U+00F0

euml; U+00EB

euml U+00EB

euro; U+20AC

exist; U+2203

fnof; U+0192

forall; U+2200

frac12; U+00BD

frac12 U+00BD

frac14; U+00BC

frac14 U+00BC

frac34; U+00BE

frac34 U+00BE

frasl; U+2044

gamma; U+03B3

ge; U+2265

gt; U+003E

gt U+003E

hArr; U+21D4

harr; U+2194

hearts; U+2665

hellip; U+2026

iacute; U+00ED

iacute U+00ED

icirc; U+00EE

icirc U+00EE

iexcl; U+00A1

iexcl U+00A1

igrave; U+00EC

igrave U+00EC

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

447 of 458 30/12/2020, 08:08

Entity Name Character

image; U+2111

infin; U+221E

int; U+222B

iota; U+03B9

iquest; U+00BF

iquest U+00BF

isin; U+2208

iuml; U+00EF

iuml U+00EF

kappa; U+03BA

lArr; U+21D0

lambda; U+03BB

lang; U+3008

laquo; U+00AB

laquo U+00AB

larr; U+2190

lceil; U+2308

ldquo; U+201C

le; U+2264

lfloor; U+230A

lowast; U+2217

loz; U+25CA

lrm; U+200E

lsaquo; U+2039

lsquo; U+2018

lt; U+003C

lt U+003C

macr; U+00AF

macr U+00AF

mdash; U+2014

micro; U+00B5

micro U+00B5

middot; U+00B7

middot U+00B7

minus; U+2212

mu; U+03BC

nabla; U+2207

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

448 of 458 30/12/2020, 08:08

Entity Name Character

nbsp; U+00A0

nbsp U+00A0

ndash; U+2013

ne; U+2260

ni; U+220B

not; U+00AC

not U+00AC

notin; U+2209

nsub; U+2284

ntilde; U+00F1

ntilde U+00F1

nu; U+03BD

oacute; U+00F3

oacute U+00F3

ocirc; U+00F4

ocirc U+00F4

oelig; U+0153

ograve; U+00F2

ograve U+00F2

oline; U+203E

omega; U+03C9

omicron; U+03BF

oplus; U+2295

or; U+2228

ordf; U+00AA

ordf U+00AA

ordm; U+00BA

ordm U+00BA

oslash; U+00F8

oslash U+00F8

otilde; U+00F5

otilde U+00F5

otimes; U+2297

ouml; U+00F6

ouml U+00F6

para; U+00B6

para U+00B6

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

449 of 458 30/12/2020, 08:08

Entity Name Character

part; U+2202

permil; U+2030

perp; U+22A5

phi; U+03C6

pi; U+03C0

piv; U+03D6

plusmn; U+00B1

plusmn U+00B1

pound; U+00A3

pound U+00A3

prime; U+2032

prod; U+220F

prop; U+221D

psi; U+03C8

quot; U+0022

quot U+0022

rArr; U+21D2

radic; U+221A

rang; U+3009

raquo; U+00BB

raquo U+00BB

rarr; U+2192

rceil; U+2309

rdquo; U+201D

real; U+211C

reg; U+00AE

reg U+00AE

rfloor; U+230B

rho; U+03C1

rlm; U+200F

rsaquo; U+203A

rsquo; U+2019

sbquo; U+201A

scaron; U+0161

sdot; U+22C5

sect; U+00A7

sect U+00A7

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

450 of 458 30/12/2020, 08:08

Entity Name Character

shy; U+00AD

shy U+00AD

sigma; U+03C3

sigmaf; U+03C2

sim; U+223C

spades; U+2660

sub; U+2282

sube; U+2286

sum; U+2211

sup1; U+00B9

sup1 U+00B9

sup2; U+00B2

sup2 U+00B2

sup3; U+00B3

sup3 U+00B3

sup; U+2283

supe; U+2287

szlig; U+00DF

szlig U+00DF

tau; U+03C4

there4; U+2234

theta; U+03B8

thetasym; U+03D1

thinsp; U+2009

thorn; U+00FE

thorn U+00FE

tilde; U+02DC

times; U+00D7

times U+00D7

trade; U+2122

uArr; U+21D1

uacute; U+00FA

uacute U+00FA

uarr; U+2191

ucirc; U+00FB

ucirc U+00FB

ugrave; U+00F9

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

451 of 458 30/12/2020, 08:08

Entity Name Character

ugrave U+00F9

uml; U+00A8

uml U+00A8

upsih; U+03D2

upsilon; U+03C5

uuml; U+00FC

uuml U+00FC

weierp; U+2118

xi; U+03BE

yacute; U+00FD

yacute U+00FD

yen; U+00A5

yen U+00A5

yuml; U+00FF

yuml U+00FF

zeta; U+03B6

zwj; U+200D

zwnj; U+200C

9. WYSIWYG editors

WYSIWYG editors are authoring tools with a predominantly presentation-driven user interface.

9.1. Presentational markup

9.1.1. WYSIWYG signature

WYSIWYG editors must include a meta element in the head element whose name attribute has the

value generator and whose content attribute's value ends with the string "(WYSIWYG

editor)". Non-WYSIWYG authoring tools must not include this string in their generator string.

This entire section will probably be dropped. The intent of this section was to allow a way for
WYSIWYG editors, which aren't going to use semantic markup, to still write conforming
documents, while not letting it be ok for hand-coding authors to not use semantic markup. We still
need some sort of solution to this, but it's not clear what it is.

9.1.2. The font element

Categories

Phrasing content.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

452 of 458 30/12/2020, 08:08

Contexts in which this element may be used:

Where phrasing content is expected.

Content model:

Transparent.

Element-specific attributes:

style

DOM interface:

interface HTMLFontElement : HTMLElement {
 readonly attribute CSSStyleDeclaration style;
};

This entire section will probably be dropped. The intent of this section was to allow a way for
WYSIWYG editors, which don't have enough information to use the "real" "semantic" elements, to
still make HTML pages without abusing those semantic elements (since abusing elements is
even worse than not using them in the first place). We have still got to find a solution to this, while
not letting it be ok for hand-coding authors to abuse the style="" attribute.

The font element doesn't represent anything. It must not be used except by WYSIWYG editors,

which may use it to achieve presentational affects. Even WYSIWYG editors, however, should make
every effort to use appropriate semantic markup and avoid the use of media-specific presentational
markup.

Conformance checkers must consider this element to be non-conforming if it is used on a page
lacking the WYSIWYG signature.

The following would be syntactically legal (as the output from a WYSIWYG editor, though not
anywhere else):

<!DOCTYPE HTML>
<html>
 <head>
 <title></title>
 <meta name="generator" content="Sample Editor 1.0 (WYSIWYG
editor)">
 </head>
 <body>

 <h1>Hello.</h1>

 <p>
 How
 do
 you

 do?
 </p>
 </body>
</html>

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

453 of 458 30/12/2020, 08:08

The first font element is conformant because h1 and p elements are both allowed in body

elements. the next four are allowed because text and em elements are allowed in p elements.

The style attribute, if specified, must contain only a list of zero or more semicolon-separated (;)

CSS declarations. [CSS21]

We probably need to move this attribute to more elements, maybe even all of them, though if we
do that we really should find a way to strongly discourage its use (and the use of its DOM
attribute) for non-WYSIWYG authors.

The declarations specified must be parsed and treated as the body of a declaration block whose
selector matches just that font element. For the purposes of the CSS cascade, the attribute must

be considered to be a 'style' attribute at the author level.

The style DOM attribute must return a CSSStyleDeclaration whose value represents the

declarations specified in the attribute, if present. Mutating the CSSStyleDeclaration object must

create a style attribute on the element (if there isn't one already) and then change its value to be a

value representing the serialised form of the CSSStyleDeclaration object. [CSSOM]

10. Rendering

This section will probably include details on how to render DATAGRID (including its pseudo-
elements), drag-and-drop, etc, in a visual medium, in concert with CSS. Terms that need to be
defined include: sizing of embedded content

CSS UAs in visual media must, when scrolling a page to a fragment identifier, align the top of the
viewport with the target element's top border edge.

must define letting the user obtain a physical form of a document (printing) and what this
means for the UA

Must define that in CSS, tag names in HTML documents, and class names in quirks mode
documents, are case-insensitive.

10.1. Rendering and the DOM

This section is wrong. mediaMode will end up on Window, I think. All views implement Window.

Any object implement the AbstractView interface must also implement the

MediaModeAbstractView interface.

interface MediaModeAbstractView {
 readonly attribute DOMString mediaMode;
};

The mediaMode attribute on objects implementing the MediaModeAbstractView interface must

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

454 of 458 30/12/2020, 08:08

return the string that represents the canvas' current rendering mode (screen, print, etc). This is a

lowercase string, as defined by the CSS specification. [CSS21]

Some user agents may support multiple media, in which case there will exist multiple objects
implementing the AbstractView interface. Only the default view implements the Window interface.

The other views can be reached using the view attribute of the UIEvent inteface, during event

propagation. There is no way currently to enumerate all the views.

10.2. Rendering and menus/toolbars

10.2.1. The 'icon' property

UAs should use the command's Icon as the default generic icon provided by the user agent when
the 'icon' property computes to 'auto' on an element that either defines a command or refers to one
using the command attribute, but when the property computes to an actual image, it should use that

image instead.

11. Things that you can't do with this specification
because they are better handled using other technologies
that are further described herein

This section is non-normative.

There are certain features that are not handled by this specification because a client side markup
language is not the right level for them, or because the features exist in other languages that can be
integrated into this one. This section covers some of the more common requests.

11.1. Localisation

If you wish to create localised versions of an HTML application, the best solution is to preprocess the
files on the server, and then use HTTP content negotation to serve the appropriate language.

11.2. Declarative 2D vector graphics and animation

Embedding vector graphics into XHTML documents is the domain of SVG.

11.3. Declarative 3D scenes

Embedding 3D imagery into XHTML documents is the domain of X3D, or technologies based on
X3D that are namespace-aware.

11.4. Timers

This section is expected to be moved to the Window Object specification in due course.

interface WindowTimers {
 // timers

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

455 of 458 30/12/2020, 08:08

 long setTimeout(in TimeoutHandler handler, in long timeout);
 long setTimeout(in TimeoutHandler handler, in long timeout,
arguments...);
 long setTimeout(in DOMString code, in long timeout);
 long setTimeout(in DOMString code, in long timeout, in DOMString
language);
 void clearTimeout(in long handle);
 long setInterval(in TimeoutHandler handler, in long timeout);
 long setInterval(in TimeoutHandler handler, in long timeout,
arguments...);
 long setInterval(in DOMString code, in long timeout);
 long setInterval(in DOMString code, in long timeout, in DOMString
language);
 void clearInterval(in long handle);
};

interface TimeoutHandler {
 void handleEvent(arguments...);
};

The WindowTimers interface must be obtainable from any Window object using binding-specific

casting methods.

The setTimeout and setInterval methods allow authors to schedule timer-based events.

The setTimeout(handler, timeout[, arguments...]) method takes a reference to a

TimeoutHandler object and a length of time in milliseconds. It must return a handle to the timeout

created, and then asynchronously wait timeout milliseconds and then invoke handleEvent() on

the handler object. If any arguments... were provided, they must be passed to the handler as
arguments to the handleEvent() function.

In the ECMAScript DOM binding, the ECMAScript native Function type must implement the

TimeoutHandler interface such that invoking the handleEvent() method of that interface on the

object from another language binding invokes the function itself, with the arguments passed to
handleEvent() as the arguments passed to the function. In the ECMAScript DOM binding itself,

however, the handleEvent() method of the interface is not directly accessible on Function

objects. Such functions must be called in the scope of the browsing context in which they were
created.

Alternatively, setTimeout(code, timeout[, language]) may be used. This variant takes a

string instead of a TimeoutHandler object. That string must be parsed using the specified

language (defaulting to ECMAScript if the third argument is omitted) and executed in the scope of
the browsing context associated with the Window object on which the setTimeout() method was

invoked.

Need to define language values.

The setInterval(...) variants must work in the same way as the setTimeout variants except

that the handler or code must be invoked again every timeout milliseconds, not just the once.

The clearTimeout() and clearInterval() methods take one integer (the value returned by

setTimeout and setInterval respectively) and must cancel the specified timeout. When called

with a value that does not correspond to an active timeout or interval, the methods must return

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

456 of 458 30/12/2020, 08:08

without doing anything.

Timeouts must never fire while another script is executing. (Thus the HTML scripting model is strictly
single-threaded and not reentrant.)

11.5. Events

In the ECMAScript DOM binding, the ECMAScript native Function type must implement the

EventListener interface such that invoking the handleEvent() method of that interface on the

object from another language binding invokes the function itself, with the event argument as its only

argument. In the ECMAScript binding itself, however, the handleEvent() method of the interface

is not directly accessible on Function objects. Such functions, when invoked, must be called in the

scope of the browsing context that they were created in.

References

This section will be written in a future draft.

Acknowledgements

Thanks to Aankhen, Aaron Boodman, Aaron Leventhal, Adam Roben, Adrian Sutton, Agustín
Fernández, Alexey Feldgendler, Andrew Gove, Andrew Sidwell, Anne van Kesteren, Anthony
Hickson, Antti Koivisto, Asbjørn Ulsberg, Ben Godfrey, Ben Meadowcroft, Benjamin Hawkes-Lewis,
Bert Bos, Billy Wong, Bjoern Hoehrmann, Boris Zbarsky, Brad Fults, Brad Neuberg, Brady Eidson,
Brendan Eich, Brett Wilson, Brian Campbell, Carlos Perelló Marín, Chao Cai, 윤석찬 (Channy Yun),
Charl van Niekerk, Charles Iliya Krempeaux, Charles McCathieNevile, Christian Biesinger, Christian
Johansen, Chriswa, Daniel Brumbaugh Keeney, Daniel Peng, Daniel Spång, Darin Alder, Darin
Fisher, Dave Singer, Dave Townsend, David Baron, David Flanagan, David Håsäther, David Hyatt,
Derek Featherstone, DeWitt Clinton, Dimitri Glazkov, dolphinling, Doron Rosenberg, Doug Kramer,
Eira Monstad, Elliotte Harold, Erik Arvidsson, Evan Martin, fantasai, Franck 'Shift' Quélain, Garrett
Smith, Geoffrey Sneddon, Håkon Wium Lie, Henri Sivonen, Henrik Lied, Ignacio Javier, Ivo Emanuel
Gonçalves, J. King, James Graham, James M Snell, James Perrett, Jan-Klaas Kollhof, Jasper
Bryant-Greene, Jeff Cutsinger, Jeff Walden, Jens Bannmann, Jeroen van der Meer, Joel Spolsky,
John Boyer, John Bussjaeger, John Harding, Johnny Stenback, Jon Perlow, Jonathan Worent,
Jorgen Horstink, Josh Levenberg, Joshua Randall, Jukka K. Korpela, Kai Hendry, Kornel Lesinski,
黒澤剛志 (KUROSAWA Takeshi), Kristof Zelechovski, Lachlan Hunt, Larry Page, Lars Gunther,
Laurens Holst, Lenny Domnitser, Léonard Bouchet, Leons Petrazickis, Logan, Loune, Maciej
Stachowiak, Malcolm Rowe, Mark Nottingham, Mark Rowe, Mark Schenk, Martijn Wargers, Martin
Atkins, Martin Dürst, Martin Honnen, Mathieu Henri, Matthew Mastracci, Matthew Raymond,
Matthew Thomas, Mattias Waldau, Max Romantschuk, Michael 'Ratt' Iannarelli, Michael A.
Nachbaur, Michael A. Puls II, Michael Gratton, Michael Powers, Michel Fortin, Michiel van der Blonk,
Mihai Şucan, Mike Brown, Mike Dierken, Mike Dixon, Mike Schinkel, Mike Shaver, Mikko
Rantalainen, Neil Deakin, Olav Junker Kjær, Peter Kasting, Philip Taylor, Rachid Finge, Rajas
Moonka, Ralph Giles, Rimantas Liubertas, Robert O'Callahan, Robert Sayre, Roman Ivanov, S. Mike
Dierken, Sam Ruby, Sam Weinig, Scott Hess, Sean Knapp, Shaun Inman, Silvia Pfeiffer, Simon
Pieters, Stefan Haustein, Stephen Ma, Steve Runyon, Steven Garrity, Stewart Brodie, Stuart

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

457 of 458 30/12/2020, 08:08

Parmenter, Tantek Çelik, Thomas Broyer, Thomas O'Connor, Tim Altman, Tyler Close, Vladimir
Vukićević, Wakaba, William Swanson, Øistein E. Andersen, and everyone on the WHATWG mailing
list for their useful and substantial comments.

Special thanks to Richard Williamson for creating the first implementation of canvas in Safari, from

which the canvas feature was designed.

Special thanks also to the Microsoft employees who first implemented the event-based drag-and-
drop mechanism, contenteditable, and other features first widely deployed by the Windows

Internet Explorer browser.

Special thanks and $10,000 to David Hyatt who came up with a broken implementation of the
adoption agency algorithm that the editor had to reverse engineer and fix before using it in the
parsing section.

Thanks also the Microsoft blogging community for some ideas, to the attendees of the W3C
Workshop on Web Applications and Compound Documents for inspiration, and to the #mrt crew, the
#mrt.no crew, and the cabal for their ideas and support.

HTML 5 https://web.archive.org/web/20080112125743/http://www.whatwg.org/sp...

458 of 458 30/12/2020, 08:08

